
WeStat: a Privacy-Preserving Mobile Data Usage Statistics
System

Sébastien Canard∗
Nicolas Desmoulins
Sébastien Hallay

Adel Hamdi
Dominique Le Hello

Orange Labs – Applied Crypto Group
Caen Cedex 4, France

ABSTRACT
The preponderance of smart devices, such as smartphones, has
boosted the development and use of mobile applications (apps) in
the recent years. This prevalence induces a large volume of mobile
app usage data. The analysis of such information could lead to a
better understanding of users’ behaviours in using the apps they
have installed, even more if these data can be coupled with a given
context (location, time, date, sociological data…). However, mobile
and apps usage data are very sensitive, and are today considered as
personal. Their collection and use pose serious concerns associated
with individuals’ privacy. To reconcile harnessing of data and pri-
vacy of users, we investigate in this paper the possibility to conduct
privacy-preserving mobile data usage statistics that will prevent
any inference or re-identification risks. The key idea is for each
user to encrypt their (private and sensitive) inputs before sending
them to the data processor. The possibility to perform statistics on
those data is then possible thanks to the use of functional encryp-
tion, a cryptographic building block permitting to perform some
allowed operations over encrypted data. In this paper, we first show
how it is possible to obtain such individuals’ usage of their apps,
which step is necessary for our use case, but can at the same time
pose some security problems w.r.t. those apps. We then design our
new encryption scheme, adding some fault tolerance property to
a recent dynamic decentralized function encryption scheme. We
finally show how we have implemented all that, and give some
benchmarks.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols.

KEYWORDS
Cryptography, functional encryption, privacy, mobile apps

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWSPA’21, April 28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8320-2/21/04…$15.00
https://doi.org/10.1145/3445970.3451151

ACM Reference Format:
Sébastien Canard, Nicolas Desmoulins, SébastienHallay, Adel Hamdi, andDo-
minique Le Hello. 2021. WeStat: a Privacy-Preserving Mobile Data Usage
Statistics System. In Proceedings of the 2021 ACM International Workshop on
Security and Privacy Analytics (IWSPA’21), April 28, 2021, Virtual Event, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3445970.3451151

1 INTRODUCTION
Our daily life is nowadays widely punctuated by the use we make
of our smartphones and the applications (apps in short) we have
installed on it. Such ubiquity of mobile usage empowers users to
access information, whenever they want and wherever they are,
and impacts the society by modifying everyday life habits. Gaming,
finance, retail, streaming, social networks, IoT… Mobile and their
apps have become the “central nervous system of our connected
lives”, as explained and proved by the well-known App Annie’s
“State of the Mobile in 2020” report (https://www.appannie.com/en/
go/state-of-mobile-2020/). This latter has indeed recorded in 2019
204 billions of downloaded apps, 3.7 hours per day spent in mobile
by the average user, 150 sessions per app per month per user among
top 25 non-gaming apps on average…

This explosion generates a volume of mobile and app usage data
that is getting more and more impressive. According to the recent
Ericsson Mobility Report (https://www.ericsson.com/en/mobility-
report), the average smartphone user churns through 1.4 GB of data
every month, and this figure is expected to reach 8.9 GB in 2021!

The knowledge and analysis of these data is at the core of many
competitive sectors. In particular, this could permit to better under-
stand users’ behaviours in using their smartphone and the installed
apps. Besides, if these data are coupled with a given context (lo-
cation, time, date, sociological data…), the insights resulting from
these analytics could be very meaningful and valuable for a wide
range of stakeholders, ranging from city services to retail stores,
not to mention application developers or sociologists. It can be very
useful to obtain the carbon emission of e.g., social networks apps,
or to know when games apps are more often used, depending on
e.g., the age range. Such kind of study can also interest individuals
so that they compare their own consumption with that of other
individuals with a similar profile.

However, mobile and app usage data are very sensitive, and today
considered as personal data. The collection and use of these data
pose serious concerns associated with individuals’ privacy. A few
of recent examples of privacy breaches with respect to app usage

https://doi.org/10.1145/3445970.3451151
https://doi.org/10.1145/3445970.3451151
https://www.appannie.com/en/go/state-of-mobile-2020/
https://www.appannie.com/en/go/state-of-mobile-2020/
https://www.ericsson.com/en/mobility-report
https://www.ericsson.com/en/mobility-report

IWSPA’21, April 28, 2021, Virtual Event, USA

shed light on how sensitive these data can be. For instance, some of
the documents provided by Edward Snowden in 2014 revealed that
the NSA has been using the mobile game Angry Birds to collect
users’ personal data such as age, gender and location. In April 2018,
the Norwegian research institute SINTEF reported that Grindr, a
gay dating application, was sharing sensitive data such as HIV
status (that the users disclose – or not – in their public profile) or
locations to two third-party companies. In early 2018, the Facebook-
Cambridge Analytica data scandal hit the headline, when it was
revealed that the consulting firm has harvested Facebook’s data
(given by users who had signed up for an application named “This
is Your Digital Life”) to profile US voters. Inside Europe, the recent
introduction of the General Data Protection Regulation (GDPR) has
drastically changed the way the data industry can use personal
data, having to explain how they proceed to protect it and reduce
the re-identification risks.

In this paper, we propose the first privacy-preserving mobile
data usage statistics that prevents any inference or re-identification
of individuals. Let us first detail our use case.

1.1 Use Case Description
We consider for example a team of social scientists that are inter-
ested in having a better knowledge of the habits of users of mobile
phones and in particular to study the impact on the population of
the usage of e.g., social network applications. Traditionally, this kind
of study is conducted through tools such as face-to-face interviews,
diaries, questionnaires or surveys. Participants would be asked to
self-report the frequency or the duration of their use of social net-
works apps via questions such as “How frequently do you open
your social networks application? Less than a month; once a month;
once a week; etc.”. This approach, while being widely spread in the
social science research community, suffers from several drawbacks.
First, participants’ answers to the questionnaire may be biased by
several factors: subjectivity (people may underestimate or overesti-
mate their use of social networks), human memory limitations (it
is hard to remember when or how often they open the application)
or willingness (for fear of other’s eyes). Secondly, as a consequence
of the first drawback, questions must be thoughtfully chosen and
asked in order to avoid biases. Additionally, questionnaires and
surveys only cover a small sample of the population. All these flaws
of conventional tools for social science studies lead to ineffective
implementation (right questions to ask), poor representativeness
(small sample) and inaccurate results (biased answers).

Therefore, the aforementioned limitations influence our team
of social scientists to study behaviours of social networks users
at source, based on their mobile usage data, that consist of times-
tamps of application opening and closing, actions performed in
the application (such as “like” button), configuration parameters,
etc. Collection and analytics of such data present several advan-
tages compared to traditional tools: mobile usage data analytics
deal with objective data that cannot be biased, cover a bigger and
more scalable sample and result in more fine-grained and more
accurate analytics. Besides, the usage data can be enriched with
additional data such as phone data (OS, used network, i.e. 3G, 4G
or Wi-Fi, …) and demographic data (age, size of family, …) to obtain
even more fine-grained insights. Hence mobile usage data analytics

can either be used in combination with traditional tools (surveys,
questionnaires) or even potentially supersede questionnaire-based
methods.

The idea is then to provide a new independent service, called
WeStat, for privacy-preserving analytics on mobile usage data col-
lected from registered users. To perform such a collection, the
Service Provider, called Aggregator in the sequel, provides to users
a dedicated WeStat smartphone app to be installed on their mobile
phones, which will take care of the collection of data coming from
several other apps. Besides, users can be encouraged to participate
to the study since they will be able to compare their own consump-
tion with the ones of similar people, or by receiving some rewards
(discounts, vouchers, etc.).

We moreover request to restrict the number of interactions be-
tween all actors. Indeed, we first consider that a solution based on
the active participation of individuals is not enough sustainable,
based on the additional fact that individuals do not know each
other: the main operations should be managed by the Aggregator
solely. Furthermore, we also prefer to lower the role of the Third
Party in the different steps, since considering that the latter re-
quests a service from the former, and does not necessarily want
to be very active. The Third Party should then only participate, in
a non-interactive way, in (i) the creation of the study and (ii) the
computation of the final statistics.

In this context, the team of social scientists contacts (playing the
role of a Third Party in our system) the Aggregator (as the service
provider) with a specific analytics request. They will request some
statistics (counting, average duration, linear regression…) on one
or a set of apps are used for a given period of time. The analytics
requests specify the attributes on which they would like the analyt-
ics operations to be performed (for instance, age, day of the week,
month, duration of use etc.) as well as the operation to be performed
on the data. In the sequel, we will consider the average carbon emis-
sion of social networks apps (Instagram, Facebook, WhatsApp…),
correlated with the age and place of living. The Aggregator then
performs the requested analytics on the individual’s aggregated
data collected during the specified observation period and sends
back the analytics results to the research team. Having access to
the result, the research team can derive social conclusions about
social networks usage.

1.2 Privacy Constraints
As the usage data could be highly sensitive in terms of users’
privacy, the WeStat system should include mechanisms for pri-
vacy protection, in particular in accordance with the GDPR (https:
//ec.europa.eu/info/law/law-topic/data-protection/). Consent is a
first key condition to collect and process users’ data (Articles 6, 7
and 8 of the GDPR). Therefore, before each new study, users are
requested to give their (informed and explicit) consent on the col-
lection and processing of their data by the Aggregator. They should
agree on (i) the attributes that will be collected from them; (ii) the
duration of the collection; (iii) the purpose of the processing (the re-
quested analytics) that will be performed on the collected data and
(iv) the period of storage of their data. The users are also empow-
ered with the ability to specify privacy preferences on collection
and usage of their data.

https://ec.europa.eu/info/law/law-topic/data-protection/
https://ec.europa.eu/info/law/law-topic/data-protection/

WeStat: a Privacy-Preserving Mobile Data Usage Statistics System IWSPA’21, April 28, 2021, Virtual Event, USA

Furthermore, to fulfil the principle of privacy-by-design reques-
ted by the GDPR (Articles 25 and 32), the present use case should
leverage technical solutions for data protection. The main pur-
pose for those technical mechanisms is to reduce the risk of re-
identification of any individual’s data. The main constraints we
need to manage are the following ones:

• the Aggregator nor the Third Party should obtain any indi-
vidual’s personal data;

• only the Third Party should obtain the final result (even
if it can finally decide to publish such statistics, or some
derivative conclusions);

• any individual can participate, but one individual does not
know, at the time she is sending her data, who are the other
participants. In particular, an individual may first claim that
she wants to participate, and then decide not to send her
data.

Pseudonymisation and anonymization techniques, such as :-
anonymity [13] or differential privacy [8] are potential solutions. In
fact, the former seems hard to use in our context since we need that
one entity aggregates the data coming from several independent
users. In this case, the value : seems hard to manage upstream.
The latter seems more suitable, assuming that each individual adds
some differential private noise to her input before sending it to the
Aggregator. As we do not know in advance who will participate, it
may be hard to precisely calibrate such noise, since the sensitivity
usually depends on the whole set of data. But this is still feasible,
using so called local differential privacy, which may need to add
substantiallymore noise than necessary [11]. In fact, the solutionwe
propose can quite easily be plugged to some additional pre-defined
differential private mechanisms.

Our solution is to make use of encryption techniques directly on
the individual’s side. For the GDPR’s point of view, this corresponds
to a pseudonymization technique, with the difference that in case
of private data compromise, the data controller does not have to
inform the data subject, but only the authority. Let us now take a
look on the different possibilities one can find on the literature.

1.3 Overview of our Solution
Our solution can in fact be summarized as follows: before the usage
data leave the users’ mobile phone, they will be encrypted using
some specific encryption key defined for the study. Using a suitable
encryption scheme, the Aggregator is then capable to perform the
requested analytical operation on the encrypted collected data,
hence without having a plain access to those data. The encrypted
results of this operation are then given to the Third Party which
can obtain it in clear. In this paper, we will mainly focus on specific
simple analytics operations, namely simple summary statistics such
as computing the mean. More precisely, we will consider the inner
product operation. Our method can be generalized to more complex
operations, but with less efficiency.

In a nutshell, our solution is first an adaptation of the DSum
technique given in [5], which one is a special case of dynamic
decentralized multi-client Functional Encryption [6, 10]. We then
combine such technique with some ideas taken from fault-tolerant
Private Stream Aggregation [4] to manage the fact that we do not
know in advance who will participate. But this additional property

obliges us to perform some adaptations in the DSum construction
given in [5]. In particular, the All-or-Nothing encapsulation tech-
nique needs in our case to be used twice. We finally add a new trick
in the resulting construction, which consists in adding some ran-
domness on theThird Party side, in order to prevent the Aggregator
from learning partial results.

1.4 Organization of the Paper
We now organize the paper as follows. In Section 2, we recall the
main elements of the studied use case, and then give the main
security requirements. Section 3 recalls the main cryptographic
components that we need and details our solution, at first with the
cryptographic algorithms, and then with the interactions between
all users. In Section 4, before concluding, we furnish all the details
of our real implementation of the whole system. In particular, we
explain how we have obtained the usage statistic (how long such
app has been used, how many times per day, what is the used
configuration …) related to any smartphone app that is relevant for
the Third Party study. For this part of our work, which may be of
independent interest, we haven’t used any security flaw, but only
legal and available tools.

2 USE CASE DESCRIPTION AND SECURITY
REQUIREMENTS

In this section, we start by formalizing more the use case we are
considering in this paper. We then give the desired requirements in
terms on security and privacy. This finally permits us to detail the
main requirements for our cryptographic tool.

2.1 High-Level Use Case Description
2.1.1 Actors. We consider a system, calledWeStat, with three types
of actors:

• a set of individuals that after having installed the WeStat
app, will obtain a notification for each new study. After
having giving their consent in participating in the study,
the WeStat app will aggregate and send encrypted data to
the Aggregator. Individuals will finally obtain the result of
the study so as to be able to compare it with their own
consumption, in a privacy-preserving way. They can also
obtain some rewards for their participation;

• an Aggregator that can obtain individuals’ encrypted data so
as to perform the statistics in a privacy-preserving manner.
It makes the interface withThird Parties to prepare the study
and to permit them to obtain the results;

• Third Parties that can contact the Aggregator for a new
study, filling some on-line form with the name of the study,
the start and end dates, the targeted apps (social networks,
communication, games …), the type of measure (counting,
duration, carbon emission…), the type of statistics (mean,
count…), and the Requested profiles (gender, age, place of
living, job…). They finally obtain the diagrams giving the
results of their study.

2.1.2 Additional requirements. For efficiency reasons, we only con-
sider statistics that can be managed using an inner product between
a vector where each component is the entry of one individual and

IWSPA’21, April 28, 2021, Virtual Event, USA

another vector related to the study. For example, the sum (resp.
mean) of all the entries can be computed with vector (1, · · · , 1)
(resp. (1, · · · , 1) divided by the number of entries). More complex
statistics can also be computed using inner product, such as e.g.
linear regression or data classification.

Another important issue is that an individual may plan to par-
ticipate but then decide not (or fail) to. This is quite natural and
should not pose any problem regarding both the final result and
the privacy of this individual (and the one of the others).

2.1.3 Privacy issues. This use case raises several privacy concerns.
Individuals are requested to give their consent to the collection
and processing of their data for a specific study, hence a specific
statistical analysis. In case consent is given, as collected informa-
tion is privacy-sensitive, they should be protected with regard to
the current legislation. The used encryption algorithm should both
provide data confidentiality and allow the Aggregator to derive
the above statistics on the encrypted aggregated data. Hence, one
of the privacy requirements is that the possibility to decrypt any
single user’s data should be infeasible. Similarly, it must be impos-
sible for the Aggregator to compute the analytics operations on
a dataset originating from a single user; otherwise, this user will
straightforwardly be re-identified. This implies that analytics must
not be performed before multi-source data are aggregated. Finally,
as consent is given for one study or one data processing, it must
be infeasible to perform any other analytics on the data that have
been collected for other purposes.

2.1.4 Cryptographic requirements. We now focus on the crypto-
graphic scheme. From all the above points, we can conclude that:

• each individual sends one message in a complete decentral-
ized fashion without knowing in advance which other users
are going to participate;

• the Aggregator should not learn any additional information
about individuals;

• the Third Party is the only entity that gets the final result;
• the cryptographic scheme should be fault-tolerant, i.e. if one

user fails, the final result should only be considered over the
remaining users and no partial information should be given.

2.2 More Formal Description
2.2.1 Procedures. We now define a more formal view of our need,
considering that the WeStat system has been initialized by the
Aggregator, which outputs some parameters param.

• The registration to the service is executed by any individual
8 . It permits her to generate a secret key sk8 and to send some
related public parameters pk8 to the Aggregator.

• The new study creation permits a Third Party and the Ag-
gregator to create a new study, labelled as ℓ . The Third Party
outputs a secret key skℓ and a related public parameter pkℓ
is generated by the interactions between the Third Party and
the Aggregator.

• The data sending for study labelled ℓ is executed by each
individual 8 , on input sk8 , pk8 and pkℓ . It outputs a ciphertext
28,ℓ from the plain data08,ℓ (corresponding to this individual’s
contribution to the study).

• The result computation is seen as a protocol between the
Third Party and the Aggregator.The former takes as input skℓ
and pkℓ , and the latter the public parameters pkℓ and the set
(280,ℓ , 281,ℓ , · · ·) of all ciphertexts outputs by the participating
individuals. It permits the Third Party to output the result.

2.2.2 Security. From all the above discussion, our main purpose
regarding security is to provide indistinguishability w.r.t. individu-
als’ data 08 . There are three main entities (users, Aggregator and
Third Party) that we may consider as corrupted to break such se-
curity property, trying to learn more information than authorized
(honest-but-curious).

It follows that we may considered compromised users, given to
the adversary some auxiliary information about their own inputs
and/or their secret keys. In particular, a wishful security property
that we handle is to guarantee that the only leaked information to
the adversary is the sum of the non-compromised users. On this
aspect, we follow the main idea of the security model given by
Chan et al. [4].

We can then consider a corrupted Third Party that may have
corrupted some users. Having access to the final result, it is obvi-
ously able to learn some intermediate result, and in particular the
sum of the contributions of non-compromised users. But we here
argue that this should not be more than that. In particular, there
is no possibility for such adversary to single out the entry of one
non-compromised user.

A similar conclusion can be given for a corrupted Aggregator,
except that in this case, the sum of non-compromised users can
only be retrieved assuming that the final result is finally published
by the Third Party.

Let us now consider an adversary having compromised both the
Aggregator and the Third Party, which is the strongest possible se-
curity model. It seems theoretically feasible to design such a secure
scheme. Assuming that non-compromised users give their consent
for one specific data treatment, we can certainly find solution in
which they can detect that the Aggregator and the Third Party are
trying to compute something else. But in fact, we haven’t seen
any course of action that permits to efficiently solve our problem.
More precisely, such design seems possible using some multi-party
computation system in which the complete set of users participate:
but this is not our setting, as we specifically assume that users
cannot directly participate to the whole data treatment. Another
possibility may be to use some Non-Interactive Zero-Knowledge
proof of knowledge to give the possibility for Aggregator and the
Third Party to prove that they have behaved correctly. This is defi-
nitely not enough efficient. As a consequence, we do not consider
the case of such coalition in the sequel.

3 OUR CONSTRUCTION
Wenowour solution to the above problem, starting from an overview
before going into more details.

3.1 Overview of our Solution
The starting point of our construction is the binary tree idea of
Chan et al. [4] that we modify according to our needs. First, we
split users in different groups. Then, each user is associated to one
leaf in the tree, and is related to all the nodes from her leaf to the

WeStat: a Privacy-Preserving Mobile Data Usage Statistics System IWSPA’21, April 28, 2021, Virtual Event, USA

root. We then run a DSum protocol for each group/node, using the
construction given in [5]. If some users fail, we are then able to find
a set of subgroups that can cover the participating users. This gives
us the fault-tolerant property. More precisely,

• each user 8 considers the set N of nodes where it appears
and generates a secret key sk8,N for each node N , using the
KeyGen algorithm of the DSum scheme;

• using several times the encryption algorithm of the DSum
scheme on input her contribution 08 and the secret key sk8,N ,
user 8 generates as many ciphertexts as the number of nodes
in which she appears;

• after having received the contribution of all participating
users, the Aggregator has to find a set of blocks that cover all
of them. This next permits it to obtain first all partial sums,
and then the whole result, which is finally sent to the Third
Party;

• considering that the Third Party has previously (during the
creation of the study) participated to the protocol with some
randomness, playing as an extra user (belonging to all leaves
in the tree), the resulting sum is noised with some global
randomness that it can remove after having received the
result from the Aggregator.

3.2 Building Blocks
As explained above, the core of our cryptographic system is the
DSum functional encryption scheme given in [5]. Such construc-
tion makes use of a so-called NIKE (for Non-Interactive Key Ex-
change) [9] together with a new concept they have called All-or-
Nothing Encapsulation. For the former, we make use of the con-
struction in the standard model from pairings given in [9], which
itself uses the chameleon signature based on discrete logarithm
scheme given in [12].

3.2.1 DL Based Chameleon Hashing. In a nutshell, a chameleon
hashing corresponds to a collision-resistant algebraic hash function
with a trapdoor for finding collisions. In their paper [12], Krawczyk
and Rabin have introduced such concept of (together with the
one of chameleon signature schemes) and have proposed several
constructions. We here focus on the discrete logarithm based one,
as it corresponds to the setting in which we fall for our general
construction.

Let ? and @ be prime numbers such that ? = :@+1 for some : . Let
6 of order @ in Z∗? . The secret key to find trapdoors is ck ∈ Z∗@ and
the corresponding hashing public key is hk = 6ck (mod ?). Given
a message< ∈ Z∗@ , the hashing procedure first chooses at random
A ∈ Z∗@ and computes ℎ = 6<hkA (mod ?). Using the collision
secret key ck, one can find a collision, that is for a given message
<′, a value A ′ such that 6<hkA = 6<

′
hkA

′ (mod ?). This can be
done by solving the equation< + GA =<′ + GA ′ (mod @).

Note that in the NIKE construction we use [9], the collision
secret key ck is not used in the construction but rather to prove the
security of the scheme. See [9] for details.

3.2.2 Non-Interactive Key Exchange. The notion of Non-Interactive
Key Exchange (NIKE) has been introduced in [9]. It corresponds to
a public-key cryptographic primitive which enables two parties to
agree on a symmetric shared key without requiring any interaction.

Each party owns a key pair (sk8 , pk8) and is able to compute the
shared key by using her private key sk1 (resp. sk2) and the public
key pk2 (resp. pk1) or the other party.

For our main construction, we make use of the pairing based con-
struction, still given in [9]. Let (G1,G2,G) , ?, 61, 62, 4) be a so-called
bilinear environment, where G1,G2,G) are groups of order prime
? , 61 ∈ G1 and 62 ∈ G2 and 4 is a bilinear map. Let D,D1, D2 ∈ G∗1
and let hk, ck be as defined above for the chameleon hash func-
tion (the key ck is only necessary for the security proof, and then
not used in the below description). All those values compose the
parameters of the NIKE scheme.

The key generation phase, executed by each party 8 then consists
in choosing at random G8 ∈ Z? and A8 ∈ Z∗@ (as in the chameleon
hash function above), then computing /8 = 6G82 , C = 6H2 (/8)hkA8

(mod ?) (a chameleon hash), .8 = D0D
C8
1 D

C28
2 and -8 = .

G8
8

. The
public key pk8 is then (-8 , /8 , A8) and the private key sk8 is G8 .

Note that we have modified the description given in [9]. We
have first removed the identity part and we have then replaced /
by H2 (/) during the computation of C , where H2 : {0, 1}∗ → Z∗@
is a hash function. This is due to the fact that when considering a
practical instance for the NIKE scheme, using the above chameleon
hash, / should be in G2 while the value to be chameleon hashed
should be in Z∗@ , as explained in [12].

Finally, the computation of the shared key 1,2 is done as follows:
using a public key pk1 and a private key sk2. It computes C1 =

6H2 (/1)hkA1 (mod ?) and generates the key 1,2 = 4 ((G2 , /1) iff
4 (-1, 62) = 4 (D0DC11 D

C21
2 , /1).

3.2.3 All-or-Nothing Encapsulation. All-or-Nothing Encapsulation
(AoNE) [5] allows several parties of a group to encapsulate individ-
ual messages, that can all be extracted by anybody if and only if
all the parties of this group have sent their contributions. We here
make use of the bilinear map based construction in [5], which is
not repeated here, due to space restrictions.

3.3 DSum Functional Encryption Instantiation
We first give the details on the used DSum functional encryption
scheme given in [5]. In fact, Chotard et al. only give a generic
construction from a NIKE and their newly introduced concept of
All-or-Nothing Encapsulation.

We consider a bilinear environment (G1,G2,G) , ?, 61, 62, 4) whe-
re G1,G2,G) are groups of order prime ? and 61 ∈ G1 and 62 ∈ G2.
Let @ a prime number and : an integer such that ? = :@ + 1 for
some : . Let 6 of order @ in Z∗? . Finally, let H1 : {0, 1}∗ → G1 and
H2 : {0, 1}∗ → Z∗@ be two hash functions.

• Setup. During the setup, one has to generate D0, D1, D2, (∈
G1, generate ck ∈ Z∗@ and compute hk = 6ck (mod ?). The
parameters param is then defined as (D0, D1, D2, (, hk), to-
getherwith the bilinear environment (G1,G2,G) , ?, 61, 62, 4)
and the two has functions H1 and H2.

• KeyGen. We next describe the KeyGen procedure, which
contains the following steps for each user 8 , on input param:
– choose at random G8 ∈ Z∗? and A8 ∈ Z∗@ ;
– compute /8 = 6G82 and C8 = 6�2 (/8)hkA8 (mod ?);

– compute .8 = D0DC81 D
C28
2 and -8 = .G88

;

IWSPA’21, April 28, 2021, Virtual Event, USA

– choose at random E8 ∈ Z∗? and compute)8 = 6E82 .
The 8-th public key is pk8 = (-8 , /8 , A8 ,)8) and the correspond-
ing private key is sk8 = (G8 , E8).

• Encrypt.We now focus on the encryption procedure Encrypt,
executed by a user 8 on input the set of public keys PK =

{pk8 }8 , a input 08 and a label ℓ . Even if such method can be
described in general, we need below to encrypt a message
08 defined as a vector of length !. We then denote by 08 [:]
the :-th component of vector 08 (similar notation is used for
other vectors).
The encryption procedure is denoted Encrypt and proceeds
as follows:
– ∀9 ∈ PK, 9 ≠ 8, compute

∗ C 9 = 6H2 (/ 9)hkA 9 ;

∗ 8, 9 = 4 ((G8 , / 9) iff 4 (- 9 , 62) = 4 (D0D
C 9
1 D

C29
2 , / 9);

∗ A8, 9 [:] = PRF-SHA256(8, 9 ,PK‖ℓ ‖:) for all : ∈ [0, ![;
– compute 28 = 08 +

∑
9<8 A8, 9 −

∑
9>8 A8, 9 (in the !-length

vector space, 28 being then a vector of length !);
– chooseF8 ∈ Z∗? and compute,8 = 6

F8

2 ;
– compute 8 = 4 (H1 (PK‖ℓ), (∏9)9)F8) and the cipher-

text �8 = AES(8 , 28);
– compute (8 = H1 (PK‖ℓ)F8 .
The ciphertext is finally ct8 = (�8 ,,8 , (8 ,PK, ℓ).

• Decrypt. We finally give the details of the decryption pro-
cedure Decrypt, which takes as input a set of ciphertexts
C = {ct8 }8 . It works as follows:
– ∀8 ∈ PK , compute 8 = 4 (

∏
9 (9 ,,8);

– ∀8 ∈ PK , compute 28 = AES−1 (8 ,�8);
– compute the result ' =

∑
8 28 .

As the initial encrypted message is given by a vector, this
last step is performed component-wise.

3.4 TheWeStat System
We are now ready to describe our main construction.

3.4.1 Main Setup. We consider that there are at most # = 2= users
in the system. The idea is then to manage a binary tree of height
= + 1, for which each node is given a set of cryptographic keys. The
used nomenclature is as follows (see an example in Figure 1):

• each leaf is represented by a unique number from 1 (extreme
left) to # (extreme right);

• each node is represented by “8‖ 9” where 8 is the extreme left
number of node’s left son, and 9 is the extreme right number
of node’s right son. For example, a node with sons “1‖4” (on
the left) and “5‖8” (on the right) is denoted “1‖8”.

We then consider that each leaf of the tree represents a unique
user and each user will next be related to the nodes from the root
to its leaf. For example, user 1 is related to the nodes represented
by the set {1, 1‖2, 1‖4, · · · , 1‖# }.

This tree is managed and maintained by the Aggregator and is
common to all studies. The Aggregator also executes the general
Setup procedure of the encryption scheme (see Section 3.3), which
outputs param. All the details on the tree are also put on this set of
parameters.

3.4.2 Registration to the Service. Wenow consider that user 8 wants
to register to the service. The Aggregator sends him the parameter
param and associates this new user to a particular leaf on the tree.
User 8 executes the KeyGen(param) = (pk, sk) for each node in the
tree in which it is involved (e.g., nodes {1, 1‖2, 1‖4, · · · , 1‖# } for
user 1), as described in Section 3.3. He then obtains = + 1 key pairs.
For example, for user 1, those keys are denoted

{(pk1,1, sk1,1), (pk1‖2,1, sk1‖2,1), · · · , (pk1‖#,1, sk1‖#,1)}.
There are then 1 key related to each leaf at level = + 1, 2 keys

related to each node at level =, 3 keys at level = − 1, · · · , and finally
keys at root level 1. We then define one public key set per node
in the tree as follows:

• PK ′
1 = {pk1,1}, PK ′

2 = {pk2,2}, · · · , PK ′
#

= {pk#,# };
• PK ′

1‖2 = {pk1‖2,1, pk1‖2,2}, PK ′
3‖4 = {pk3‖4,3, pk3‖4,4},

· · · , PK ′
#−1‖# = {pk#−1‖#,#−1, pk#−1‖#,# };

• · · · ;
• PK ′

1‖# = {pk1‖#,1, pk1‖#,2, · · · , pk1‖#,# }.
Those lists are maintained by the Aggregator and added to the set of
parameters param of the system. The new user outputs her secret
key sk as the set of all generated secret keys (e.g. for user 1, we
have (sk1,1, sk1‖2,1, · · · , sk1‖#,1)).

3.4.3 A New Study. We consider a Third Party wanting to create a
new study, labelled as ℓ . For each node 9 in the tree, the Third Party
executes KeyGen(param) = (tpk9 , tsk9), which permits to define
the following sets:

• PK1 = PK ′
1 ∪ {tpk1,0}, PK2 = PK ′

2 ∪ {tpk2,0}, · · · ,
PK# = PK ′

#
∪ {tpk#,0};

• PK1‖2 = PK ′
1‖2∪{tpk1‖2,0},PK3‖4 = PK ′

3‖4∪{tpk3‖4,0},
· · · , PK#−1‖# = PK ′

#−1‖# ∪ {tpk#−1‖#,0};
• · · · ;
• PK1‖# = PK ′

1‖# ∪ {tpk1‖#,# }.
The Third Party then proceeds, again for each node 9 in the tree,

as follows:
• chooses at random one A 9 ;
• computes ct9 = Encrypt(PK 9 , A 9 , ℓ).

This makes available to the Aggregator the following ciphertexts:

ct1, · · · , ct# , ct1‖2, · · · , ct#−1‖# , · · · , ct# ‖#

that corresponds, together with the above set of public keys, to the
public parameters pkℓ of the study. The secret output of the Third
Party, skℓ is given by the set of random numbers {A 9 }.

3.4.4 Sending Data for a Study. We then consider the participation
phase by user 8 . He first gets back all the public key sets as defined
in the previous step (see above section), and more specifically the
ones related to her own nodes. For example, user 1 gets back the
sets PK1,PK1‖2, · · · ,PK1‖# . The user 8 takes then as input his
entry 08 and the label ℓ corresponding to the study and compute the
following = + 1 ciphertexts (one for each node in which he belongs),
using the encryption scheme given in Section 3.2:

• Encrypt(PK8 , 08 , ℓ) = ct8,1, · · · , Encrypt(PK8 ‖# , 08 , ℓ) =

ct8,=+1.
All the ciphertexts are then sent by the individual (through her
WeStat app) to the Aggregator as her participation to the study.

WeStat: a Privacy-Preserving Mobile Data Usage Statistics System IWSPA’21, April 28, 2021, Virtual Event, USA

1‖8

1‖4

1‖2

1 2

3‖4

3 4

5‖8

5‖6

5 6

7‖8

7 8

Figure 1: Tree structure

3.4.5 Obtaining the Result. Having access to all ciphertexts of all
participating users (plus the ones of theThird Party), the Aggregator
can start to proceed the computation of the result. For this purpose,
it proceeds as follows:

• find a set of “target nodes” that uniquely covers all the leaves
of participating users. For example, in the tree given in Fig-
ure 1, if user 5 haven’t participated, one can obtain the final
result by using nodes 1‖4, 6 and 7‖8, which ones permit to
scan all true participants. Details are given in [4];

• execute the decryption procedure Decrypt (given in Sec-
tion 3.3) for each given target node (always possible since
we have obtained all the relevant ciphertexts), which permits
the Aggregator to obtain as many partial blinded sums1 as
there are target nodes;

• compute the whole blinded sum. For example, given the
above case, the Aggregator first obtains 01 + 02 + 03 + 04 + A
with the node 1‖4, 06 + A ′ with node 6 and 07 + 08 + A ′′ with
node 7‖8, and can deduce

∑
8∈[1,8]\{5} 08 + (A + A ′ + A ′′);

• sends this result to the Third Party, together with the used
target nodes, so that the later can remove the correspond-
ing randomness (A , A ′ and A ′′ in our example) that it has
generated during the new study creation (see Section 3.4.3).
This finally gives the Third Party the unblinded sum, which
corresponds to the expected result.

The way we can treat a more general inner product with this
scheme is quite easy: each individual 8 can be associated to a scalar
U8 and can easily replace, in the above computations, the value 08
by U8 · 08 .

3.5 Security Arguments
Our solution is directly verified using the same arguments of [4]
with the adaptation of using the DSum functionality in [5].

First, the security of the DSum dynamic DMFE building block
given in [5] provides us the guarantee, using the fact that all the
parties additionally make use of the same label (which imposes a
constraint on which values can be added together), that,

1We consider the sum as blinded since, at this step, it still includes the secret random-
ness coming from the Third Party.

• for each group/node in the tree, the sum of the contributions
is automatically revealed when all the parties belonging to
this group/node have sent their contributions;

• the individual contributions of non-participating users, to-
gether with the sum related to groups/nodes where there
are non-participating users, remain hidden for any actor,
including the Aggregator that makes the computations.

As an example, if users 1, 3 and 4 have sent their contributions,
but not user 2, the partial sums of nodes 1, 3, 4 and 3‖4 can be
retrieved, while the ones of nodes 1‖2, 1‖4 and 1‖8 cannot, since
the DSum dynamic DMFE is secure [5].

Then, from that result, the security of the fault-tolerant tree-
based system given in [4] permits us to argue that

• the sum of the contributions of all the participating users
(including the one by the Third Party, see below) is auto-
matically revealed when all the said parties have sent their
contribution;

• any other partial sum (except the above intermediate ones
related to full groups/nodes) cannot be obtained, since the
users contribution are provided for the whole set of “target
nodes” of the tree that uniquely cover the participating users.

Recall that we do not consider the case of a coalition between
the Aggregator and the Third Party. Then, as the non-corrupted
Third Party is seen as an extra user that contributes to hide the in-
termediate values by adding/removing randomness to all nodes, the
Aggregator only obtained noised sum, so that even if it has compro-
mised some users, what it can get is either the sum of compromised
users, or a noised sum of compromised and non-compromised users.

Regarding the indistinguishability against the Third Party, it is
obvious that the only information that it could obtain is only the
final sum.

4 IMPLEMENTATION AND BENCHMARKS
In this section, we give several details concerning our implemen-
tation. At first, we focus on the smartphone app, and explain the
way we have proceed to obtain usage statistics related to installed
apps (in our running example, social networks apps such as Face-
book, Instagram …). We then focus on the implementation of our

IWSPA’21, April 28, 2021, Virtual Event, USA

cryptographic protocol. We finally give our benchmarks to prove
that our prototype is very close to a real use.

4.1 Smartphone Implementation
Our use case is strongly related to our capacity to obtain, from
the WeStat app we have implemented, several usage statistics on
the way the smartphone owner is using several already installed
apps, related to games, social networks, banking and so on. This is
definitely possible for Google (for Android OS) and Apple (for iOS).
This is also quite easy for the editor of a specific smartphone related
service, for its own app (e.g., Instagram can potentially obtain those
statistics for the Instagram app). But when we consider the case of
an independent app editor wanting to obtain such usage statistics
for other non-related apps, this may be seen as finding a security
breach. But this is in fact not the case, as we will see.

We do not want to learn or modify some secrets that are em-
bedded into those apps, but we only want to know, e.g., how long
such app has been used, how many times per day, what is the used
configuration, … We show here that this is indeed possible using
legal and available tools for app developers, at least for Android
OS.

4.1.1 Overview. In Android (since API Level 21 that is Android
5.0), there are some APIs that can directly be used for our purpose:

• UsageStatsManager (in Android 5.0) which provides access
to device usage history and statistics, usage data is aggre-
gated into time intervals: days, weeks, months, and years;

• NetworkStatsManager (in Android 6.0) which provides ac-
cess to network usage history and statistics, usage data is
collected in discrete bins of time called ‘Buckets’.

Any call to these APIs requires the permission

Manifest.permission.PACKAGE_USAGE_STATS,

even to access an app’s own data usage (not that carrier-privileged
apps are not included). This means that the user must explicitly
authorize the application to retrieve the different statistics of her
user’s phone. Hence before the application can retrieve the statistics
it must show a dialog box to ask the user to accept the retrieval of
such kind of information. In our case, this is quite natural as this is
directly related to the study, for which we need the user consent,
as already explained before.

Indeed, UsageStatsManager and NetworkStatsManager are of-
ficial public APIs that work on standard and official Android op-
erating system (https://developer.android.com/reference/android/
app/usage/package-summary). In particular, there is no need to
use workaround like “Java reflection” to access them. Moreover,
the devices do not need to be “rooted” or to tun a custom Android
image. As far as we obtain the explicit permission:

<uses-permission android:
name="android.permission.PACKAGE_USAGE_STATS"/>,

we can proceed and obtain the desired statistics.

4.1.2 How does it work. A simple way to know what is possible
to do is first to list the applications of a device to get the related
package names. Using such information, it is then possible to query
the managers (Usage or Network depending of the OS version)

to get some statistics and retrieve the applications name and icon
(used next for the WeStat app).

TheWeStat application then run queries hourly, daily or monthly
(depending on the wanted frequency) to gather information such as
how long an application is running, how long an application have
been brought to the foreground, since when it has been used, how
much bytes have been uploaded or downloaded, what network’s
carrier has been used (data or wifi), …

To illustrate what can be done in practice, the Shift project (https:
//theshiftproject.org/) is a good example of the implementation
possibilities since it periodically measure the internet traffic of a
device and compute the bytes consumed through the Wifi or data
network.

Remark. With some version of Android, the background sched-
ulers can be paused by the system if the application is not launched
regularly. And thus the hourly requests can be delayed or simply
stopped.

4.2 Cryptographic Implementation
4.2.1 Libraries. Our cryptographic prototype is implemented in
Scala, a JVM based language, but using a native pairing implemen-
tation. Note that this internal pairing library, while easily portable,
is not as fast as more up to date pairing libraries (see e.g. the RELIC
library [1]). The use of such alternative libraries may offer substan-
tial performance improvements. We also use the SHA-256 hash
function for our implementation.

Our implementation provides a 114-bits security (and not 128-bit,
as we are using BN-256 pairing-friendly elliptic curves, see [2]).
One complex point we had to treat is the fact that, as shown in
Section 3.2, the group for the chameleon hash should be Z∗? of prime
order @, and where ? should itself be the prime order of the groups
G1, G2 and G) of the bilinear map 4 . As this last step is the less
flexible one (finding a pairing-friendly group is not as easy [2, 7]),
we need first to fix ? according to the used pairing environment,
and then test whether it is compatible with the chameleon hash.
Using Barreto-Naehrig curves [3] with

? = 252364824000000110344380000000075 5 95 800000000010

0100000000000003

permits us to use the prime

@ = 1254043595354617963043866617659.

4.2.2 Configuration. We have implemented our system in both
a PC (AMD Ryzen 7 3700X 8-Core) and two different Android
smartphones: the Xiaomi Redmi Note 7 (ARMv8, Snapdragon 660
(SDM 660), octacore 2.2 Ghz (x4), 1.8 Ghz (x2)) and the Samsung
Galaxy S10e (ARMv8, Exynos 9 octacore 2.7 Ghz (x2), 2.3 Ghz (x2),
1.9 Ghz (x4)). In the next section, we give different timings for
different number (=) of participants.

4.2.3 Our tests. As we have seen in Section 3.4.4, each user has to
execute = + 1 times the encryption procedure given in Section 3.3,
the message being a vector of length ! = ℓ1 × ℓ2. In fact, some
of the computations can be pre-computed, in the sense that they
do not necessitate the knowledge of 08 (that is of 38) to be done.
The encryption phase is then done in two steps: pre-computation
(before knowing 08) and real encryption (when 08 is known).

https://developer.android.com/reference/android/app/usage/package-summary
https://developer.android.com/reference/android/app/usage/package-summary
https://theshiftproject.org/
https://theshiftproject.org/

WeStat: a Privacy-Preserving Mobile Data Usage Statistics System IWSPA’21, April 28, 2021, Virtual Event, USA

In fact, there are two ways to consider such pre-computation.
Either we can only consider public elements (and then not taking
the label ℓ of the F8 random value), which decreases the number
of such pre-computation, but permits to potentially reuse them
for several studies. Or we consider all the computation that do
not necessitates the knowledge of 08 (we can then make use of
the label ℓ and the F8 random value), to better accelerate the on-
line operation, but at the detriment of the storage capacity. More
precisely, we can give the following information.

• Can be pre-computed: {C 9 } 9 ∈PK, 9≠8 , { 8, 9 } 9 ∈PK, 9≠8 .
• Can be pre-computed but not necessary:F8 ,,8 , 8 , (8 , and
{A8, 9 [:]} 9 ∈PK, 9≠8,:∈[0,! [.

• Cannot be pre-computed: 28 , �8 .

The second step is the actual encryption, which with the knowl-
edge of 08 , makes use of the said pre-computations, and do the
remaining operations specific to the study, which includes the ran-
domF8 generation and operation involvingF8 , and label ℓ .

The decryption is done by the Aggregator which obtains the
blinded result. The final step is done by the Third Party to get the
final unblinded result.

Most operations are executed in parallel, which gives faster exe-
cution times, but render the timings more fluctuate.

4.3 Tested Use Case
Let us consider the example of a study in which we would like
to count the carbon emission of a smart phone when its owner
uses social networks apps. We would like to correlate such carbon
emission w.r.t. the age range and the residence area. More precisely,
we define the following ranges for the age (with ℓ1 = 6 possibilities),
and the following areas (with, e.g., ℓ2 = 18 possibilities).

• age0 = [0, 15[, age1 = [15, 20[, age2 = [20, 30[, age3 =

[30, 40[, age4 = [40, 50[, age5 = [50, 100[.
• area0, area1, · · · , area17.

Let us consider user 1, 27-years old (belonging to range age2)
and living in area1, having a carbon emission of 31 during the study
period. She has previously registered to the service, and after having
executed the KeyGen procedure, has access to the different secret
keys (sk1,1, sk1‖2,1, sk1‖4,1, · · · , sk1‖#,1) related to her position in
the tree.

We define a vector of length 108 (! = ℓ1 × ℓ2 × · · · ℓ" in the gen-
eral case, for the correlation with" attributes) with the following
correspondences:

• component 0 is related to the (age0, area0);
• component 1 is related to the (age0, area1);
• · · · ;
• component 18 is related to the (age0, area17);
• component 19 is related to the (age1, area0);
• · · · ;
• component 107 is related to the (age5, area17).

Since she belongs to (age2, area1), user 1 is related to component
39 in such vector. She then has to consider, for her computations
during encryption, the vector message 01 given by

• 01 [39] = 31;
• ∀9 ∈ [0, 107] \ {39}, 01 [9] = 0.

and uses vector 01 as the vector message to be encrypted, using the
method given in Sections 3.4.4 and 3.3.

The idea is that during the result computation/decryption proce-
dure, the contribution of the user in the groups she does not belong
is equal to 0, in an unnoticeable way, since all the components are
similarly encrypted.

Regarding the number of users (# = 10, 100, 1000 in the sequel),
we may have to manage the fault tolerance property. In fact, we
know from [4] that each user will affect log2 # = = user groups if
(s)he does not participate. We can then set the size of the tree to be
sure to get the result if we know a good estimate on the number of
non-participating users.

4.4 Benchmarks
We give in Table 1 the benchmarks we have obtained in the above
PC, using this detailed use case, for different possible number of
participants (# = 10, 100, 1000 and then = = 4, 7, 10). The final step,
executed by the third party to unblind the result, takes less than 1
ms and is not included in the table.

Then, in Table 2, we provide timings on the two Android smart-
phones for the user specific operations, namely pre-computation
and encryption.

The given timings have been obtained after the first execution
of the operation by the freshly started mobile application. When
executed several times, some system optimizations might be applied
on the fly, so as to obtain better performances. But in our case, these
operations will only be done once for each study. So retaining such
first execution timings is more realistic and that’s what we have
done. Furthermore, the given timings include the serialization of
the result into a json string.

Those timings are in accordance with what was expected in terms
of complexity. Focusing on the Third Party, the ciphers’ generation
is, as expected, linear in the number of users (which corresponds to
each node in the tree). Regarding the complexity of the user, each
one has to execute log2 # = = encryptions (one per node in which
he belongs) but each such encryption necessitates a number of com-
putation which is linear in the number of users in the considered
node (2 at the leaf level, 4 in the above node, 8 overhead, etc.).

Strangely, the on-mobile ratio between the pre-computation and
encryption times is smaller than on PC, particularly with bigger
values of =. If the ratio was similar, the encryption for # = 1000
would be less than 800 ms. It appears that the encryption phase
on mobile for big values of # triggers the garbage collector, which
may explain the relatively poor performances. It is not clear if this
is the only reason. The only solution may be to implement the
cryptographic scheme entirely in native language. That way we
would be able to finely manage the memory usage and see if there
are other reasons.

We finally discuss about the communication cost. During reg-
istration, each user has to send the set of = + 1 public keys (s)he
has computed and each public key is composed of one element in
G1 (-8), one element in Z@ (A8) and two elements in G2 (/8 and)8).
With BN-256 curves, we have |@ | = |G1 | = 256 and |G2 | = 512,
which gives each public key of size 1536-bits. Similarly, each has
to send = + 1 ciphertexts for each participation and one ciphertext
corresponds to one AES cipher �8 (128 bits), one element,8 in G2

IWSPA’21, April 28, 2021, Virtual Event, USA

Table 1: Performances (in ms) on PC (min / max / mean / median)

number of participants (#) 10 100 1000

third party ciphers generation 214 1565 19130

user pre-computation 44/61/52/53 273/420/355/362 2351/3479/2858/2856
encryption 10/24/16/16 12/43/19/18 28/73/41/38

decryption 57 191 1165

Table 2: Performances (in ms) on Android smartphones (min/max/mean/median)

number of participants (#) 10 100 1000

Xiaomi Redmi Note 7
user pre-computation 549/689/603/598 3846/5073/4415/4297 34465/48489/43192/43053
encryption 142/167/155/153 343/412/374/371 2150/2501/2303/2294

Samsung Galaxy S10e
user pre-computation 376/459/413/416 2502/2997/2637/2578 24119/34580/27137/26156
encryption 106/139/121/120 268/377/333/334 1819/2469/2018/1961

and one hash value (8 (256 bits), omitting the public key PK and
the label ℓ . Each ciphertext has then a size of 896 bits. This finally
gives us Table 3.

Table 3: Communication cost on the user side

number of participants (#) 10 100 1000
registration 2.06kB 18.94kB 187.69kB
participation 1.2kB 11.05kB 109.48kB

5 CONCLUSION
The main purpose of this paper is to make an in-depth privacy-
by-design study of a real-life use case, namely mobile data usage
statistics. Making use of advanced cryptographic mechanisms that
have recently been published, we have shown that such kind of
tool are quite close to a real deployment, for some cases such as the
one we have detailed all along this paper.

It certainly remains a lot of work to do, especially regarding the
obtained performances, so as to increase the number of potential
participants in such kind of study.

ACKNOWLEDGEMENT
The authors would like to thank Jérémy Chotard for his suggestions
during the redaction of this paper. All the authors were supported
by the European Union H2020 PAPAYA Innovation Program Grant
786767.

REFERENCES
[1] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S.Wahby, and K. Liao. [n.d.]. RELIC

is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic.
[2] Razvan Barbulescu and Sylvain Duquesne. 2019. Updating Key Size Estimations

for Pairings. J. Cryptol. 32, 4 (2019), 1298–1336.
[3] Paulo S. L. M. Barreto and Michael Naehrig. 2005. Pairing-Friendly Elliptic

Curves of Prime Order. In Selected Areas in Cryptography, 12th International
Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised Selected

Papers (Lecture Notes in Computer Science, Vol. 3897), Bart Preneel and Stafford E.
Tavares (Eds.). Springer, 319–331. https://doi.org/10.1007/11693383_22

[4] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. 2012. Privacy-Preserving Stream
Aggregation with Fault Tolerance. In Financial Cryptography and Data Security
- 16th International Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March
2, 2012, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7397),
Angelos D. Keromytis (Ed.). Springer, 200–214.

[5] Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and
David Pointcheval. 2020. Dynamic Decentralized Functional Encryption. In
Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 12170), Daniele Micciancio and
Thomas Ristenpart (Eds.). Springer, 747–775.

[6] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and
David Pointcheval. 2018. Decentralized Multi-Client Functional Encryption for
Inner Product. In Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II (Lecture Notes
in Computer Science, Vol. 11273), Thomas Peyrin and Steven D. Galbraith (Eds.).
Springer, 703–732.

[7] Remi Clarisse, Sylvain Duquesne, and Olivier Sanders. 2020. Curves with fast
computations in the first pairing group. IACR Cryptol. ePrint Arch. 2020 (2020),
760. https://eprint.iacr.org/2020/760

[8] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2016. Cali-
brating Noise to Sensitivity in Private Data Analysis. J. Priv. Confidentiality 7, 3
(2016), 17–51.

[9] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. 2013.
Non-Interactive Key Exchange. In Public-Key Cryptography - PKC 2013 - 16th
International Conference on Practice and Theory in Public-Key Cryptography, Nara,
Japan, February 26 - March 1, 2013. Proceedings (Lecture Notes in Computer Science,
Vol. 7778), Kaoru Kurosawa and Goichiro Hanaoka (Eds.). Springer, 254–271.

[10] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. 2014. Multi-input
Functional Encryption. In Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings (Lecture Notes
in Computer Science, Vol. 8441), Phong Q. Nguyen and Elisabeth Oswald (Eds.).
Springer, 578–602.

[11] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhod-
nikova, and Adam D. Smith. 2011. What Can We Learn Privately? SIAM J.
Comput. 40, 3 (2011), 793–826.

[12] Hugo Krawczyk and Tal Rabin. 2000. Chameleon Signatures. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2000, San Diego,
California, USA. The Internet Society.

[13] Pierangela Samarati and Latanya Sweeney. 1998. Protecting Privacy when Dis-
closing Information: k-Anonymity and Its Enforcement through Generalization and
Suppression. Technical Report.

https://github.com/relic-toolkit/relic
https://doi.org/10.1007/11693383_22
https://eprint.iacr.org/2020/760

	Abstract
	1 Introduction
	1.1 Use Case Description
	1.2 Privacy Constraints
	1.3 Overview of our Solution
	1.4 Organization of the Paper

	2 Use Case Description and Security Requirements
	2.1 High-Level Use Case Description
	2.2 More Formal Description

	3 Our Construction
	3.1 Overview of our Solution
	3.2 Building Blocks
	3.3 DSum Functional Encryption Instantiation
	3.4 The WeStat System
	3.5 Security Arguments

	4 Implementation and Benchmarks
	4.1 Smartphone Implementation
	4.2 Cryptographic Implementation
	4.3 Tested Use Case
	4.4 Benchmarks

	5 Conclusion
	References

