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Abstract
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1 Introduction

In a two-party multiplication protocol, each party’s output is a random additive share of the mul-
tiplication of the parties’ private inputs. Two-party multiplication is a fundamental building-block
of arithmetic secure computation, holding a role analogous to that oblivious transfer (OT) has in
Boolean secure computation. We present a new, highly efficient OT-based two-party multiplication
protocol below, but first start with some background.

1.1 Background on OT-Based Two-Party Multiplication

There are a several known techniques to obtain two-party multiplication, historically falling in
one of two categories: protocols based on homomorphic encryption (HE), or protocols based on
(Boolean) OT. The two classes of protocols offer different tradeoffs between efficiency and underly-
ing security assumption; HE-based protocols are typically more efficient communication-wise, while
OT-based are more efficient computation-wise. Also, HE-based protocols typically require stronger
assumptions. In recent years, new paradigms [GNN17; BGI15; BCGI18; BEPST20; BCGIKRS19]
have emerged for realizing two-party multiplication,1 where the underlying “machinery” is based
on homomorphic [BGI16; BKS19] or function [BGI15] secret sharing. The two notions may be
viewed as analogues of respectively HE and functional encryption [BSW11] in the secret sharing
realm. In this paper, we focus on OT-based protocols, and we refer the reader to Section 1.4 for
further discussion on protocols that do not rely on OT.

Recall that OT is the functionality that takes two inputs x0, x1 ∈ Zq from the sender, a
bit β from the receiver, and returns xβ to the receiver (and nothing to the sender). To the
best of our knowledge, there are essentially two basic templates for honest-but-curious OT-based
multiplication: the Gilboa [Gil99] protocol, and the Ishai, Prabhakaran, and Sahai [IPS09] protocol.
We refer the reader to Figure 1 for a side by side comparison of the two protocols. For clarity of
exposition, we focus our attention on multiplications over the field Zq = Z/qZ for an odd prime q
(i.e., the arithmetic field of integers modulo an odd prime).

Malicious Security. As far as we know, all OT-based multiplication protocols only achieve
honest-but-curious (passive) security.2 To achieve malicious security, these protocols can be com-
piled in a number of generic ways, e.g., using SNARKSs, cut-and-choose, and/or MPC-in-the-head
techniques. For concrete efficiency, however, it is often preferable to design tailor-made solutions
[KOS16; GNN17]. For instance, motivated by applications to MPC in the preprocessing model,
Keller, Orsini, and Scholl [KOS16] (MASCOT) design various cut-and-choose techniques, on top of
Gilboa’s protocol, for maliciously realizing various useful functionalities in the preprocessing model.
We discuss MASCOT in detail in Section 1.3.

1Actually, most papers in the space focus on the related functionalities of OLE and VOLE, discussed later on.
2The OT-based protocol of Ghosh, Nielsen, and Nilges [GNN17] does achieve malicious security (without further

compilation), but its security proof relies on an additional hardness assumption (a rather non-standard coding as-
sumption). Interestingly, the security analysis in [GNN17] is somewhat reminiscent of the security analysis of our
protocol.

1



• Init. Let ` = dlog q)e.

1. P2 sets t1, . . . t` ∈ {0, 1} to the bit-
decomposition of b =

∑
i ti · 2i−1.

• OT. The parties make ` parallel OT-calls.

In the ith call (P1 as sender, P2 as receiver):

1. P1 uses input (δi, a + δi), for δ ← Zq.
(It receives no output).

2. P2 uses input index ti.

It receives output zi ∈ Zq.

• Outputs.

1. P1 outputs −
∑
i δi · 2i−1.

2. P2 outputs
∑
i zi · 2i−1.

(a) Gilboa [Gil99]

• Init. Let ` = dlog q)e and n = `+ κ.

1. P2 samples u0,u1 ← Znq and t ←
{0, 1}n, subject to b =

∑
i uti,i.

2. P2 sends (u0,u1) to P1.

• OT. The parties make n parallel OT-calls.

In the ith call (P1 as sender, P2 as receiver):

1. P1 uses input (au0,i+ δi, au1,i+ δi), for
δi ← Zq. (It receives no output).

2. P2 uses input index ti.

It receives output zi ∈ Zq.

• Outputs.

1. P1 outputs −
∑
i δi.

2. P2 outputs
∑
i zi.

(b) Ishai, Prabhakaran, and Sahai [IPS09]

Figure 1: Honest-But-Curious multiplication protocols between party P1, holding input a ∈ Zq, and party
P2, holding input b ∈ Zq. Gilboa’s protocol consists of ` = dlog(q)e parallel OT-calls, where Ishai, Prab-
hakaran, and Sahai [IPS09]’ protocol consists on n = `+κ calls, where κ is a (statistical) security parameter.
We remark that Gilboa’s protocol can be cast as a variant of Ishai, Prabhakaran, and Sahai [IPS09]’ protocol,
where the pair of vectors (u0,u1), which P2 uses for encoding its input in Ishai, Prabhakaran, and Sahai
[IPS09], are implicitly hardcoded as u0 = (0, . . . , 0) and u1 = (1, 21, 22, . . . , 2`−1). Gilboa [Gil99], however,
dispenses of the communication round prior to the OT, since the two vectors are known in advance to both
parties, and achieves perfect security (in the OT-hybrid model).

1.2 Our Contributions

We present a new OT-based two-party multiplication protocol that achieves a high level of security
against malicious adversaries. The protocol may be viewed as a noisy generalization of Gilboa
[Gil99]’s protocol (or, alternatively, as a hybrid between Gilboa [Gil99] and Ishai, Prabhakaran,
and Sahai [IPS09] protocols).

Let a, b ∈ Zq be the inputs of P1 and P2, respectively, and let n = dlog qe+ κ for a (statistical)
security parameter κ. Our protocol requires no initialization stage, and the parties make n parallel
OT-calls. In the ith call, P2’s input index is a random value ti ← {91, 1} (i.e., we switch conventions
regarding the OT-receiver’s input),3 and P1’s input pair is (−a + δi, a + δi) for a random mask
δi ← Zq. Notice that this differs from Ishai, Prabhakaran, and Sahai [IPS09] protocol in which P1’s
input in for OT-calls depends on the vectors sent by P2. After these calls are done, P2 uniformly
samples v = (v1, . . . , vn) ← Znq subject to b =

∑
i viti, and sends v, but not the ti’s, to P1. See

Protocol 1.1 for a more detailed description.

3The choice of {91, 1} instead of {0, 1} significantly simplifies our security analysis, but it is also what limits it to
fields of characteristic greater than two (see Theorem 1.2).
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Protocol 1.1 (Our OT-based multiplication protocol (P1,P2)).

• Inputs. The parties hold common input 1κ. Party P1 holds private input a ∈ Zq, and party P2

holds private input b ∈ Zq. Let n = dlog qe+ κ.

• OT. The parties makes n parallel OT-calls. In the i-th call:

1. P1, playing the sender, uses an input pair (−a+ δi, a+ δi) for a uniform δi ← Zq.

(It receives no output.)

2. P2, playing the receiver, uses an input index ti ← {91, 1}, and receives output zi ∈ Zq.

• Outputs.

1. P2 samples v = (v1, . . . , vn)← Znq subject to b =
∑
i vi · ti. It sends v to P1.

2. P1 outputs −
∑
i δi · vi.

3. P2 outputs
∑
i zi · vi.

Before we discuss the merits of our protocol, we briefly touch on the correctness and security
analysis. It is easy to see that the protocol is correct (when invoked by honest parties). Indeed,

s2 = 〈v, (z1, . . . , zn)〉 = 〈v, (δ1, . . . , δn)︸ ︷︷ ︸
δ

+a · (t1, . . . , tn)︸ ︷︷ ︸
t

〉

= a · 〈v, t〉+ 〈v, δ〉 = a · b− s1,

making s1 + s2 = a · b. Second, (similarly to Gilboa’s protocol mentioned earlier) the protocol is
fully secure for a malicious P2: the only way P2 may deviate from the protocol is by choosing a
different value for v (unrelated to b) at the last stage of the protocol. This behavior, however,
is equivalent to choosing a different input, and thus does not violate the security of the protocol.
The analysis for a malicious P1 is more involved. Effectively, P1 is limited to choosing inconsistent
inputs for the OT-calls: instead of using (ai, a

′
i) of the form (δi − a, δi + a), a corrupted P1 may

choose pairs of inputs which are not consistent across different OT-calls i.e., for some i 6= j, it holds
that ai − a′i 6= aj − a′j , and it seems this attack cannot be simulated using access to the (standard)

multiplication functionality.4 Instead, we show that it exhibits the following useful dichotomy:
depending on the number of inconsistent inputs in the OT-calls provided by P1, either the execution
can be simulated using the standard multiplication functionality (with 2−κ/4 statistical-closeness),
or, P2’s output has min-entropy at least κ/4, when conditioning jointly on P2’s input and P1’s
view. That is, P2’s output is highly unpredictable, even when knowing its input. This property is
technically captured by the following informally stated theorem.

Theorem 1.2 (Security of our multiplication protocol, informal). For adversary A corrupting P1,
consider a random execution of Protocol 1.1 in the presence of A, where P2 is holding input b, and
let outA2 (b) denote P2’s output and viewA(b) denote A’s view in this execution. Assume q ≥ 2κ/2, 5

then at least one of the following holds (depending on its inputs to the OT-calls):

4It is not too hard to get convinced that our protocol does not realize the multiplication functionality with
statistical security (in the OT-hybrid model), but we deffer the rather tedious proof of this fact to the next version
of this paper. It seems plausible, however, that under the right Subset-Sum hardness assumption, the protocol does
realize the multiplication functionality with computational security. Proving it is an intriguing open question.

5We discuss how our results extend to arbitrary fields of characteristic greater than two in Section 2.
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1. A can be simulated given access to the perfect (standard) multiplication functionality.

(By extracting the input to the perfect multiplication from A’s inputs to the OT-calls.)

2. H∞
(
outA2 (b) | viewA(b), b

)
≥ κ/4.

(i.e., P2’s output is unpredictable from A’s point of view, even if A knows b.)

We prove Theorem 1.2 by showing that our protocol realizes a “weak” ideal multiplication
functionality that formally captures the two conditions above (see Section 4 for details). The above
security guarantee makes our protocol very desirable for a number of reasons, enumerated below.

1. First, via a simple reduction from (standard) designated-input multiplication to random-input
multiplication, we can compile our protocol into a maliciously secure protocol by performing
an a posteriori check on the shares. Such a check does not seem to exist for Gilboa [Gil99]
and Ishai, Prabhakaran, and Sahai [IPS09] protocols.

2. Second, and more importantly, we claim that the security notion achieved out-of-the-box by
our protocol is sufficient for a number of applications, e.g., within protocols where some kind
of correctness check is performed obliviously on the parties’ outputs. For instance, in the
threshold ECDSA of Lindell and Nof [LN18], the output is released only after it is checked
for correctness. Consequently, our protocol can readily be used as a multiplication protocol
therein.

Batching. We show that our protocol enjoys the following performance improvement when per-
forming m multiplications with P1 using the same input in each instance; this task essentially
corresponds to the important VOLE functionality discussed in Section 1.3. Instead of running the
protocol m times (and thus paying m ·n = m · (`+κ) OT’s), our protocol can be batched so that it
requires only κ+m ·` calls to the underlying OT functionality. The batched version of our protocol
exhibits a similar dichotomy to the non-batched version: either the protocol is secure (with 2−κ/4

closeness to the ideal world), or, if not, each one of the honest outputs has min-entropy at least
κ/4, even when conditioning on all of the honest party’s inputs (albeit there may be dependencies
between the outputs). For large m, our approach almost matches the number of OT-calls from
Gilboa’s honest-but-curious protocol, while achieving a stronger security notion. Moreover, in the
Random Oracle Model (ROM), it is possible to also bring down the communication complexity
of our protocol to match [Gil99] by instructing P2 to communicate v = (v1, . . . , vn) succinctly via
the oracle, e.g., by sending a short seed instead of the entire vector. Furthermore, for malicious
security, it is enough to perform a single a posteriori check on the shares of only one of the under-
lying multiplications (say the first multiplication). Indeed, our dichotomy result guarantees that
the check is successful only if the attack can be simulated in the ideal world (and thus all outputs
are well-formed).

As a concrete efficiency example, for a prime q for which there exists a q-size group where
DDH is assumed to hold (say secp256k1 – the Bitcoin curve – with prime q ≈ 2256), we in-
stantiate the correctness-check using El-Gamal commitments (these commitments were thoroughly
used in [LN18] in the context of threshold ECDSA). We estimate that the correctness-check re-
quires computational-complexity of around 30 exponentiations in the group and communication-
complexity of 20 group elements (assuming the encodings of field elements and group elements have
essentially the same size). Since this penalty is independent of the number of multiplications in
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the batch, performing a batch of m multiplications with (full) malicious security 2−κ/4 in the ROM
incurs the following cost:

OT’s Communication (bits) Computation (group exp.)

m · `+ κ (m+ 20) · ` bits 30

Hence, even with the correctness-check, the complexity-penalty for our protocol compared to
Gilboa’s honest-but-curious protocol is insignificant for large m.6

1.3 Applications

In this section, we discuss several applications where our protocol may be of interest.

OLE & VOLE. The oblivious linear evaluation (OLE) functionality may be viewed as a variant
of two-party multiplication where one party (say P2) has full control over its share. Namely, on
input a for P1 and (b, σ) for P2, the functionality returns ab+ σ to party P1 and nothing to party
P2. An important generalization of OLE is vector oblivious linear evaluation (VOLE), where it is
now assumed that P2 holds a pair of vectors (b,σ) and P1 learns the combination ab + σ. There
is a straightforward reduction from OLE and VOLE to multiplication and batch-multiplication
respectively and thus our protocol (compiled for malicious security) can readily be used for this
purpose.

MACs & Multiplication Triplets. Motivated by applications of arithmetic MPC in the pre-
processing model, i.e., generating function-independent correlated random data that can be later
used by the parties to achieve statistically secure MPC for any functionality, there is a rich line
of work ([Bea91; LN17; FPY18; DO10; DPSZ12; KOS16] to name but a few) for generating mes-
sage authentication codes (MACs) and authenticated multiplication triplets. For convenience, we
recall the definition of each notion. On secret input x from P1 (only one party provides input),
the two-party MAC functionality returns τ ∈ Zq to P1 and a pair (k, σ) ∈ Z2

q to P2 such that
τ = x · k + σ. Thus, a corrupted P1 is effectively committed to x which can be authenticated by
revealing the pair (x, τ). Notice that P2 accepts the decommitment if and only if τ = x · k + σ
which uniquely determines x (unless P1 can guess k, which happens with negligible probability).
For reference, σ and τ are referred to as the MAC shares and k is referred to as the MAC key. Next,
we define authenticated multiplication triplets. On empty inputs, the authenticated multiplication
triplets functionality (Beaver) returns (a1, b1, c1) and (a2, b2, c2) to P1 and P2 respectively such that
(a1 + a2) · (b1 + b2) = c1 + c2, together with MAC keys and shares for all the relevant data, i.e.,
P2 holds a key k and shares σ, σ′, σ′′, and P1 holds τ, τ ′, τ ′′ as MAC data for the triplet (a1, b1, c1),
and the MAC data for P2’s triplet (a2, b2, c2) is analogously defined (where the parties’ roles are
reversed). It goes without saying, our base protocol can be used to generate MACs and triplets
in a straightforward way (explained further below). For comparison, we briefly outline MASCOT
[KOS16], the only purely OT-based work for generating triplets with malicious security.

6Without the oracle the penalty is rather noticeable, since there is a (` ·m+ κ)-multiplicative blowup in commu-
nication complexity.
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MASCOT [KOS16]. To realize the two functionalities described above in the presence of ma-
licious adversaries, [KOS16] employs a number of cut-and-choose techniques on top of Gilboa’s
protocol. Specifically, for the MAC functionality, the authors propose the following process: P2

samples a random MAC key k and the parties run Gilboa’s protocol twice; once with inputs (x, k)
and once with inputs (x0, k) where x0 denotes a random dummy input sampled by P1. At the end
of the protocol the parties (are supposed to) obtain MAC shares for both x and x0 under key k.
To verify that P1 behaved honestly (as we discussed earlier, only P1 is capable of cheating), P1 is
instructed to reveal a random combination of x0 and x as well as the same random combination
of its MAC shares. If P2 accepts, then, with all but negligible probability, P2 is holding the right
MAC data for x. The protocol for the Beaver functionality follows a similar template, however
the added redundancy and check procedure (to verify correctness) is more involved. For brevity,
we do not describe it here but we mention that it requires 6 or 8 executions (depending on the
target security) of Gilboa’s protocol on top of the required runs to obtain the MAC data (In total,
Gilboa’s protocol is ran 18 or 20 times depending on the target security for a single authenticated
multiplication triple).

Using our protocol to generate MACs & Triplets maliciously. MAC-generation essentially
coincides with batch-multiplication (where a single k is used as a MAC-key to authenticate many
values x1, x2, . . .). Thus, our batch-multiplication protocol (with the correctness-check) can readily
be used for this purpose. Next, we turn to the triplets.

Analogously to standard multiplication, if we allow for an a posteriori check on the shares
(more involved than the one presented earlier), we show how our protocol can be used to generate
triplets. In particular, a single triplet can be generated by running our base protocol 2 times in
its non-batched version (to generate the triplet) and 2 times in the batched version with batches
of size 3 (to generate all the MAC-data), and then performing a correctness-check on the shares.
For concreteness, we instantiate this check for prime q when there is an accompanying group where
DDH is hard. We estimate that the correctness-check requires computational-complexity of around
90 exponentiations in the group and communication-complexity of 60 group elements. In total, this
process incurs the following costs for generating a single triplet in the random oracle model.7

OT’s Communication (bits) Computation (group exp.)

4κ+ 8` 70` 90

As an example, for ` ≈ 512, our protocol is 53% cheaper in usage of the underlying OT compared
to MASCOT when aiming for security 2−64.

Comparison to 2PC Multiplication from [DKLS19]. We note that our multiplication pro-
tocol may also improve the efficiency of the threshold ECDSA protocol of Doerner, Kondi, Lee,
and Shelat [DKLS19]. In more detail, the core two-party multiplication protocol in [DKLS19] is a
variant of MASCOT where the parties multiply (random) dummy values which are then linearly
combined to check for correctness. Specifically, for each (designated-input) multiplication, the pro-
tocol of [DKLS19] consists of two multiplications using the OT where random inputs a and â of
the OT-sender are multiplied by the same value b of the OT-receiver. Our protocol only prescribes

7Since it is not the focus of our paper, we have not examined how to optimize the protocol or correctness-check
when many triplets are being generated, and we speculate that several optimizations are possible.
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one such multiplication and avoids this redundancy. Thus, our protocol enjoys an x2 improve-
ment compared to [DKLS19] by halving the input-length of the underlying OT. It is stressed that,
in practice, when the OT is instantiated, this improvement automatically translates into an x2
improvement in communication complexity; the most expensive resource in [DKLS19].

1.4 Related Work

Multiplication from noisy encoding. Drawing from [NP06], Ishai, Prabhakaran, and Sahai
[IPS09] generalize their protocol so that it supports many types of encodings for P2’s input. Thus,
instead of the two u-vectors from Figure 1, P2 may use different noisy encoding to encode its
input prior to the OT. Under various coding assumptions (e.g., [KY08]), Ishai, Prabhakaran, and
Sahai [IPS09] show that several coding schemes give rise to honest-but-curious multiplication pro-
tocols with much improved complexity. As mentioned earlier, this approach was later shown to be
sufficient by [GNN17] for achieving malicious security under a specific coding assumption.

Non OT-based multiplication. Here, we distinguish between HE-based and the more recent
approaches based on homomorphic and function secret sharing. HE-Multiplication can be based on
either somewhat homomorphic encryption or fully homomorphic encryption. We refer the reader to
[RSTVW19] for a discussion on HE-based multiplication in the context of a specific general-purpose
MPC (the SPDZ protocol [DPSZ12]). The work on the two newer notions (homomorphic and func-
tion secret sharing) is motivated by applications to correlated data generation in the prepossessing
model (in the spirit of multiplication triplets). For instance, Boyle, Couteau, Gilboa, Ishai, Kohl,
Rindal, and Scholl [BCGIKRS19] show how to generate OLE-correlations using homomorphic se-
cret sharing (under various coding assumptions), and Boyle, Couteau, Gilboa, and Ishai [BCGI18]
show how to generate long VOLE instances (again, under various coding assumptions). These new
approaches offer improvements over previous ones, especially in communication costs.

Paper Organization

In Section 2, we describe the high-level approach for analyzing the security of P1 in Protocol 1.1,
as stated in Theorem 1.2. Notations, definitions and general statements used throughout the paper
are given in Section 3. Theorem 1.2 is formally stated and proved in Section 4, and its batching
extension is formally stated in Section 5. Finally, in Section 6, we show how to compile our protocol
generically for a number of applications (including, e.g., perfect multiplication). We note that we
also provide (non-generic) group-theoretic instantiations in Appendix B.

2 Our Techniques

In this section, we describe the high-level approach for analyzing the security of P1 in Protocol 1.1,
as stated in Theorem 1.2. For the formal proof of this theorem, see Section 4.

Recall that a malicious A corrupting P1 can deviate from the protocol by providing inputs to
the OT-calls that are not consistent with any a ∈ Zq. Our security proof consists of a case-by-case
analysis depending on how “far from consistent” A’s inputs to the OT are. Let (w−i , w

+
i ) denote the

inputs that A uses in the ith OT-call, let ai = (w+
i −w

−
i )/2 and let δi = w+

i −ai. Let â be the value
that appears the most often in a = (a1, . . . , an), and let d = a − â · 1. Intuitively, the hamming
distance of d from 0 measures how much A deviates from honest behaviour. In particular, d = 0 if
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P1 uses the same a in all OT-calls, and the hamming weight of d is n− 1 if P1 never uses the same
input twice. Let t = (t1, . . . , tn), z = (z1, . . . , zn) and v be the values that are sampled/obtained
by P2 in the execution, and let s2 denote its final output. By definition, it holds that

s2 = 〈v, z〉 = 〈v, δ + a ∗ t〉 = 〈v, δ + â · t〉+ 〈v,d ∗ t〉
= (〈v, â · t〉+ 〈v, δ〉) + 〈v,d ∗ t〉
= (â · b+ 〈v, δ〉) + 〈v,d ∗ t〉,

letting ∗ stand for point-wise multiplication and δ = (δ1, . . . , δn). The last equation holds by the
definition of v. Thus, given P1’s view together with the value of b, notice that the value of s2 is the
addition of the following two summands: the constant8 (â ·b+〈v, δ〉) (viewed as a single summand)
and 〈v,d ∗ t〉.

We say that a ∈ Znq is m-polychromatic, if for every y ∈ Zq it holds that Ham(d, yn) ≥ m
(e.g., (0, 1, 2, 3, 0) is 3-polychromatic but not 4-polychromatic). We show that if a is not κ/2-
polychromatic, hereafter almost monochromatic, then the execution of the protocol can be simulated
using oracle-access to the perfect (i.e., standard) multiplication functionality (which provides the
right share to each party, without any offset). Otherwise, if a is κ/2-polychromatic, hereafter
polychromatic, then 〈v,d ∗ t〉 has high min-entropy, given A’s view and the value of b.

Before we further elaborate on each of the above two cases, we introduce the following notation.
To distinguish between the values fixed adversarially by A and those sampled (honestly) by P2,
in the remainder we treat the adversary’s inputs as fixed values and the honest party’s input as
random variables. Namely, it is assumed that a ∈ Znq is fixed (and thus also the vector d), and we
let V and T denote the random variables where v and t are drawn from (i.e., uniform distribution
over Znq and {91, 1}n, respectively).

Almost-Monochromatic a yields statistical security. We prove this part by showing that,
given V , the value of 〈V ,d ∗ T 〉 is close to being independent of b. Namely, for any b, b′ ∈ Zq,

SD
(
(V , 〈V ,d ∗ T 〉)|〈V ,d∗T 〉=b, (V , 〈V ,d ∗ T 〉)|〈V ,d∗T 〉=b′

)
≤ 2−κ/4 (1)

Equation (1) yields that the simulation of P2 in the ideal world, given access to the perfect multi-
plication functionality, can be simply done by emulating P2 on an arbitrary input.

To see why Equation (1) holds, let I := {i ∈ [n] : di 6= 0}, and assume T I (the value of T in the
coordinates of I) is fixed to some s ∈ {91, 1}|I|. Since, given this fixing, 〈V ,d ∗T 〉 = 〈V I ,dI ∗s〉 is
a deterministic function of V , proving the almost-monochromatic case is reduced to proving that

SD(V |〈V ,T 〉=b,V ) ≤ 2−κ/4 (2)

Since d is almost-monochromatic, then, given the above fixing of T I , it still holds that H∞(T ) ≥
n− |I| ≥ dlog qe+ κ/2. Thus, by the leftover hash lemma

SD((V , 〈V ,T 〉), (V , U)) ≤ 2−κ/4 (3)

for a uniformly sampled U ← Zq. In other words, the value of V is 2−κ/4-close to uniform
given 〈V ,T 〉, and Equation (2) follows by a not-too-complicated chain of derivations (see proof of
Lemma 3.8).

8given P1’s view and P2’s input
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Polychromatic a yields unpredictable offset. Fix b ∈ Zq, and for t ∈ {91, 1}n let W t be
the indicator random variable of the event {〈V , t〉 = b}, and let W :=

∑
t∈{91,1}nW

t. In addition,

for t ∈ {91, 1}n and x ∈ Zq, let Ztx be the indicator random variable of the event {〈V b, t〉 =
b ∧ 〈V ,d ∗ t〉 = x}, and let Zx :=

∑
t∈{91,1}n Z

t
b . We show that for a polychromatic a, with

probability 1− 2−κ/4 over V it holds that

Zx/W ≤ 2−κ/4 (4)

for every x ∈ Zq (simultaneously). It follows that for such vector a, with high probability over V ,
the probability that 〈V ,d ∗ T 〉 = x, for any value of x, is small. In other words, 〈V ,d ∗ T 〉 has
high min-entropy given (V , b).9

We prove Equation (4) by upper-bounding E[W 3] and E[Z3
x], for any x, and then we use a

third moment concentration inequality to derive Equation (4). The harder part is bounding E[Z3
x].

To get the gist of this bound, we give the intuition for bounding E[Z2
x]. This bound is derived

by proving that the number of pairs (t, t′) with E[Ztx · Zt
′
x ] > 1/q4 is small. These pairs are

identified by relating the correlation of the indicator random variables of the events {〈V , t〉 = b},
{〈V , t′〉 = b}, {〈V ,d ∗ t〉 = x} and {〈V ,d ∗ t〉 = x} to the dimension of space spanned by the
vectors in St,t′ := {t, t′,d ∗ t,d ∗ t′}. In particular, it is not hard to see that

rank(St,t′) = j =⇒ E[Ztx · Zt
′
x ] ≤ 1/qj

Hence, upper-bounding E[Z2
x] reduces to upper-bounding to number of pairs (t, t′) with

rank(St,t′) < 4. Upper-bounding the number of such pairs is done using linear algebra argu-
ments, exploiting the fact that d has at least κ/2 non-zero elements (since it is polychromatic).
Specifically, we show that the number of pairs (t, t′) with E[Ztx ·Zt

′
x ] < 1/q4 decreases exponentially

with the weight of d. This bound is sufficient for calculating the second moment of Zx (deducing a
weaker bound than Equation (4), cf., Section 4.2). Calculating the third moment of Zx, however,
for deriving Equation (4) is more involved, and requires a more detailed case-by-case analysis in
the counting argument, cf., Appendix B.

Extension to Arbitrary Fields. Our results extend trivially to large finite fields (i.e., of size
greater than 2κ/2). Next, we briefly explain how to use our protocol for multiplying in a small field,
denoted F. Unfortunately, as is, the protocol does not enjoy the same unpredictability under attack
since the entropy of the offset is constrained by the size of the field, i.e., the offset has min-entropy
at most log(|F|). To circumvent this issue, we instruct the parties to embed F into a larger field H
of size 2κ/2 and perform the multiplication in H (of course, the parties’ shares then reside in the
larger field).

To obtain additive shares over the smaller field F, it is enough to perform a local transformation
to the output. This way, we enjoy the unpredictability under attack (and thus the correctness-check
can be performed over the larger field) and we obtain correct shares of the output in F.

9Actually, since the value of v sent to P1 is not uniform, but rather distributed according to V b := V |〈V ,T 〉=b, to
argue about the security of the protocol one needs to argue about the min-entropy of 〈V b,d ∗ T 〉 given (b,V b). We
ignore this subtlety in this informal exposition.
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3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, lowercase for values and
functions, and boldface for vectors. All logarithms considered here are in base 2. For a vector
v = (v1, . . . , vn) and a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I , let v−I := v[n]\I ,
and let v−i := v−{i} (i.e., (v1, . . . , vi−1, vi+1, . . . , vn)). For two vectors u = (u1, . . . , un) and v =
(v1, . . . , vn), let u ∗ v := (u1 · v1, . . . , un · vn), and let 〈u,v〉 :=

∑n
i=1 uivi. Let bn denote the the

n-size all b vector, or just b when the size is clear from the context. For a field F and a sequence
of vectors v1, . . . ,vm ∈ Fn, let span{v1, . . . ,vm} := {

∑m
j=1 λjvj : λ1, . . . , λm ∈ F} (i.e., the vector

space that is spawn by vectors v1, . . . ,vm), and let rank{v1, . . . ,vm} denote the dimension of
span{v1, . . . ,vm}. For a function f taking 1κ ∈ N as its first input, we let fκ(·) stand for f(1κ, ·).
Let ppt stand for probabilistic polynomial time, and pptm stand for ppt (uniform) algorithm
Turing Machine).

3.2 Distributions and Random Variables

The support of a distribution P over a finite set S is defined by Supp(P ) := {x ∈ S : P (x) > 0}.
For a (discrete) distribution D, let d ← D denote that d is sampled according to D. Similarly,
for a set S, let x ← S denote that x is drawn uniformly from S. The statistical distance (also
known as, variation distance) of two distributions P and Q over a discrete domain X is defined by
SD(P,Q) := maxS⊆X |P (S)−Q(S)| = 1

2

∑
x∈S |P (x)−Q(x)|. The min-entropy of a distribution P

over a discrete domain X is defined by H∞(P ) := minx∈Supp(P ){log(1/P (x))}.

3.3 Two-Party Protocols and Functionalities

A two-party protocol consists of two interactive Turing Machines (TMs). In each round, only one
party sends a message. At the end of protocol, each party outputs some value. This work focuses
on static adversaries: before the beginning of the protocol, the adversary corrupts one of the parties
that from now on may arbitrarily deviate from the protocol. Thereafter, the adversary sees the
messages sent to the corrupted party and controls its messages. A party is honest, with respect
to a given protocol, if it follows the prescribed protocol. A party is semi-honest, if it follows the
prescribed protocol, but might output additional values.

We mark inputs to protocols and functionalities as optional, if they do not have to be defined
by the caller, and in this case they are set to ⊥.

3.3.1 Security

We define the security of our two-party protocols in the real vs. ideal paradigm [Can00; Gol04]. In
this paradigm, the real-world model, in which protocols is executed, is compared to an ideal model
for executing the task at hand. The latter model involves a trusted party whose functionality
captures the security requirements of the task. The security of the real-world protocol is argued
by showing that it “emulates” the ideal-world protocol, in the following sense: for any real-life
adversary A, there exists an ideal-model oracle-aided adversary (also known as, simulator) S, such
that the global output of an execution of the protocol with A in the real-world model is distributed
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similarly to the global output of running SA in the ideal model. In the following we only consider
non-reactivate functionalities, i.e., random functions.

The ideal model. In the ideal execution model, the parties do not interact, but rather make
a single joint call to a two-party functionality. An ideal execution of a two-party functional-
ity f with respect to an adversary A taking the role of P1 and inputs (1κ, x1, x2), denoted by

IDEALfP1
(A, κ, x1, x2), is the output of A and that of the trusted party, in the following experiment

(the case of malicious P2 is analogously defined):

Experiment 3.1 (Ideal execution).

1. On input (1κ, x1), A sends an arbitrary message x̂1 to the trusted party.

2. The trusted party computes (y1, y2) = f(1κ, x̂1, x2) and sends y1 to A(1κ, x1).

3. A sends the message Continue/ Abort to the trusted party, and locally outputs some value.

4. If A instructs Abort, the trusted party outputs ⊥. Otherwise, it outputs y2.

The real model. We focus on security of protocols in the g-hybrid model, in which the parties
are given access to two-party functionality g. In executions of such protocols, a malicious party can
instruct the functionality g to abort after seeing its output (which it gets first). Let Π = (P1,P2)
be an two-party protocol in the g-hybrid model, and let A be an adversary controlling party P1 (the
case of malicious P2 is analogously defined). We define REALΠ

P1
(A, κ, x1, x2) as the output of A

(i.e., without loss of generality its view: its random input, the messages it received, and the output
of the g calls) and the prescribed output of P2, in a random execution of (Ag(x1),Pg2(x2))(1κ).

Hybrid-model security.

Definition 3.2 (α-security). A two-party protocol Π = (P1,P2) (black-boxly) α-computes a two-
party functionality f in the g-hybrid model with respect to input domain D1 × D2, if there exists
a ppt oracle-aided algorithm S (simulator), such that for every adversary A, κ ∈ N and inputs
(x1, x2) ∈ D1 ×D2, it holds that

SD
(

REALΠ
P1

(A, κ, x1, x2)), IDEALfP1

(
SA, κ, x1, x2

))
≤ α(κ).

Furthermore, if A is semi-honest then so is SA: it sends its (real) input to the trusted party, and
does not ask to abort. Security is defined analogously for P2.

Extension to UC security. The above security notions are defined in the so-called “standalone”
model. However, we mention that the security analysis for our main results (realizing WeakMult and
WeakMultBatching) as well as for our applications (e.g. Realizing PerfectMult from WeakMult and
auxiliary “helper” functionalities) uses straightline simulators exclusively, i.e., the simulator does
not rewind the adversary at any point of the simulation. Therefore, our results can be extended to
the UC setting.

11



3.3.2 Oblivious Transfer (OT)

We use the (perfect) one-out-two oblivious transfer functionality (OT) defined as follows: on input
(σ−1, σ1) sent by the first party (the sender), and input i ∈ {91, 1} sent by the second party (the
receiver), it sends σi to the receiver. The functionality gets no security parameter.

3.3.3 Two-Party Multiplication

In multiplication over the field Zq = Z/qZ, where q is an odd prime, party P1 holds private input
a ∈ Zq, party P2 holds private input b ∈ Zq, and the goal is to securely computes random shares
s1, s2 ∈ Zq for P1 and P2 (respectively), such that s1 +s2 = a ·b (for the ease of notation, we assume
that operations are made over the field Zq, i.e., modulo q). The following is what we address as
the perfect multiplication functionality.

Functionality 3.3 (PerfectMult).

P1’s input: a ∈ Zq.

P2’s input: b ∈ Zq and optional s2 ∈ Zq.

Operation:

1. If s2 =⊥, sample s2 ← Zq.

2. Output (s1, s2) for s1 ← a · b− s2.

Note that it is always holds that s1 +s2 = a ·b. Also note that an adversary controlling P1 can do no
harm, and adversary controlling party P2 may choose the value of its share s2, but no information
about the other party’s input is leaked. It seems that allowing one party to control its output is
unavoidable, and is also harmless for all the applications we are aware of.

3.3.4 Batching

In a batch-multiplication, a single input provided by one party is multiplied with several inputs
provided by the other party. Such multiplication is interesting if the batching is more efficient than
parallel executions of the (single input per party) multiplication protocol. For this case, we define
the perfect batch-multiplication functionality below.

Functionality 3.4 (PerfectMultBatching).

P1’s input: a ∈ Zq.

P2’s input: b = (b1, . . . , bm) ∈ Zmq and optional (s1
2, . . . , s

m
2 ) ∈ Zmq .

Operation:

1. If (s1
2, . . . , s

m
2 ) = ⊥, sample (s1

2, . . . , s
m
2 )← Zmq .

2. Output (s1
1, . . . , s

m
1 ) to P1 and (s1

2, . . . , s
m
2 ) to P2 for (s1

1, . . . , s
m
1 )← a · b− (s1

2, . . . , s
m
2 ).
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3.4 Some Inequalities

We use the following inequalities.

Lemma 3.5 (Chebyshev’s inequality). Let X be a random variable with E[X] ∈ (−∞,∞) and
Var(X) ∈ (0,∞). Then

∀k > 0 : Pr[|X − E[X]| ≥ k] ≤ Var(X)/k2.

Definition 3.6 (Universal hash functions). A family H = {h : D → R} of (hash) functions is
called universal if for every x, y ∈ D with x 6= y,

Prh←H[h(x) = h(y)] ≤ 1/|R|.

Lemma 3.7 (The leftover hash lemma [ILL89]). Let X be a random variable over a universe D,
let H = {h : D → R} be a universal hash family. Then for H ← H it holds that

SD((H,H(X)), (H,U)) ≤ 2−(H∞(X)−log|R|)/2,

where U ← R (independent of H).

The following lemma is similar both in statement and proof to [IPS09, Lemma 1]. It states
that for a uniform universal hash function H conditioned on its output for uniform input X does
not affect its distribution by much. This is in a sense the converse of the leftover hash lemma
that states that (H,H(X)) is close to uniform. For simplicity, we only state the lemma for the
inner-product hash family.

Lemma 3.8. Let (R,+, ·) be a finite ring of size r, let n = dlog re+κ, let d ∈ Rn, let ` = dist(d, 0n)
and let V ← Rn and T ← {91, 1}n be two independent random variables. Then for every x ∈ R it
holds that:

SD(V ,V |〈V ,T 〉=x) ≤ 2−(κ−1)/2.

Proof. Fix x ∈ Zq, and it is easy to verify that V |〈V ,T 〉=x is a convex combination of V |〈V ,(1,T−1)〉=x
and V |〈V ,(−1,T−1)〉=x. Therefore, it holds that

SD(V ,V |〈V ,T 〉=x) ≤ max
y∈{91,1}

SD(V ,V |〈V ,(y,T−1)〉=x) (5)

In the following, let y ∈ {91, 1} be this maximal value, and let U ← R (independent of V and
T ). Consider the hash function family H = {hv : {91, 1}n 7→ R}v∈Rn , defined by hv(t) := 〈v, t〉.
It is easy to verify that this is a 2-universal hash function family. Since H∞(T−1) = n − 1 and
n ≥ log r + κ, we obtain by the leftover hash lemma (Lemma 3.7) that

SD((V , 〈V , (y,T−1)〉), (V , U)) = SD((V , hV (T )), (V , U)) ≤ 2−(k−1)/2 (6)

In the following, for v ∈ Rn and z ∈ R, let vz = v + zy · e1, for e1 = (1, 0n−1). Notice that
for every z ∈ R it holds that {vz}v∈Rn = Rn, and that for every t−1 ∈ Supp(T−1) it holds that
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〈vz, (y, t−1)〉 = 〈v, (y, t−1)〉+ z. Therefore,

SD((V , 〈V , (y,T−1)〉), (V , U)) =
1

rn

∑
v∈Rn

SD(〈v, (y,T−1)〉, U)

=
1

rn
· 1

2

∑
v∈Rn

∑
z∈R

∣∣∣∣Pr[〈v, (y,T−1)〉 = z]− 1

r

∣∣∣∣
=

1

rn
· 1

2

∑
z∈R

∑
v∈Rn

∣∣∣∣Pr
[
〈vx−z, (y,T−1)〉 = x

]
− 1

r

∣∣∣∣
=

1

rn−1
· 1

2

∑
v∈Rn

∣∣∣∣Pr[〈v, (y,T−1)〉 = x]− 1

r

∣∣∣∣
=

1

2

∑
v∈Rn

∣∣∣∣Pr[V = v | 〈v, (y,T−1)〉 = x]− 1

rn

∣∣∣∣
= SD(V ,V |〈V ,(y,T−1)〉=x).

The proof now follows by Equation (6). �

4 Multiplication with Unpredictable Output Under Attack

In this section, we formally describe our “weak” OT-based multiplication protocol introduced in
Section 1; we state and analyze its security guarantee. We show that our protocol securely realizes a
multiplication functionality that guarantees unpredictable honest-party output under attack, which,
for lack of a better short name, we will address as WeakMult. Intuitively, WeakMult allows the
adversary to either act honestly, or to induce an unpredictable offset on the honest party’s output.
As discussed in the introduction, such a security guarantee suffices in many settings where “secure
multiplication” is needed, and, with some additional effort (see Section 6), can be compiled into
perfect i.e., standard multiplication.

In Section 4.1, we define the WeakMult functionality and analyze the security guarantee it
provides. In Section 4.2, we formally define our OT-based multiplication protocol, and we prove
that it securely realizes WeakMult. Hereafter, we fix q ∈ PRIMES>2 (i.e., the size of the field), and
all arithmetic operations are done over the field Zq = Z/qZ (i.e., modulo q). Let Ham(x,y) stand
for the hamming distance between the vectors x and y.

4.1 The Ideal Functionality

We start by describing the ideal functionality WeakMult. Recall that PerfectMult is the perfect
(standard) multiplication functionality defined in Section 3.3.3.

Definition 4.1 (polychromatic vector). A vector d ∈ Znq is m-polychromatic if for every y ∈ Zq it
holds that Ham(d, yn) ≥ m.
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Functionality 4.2 (WeakMult).

Common input: a security parameter 1κ. Let n = dlog qe+ κ.

P1’s input: a ∈ Zq, and optional d ∈ Znq .

P2’s input: b ∈ Zq, and optional s2 ∈ Zq.

Operation:
If d is not κ/2-polychromatic (or d = ⊥), act according to PerfectMult(a, (b, s2)).

Else:

1. Sample (v, t)← Znq × {91, 1}n such that 〈v, t〉 = b. 10

2. Sample s2 ← Zq.

3. Output ((s1,v), s2) for s1 = a · b− s2 + 〈v,d ∗ t〉.

It is clear that WeakMult outputs the shares of a · b correctly on a non κ/2-polychromatic d.
The following lemma states the security guarantee of WeakMult against a “cheating” P1 that uses
a κ/2-polychromatic vector d.

Lemma 4.3. Let q ∈ PRIMES>2, κ ∈ N and n := dlog qe + κ. Let d ∈ Znq , let ` =
miny∈Zq{Ham(d, yn)}, let λ = min{`, κ − 5, log q, n/3}, and let (V ,T ) ← Znq × {91, 1}n. Then

for every b ∈ Zq, with probability 1− 2−λ/2+3 over v ← V |〈V ,T 〉=b, it holds that

H∞(〈v,d ∗ T 〉 | 〈v,T 〉 = b) ≥ λ/2 + 4.

When λ ≥ κ/2 (by the definition of λ this happens when the field is not too small), for a κ/2-
polychromatic d, Lemma 4.3 yields that for such d, conditioned on 〈v,T 〉 = b, the min-entropy of
〈v,d ∗ T 〉 is at least κ/4. The rather tedious proof of Lemma 4.3 is given in Appendix A. Below,
we state and prove a weaker, but easier to read, variant.

Lemma 4.4 (A weak variant of Lemma 4.3). Let κ, n,d, `,V ,T be as in Lemma 4.3, and let
λ := min{`, κ, log q, n/3}. Then for any b ∈ Zq, with probability 1 − 2−λ/3+2 over v ← V |〈V ,T 〉=b,
it holds that

H∞(〈v,d ∗ T 〉 | 〈v,T 〉 = b) ≥ λ/3− 4.

In words, compared to Lemma 4.3, Lemma 4.4 yields a slightly smaller min-entropy guarantee
which occurs with a slightly smaller probability.

Proof. We assume without loss of generality that argmaxx∈Zq |{i ∈ [n] : di = x}| = 0, i.e., 0 is the

most common element in d. (Otherwise, we prove the lemma for the vector d′ = d − yn, where
y ∈ Zq be the most common element). We also assume that d is not the all-zero vector, as otherwise
the proof trivially holds.

10This sampling can be done efficiently by sampling the two item uniformly, and then adjusting one coordinate of
v.
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Let κ, n,d, `, λ,V ,T be as in Lemma 4.3, and fix b ∈ Zq. In addition, for t ∈ {91, 1}n, let
W t be the indicator random variable for the event {〈V , t〉 = b}, and let W :=

∑
t∈{91,1}nW

t.

For t ∈ {91, 1}n and x ∈ Zq, let Ztx be the indicator random variable for the event {〈V , t〉 =
b ∧ 〈V ,d ∗ t〉 = x}, and let Zx :=

∑
t∈{91,1}n Z

t
x. We start by proving that with high probability

over V , for every x ∈ Zq, it holds that

Zx/W ≤ 2−λ/3+4 (7)

and we will complete the proof of the lemma by showing that the above inequality still holds when
defining Zx and W with respect to the random variable V b := V |〈V ,T 〉=b (rather than with respect
to V ). We prove Equation (7) by bounding the variance of W and Zx, and then use Chebyshev’s
inequality (Lemma 3.5). Specifically, we use the following claims (proven below).

Claim 4.5. For every x ∈ Zq : E[Zx] = 2n/q2 and Var(Zx) ≤ 22n−λ+4/q3.

Claim 4.6. E[W ] = 2n/q and Var(W ) ≤ 2n+1/q.

By Chebyshev’s inequality and Claim 4.5, for every x ∈ Zq:

Pr
[∣∣Zx − 2n/q2

∣∣ ≥ 2n−λ/3+2/q
]
≤ q2 ·Var(Zx)

22n−2λ/3+4
≤ 2−λ/3

q
,

and thus by a union bound

Pr
[
∃x s.t.

∣∣Zx − 2n/q2
∣∣ ≥ 2n−λ/3+2/q

]
≤ 2−λ/3. (8)

Applying Chebyshev’s inequality with respect to Claim 4.6, we get that

Pr
[
W ≤ 2n−1/q

]
≤ Pr

[
|W − 2n/q| ≥ 2n−1/q

]
≤ q2 ·Var(W )

22n−2
≤ 2−κ+3, (9)

where the last inequality holds since, be definition, n ≥ log q+κ. Combining Equations (8) and (9)
yields that with probability at least 1− (2−λ/3 + 2−κ+3) ≥ 1− 2−λ/3+1 over v ← V , it holds that:

1. ∀x ∈ Zq : Zx ≤ 2n−λ/3+3/q, and

2. W ≥ 2n−1/q.

Note that for every v satisfying Items 1 and 2, and every x ∈ Zq, it holds that

Pr[〈v,d ∗ T 〉 = x | 〈v,T 〉 = b] =
Pr[〈v,d ∗ T 〉 = x ∧ 〈v,T 〉 = b]

Pr[〈v,T 〉 = b]
(10)

=
Zx
W
|V =v

≤ 2−λ/3+4.

We now turn to the distribution V b = V |〈V ,T 〉=b. Applying Lemma 3.8 with respect to the
ring R = Zq with addition and multiplication modulo q, yields that

SD(V ,V b) ≤ 2−(κ−1)/2 (11)

It follows that Equation (10) holds with probability at least 1− 2−λ/3+1 − 2−(κ−1)/2 ≥ 1− 2−λ/3+2

over v ← V b, as required. �
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4.1.1 Proving Claim 4.6

Proof. Recall that W :=
∑
t∈{91,1}nW

t for W t being the indicator random variable for the event
{〈V , t〉 = b}. Therefore, it is clear that E[W ] = 2n/q, and a simple calculation yields that

Var(W ) = Var

 ∑
t∈{91,1}n

W t

 (12)

=
∑

t∈{91,1}n
(E[(W t − 1/q)2] + E[(W t − 1/q) · (W−t − 1/q)])

≤ 2 ·
∑

t∈{91,1}n
Var(W t)

≤ 2n+1/q,

as required. The second equality holds since for every t, t′ with t′ /∈ {−t, t}, the random variables
W t and W t′ are independent (because t and t′ are linearly independent). �

4.1.2 Proving Claim 4.5

Recall that Zx :=
∑
t∈{91,1}n Z

t
x for Ztx being the indicator random variable for the event {〈V , t〉 =

b ∧ 〈V ,d ∗ t〉 = x}. For any t ∈ {91, 1}n, since the vectors t and d ∗ t are linearly independent
(recall that d contains zero and non-zero elements) it holds that E[Ztx] = 1/q2, and therefore,
E[Zx] = 2n/q2. It is left to bound Var(Zx). For j ∈ [4], let

Bj := {(t, t′) ∈ {91, 1}2n : rank{t, t′,d ∗ t,d ∗ t′} = j}

Note that the only possible values for E[Ztx ·Zt
′
x ] are {0}∪ {1/qj}4j=1, where E[Ztx ·Zt

′
x ] = 1/qj =⇒

(t, t′) ∈ Bj . We relate Var
(∑

t∈{91,1}n Z
t
x

)
to size {Bj} as follows:

Var(Zx) =
∑

t,t′∈{91,1}n
E[(Ztx − 1/q2)(Zt

′
x − 1/q2)] (13)

≤
∑

t,t′∈{91,1}n
E[Ztx · Zt

′
x ]

≤
4∑
j=1

|Bj |/qj .

We complete the proof by bounding the size of Bj for each j ∈ [3] (for B4 we use the trivial bound
|B4| ≤ 22n).

Claim 4.7. |B1| = 0.

Proof. Since d contains zeros and non-zeros elements, the vectors t and d ∗ t, for any t ∈ {91, 1}n,
are linearly independent over Znq , yielding that |B1| = 0. �

Claim 4.8. |B2| ≤ 2n+2.
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Proof. Since there are exactly 2n+1 linearly dependent pairs (t, t′), i.e., the pairs
∪t∈{91,1}n{(t, t), (t,−t)}, we deduce the bound by proving that there are at most 2n+1 indepen-
dent pairs (t, t′) in B2.

Fix an independent pair (t, t′) ∈ B2, let E = {i ∈ [n] : ti = t′i} and let N = [n] \ E . Up to
reordering of the coordinates, we can write t = (tE , tN ), t′ = (tE ,−tN ) and d = (dE ,dN ). It is
easy to verify that

span{t, t′,d ∗ t,d ∗ t′} = span{(tE ,0), (0, tN ), (dE ∗ tE ,0), (0,dN ∗ tN )}.

Since (t, t′) are independent and rank{t, t′,d ∗ t,d ∗ t′} = 2, the above yields that

dE ∈ span{1} ∧ dN ∈ span{1} (14)

Since, by assumption, d is d is not the all-zero vector, Equation (14) yields that (dE ,dN ) = (u·1,0)
or d = (0, u · 1), for some u ∈ Zq \ {0}.

Assuming that B2 contains an independent pair, otherwise we are done, the above yields that
the non-zero coordinates of d are all equal to some u ∈ Zq \ {0}. It follows that for each vector
t ∈ {91, 1}n there are at most two vectors t1 and t2, such that (t, tj) is an independent pair in B2

(actually, each t has exactly two such vectors, with t1 = −t2). We conclude that the number of
independent pairs (t, t′) ∈ B2 is at most 2n+1. �

Claim 4.9. |B3| ≤ 22n−min{n/3,`}+2 (recall that ` = Ham(d,0)).

Proof. Let µ := min{n/3, `}, fix (t, t′) ∈ B3, let E = {i ∈ [n] : ti = t′i} and let N = [n] \ E . Up to
reordering of the coordinates, we can write t = (tE , tN ), t′ = (tE ,−tN ) and d = (dE ,dN ). It holds
that

span{t, t′,d ∗ t,d ∗ t′} = span{(tE ,0), (0, tN ), (dE ∗ tE ,0), (0,dN ∗ tN )}.

Since the assumed dimension is 3, then

dE ∈ span{1} ∨ dN ∈ span{1} (15)

We next show how to partition the coordinates of d into sets I0 and I1, each of size at least
µ, such that for all i ∈ I0 it holds that di /∈ {dj : j ∈ I1} and vice versa. If ` ≤ n − µ, then we
are done by taking I0 = {i : di = 0} and I1 = [n] \ I0. Assume that ` > n− µ, which implies that
µ ≤ n− 2µ < 2`−n. For α ∈ Zq define Jα = {i : di = α} and notice that |Jα| < (n−µ)/2 because
otherwise

|Jα| ≥ (n− µ)/2 > (n− (2`− n))/2 = n− `

which contradicts the definition of ` (recall that 0 is the element with maximal number of appear-
ances in d, and there are exactly n− ` zero coordinates). Finally, define s ∈ Zq to be the minimal
value such that ∪sα=0Jα ≥ µ and let I0 = ∪sα=0Jα and I1 = [n] \ I0. By definition, I0 is bigger
than µ and it remains to show that I1 ≥ µ. It holds that

|I1| = n− |I0| = n−
∣∣∪s−1
α=0Jα

∣∣− |Js| ≥ n− µ− (n− µ)/2 ≥ µ.

Back to the proof, Equation (15) yields that either E ⊆ I0, or E ⊆ I1, or N ⊆ I0, or N ⊆ I1.
Since |I0|, |I1| ≥ µ, the number of pairs (t, t′) ∈ {91, 1}n that satisfy this condition is at most
4 · 22n−µ, which ends the proof of the claim.

�
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Putting it together. Given the above claims, we are ready to prove Claim 4.5.

Proof of Claim 4.5. Recall that λ := min{`, κ, log q, n/3}. By Equation (13) and Claims 4.7 to 4.9,
we conclude that

Var(Zx) ≤
4∑
j=1

|Bj |/qj

≤ 2n+2/q2 + 22n−λ+2/q3 + 22n/q4

≤ 22n−λ+4/q3,

as required. The last inequality holds since λ ≤ κ implies that 2n+2/q2 ≤ 22n−λ+2/q3, and λ ≤ log q
implies that 22n/q4 ≤ 22n−λ+2/q3. �

4.2 The OT-Based Protocol

In the following we describe our OT-based implementation of the functionality WeakMult. Recall
that throughout this section we fix a field size q > 2 and assume that all operation are made over
the field Zq = Z/qZ (i.e., modulo q).

Protocol 4.10 (Π = (P1,P2)).

Oracle: (one-out-of-two) OT.

Common input: security parameter 1κ. Let n = dlog qe+ κ.

P1’s private input: a ∈ Zq.

P2’s private input: b ∈ Zq.

Operations:

1. For each i ∈ [n], in parallel:

(a) P1 samples δi ← Zq, and P2 samples ti ← {91, 1}.
(b) The parties jointly call OT((δi − a, δi + a), ti).

Let zi be the output obtained by P2 in this call.

2. P2 samples v ← Znq such that 〈v, (t1, . . . , tn〉)) = b, samples σ ← Zq,

and sends (v, σ) to P1.

3. P1 outputs s1 := −〈v, δ〉 − σ.

4. P2 outputs s2 := 〈v, (z1, . . . , zn)〉+ σ.

Note that, unlike in the simplified version of the protocol presented in the introduction, party
P2 in the above adds an additional mask σ to the shares. The role of this additional mask is
rather technical, but it appears necessary for simulating of the above protocol using WeakMult
(Functionality 4.2).
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Lemma 4.11 (Security). Protocol 4.10 (α(κ) := 2−κ/4+1.5)-computes WeakMult in the OT-hybrid
model with respect to input domain Zq × Zq. Furthermore, if both parties act honestly, then their
joint output equals the output of WeakMult on their joint inputs.

Proof. We start with proving correctness (correct output when acting honestly). Indeed, for any
possible values of a, b, κ, s2, δ = (δ1, . . . , δn), t = (t1, . . . , tn), z = (z1, . . . , zn),v an σ in a honest
execution of Π(a, b)(1κ), it holds that

s2 = 〈v, z〉+ σ = 〈v, δ + a · t〉+ σ = a · 〈v, t〉+ 〈v, δ〉+ σ = a · b− s1,

and thus s1 + s2 = a · b.
For security, fix a security parameter κ ∈ N and inputs a, b ∈ Zq. We start by proving security

against a corrupted P2.

Corrupted P2: Given an oracle access to (the next-message function of) an interactive adversary
A controlling P2, its ideal-model simulator S (which uses the functionality WeakMult) is described
as follows:

Algorithm 4.12 (Ideal-model S for corrupted P2).

Inputs: 1κ and b ∈ Zq.

Oracle: (real-model) attacker A.

Operations:

1. Simulate a random execution of (P1(0),A(b))(1κ).

2. If the simulation ends prematurely (e.g., on invalid behavior), send Abort to WeakMultκ,
output A’s output, and halt the execution.

3. Let z = (z1, . . . , zn) ∈ Znq be the outputs that A receives in the OT simulated calls (Step 1b),
and let (v, σ) ∈ Znq × Zq be the pair that A sends in Step 2 of the simulation.

4. Send (b, 〈v, z〉+ σ) to WeakMultκ.

5. Output A’s output.

In the following let Z = (Z1, . . . , Zn) ← Znq , and let (V ,Σ) ← A(Z) (i.e., the distribution of
the pair (v, σ) that A sends in Step 3 when (Z1, . . . , Zn) are the values that A receives in the OT
simulated calls). We claim that REALΠ

P2
(A, κ, a, b) ≡ IDEALWeakMult

P2
(SA, κ, a, b). Indeed, both in

the real execution (P1(a),A(b))(1κ) and in the simulated execution (P1(0),A(b))(1κ) done in the
ideal execution, the view of A (i.e., z) and the output of P1, are jointly distributed according to
(Z, a · b− 〈V ,Z〉 − Σ).

Corrupted P1: Given an oracle access to (the next-message function of) an interactive adversary
A controlling P1, its ideal-model simulator S, which uses the functionality WeakMult, is described
as follows:
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Algorithm 4.13 (Ideal-model S).

Inputs: 1κ and a ∈ Zq.

Oracles: (real-model) attacker A.

Operations:

1. Simulate a random execution of (A(a),P2(0))(1κ) till the end of Step 1.

2. If the simulation ends prematurely (e.g., on invalid behavior), send Abort to WeakMultκ,
output A’s output and halt the execution.

3. Let (w−i , w
+
i ) and ti denote the inputs that A and P2 use (respectively) in the ith OT

execution of the simulation (Step 1b). Let ai = (w+
i − w

−
i ) · 2−1 (an inverse for 2 in Zq

exists by the assumption that q is odd), let a = (a1, . . . , an), let δ = (w+
1 −a1, . . . , w

+
n −an),

let â ∈ Zq denote the value that appears the most often in a, and let d = a− â · 1.

4. If Ham(d, 0n) < κ/2:

(a) Send (â,d) to WeakMultκ.

(b) Receive s1 from WeakMultκ.

(c) Sample v ← Znq such that 〈v, (t1, . . . , tn)〉 = 0, and send (v, σ := −〈v, δ〉−〈v,d∗ t〉−
s1) to A.

5. Else:

(a) Send (â,d) to WeakMultκ.

(b) Receive (s1, v̂) from WeakMultκ.

(c) Send (v̂, σ := −s1 − 〈v̂, δ〉) to A.

6. Output A’s output in the simulation.

It is clear that S is efficient. We next bound the statistical distance between REALΠ
P1

(A, κ, a, b)

and IDEALWeakMult
P1

(SA, κ, a, b). Assuming without loss of generality that A is deterministic (a
randomized adversary is just a convex combination of deterministic adversaries), the values of d,
â and δ that it uses are fixed, and it either uses an κ/2-polychromatic d, or not (i.e., an almost
all-zeros d). We handle each of these cases separately. In the following let V ← Znq , T ← {91, 1}n
and S1 ← Zq be independent random variables.

Polychromatic d. If A uses an κ/2-polychromatic d, then REALΠ
P1

(A, κ, a, b), the view of A and
the output of P2 in the real execution (A(a),P2(b))(1κ), are jointly distributed according to

((V ,−S1 − 〈V , δ〉), â · b− S1 + 〈V ,d ∗ T 〉)|〈V ,T 〉=b (16)

Let (v̂, t̂) be the pair that is sampled in Step 1 of WeakMultκ. Since this pair is sampled according
to (V ,T )|〈V ,T 〉=b, in the ideal execution it holds that IDEALWeakMult

P1
(SA, κ, a, b) (A’s view and the
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output of the trusted party in the ideal execution) are jointly distributed according to Equation (16).
This concludes the proof of this case.

Almost-monochromatic d. Assume A uses a non κ/2-polychromatic vector d, i.e., `, the ham-
ming distance of d from 0n, is less than κ/2. In this case, A’s view in the real execution, i.e., the
pair (v, σ), and the output s2 of P2, are jointly distributed according to ((V ,Σ), â · b−S1)|〈V ,T 〉=b,
for Σ = −S1 − 〈V , δ〉 − 〈V ,d ∗ T 〉. On the other hand, the output of SA and that of the trusted
party in the ideal execution, are jointly distributed according to ((V ,Σ), â · b − S1)|〈V ,T 〉=0 (i.e.,
now the conditioning is over 〈V ,T 〉 equals 0 and not b). Therefore

SD
(

REALΠ
P1

(A, κ, a, b), IDEALWeakMult
P1

(SA, κ, a, b)
)

(17)

= SD
(
((V ,Σ), â · b− S1)|〈V ,T 〉=b, (((V ,Σ), â · b− S1)|〈V ,T 〉=0

)
≤ SD

(
(V , 〈V ,d ∗ T 〉)|〈V ,T 〉=b, (V , 〈V ,d ∗ T 〉)|〈V ,T 〉=0

)
.

The inequality holds since each pair is a randomized function of V and 〈V ,d ∗ T 〉 (recall that
â, b, δ are fixed, S1 is independent, and Σ is a function of S1, 〈V ,d ∗ T 〉 and 〈V , δ〉). Recall that
` = Ham(d, 0n) < κ/2, and let I := {i ∈ [n] : di 6= 0}. Since 〈V ,d ∗ T 〉 is a deterministic function
of V and T I , it suffices to prove that

SD((V ,T I)|〈V ,T 〉=b, (V ,T I)|〈V ,T 〉=0) ≤ 2−(κ−`−3)/2 (18)

Since I ( [n], for every x ∈ Zq it holds that

(V I ,T I)|〈V ,T 〉=x ≡ (V I ,T I) (19)

Hence, it suffices to prove that Equation (18) holds for every fixing of (V I ,T I) = (vI , tI). Indeed,

SD(V −I |〈V −I ,T−I〉=x, V −I |〈V −I ,T−I〉=x′)
≤ SD(V −I , V −I |〈V −I ,T−I〉=x) + SD(V −I , V −I |〈V −I ,T−I〉=x′)

≤ 2 · 2−(κ−`−1)/2

= 2−(κ−`−3)/2.

The second inequality holds by applying Lemma 3.8 with a vector size ñ = n− ` = dlog qe+(κ− `),
over the ring R = Zq with addition and multiplication modulo q.

�

5 Batching

In this section we consider the case that the parties P̂1 and P̂2 would like to perform m > 1
multiplications, where P̂1 uses the same input a ∈ Zq and P̂2 uses different inputs b1, . . . , bm ∈ Zq.
A naive solution is to perform m independent executions of our single multiplication protocol Π
(Protocol 4.10), where the overall cost is m · (log q + κ) OT calls. In this section we present our
batching protocol which performs m such multiplications using only m · log q + κ OT calls, at the
cost of relaxing the security requirement. In Section 5.1 we describe the relaxed ideal functionality
WeakMultBatching that we consider for our batching task, and in Section 5.2 we describe our
OT-Based implementation (Protocol 5.6).
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5.1 The Ideal Functionality

In the following we describe the ideal functionality WeakMultBatching.

Functionality 5.1 (WeakMultBatching).

Parameters: Multiplications number m ∈ N and a security parameter κ ∈ N.
Let n := dm · log qe+ κ.

P̂1’s input: a ∈ Zq, and optional d ∈ Znq .

P̂2’s input: b = (b1, . . . , bm) ∈ Zmq , and optional s2 = (s1
2, . . . , s

m
2 ) ∈ Zmq

Operation:
If d is not κ/2-polychromatic (or d = ⊥), act according to PerfectMultBatching(a, (b, s2)).

Else:

1. Sample (v1, . . . ,vm, t)← (Znq )m × {91, 1}n such that ∀i ∈ [m] : 〈vi, t〉 = bi.

2. Sample s2 = (s1
2, . . . , s

m
2 )← Zmq .

3. Output ({(si1,vi)}mi=1, {(si2)}mi=1) for si1 = a · bi − si2 + 〈vi,d ∗ t〉.

Note that for m = 1, WeakMultBatching is identical to WeakMult (Section 4.1). For m > 1,
WeakMultBatching achieves perfect correctness and security whenever d is not κ/2-polychromatic.
In particular, when P̂1 is honest (i.e., d =⊥), the functionality is perfectly secure against a cheating
P̂2. As in WeakMult, the more complicated security guarantee is against a cheating P̂1, which may
use a κ/2-polychromatic vector d.

The security guarantee against a cheating P̂1 that chooses an κ/2-polychromatic d is charac-
terized by the following result.

Lemma 5.2. Let q ∈ Nodd, κ ∈ N, m ∈ N and n := dm · log qe + κ. Let d ∈ Znq , let

` := miny∈Zq{Ham(d, yn)} and let λ := min{`, κ − 5, log q, n/3}. Let (V = (V 1, . . . ,V m),T ) ←
(Znq )m × {91, 1}n. Then for any b1, . . . , bm ∈ Zq, w.p. 1 − m · 2−λ/2+3 over v = (v1, . . . ,vm) ←
V |∀j∈[m] : 〈V j ,T 〉=bj , it holds that

∀i ∈ [m] : H∞(〈vi,d ∗ T 〉 | ∀j ∈ [m] : 〈vj ,T 〉 = bj) ≥ λ/2 + 4.

We remark that the security guarantee that is obtained by Lemma 5.2 is weaker than
m independent calls to WeakMult, i.e., the functionality WeakMultsm,κ((a,d), (b, s2)) :=
(WeakMultκ((a,d), (bi, s

i
2)))mi=1. The reason is that Lemma 5.2 does not guarantee independence

between the m shares of P̂2. While each share, without knowing the other shares, has high min-
entropy, it might be that this is not the case when revealing some of the other shares.

The proof of Lemma 4.3 is given in Appendix A. In the following, as done in Section 4.1, we
state a weaker version of the theorem which extends Lemma 4.4 and differ only in the value of the
constants.
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Lemma 5.3. Let q, κ,m, n,d, `,V ,T be as in Lemma 5.2, and let λ := min{`, κ, log q, n/3}. Then
for any b1, . . . , bm ∈ Zq, with probability 1−m·2−λ/3+2 over v = (v1, . . . ,vm)← V |∀j∈[m] : 〈V j ,T 〉=bj ,
it holds that

∀i ∈ [m] : H∞(〈vi,d ∗ T 〉 | ∀j ∈ [m] : 〈vj ,T 〉 = bj) ≥ λ/3− 4.

Proof. The proof steps are very similar to the one of Lemma 4.4 (the single multiplication case).
We prove that for every fixing of i ∈ [m], w.p. 1 − 2−λ/3+2 over v ← V |∀j∈[m] : 〈V j ,T 〉=bj , it holds

that H∞(〈vi,d ∗ T 〉 | ∀j ∈ [m] : 〈vj ,T 〉 = bj) ≥ λ/3− 4 (without loss of generality, we prove it for
i = 1). By the union bound over all i ∈ [m], we deduce the proof of the theorem.

As in the proof of Lemma 4.4, we assume without loss of generality that
argmaxx∈Zq |{i ∈ [n] : di = x}| = 0 (i.e., 0 is the most common element in d).

Fix b = (b1, . . . , bm) ∈ Zmq , and for t ∈ {91, 1}n and x ∈ Zq, let W t be indicator random variable

for the event {〈V 1, t〉 = b1∧· · ·∧〈V m, t〉 = bm}, let W t
−1 be indicator random variable for the event

{〈V 2, t〉 = b2∧· · ·∧〈V m, t〉 = bm} (i.e., without the condition on V 1), and let W :=
∑
t∈{91,1}nW

t.

In addition, let Ztx be the indicator random variable for the event {〈V 1, t〉 = b1 ∧ 〈V 1,d ∗ t〉 = x},
let P tx := Ztx ·W t

−1 and let Px :=
∑
t∈{91,1}n P

t
x. Given the above notation, we prove the lemma by

showing that with high probability over V = (V 1, . . . ,V m), for every x ∈ Zq it holds that

Px/W ≤ 2−λ/3+4 (20)

and then use a statistical distance argument to argue that the above inequality also hold when
defining the above sums with respect to the random variable V |b = V |∀j∈[m] : 〈V j ,T 〉=bj (rather

than with respect to V ).
We prove Equation (20) by bounding the variance of W and Px, and then use Chebyshev’s

inequality (Lemma 3.5). Specifically, we use the following claims proven below.

Claim 5.4. For every x ∈ Zq : E[Px] = 2n/qm+1 and Var(Px) ≤ 22n−λ+4/q2m+1.

Claim 5.5. E[W ] = 2n/qm and Var(W ) ≤ 2n+1/qm.

By Chebyshev’s inequality and Claim 5.4, for every x ∈ Zq:

Pr
[∣∣Px − 2n/qm+1

∣∣ ≥ 2n−λ/3+2/qm
]
≤ q2m ·Var(Px)

22n−2λ/3+4
≤ 2−λ/3

q
, (21)

and thus by a union bound

Pr
[
∃x s.t.

∣∣Px − 2n/qm+1
∣∣ ≥ 2n−λ/3+2/qm

]
≤ 2−λ/3. (22)

Applying Chebyshev’s inequality with respect to Claim 5.5, we get that

Pr
[
W ≤ 2n−1/qm

]
≤ Pr

[
|W − 2n/qm| ≥ 2n−1/qm

]
≤ q2m ·Var(W )

22n−2
≤ 2−κ+3, (23)

where the last inequality holds since n ≥ m · log q + κ.
Combining Equations (22) and (23) yields that with probability at least 1 − 2−λ/3+1 over

v = (v1, . . . ,vm)← V , it holds that:
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1. ∀x ∈ Zq : Px ≤ 2n−λ/3+3/qm, and

2. W ≥ 2n−1/qm.

Note that for every v = (v1, . . . ,vm) satisfying Items 1 and 2, and every x ∈ Zq, it holds that

Pr
[
〈v1,d ∗ T 〉 = x | ∀j ∈ [m] : 〈vj ,T 〉 = bj

]
=

Pr
[
〈v1,d ∗ T 〉 = x ∧ (∀j ∈ [m] : 〈vj ,T 〉 = bj)

]
Pr[(∀j ∈ [m] : 〈vj ,T 〉 = bj)]

=
Px
W
|V =v

≤ 2−λ/3+4. (24)

We now turn to the distribution V |b = V |∀j∈[m]: 〈V j ,T 〉=bj . Applying Lemma 3.8 with respect
to the ring R = Zmq with addition and multiplication modulo q in each coordinate, we obtain that

SD(V ,V |b) ≤ 2−(κ−1)/2 (25)

It follows that Equation (24) holds with probability at least 1− 2−λ/3+1 − 2−(κ−1)/2 ≥ 1− 2−λ/3+2

over v ← V |b, as required.
�

5.1.1 Proving Claim 5.5

Proof. Recall that W :=
∑
t∈{91,1}nW

t, where W t is the indicator random variable for the event

{〈V 1, t〉 = b1 ∧ · · · ∧ 〈V m, t〉 = bm}. Therefore, it is clear that E[W ] = 2n/qm, and a simple
calculation yields that

Var(W ) = Var

 ∑
t∈{91,1}n

W t

 (26)

=
∑

t∈{91,1}n
(E[(W t − 1/qm)2] + E[(W t − 1/qm) · (W−t − 1/qm)])

≤ 2 ·
∑

t∈{91,1}n
Var(W t)

≤ 2n+1/qm,

as required. The second equality holds since for every t, t′ with t′ /∈ {−t, t}, the random variables
W t and W t′ are independent (because t and t′ are linearly independent). �

5.1.2 Proving Claim 5.4

Recall that Px :=
∑
t∈{91,1}n P

t
x for P tx := Ztx ·W t

−1, where Ztx is the indicator random variable for

the event {〈V 1, t〉 = b1 ∧ 〈V 1,d ∗ t〉 = x}, and W t
−1 is the indicator random variable for the event

{〈V 2, t〉 = b2 ∧ · · · ∧ 〈V m, t〉 = bm}.
Note that for every t, t′ ∈ {91, 1}n and x ∈ Zq, the random variables Ztx and W t′

−1 are independent

and it holds that E[Ztx] = 1/q2 and E[W t′
−1] = 1/qm−1. This in particular yields that E[Px] =

2n/qm+1. It is left to bound Var(Px).
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Note that

∀t, t′ ∈ {91, 1}n : E[W t
−1 ·W t′

−1] ≤

{
1/qm−1 t ∈ {±t′}
1/q2m−2 t /∈ {±t′}

(27)

In addition, by defining Bj := {(t, t′) ∈ {91, 1}2n : rank{t, t′,d ∗ t,d ∗ t′} = j} for j ∈ [4] (as
done in Section 4.1.2), we obtain that E[Ztb,x · Zt

′
b,x] = 1/qj =⇒ (t, t′) ∈ Bj . By Claims 4.7 to 4.9

it holds that |B1| = 0, |B2| ≤ 2n+2, and |B3| ≤ 22n−λ+2. By defining B′2 = B2 ∩ {(t, t′) : t ∈ {±t′}}
and B′′2 = B2 ∩ {(t, t′) : t /∈ {±t′}}, we deduce by the bounds on the |Bi|’s and Equation (27) that

Var(Px) ≤
∣∣B′2∣∣/qm+1 +

∣∣B′′2 ∣∣/q2m + |B3|/q2m+1 + |B4|/q2m+2 (28)

≤ 2n+1/qm+1 + 2n+1/q2m + 22n−λ+2/q2m+1 + 22n/q2m+2

≤ 22n−λ+4/q2m+1.

5.2 The OT-Based Protocol

In the following we describe our OT-based implementation of the functionality WeakMultBatching.
We remind that throughout this section we fix a field size q ∈ Nodd and assume that all operation
are made over the ring Zq = Z/qZ (i.e., modulo q).

Protocol 5.6 (Γ = (P̂1, P̂2)).

Oracles: One-out-of-two OT protocol OT.

Common inputs: m ∈ N and 1κ for κ ∈ N. Let n = dm · log qe+ κ.

P̂1’s private input: a ∈ Zq.

P̂2’s private inputs: b1, . . . , bm ∈ Zq.

Operations:

1. For each i ∈ [n], in parallel:

(a) P̂1 samples δi ← Zq, and P̂2 samples ti ← {91, 1}.
(b) The parties jointly call OT((δi − a, δi + a), ti). .

Let zi be the output obtained by P̂2 in this call.

2. P̂2 samples v1, . . . ,vm ← Znq such that ∀i ∈ [m] : 〈vi, t〉 = bi, samples σ1, . . . , σm ← Zq,

and sends (v1, σ1), . . . , (vm, σm) to P̂1.

3. P̂1 outputs (s1
1, . . . , s

m
1 ) for si1 = −〈vi, δ〉 − σi.

4. P̂2 outputs (s1
2, . . . , s

m
2 ) for si2 = 〈vi, z〉+ σi.

Namely, as in Protocol 4.10 (single multiplication), P̂1 samples random values (δ1, . . . , δn) and
P̂2 samples random values (t1, . . . , tn), and the OT calls (i.e., Step 1) are performed the same (except
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from the fact that in Protocol 5.6, the value of n is larger than the one used in Protocol 4.10). But
now, in Step 2, instead of sampling a single vector v a single σ, P̂2 now samples m independent
random vectors v1, . . . ,vm, where each vi satisfy 〈vi, t〉 = bi, and m independent random values
σ1, . . . , σm.

Lemma 5.7 (Security). For every m ∈ N, Γm = (P̂1, P̂2)(m, ·) (Protocol 4.10) (α(κ) := 2−κ/4+1.5)-
computes WeakMultBatchingm = WeakMultBatching(m, ·, ·, ·) in the OT-hybrid model, with respect
to input domain Zq × Zmq . Furthermore, if both parties act honestly, then their joint output equals
WeakMultBatchingm’s output on their joint input.

proof sketch. Fix m,κ ∈ N, a, b ∈ Zq and let WeakMultBatchingm,κ := WeakMultBatching(m,κ, ·, ·).
We start with proving correctness (correct output when acting honestly). Indeed,

for any possible values of (si1)mi=1, (s
i
2)mi=1, (v

i)mi=1, t, δ, z, (σi)
m
i=1 in a random execution of

(P̂1(a), P̂2(b1, . . . , bm))(1κ), and for every i ∈ [m], it holds that

si2 = 〈vi, z〉+ σi = 〈vi, δ + a · t〉+ σi = 〈vi, δ〉+ a · 〈vi, t〉+ σi = a · bi − si1,

and thus si1 + si2 = a · bi.
In the following we sketch the security proof by referring to the steps in the proof of Lemma 4.11

(the security of the single multiplication protocol).

Corrupted P̂2: Fix an interactive ppt adversary A for controlling P̂2. On input b = (b1, . . . , bm),
the simulator SA in this case is be very similar to corresponding one in the single multiplica-
tion case (Algorithm 4.12). The only differences are that now, SA simulates an execution of
(P̂1(0),A(b))(m, 1κ), and in Step 3 of S, it expects to receive m pairs (v1, σ1), . . . , (vm, σm) from
A instead of one. Finally, it sends (b, (〈vi, z〉 + σi)

m
i=1) to the WeakMultBatchingm,κ. By the

same arguments, it can be shown that REALΓ
P̂2

(A, κ, a, b) ≡ IDEALWeakMultBatching

P̂2
(SA, κ, a, b),

where both are distributed according to (Z, (a · bi − 〈V i,Z〉 − Σi)
m
i=1), for Z ← Znq and

((V 1.Σ1), . . . , (V m,Σm))← A(Z) (i.e., the distribution of the pairs ((v1, σ1), . . . , (vm, σm)) that A
sends when (Z1, . . . , Zn) are the values that A receives in the OT simulated calls).

Corrupted P̂1: Fix an interactive ppt adversary A for controlling P̂1 (and assume without loss
of generality that A is deterministic). On input a ∈ Zq, the simulator SA, which is also very similar
to corresponding one in the single multiplication case (Algorithm 4.13), is described as follows:
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Algorithm 5.8 (Ideal-model S).

Inputs: m, 1κ and a ∈ Zq.

Oracles: (real-model) attacker A.

Operations:

1. Simulate a random execution of (A(a), P̂2(0))(1κ) till the end of Step 1.

2. If the simulation ends prematurely (e.g., on invalid behavior), send Abort to WeakMultκ,
output A’s output and halt the execution.

3. Let (w−i , w
+
i ) and ti denote the inputs that A and P̂2 use (respectively) in the ith OT

execution of the simulation (Step 1b). Let ai = (w+
i − w

−
i ) · 2−1 (an inverse for 2 in Zq

exists by the assumption that q is odd), let a = (a1, . . . , an), let δ = (w+
1 −a1, . . . , w

+
n −an),

let â ∈ Zq denote the value that appears the most often in a, and let d = a− â · 1.

4. If Ham(d, 0n) < κ/2:

(a) Send (â,d) to WeakMultκ.

(b) Receive (si1)ni=1 from WeakMultκ.

(c) Sample v1, . . . ,vm ← Znq such that ∀i ∈ [m] : 〈vi, (t1, . . . , tn)〉 = 0, and send (vi, σi :=
−〈vi, δ〉 − 〈vi,d ∗ t〉 − si1)ni=1 to A.

5. Else:

(a) Send (â,d) to WeakMultκ.

(b) Receive (si1, v̂
i)mi=1 from WeakMultκ.

(c) Send (v̂i, σi := −si1 − 〈v̂
i, δ〉)mi=1 to A.

6. Output A’s output in the simulation.

Note that Algorithm 5.8 only differs from Algorithm 4.13 (the simulator for corrupted P1 in the
single multiplication case) in Steps (4) and (5), where now it uses a sequence of m pairs (vi, si1)mi=1

instead of a single one.
As in the single multiplication case, we handle separately the cases regarding whether d is

κ/2-polychromatic or not. In the following, let V = (V 1, . . . ,V m) ← (Znq )m, T ← {91, 1}n and
S1 = (S1

1 , . . . , S
m
1 )← Zq be independent random variables.

Polychromatic d. If A uses an κ/2-polychromatic d, then similarly to the corresponding analysis
in the proof of Lemma 4.11 (the single multiplication case), it holds that REALΓ

P̂1
(A, κ, a, b) ≡

IDEALWeakMult
P̂1

(SA, κ, a, b), where both are distributed according to(
(V i,−Si1 − 〈V i, δ〉)mi=1, (â · b− Si1 + 〈V i,d ∗ T 〉)mi=1

)
|∀i∈[m]: 〈V i,T 〉=bi (29)
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Almost-monochromatic d. If A uses a non κ/2-polychromatic vector d (i.e., `, the hamming
distance of d from 0n, is less than κ/2), then similarly to the corresponding analysis in the proof
of Lemma 4.11 (the single multiplication case), it holds that REALΓ

P̂1
(A, κ, a, b) is distributed ac-

cording to ((V i,Σi)
m
i=1, (â · b − Si1)mi=1)|∀i∈[m]: 〈V i,T 〉=bi for Σi = −Si1 − 〈V i, δ〉 − 〈V i,d ∗ T 〉, and

IDEALWeakMult
P̂1

(SA, κ, a, b) is distributed according to ((V i,Σi)
m
i=1, (â · b − Si1)mi=1)|∀i∈[m]: 〈V i,T 〉=0.

Hence, by defining I := {i ∈ [n] : di 6= 0} and recalling that here we denote V = (V 1, . . . ,V m), it
holds that

SD
(

REALΓ
P̂1

(A, κ, a, b), IDEALWeakMult
P̂1

(SA, κ, a, b)
)

≤ SD
(

(V i, 〈V i,d ∗ T 〉)mi=1|∀i∈[m]: 〈V i,T 〉=bi , (V i, 〈V i,d ∗ T 〉)mi=1|∀i∈[m]: 〈V i,T 〉=0

)
.

≤ SD((V ,T I)|∀i∈[m]: 〈V i,T 〉=bi , (V ,T I)|∀i∈[m]: 〈V i,T 〉=0)

≤ max
x,x′∈Zmq

{SD(V −I |∀i∈[m]: 〈V i
−I ,T 〉=xi

, V −I |∀i∈[m]: 〈V i
−I ,T 〉=x′i

)}

≤ 2 · max
x∈Zmq

{SD(V −I , V −I |∀i∈[m]: 〈V i
−I ,T 〉=xi

)}

≤ 2 · 2−(κ−`−1)/2

= 2−(κ−`−3)/2.

The one before last inequality holds by applying Lemma 3.8 with a vector size ñ = n − ` =
dm · log qe + (κ − `), over the ring R = Zmq with addition and multiplication modulo q in each
coordinate.

�

6 Applications

In this section, we show how our protocol can be used in several applications. To be more precise, we
show how to realize several functionalities of interest (Perfect Multiplication, OLE, VOLE, MACs,
Authenticated Triplets) in a hybrid model with oracle access to the functionality WeakMult, which
can be compiled into a real-world protocol by substituting the oracle with our protocol (as per the
composition theorem of Canetti [Can00]).

6.1 Realizing Perfect Multiplication

We begin by showing how to realize perfect batch-multiplication maliciously where the definition of
perfect batch-multiplication is according Functionality 3.4 (It is stressed that perfect multiplication
is simply a special case). We will distinguish between large and small fields (where a field F is small
if |F| < 2κ/2). Thus, we will assume here that q ≥ 2κ/2 and in Section 6.1.3 we will discuss the
technicalities for small fields (it is stressed that our results extend trivially to large fields that are
not prime order).

To realize malicious security for Functionality 3.4, we will be needing the following “helper”
functionalities: One commitment functionality denote Fcom (Functionality 6.1) that allows the par-
ties to commit to certain values that can be revealed at a later time, and another functionality
ShareCheck (Functionality 6.2) that enables the parties to verify whether their shares where com-
puted correctly. In Section 6.1.2 we define our protocol in the hybrid model with ideal access to
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WeakMultBatching, ShareCheck and Fcom and we prove that it realizes PerfectMultBatching.11 In
Appendix B, we show how to realize ShareCheck cheaply using group-theoretic cryptography. A
real world protocol with minimal overhead can thus be derived by substituting the oracles with the
relevant protocols herein.12

6.1.1 Ideal Commitment & Share-Correctness Functionalities

The functionality below receives one input from each party. These values are revealed at a later
time once the functionality receives approval by both parties.

Functionality 6.1 (Commitment Functionality Fcom).

• P1’s input: α ∈ Zq.

• P2’s input: β ∈ Zq

• Operation: Upon receiving continue from both parties, Fcom outputs β to P1 and α to P2.

The functionality below receives one input and one share from each party. It simply checks
whether the additive shares sum up to the product of the inputs.

Functionality 6.2 (ShareCheck).

P1’s input: (x1, s1) ∈ Z2
q .

P2’s input: (x2, s2) ∈ Z2
q

Operation: Output 1 if x1 · x2 = s1 + s2 and 0 otherwise.

6.1.2 Secure Multiplication Protocol

Theorem 6.3. Protocol 6.4 α-computes PerfectMultBatching (Functionality 3.4) for

α(κ) = 2−κ/4+4.

Next, we prove Theorem 6.3. We begin by describing the simulation for each corrupted party.

Simulating a corrupt P2. The simulator retrieves β (from the commitment), and (y, b2, . . . , bm)
with option ŝ2 from the input to WeakMultBatching (ŝ2 is sampled by the simulator if no value is
provided). Then, the simulator samples α and it sends (y + β, b2, . . . , bm) with option b · α+ ŝ2 to
PerfectMult. The simulator hand over ŝ2 to A. For the correctness check, the adversary submits
(ŷ, σ). If (ŷ, σ) 6= (y, ŝ1

2), then return 0 as the simulated output of ShareCheck, otherwise return 1.
Conclude by revealing α, output whatever A outputs, and halt.

11We note that the definition of Fcom is reactive. This feature does not interfere with composition [Can00].
12In an typical applied setting, Fcom is realized via a hash function modelled as a random oracle.
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Simulating a corrupt P1. The simulator retrieves α (from the commitment), and (x,d) from the
input to WeakMultBatching. We distinguish two cases depending on whether d is polychromatic.

Polychromatic d. The simulator sends abort to PerfectMultBatching and proceeds as follows. Sam-
ple a random v and hand it over to A. For the correctness check, the adversary submits (x̂, σ). The
simulator returns abort, outputs whatever A outputs, and halts.

Almost-Monochromatic d. Send x+ α to PerfectMult and receive s1 = (s1
1, . . . , s

m
1 ) from the func-

tionality. Sample β at random and set ŝ1
1, . . . , ŝ

m
1 such that ŝ1

1 = s1
1− xβ and ŝj1 = sj1 for j > 1 and

hand over ŝ1 to A as the simulated output of WeakMultBatching. For the correctness check, the
adversary submits (x̂, σ). If (x̂, σ) 6= (x, ŝ1

1), then return 0 as the simulated output of ShareCheck,
otherwise return 1. Conclude by revealing β. Output whatever A outputs, and halt.

It remains to bound the statistical distance between hybrid and ideal executions. We only deal
here with the case of corrupted P1 providing polychromatic d since the other cases (monochromatic
d or corrupted P2) is straightforward.

The distance between hybrid and ideal distribution is bounded by the probability that the
adversary succeed in Item 4 of Protocol 6.4 (i.e., during the share-correctness check), because in
the ideal world a polychromatic d always results in a failed execution. This guessing probability is
given by Lemma 4.3, which concludes the proof (since log(q) > 2κ/2, by assumption). �

Protocol 6.4 (Ψ = (P1,P2)).

Oracles: WeakMultBatching and ShareCheck

Parameters: Multiplications number m ∈ N and a security parameter κ ∈ N.
Let n := dm · log qe+ κ.

P1’s input: a ∈ Zq.

P2’s input: b = (b1, . . . , bm) ∈ Zmq .

Operations:

1. P1 samples x← Zq and sets α = a− x and sends α to Fcom.

2. P2 samples y ← Zq and sets β = b1 − y and sends β to Fcom.

3. P1 and P2 invoke WeakMultBatching on inputs (1κ, x) and (1κ, y, b2, . . . , bm) respectively.

Let (ŝ1
1, . . . , ŝ

m
1 ), (ŝ2

1, . . . , ŝ
m
2 ) denote the outputs received by P1, P2 respectively.

4. P1 and P2 invoke ShareCheck on inputs (1κ, x, ŝ1
1) and (1κ, y, ŝ1

2) respectively.

5. P1 and P2 send continue to Fcom.

6. P1 locally outputs (x ·β+ ŝ1
1, ŝ

2
1, . . . , ŝ

m
1 ) and P2 locally outputs (b1 ·α+ ŝ1

2, . . . , bm ·α+ ŝm2 ).
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6.1.3 Realizing Perfect Multiplication in small Fields

Let F denote a fixed small field and for fixed κ, let H denote a field extension of F of size greater
than 2κ/2. It is assumed that the degree of the field extension is `. We will be using the following
fact. Namely, H may be viewed as a vector space of dimension ` over F.

Fact 6.5. There exists ω1, . . . , ω`−1 ∈ H such that H = {α0+
∑`−1

i=1 αiωi s.t. αi ∈ F}. In particular,
H is an `-dimensional vector space over F spanned by 1, ω1, . . . , ω`−1.

As mentioned in the introduction, it suffices to perform WeakMultBatching over the larger field
H. Thus, the parties run Protocol 6.4 using their prescribed inputs viewed as elements in H rather
than F. In the end of the protocol, say each Pi receives si = µ0

i +
∑`−1

j=1 µ
j
iωi from the execution,

it is enough to locally output µ0
i to obtain shares in the right field.

Regarding the security analysis, it is (mostly) identical to the previous one. The only subtlety
is what happens when x + α /∈ F (for corrupted P1) or y + β /∈ F (for corrupted P2) because it
is not clear what input the simulator should send to PerfectMultBatching. We next outline the
simulation for a corrupted P1 providing almost-monochromatic d with m = 1 (the other cases are
straightforward or they are dealt analogously).

Simulating corrupt P1. Retrieve α, x and write x + α = a0 + a1ω1 + . . . + a`−1ω`−1. Send
a0 ∈ F to PerfectMult and receive s1 ∈ Fm from the functionality. Sample β ∈ H at random and
(ρ1, . . . , ρ`−1)← F`−1 and set ŝ1 = s1 +

∑
j>0 ρjωj and hand over ŝ1 to A as the simulated output of

WeakMult. For the correctness check, the adversary submits (x̂, σ). If (x̂, σ) 6= (x, ŝ1), then return
0 as the simulated output of ShareCheck, otherwise return 1. Conclude by revealing β. Output
whatever A outputs, and halt.

6.1.4 Realizing OLE & VOLE

Recall that in VOLE (OLE is just single-instance VOLE), P1 holds an input a and P2 holds
b,σ ∈ Zmq , and the functionality returns ab+ σ to P1 and nothing to P2. Using a straightforward
reduction from VOLE to batch-multiplication, it is enough to run Protocol 6.4 with parties using
inputs a and b respectively. Then, once the protocol concludes, we instruct P2 to add σ to its
output and reveal the result to P1. The resulting protocol is a secure realization of VOLE (or OLE
for m = 1). We omit the formal details since they are rather straightforward.

6.2 Generating Correlated Data in the Preprocessing Model

In this section, we show how to use our protocol for generating correlated preprocessed data for
general purpose MPC (namely MACs and Beaver Triplets). For an informal discussion of the two
concepts, we refer the reader to the introduction (Section 1.3). Since MACs are just a special
instance of batch-multiplication (and thus Protocol 6.4 can readily be used for this purpose) we
only focus here on Beaver triplets. Similarly to PerfectMult, we will be using another “helper” func-
tionality denote BeaverCheckwhich is analogous the ShareCheck, except that it is more complicated
because it involves many more checks. Still, in Appendix B, we show that it can be cheaply realized
using group-theoretic cryptography.
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Authenticated Triplets.

Functionality 6.6 (Beaver).

Inputs: Empty for both parties with the following optional inputs.

1. P1’s optional input opt1: (x1
1, x

2
1, x

3
1, k1) ∈ Z2

q and (σi1, τ
i
1) ∈ Z2

q for i ∈ {1, 2, 3}.

2. P2’s optional input opt2: (x1
2, x

2
2, x

3
2, k2) ∈ Z2

q and (σi2, τ
i
2) ∈ Z2

q for i ∈ {1, 2, 3}.

Operation:

• Verify opt1 =⊥ or opt2 =⊥, otherwise abort (wlog say opt1 6=⊥).

• Sample (x1
2, x

2
2, k2)← Z3

q .

• Output (x1
i , x

2
i , x

3
i , ki, σ

1
i , σ

2
i , σ

3
i , τ

1
i , τ

2
i , τ

3
i ) to Pi where unassigned values are set subject to{

(x1
1 + x1

2)(x2
1 + x2

2) = x3
1 + x3

2

τ ji = k3−ix
j
i + σj3−i for i ∈ {1, 2}, j ∈ {1, 2, 3}

.

Augmented Share-Correctness Functionality

Functionality 6.7 (BeaverCheck).

Common input: 1κ for a security parameter κ ∈ N.

P1’s input: (x1
1, x

2
1, x

3
1, k1) ∈ Z2

q and (σi1, τ
i
1) ∈ Z2

q for i ∈ {1, 2, 3}.
P2’s input: (x1

2, x
2
2, x

3
2, k2) ∈ Z2

q and (σi2, τ
i
2) ∈ Z2

q for i ∈ {1, 2, 3}.
Operation: Output 1 if the inputs satisfy the following (output 0 otherwise){

(x1
1 + x1

2)(x2
1 + x2

2) = x3
1 + x3

2

τ ji = k3−ix
j
i + σj3−i for i ∈ {1, 2}, j ∈ {1, 2, 3}

.

6.2.1 Authenticated (Beaver) Triplets Protocol

As mentioned in the introduction, the protocol below simply preforms two weak multiplications to
calculate the triplet and(weak) batch-multiplications each to obtain all the MAC data. In the end,
the parties perform the correctness-check on their shares.
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Protocol 6.8 (Φ = (P1,P2)).

Oracles: WeakMult, WeakMultBatching and BeaverCheck.

Inputs: Statistical parameter κ.

Operations:

1. Each Pi samples ki, ai, bi ← Zq.

2. P1 and P2 invoke WeakMult (a1, b2) and WeakMult (b1, a2).

Write γ1, δ1 and γ2, δ2 for their respective outputs.

3. Each Pi sets ci = aibi + γi + δi.

4. P1 and P2 invoke WeakMultBatching(k1, (a2, b2, c2)) and WeakMultBatching(k2, (a1, b1, c1)).

Write (τi, τ
′
i , τ
′′
i ), and (σi, σ

′
i, σ
′′
i ) for Pi’s outputs in each execution.

5. P1 and P2 invoke BeaverCheck on the relevant inputs.

6. Pi outputs (ai, bi, ci, ki, τi, τ
′
i , τ
′′
i , σi, σ

′
i, σ
′′
i ).

Theorem 6.9. Protocol 6.8 α-computes Beaver (Functionality 6.6) for

α(κ) = 2−κ/4+4.

The proof of the above is very similar to the proof of Theorem 6.3 and it is ommited.
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A Tighter Analysis of Polychromatic Attack

In this section, we prove Lemma 5.2, restated below. Note that Lemma 4.3 is a special case of
Lemma 5.2 when applying it with m = 1.

Lemma A.1. Let q ∈ Nodd, κ ∈ N, m ∈ N and n := dm · log qe + κ. Let d ∈ Znq , let

` := miny∈Zq{Ham(d, yn)} and let λ := min{`, κ − 5, log q, n/3}. Let (V = (V 1, . . . ,V m),T ) ←
(Znq )m × {91, 1}n. Then for any b1, . . . , bm ∈ Zq, w.p. 1 − m · 2−λ/2+3 over v = (v1, . . . ,vm) ←
V |∀j∈[m] : 〈V j ,T 〉=bj , it holds that

∀i ∈ [m] : H∞(〈vi,d ∗ T 〉 | ∀j ∈ [m] : 〈vj ,T 〉 = bj) ≥ λ/2 + 4.

This tighter statement is achieved by using an extension of Chebyshev’s inequality to higher
moments:

Definition A.2 (Moments of a random variable). Let X be a random variable, and let j ∈ N. The
j’th moment of X is defined by Mj(X) := E[(X − E[X])j ].
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Lemma A.3 (Chebyshev’s inequality for higher moments). Let j ∈ N and let X be a random
variable with finite M1(X), . . . ,Mj(X). Then

∀λ > 0 : Pr[|X − E[X]| ≥ λ] ≤Mj(X)/λj

We now proceed with the proof of Lemma A.1.

Proof. We prove that for every fixing of i ∈ [m], w.p. 1− 2−λ/2+3 over v ← V |∀j∈[m] : 〈V j ,T 〉=bj , it

holds that H∞(〈vi,d ∗T 〉 | ∀j ∈ [m] : 〈vj ,T 〉 = bj) ≥ λ/2− 4 (without loss of generality, we prove
it for i = 1). By the union bound over all i ∈ [m], we deduce the proof of the theorem.

Fix b = (b1, . . . , bm) ∈ Zmq , and for t ∈ {91, 1}n and x ∈ Zq, let W t,W t
−1,W,Z

t
x, P

t
x and Px be

the same random variables as defined in the proof of Lemma 5.3.
We prove the lemma by showing that with high probability over V = (V 1, . . . ,V m), for every

x ∈ Zq it holds that

Px/W ≤ 2−λ/2+4 (30)

and then use a statistical distance argument to argue that the above inequality also hold when
defining the above sums with respect to the random variable V |b = V |∀j∈[m] : 〈V j ,T 〉=bj (rather

than with respect to V ).
We prove Equation (30) by bounding the third moment of Px (rather than its second moment),

and then use Lemma A.3. Specifically, we use the following claim proven below.

Claim A.4. For every x ∈ Zq : E[Px] = 2n/qm+1, and if x 6= 0 then M3(Px) ≤ 23n−2λ+6/q3m+1.

By Lemma A.3 and Claim A.4, for every x ∈ Zq \ {0}:

Pr
[∣∣Px − 2n/qm+1

∣∣ ≥ 2n−λ/2+2/qm
]
≤ q3m ·M3(Px)

23n−3λ/2+6
≤ 2−λ/2

q
,

For the x = 0 case, we use the standard (second moment) Chebyshev’s inequality. Recall that
Var(P0) ≤ 22n−λ+4/q2m+1 (Claim 5.4), and therefore

Pr
[∣∣P0 − 2n/qm+1

∣∣ ≥ 2n−λ/2+2/qm
]
≤ q2m ·Var(P0)

22n−λ+4
≤ 1/q

Thus, by a union bound over all x ∈ Zq:

Pr
[
∃x s.t.

∣∣Px − 2n/qm+1
∣∣ ≥ 2n−λ/2+2/qm

]
≤ 2−λ/2 + 1/q ≤ 2−λ/2+1. (31)

In addition, recall that (Equation (23)):

Pr
[
W ≤ 2n−1/qm

]
≤ 2−κ+3, (32)

Combining Equations (22) and (23) yields that with probability at least 1 − 2−λ/2+2 over
v = (v1, . . . ,vm)← V , for every x ∈ Zq it holds that:

Pr
[
〈v1,d ∗ T 〉 = x | ∀j ∈ [m] : 〈vj ,T 〉 = bj

]
=
Px
W
|V =v ≤ 2−λ/2+4. (33)

We now turn to the distribution V |b = V |∀j∈[m]: 〈V j ,T 〉=bj . Recall that SD(V ,V |b) ≤ 2−(κ−1)/2

(Equation (25)). It follows that Equation (33) holds with probability at least 1 − 2−λ/2+2 −
2−(κ−1)/2 ≥ 1− 2−λ/2+3 over v ← V |b, as required.
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A.1 Proving Claim A.4

In the following, let

D :=
∣∣{(t1, t2, t3) ∈ {91, 1}3n : ∀i 6= j : ti 6= tj}

∣∣.
and for j ∈ [6] let

Cj :=
∣∣{(t1, t2, t3) ∈ D : rank(∪3

i=1{ti,d ∗ ti}) = j}
∣∣.

It is clear that

{(t1, t2, t3) ∈ D : E[Zt
1

x · Zt
2

x · Zt
3

x ] = 1/qj} ⊆ Cj . (34)

In addition, we make use of the following claim, proven in Appendix A.1.2.

Claim A.5. For every x 6= 0 and (t1, t2, t3) ∈ D with E[Zt
1

x · Zt
2

x · Zt
3

x ] > 0, it holds that
rank{t1, t2, t3} = 3.

Claim A.5 yields that

∀t1, t2, t3 ∈ {91, 1}n : E[W t1

−1 ·W t2

−1 ·W t3

−1] = 1/q3m−3. (35)

Hence, we deduce by Equations (34) and (35) that

{(t1, t2, t3) ∈ D : E[P t
1

x · P t
2

x · P t
3

x ] = 1/q3m−3+j} ⊆ Cj

For j ∈ [6] let

Cj :=
∣∣{(t1, t2, t3) ∈ D : rank(∪3

i=1{ti,d ∗ ti}) = j}
∣∣,

and note that {(t1, t2, t3) ∈ D : E[P t
1

x · P t
2

x · P t
3

x ] = 1/q3m−3+j} ⊆ Cj .
Therefore, by bounding the sizes of each Cj , we can bound M3(Px) since

M3(Px) ≤ E[(
∑

t∈{91,1}n
P tx)3] + 3 · E[(

∑
t∈{91,1}n

P tx)2] · 2n

qm+1
+ 4 · ( 2n

qm+1
)3 (36)

≤
∑

(t1,t2,t3)∈{91,1}3n
E[P t

1

x · P t
2

x · P t
3

x ] + 3 · 22n−λ+4

q2m+1
+

23n+2

q3m+3

≤
∑

(t1,t2,t3)∈D

E[P t
1

x · P t
2

x · P t
3

x ] + 5 · 22n−λ+4

q2m+1

≤
6∑
j=1

|Cj |
q3m−3+j

+ 5 · 22n−λ+4

q2m+1

≤
5∑
j=3

|Cj |
q3m−3+j

+ 6 · 22n−λ+4

q2m+1
, (37)

where the last inequality holds since |C1| = |C2| = 0 and |C6| ≤ 23n. The following claims bound
|Cj | for j ∈ {3, 4, 5}.
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Claim A.6. |C3| ≤ 9 · 22n−λ+3.

Proof. Define

T = {(t1, t2, t3) ∈ {91, 1}3n :
ti 6= tj ∧ rank{t1, t2, t3} = 3 ∧
∀i rank{t1, t2, t3,d ∗ ti} < 4

}

and notice that C3 ⊆ T . It remains to bound the size of T . If (t1, t2, t3) ∈ T , then there exists w
such that ut1 + vt2 = t3 ∗ (d − w1). Already, we see that if there does not exist w,α such that
di − w ∈ {w,−w,α,−α}, for all i, then C3 is empty, so we proceed under the assumption that the
entries of d are of the form {0, 2w,w + α,w − α}, for w,α ∈ Zq.

• Case 1. |{di ∈ d}| ≥ 3

Wlog assume d contains three distinct values 0, γ, δ. Notice that for fixed w, the set {γ, δ} uniquely
determines {−α, α}, because α ∈ {γ−w, δ−w}. Further notice for fixed α,w 6= 0, the pair (t1, t2)
is uniquely determined by t3 up to the (arbitrary) assignment of {u + v, u − v,−u + v,−u − v}
with {−w,w,−α, α} (of which there are 8 possibilities). If either w or α = 0 (they cannot be both
zero), the pair (t1, t2) is uniquely determined by t3 up to an additional arbitrary fixing of the zero
coordinates d−w ·1 (of which there are at most n− ` ≤ n−λ possibilities). To conclude this case,
since there are at most three possible w’s (namely w ∈ {γ/2, δ/2, (δ + γ)/2}), it follows that that
there are at most 3 · 8 · 22n−λ possible triples.

• Case 2. |{di ∈ d}| = 2.

Wlog, assume that d only takes values 0 and β. Define

S = {(t1, t2, t3) ∈ {91, 1}3n :
ti 6= tj ∧ rank{t1, t2, t3} = 3 ∧

∃i 6= j, k ∃w 6= β/2 s.t. ti ∗ (d− w1) ∈ span{tj , tk}
} (38)

Using a similar argument as the previous case, we note that for fixed w and t3, for fixed assignment
of {u + v, u − v,−u + v,−u − v} with {−w,w, β − w,−β + w}, the number of possible triples is
2n−` (if w = 0) or 2` (if w = β) or 1 (for any other w 6= β/2). Overall, accounting for the arbitrary
fixings, the number of possible triples in S is 3 · 8 · 2n · (2n−` + 2` + q) ≤ 9 · 8 · 22n−λ. We conclude
by showing that C3 \ S = ∅. Define f = (2d/β − 1) and notice that f ∗ ti is a ±1 vector for
all i ∈ {1, 2, 3}. Take (t1, t2, t3) ∈ C3 \ S and observe that t1, t2, t3,d ∗ ti are dependent for all
i ∈ {1, 2, 3} if and only if all items below are true.

1. Either t1 ∈ ±f ∗ t3 or t2 ∈ ±f ∗ t3.

2. Either t1 ∈ ±f ∗ t2 or t3 ∈ ±f ∗ t2.

3. Either t2 ∈ ±f ∗ t1 or t3 ∈ ±f ∗ t1.

To see why, we point out that three distinct ±1 vector are dependent if two of them add to 0.
Conclude that if there exists j 6= i such that tj ∈ ±f ∗ ti, for every i, then t1, t2, t3 are linearly
dependent, which we have ruled out by assumption. Thus C3 \ S = ∅. �

Claim A.7. |C4| ≤ 13 · 23n−2λ.
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Proof. Define

A := {(t1, t2, t3) ∈ D : rank{ti,d ∗ ti, tj ,d ∗ tj} ≤ 3 for all i 6= j}.

We prove the claim by proving that |A| ≤ 12 · 23n−2λ + 6 · 22n and that |C4 \ A| ≤ 3 · 22n+4.
We first bound |A|. For (t1, t2, t3) define E = {i s.t. t1i = t2i = t3i } and Nj = {i s.t. tji 6=

maj(t1i , t
2
i , t

3
i )} and let Ni,j = Ni ∪ Nj and Ei,j = E ∪ Nk, for k 6= i, j. Fix i, j, k such that i 6= j, k

and j 6= k. We bound |A| by calculating the probability of the following events, for a random triple
(t1, t2, t3). For each event, we calculate the probability that there exist distinct i, j, k such that the
following occur.

Event Probability

dNi,j = α · 1 and dNi,k = α · 1 3/4λ
′

dNi,j = α · 1 and dNi,k = β · 1 3/2n

dNi,j = β · 1 and dNi,k = β · 1 3/4n−λ
′

dEi,j = α · 1 and dEi,k = α · 1 3/4λ
′

dEi,j = α · 1 and dEi,k = β · 1 3/2n

dEi,j = β · 1 and dEi,k = β · 1 3/4n−λ
′

We explain the first three cases (the other cases are dealt analogously). If tiNi,j = α · 1 and

tiNi,k = α · 1 then for every s such that ds 6= α we have (tis, t
j
s, tks) = (z, z, z), which happens with

probability 1
4λ′

for a random triple. If tiNi,j = α · 1 and tiNi,k = β · 1 then on every σ ∈ [n] such

that dσ = α, there exists zσ ∈ Zq such that (tiσ, t
j
σ, tkσ) = (zσ, t

i
σ, zσ) and for dσ = β we have

(tiσ, t
j
σ, tkσ) = (zσ, zσ, t

i
σ), which happens with probability 1

2n for a random triple. Finally, the last
event is dealt analogously to the first one.

It is left to bound |C4 \ A|. Take (t1, t2, t3) ∈ C4\A and wlog assume rank{t1,d∗t1, t2,d∗t2} = 4.
Notice that there exists u, u′ and v, v′ such that

t1 ∗ (u · 1 + u′ · d) + t2 ∗ (v · 1 + v′ · d) = t3

Write t1 = (tE , tN ) and t2 = (tE ,−tN ) and d = (dE ,dN ) and observe that(
tE ∗ ((u+ v) · 1 + (u′ + v′) · dE)
tN ∗ ((u− v) · 1 + (u′ − v′) · dN )

)
= t3

Since rank{t1,d ∗ t1, t2,d ∗ t2} = 4, there exits i1, i2, j1, j2 and α, α′, β, β′ such that α /∈ {β,−β}
and α′ /∈ {β′,−β′} such that 

u+ v + (u′ + v′)α = t3i1t
1
i1

u+ v + (u′ + v′)β = t3i2t
1
i2

u− v + (u′ − v′)α′ = t3j1t
1
j1

u− v + (u′ − v′)β′ = t3j2t
1
j2

note that the system above determines t3 because the matrix below has full rank
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1 1 α α
1 1 β β
1 −1 α′ −α′
1 −1 β′ −β′


In summary, for any fixed (t1, t2) /∈ A2, there at most 16 possible t3’s.

�

Claim A.8. |C5| ≤ 3 · 23n−λ+2 + 12 · 6n.

Proof. For (t1, t2, t3) define E = {i s.t. t1i = t2i = t3i } and Nj = {i s.t. tji 6= maj(t1i , t
2
i , t

3
i )},

and let S be the set from Equation (38). If |{S ∈ {E ,N1,N2,N3} : (α, β) ≤ dS ∧ α 6= β}| > 3
then (t1, t2, t3) /∈ C5. To see why, suppose without loss of generality that dE = (α, β, . . .) and
dN3 = (α′, β′, . . .) and dN2 = (α′′, β′′, . . .), or dN1 = (α, β, . . .) and dN3 = (α′, β′, . . .) and dN2 =
(α′′, β′′, . . .) and notice that both matrices below have full rank, for any zi ∈ {91, 1}.

z1 0 0 0 0 0
0 z2 0 0 0 0
0 0 z3 0 0 0
0 0 0 z4 0 0
0 0 0 0 z5 0
0 0 0 0 0 z6

 ·


1 1 1 α α α
1 1 1 β β β
1 1 −1 α′ α′ −α′
1 1 −1 β′ β′ −β′
1 −1 1 α′′ −α′′ α′′

1 −1 1 β′′ −β′′ β′′




z1 0 0 0 0 0
0 z2 0 0 0 0
0 0 z3 0 0 0
0 0 0 z4 0 0
0 0 0 0 z5 0
0 0 0 0 0 z6

 ·


−1 1 1 −α α α
−1 1 1 −β β β
1 1 −1 α′ α′ −α′
1 1 −1 β′ β′ −β′
1 −1 1 α′′ −α′′ α′′

1 −1 1 β′′ −β′′ β′′


We claim that a random triplet does not satisfy the above is at most 12 ·

(
3
4

)n
+ 12 ·

(
1
2

)n−λ
, and

it suffices to show that we can partition the coordinates of d in sets I0 and I1 of size at least λ
such that, for all i ∈ I0, it holds that di /∈ {dj : j ∈ I1}. If n− ` ≥ λ, then we are done by taking
I0 = {i s.t. di = 0} and I1 = [n] \ I0. So, in the remainder assume that n− ` < λ, which implies
2`− λ > n because ` ≥ 2n/3 ≥ 2λ in this regime of parameters. Define Jα = {i s.t. di = α} and
notice that Jα < (n− λ)/2 because otherwise

Jα ≥ (n− λ)/2 > (n+ (−2`+ n))/2 = n− `

which contradicts the definition of `. Finally define k to be the minimal value such that ∪ki=0Ji ≥ λ
and let I0 = ∪ki=0Ji and I1 = [n] \ I0. By definition, I0 is bigger than λ and it remains to show
that I1 ≥ λ. Observe that

|I1| = n− |I0|

= n−
∣∣∣∪k−1
i=0 Ji

∣∣∣− |Jk|
≥ n− λ− (n− λ)/2 ≥ λ

�
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A.1.1 Putting it Together

Given the above claims, we are ready to prove Claim A.4.

Proof. Recall that λ := min{`, κ − 5, log q, n/3}. By Equation (36) and Claims A.6 to A.8, we
conclude that

M3(Px) ≤
5∑
j=3

|Cj |
q3m−3+j

+ 6 · 22n−λ+4

q2m+1

≤ 9 · 22n−λ+3

q3m
+

13 · 23n−2λ

q3m+1
+

3 · 23n−λ+2 + 12 · 6n

q3m+2
+ 6 · 22n−λ+4

q2m+1

≤ 23n−2λ+6

q3m+1
,

as required. �

A.1.2 Proving Claim A.5

We use the following fact.

Fact A.9. If t1, t2 and t3 are distinct and linearly dependent vectors in {91, 1}n, then for some
i 6= j ∈ {1, 2, 3}, it holds that ti + tj = 0.

Proof. Wlog, say that ut1 + vt2 = t3 and therefore (since t1 and t2 are distinct) deduce that for
some α ∈ {91, 1}, it holds that

Case 1. Case 2.

u+ v α α
u− v α −α

Notice that in the first case v = 0 and in the second case u = 0. Wlog say vt2 = t3, and, since
t2 6= t3, deduce that t2 = −t3, which concludes the claim. �

We now restate and prove Claim A.5, where recall that

D :=
∣∣{(t1, t2, t3) ∈ {91, 1}3n : ∀i 6= j : ti 6= tj}

∣∣.
Claim A.10 (Restatement of Claim A.5). For every x 6= 0 and (t1, t2, t3) ∈ D with E[Zt

1

x · Zt
2

x ·
Zt

3

x ] > 0, it holds that rank{t1, t2, t3} = 3.

Proof. In pursuit of contradiction, let t1, t2, t3 be dependent vectors and wlog (Fact A.9) t1 = −t2.
Notice that for any v, x and d if x = 〈v,d ∗ t1〉 = 〈v,d ∗ t2〉 then x = 0 (because x = 〈v,d ∗ t1〉 =
〈v,d ∗ t2〉 = −〈v,d ∗ t1〉 = −x). Consequently, if x 6= 0 and E[Zt

1

b,x · Zt
2

b,x · Zt
3

b,x] > 0 then t1, t2, t3

are independent. �
�
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B Instantiations using Group-Theoretic Cryptography

Let (G, q, g) denote a group-order-generator tuple (so G is cyclic generated by g of order q) and
we proceed under the assumption that DDH is hard. We defer the formal definitions of hardness
and computational security for the next iteration of this paper. We also use the following notation:
upper-case letters A,B,C, . . . will denote elements in G and upper-case bold letters A,B,C, . . .
will denote pairs of group elements. Lower-case will (usually) denote field elements.

B.1 Ideal ZK & Randomness functionalities

Functionality B.1 (Randomness Frnd).

Inputs: Each party holds input ` ∈ N.

Operation: The functionality returns (ρ1, . . . , ρ`)← Zq to all parties.

Functionality B.2 (Zero-Knowledge Functionality FRzk).
Inputs:

– Prover has input (x;w).

– Verifier does not have input.

Operation: The functionality returns (x, 1) if (x;w) ∈ R, and (x, 0) otherwise.

(To alleviate notation, we will omit writing the witness w when (x;w) is sent to the functionality.)

B.1.1 NP-relations

Next, we define the NP-relation that will be provided for the zero-knowledge functionality. We will
be defining three types relations. The first one is the familiar discrete log relation. We also define
two related relations parametrized by n ∈ N Linn and Lin∗n. In the protocol later on we will be
using Lin1 and Lin∗2, Lin∗3 which we denote by L1, R2 and R3 respectively.

Relation Dlog. Define Rdlog = {(G, g,X;x) s.t. gx = X}

Relation Lin. Define relation Ln (parametrized by n ∈ N) to consist of all tuples

(G,U ,A,X,B1, . . . ,Bn,C1, . . . ,Cn,G,Y ; γ, λ, k1, . . . , kn, ρ1, . . . , ρn)

such that
U = Aγ ·Xλ ·

∏
i

Bki
i ∧ ∀i Ci = Gki · Y ρi

Relation Ln simply verifies that U is the weighted product of A,X,B1, . . . ,Bn ∈ G2 where the
exponent (weight) of Bi is the same as the hidden (secret) value for Ci, i.e., the ki (viewing ρi as
a secret randomizer).
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Relation Lin*. For all n, define Rn = {(. . . , γ, . . .) ∈ Ln s.t. γ 6= 0}. Relation Rn is essentially
the same as Ln except that γ (the weight of A) is constrained to a non-zero value.

B.2 Realizing PerfectMult via El-Gamal Commitments

In this section, we describe the protocol for replacing ShareCheck in Protocol 6.4.

Informal Summary. In a setup phase, each Pi generates an El-Gamal key Yi = gyi and commu-
nicates it to the opponent. Then, to verify correctness of (xi, si) where xi denotes the multiplication
input, each party proceeds as follows. Pi calculates El-Gamal commitments (under it’s own key)
for xi and si denoted Ri and Si respectively. Next, after receiving Rj and Sj from Pj (letting
j = 3− i), Pi calculates Aj which hides γ̂ · (x1x2 − s1 − s2), where γ̂ is uniform independent field
element (this step is achieved homomorphically evaluating Rj and Sj and proving that the correct
xi and si was used according Ri and Si). Finally, after receiving Ai, party Pi accepts if it is a
commitment to 0 (i.e., Ai is an encryption of the identity element under Pi’s key).

Protocol B.3 (Share-Correctness Check Protocol (P1,P2)).

Oracles: Fcom and FRdlog

zk , FR2
zk .

Operations: (Setup)

• Round 1. Upon activation, Pi samples yi ← Zq and sets Yi = gyi .

Party Pi sends Yi to Fcom.

• Round 2. Pi sends (Yi, yi) to FRdlog

zk .

• Output. When obtaining Yj from Fcom and (Ŷj , β) from FRdlog

zk , do:

Verify that Yj = Ŷj and β = 1. Store (yi, Y1, Y2) and halt.

Operations: (Check-Share)

Inputs. Each Pi holds input (xi, si) ∈ Z2
q .

Random Input. Ri = (gρi , gxiY ρi
i ) and Si = (gσi , gsiY σi

i ) for ρi, σi ← Zq.

• Round 1. Upon activation, send (Ri,Si) to Pj .

• Round 2. When obtaining (Rj ,Sj) from Pj , do:

Sample γ, λ← Zq and set Aj = ((Rj)
xj · (Sj)−1 · (1, g)−si · (g, Yj)λ)−γ

−1
.

Send (Sj ,Aj , (g, Yj),Rj , (1, g),Ri,Si, (g, Yi)) to FR2
zk

• Output. When obtaining (Si,Ai, (g, Yi),Ri, (1, g),Rj ,Sj , (g, Yj), β
′), if β′ = 1, do:

Interpret Ai = (A,A′) and verify that A−yi ·A′ = 1 ∈ G.
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Security. We note that the transcript is computationally hiding (because the El-Gammal commit-
ments of the honest party are hiding) and Ai for corrupted Pi leaks the outcome of the equality-test
and nothing else (thanks to the mask γ̂ sampled by the honest party).

Remark B.4. We note that the above protocol does not securely realize ShareCheck. Rather, Proto-
col 6.4 realizes PerfectMult where the oracle ShareCheck is replaced with Protocol B.3. The reason
for this discrepancy has to do with extraction of the adversary’s secrets from Ri, Si. Namely, in
Protocol B.3, the simulator cannot extract the implicit xi, si as it involves solving discrete log. How-
ever, for Protocol 6.4, extraction is an overkill and we only require that the inputs be consistent with
the input/output pair from WeakMult. This can be verified efficiently by the simulator by checking
(in the exponent) gxi = R−yii,1 ·Ri,2, and gsi = S−yii,1 ·Si,2 forRi = (Ri,1, Ri,2) and Si = (Si,1, Si,2) and
(xi, si) are the input/output pair from WeakMult (note that yi is extracted during setup). Thus,
we benefit from a performance improvement by not requiring proofs of knowledge for Ri, Si; they
can be added and then the protocol indeed realizes ShareCheck.

Complexity. We note that the complexity of Protocol B.3 is 6 group-elements in (incoming)
communication and 12 exponentiations in the group. In the ROM, together with the cost of the
zero-knowledge proof (cf., Appendix B.4), we incur the following costs (for ` = log(q)):

Communication (bits) Computation (group exp.)

18 · ` 31
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B.3 Realizing the Beaver functionality

Protocol B.5 (Beaver Check (P1,P2)).

Oracles: Fcom and Frnd and FL1
zk , FR2

zk , FR3
zk .

Operations: (Setup) Same as Protocol B.3.

Operations: (Check-Share)

Inputs. Each Pi holds input (xi,1, xi,2, xi,3, ki, σi,1, σi,2, σi,3, τi,1, τi,2, τi,3) ∈ Z2
q

• Rounds 1 & 2 (Check-Correctness). Upon activation, do: Pi samples

ρi,`, µi,`, νi,`, λi,← Zq and sets Ki = (gλi , Y λi
i gki), Zi = R

xi,2
i,1 · (g, Yi)ωi ,

Ri,` = (gρi,` , gxi,`Y ρi
i ), Si,` = (gµi,` , gσi,`Y

µi,`
i ), T i,` = (gνi,` , gτi,`Y

νi,`
i ), for ` ∈ {1, 2, 3}.

1. Send (Ki,Zi) and (Ri,`,Si,`,T i,`), for ` ∈ {1, 2, 3}, to Pj .

2. Invoke Frnd(3) and obtain r1, r2, r3 and set

Ri =
∏
`

Rr`
i,1, Si =

∏
`

Sr`i,1, T i =
∏
`

T r`i,1.

xi =
∑
`

xi,`r`, σi =
∑
`

σi,1r`, τi =
∏
`

τi,1r`

3. Run round 2 of Protocol B.3 with the following inputs

(a) P1: (x1, τ1) with rand. (R1,T 1). P2: (k2, σ2) with rand. (K2,S2).

(b) P1: (k1, σ1) with rand. (K1,S1). P2: (x2, τ2) with rand. (R2,T 2).

4. Send (Zi, (1,1), (g, Yi),Ri,1,Ri,2, (1, g), (g, Yi)) to FL1
zk .

• Round 3. When the above is completed do:

Sample γ, λ← Zq and set Aj = (R
x2,i
j,1 ·R

xi,1
j,2 ·Zj · (1, g)xi,1xi,2−xi,3 ·R−1

j,3 · (g, Yj)λ)−γ
−1

.

Send (Z−1
j ·Rj,3,Aj , (g, Yj), {Rj,`}`, {Ri,`}`, (1, g), (g, Yi)) to FR3

zk

• Output. When obtaining (Z−1
i ·Ri,3, . . . , (g, Yj), β′), if β′ = 1, do:

Interpret Ai = (A,A′) and verify that A−yi ·A′ = 1 ∈ G.

Complexity. We note that the complexity of Protocol B.3 is 24 (incoming) group-elements in
communication and 34 exponentiations in the group. In the ROM, together with the cost of the
three zero-knowledge proofs L1 and R2, R3 (cf., Appendix B.4), we incur the following costs (for
` = log(q)):

Communication (bits) Computation (group exp.)

60 · ` 91

46



B.4 Sigma Protocol for Weighted Combination Proof

Let H = G× G where G is a group where discrete logarithm is hard. Below is a sigma protocol for
Ln = Linn. Further below we explain under what conditions it can be used without modification
for Rn = Lin∗n.

Protocol B.6 (Linear Combination ZK-Protocol (P,V)).

Inputs: Common input is A,B1, . . . ,Bn,U ,C1, . . . ,Cn,G,X,Y ∈ H.

The prover has secret inputs γ, λ, k1, ρ1, . . . , kn, ρn, λ such that Ci = GkiY ρi for all i and

U = Aγ ·Xλ ·
∏
i

Bki
i .

Operations:

• Round 1. P samples α1, µ1, . . . , αn, µn and σ, τ ← Zq and sets{
Di = GαiY µi for i ∈ [n]

V = AσXτ ∏
iB

αi
i

.

P sends (D1, . . . ,Dn,V ) ∈ Hn+1 to V.

• Round 2. V sends e← Zq to P.

• Round 3. P sends (z1, r1, . . . , zn, rn, s, t) ∈ Z2(n+1)
q where

zi = αi + exi

ri = µi + eρi

s = σ + eγ

t = τ + eλ

.

• Equality Check. V verifies that{
GziY ri = Di ·Ce

i for i ∈ [n]

AsXt∏
iB

zi
i = V ·U e

.

Correctness. By inspection. �

Special Soundness. It is easy to see that from two valid transcripts ({Di}i,V , e, {zi, ri}i, s, t) and
({Di}i,V , e′, {z′i, r′i}i, s′, t′) one can extract γ, λ, {ki, ρi}i satisfying the equations of interest. �

Honest-Verifier Zero-Knowledge. Sample zi, ri, s, t ← Zq and e ← Zq and set Di, V according to
the equality check equations. �
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Special Soundness for relation Rn = Lin∗n. Write Bi = (Bi,1, Bi,2) U = (U1, U2) and X =
(X1, X2). Notice that if a PPTM outputs two accepting transcripts such that the extracted γ = 0,
then one can deduce a discrete logarithm relation between {Bi,1}i, U1 and X1, i.e., U1 = Xλ

1

∏
iB

ki
i,1.

Thus, if {Bi,1}i, U1 and X1 are uniform elements sampled in G (which is the case for our use-cases in
relations R2 and R3 where {Bi,1}i, U1 and X1 are either the identity element, the generator of the
group, or El-Gammal randomizers generated by the honest party), it follows that any such PPTM
can be used to break discrete logarithm (since multi dlog – finding non-trivial discrete log relation
between many group elements – implies dlog). In summary, under certain condition (which are
applicable to us), any adversary breaking special soundness for relation Rn in protocol Protocol B.6
can be used to break the discrete log assumption in G.

Complexity Costs. ` = log(q)

Communication (bits) Prover Comp. (group exp.) Verifier Compu. (group exp.)

4(n+ 1) · ` bits 3n+ 2 4n+ 3
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