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Abstract. Differential fault analysis (DFA) is a very powerful attack
vector for implementations of symmetric cryptography. Most counter-
measures are applied at the implementation level. At ASIACRYPT 2021,
Baksi et al. proposed a design strategy that aims to provide inherent
cipher level resistance against DFA by using S-boxes with linear struc-
tures. They argue that in their instantiation, the block cipher DEFAULT, a
DFA adversary can learn at most 64 of the 128 key bits, so the remaining
brute-force complexity of 264 is impractical.
In this paper, we show that a DFA adversary can combine information
across rounds to recover the full key, invalidating their security claim. In
particular, we observe that such ciphers exhibit large classes of equivalent
keys that can be represented efficiently in normalized form using linear
equations. We exploit this in combination with the specifics of DEFAULT’s
strong key schedule to recover the key using less than 100 faulty compu-
tation and negligible time complexity. Moreover, we show that even an
idealized version of DEFAULT with independent round keys is vulnerable
to our information-combining attacks based on normalized keys.

Keywords: Differential Fault Attacks (DFA) · Cryptanalysis · Linear
structures · DEFAULT

1 Introduction

Differential fault analysis (DFA) [6] is one of the earliest and most powerful
attack vectors on symmetric cryptography if an adversary is capable of inducing
physical faults. DFA is a significant threat for cryptographic implementations
as it often requires just a few precise faults to recover the key, e.g., only two or
three in the case of AES [11,15]. This underlines the importance of research on
countermeasures against this attack vector.

Most of the research in countermeasures focuses on defenses applied on the
implementation level that do not require any changes in the protected primitive,
mode of operation, or protocol. Among the earliest proposals are duplication-
based countermeasures, where the encryption algorithm is computed twice, or
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encryption and decryption are computed and the results are compared. If the
results do no match, no output is released; see Bar-El et al. [3] for an overview.
A different line of research deals with infective countermeasures [10,17,14]. This
class of defenses always generates an output, but aims to amplify the effect of
a fault to the extent that the output becomes useless for an adversary. Other
approaches aim to mitigate fault attacks on the mode of operation or on protocol
level. The underlying idea of such countermeasures is to limit the observations an
attacker can make per static secret to a small number, in the extreme case to one,
to preclude the evaluation performed by DFA in the first place, or at least increase
the burden in precision to induce the faults. Examples in this direction include
fresh re-keying [13] as well as tamper- and leakage-resilient permutation-based
cryptography [9]. Many modes for nonce-based authenticated encryption also
provide a certain level of implicit protection [8]. Finally, some recent designs
propose dedicated cryptographic primitives with features to facilitate protected
implementations. Examples include the permutation FRIET [16] and the tweakable
block cipher CRAFT [4], which permit efficient implementations with error detection.
The most recent proposal in this category, DEFAULT, follows a more radical,
fundamental approach by aiming to preclude DFA by design.

DEFAULT is a block cipher design following an interesting new design approach
proposed by Baksi et al. [1] at ASIACRYPT 2021. The design approach aims to
provide inherent cipher-level protection against DFA by using a fault protecting
layer called DEFAULT-LAYER. This layer uses special S-boxes with linear structures.
Because these linear structures imply that certain groups of keys are differentially
equivalent, a DFA adversary cannot learn more than half of the key bits from
attacking the S-box layer. The designers argue that an adversary can thus only
recover 64 bits of DEFAULT’s 128-bit key using DFA, and the remaining key space
of 264 candidates is too large to brute-force easily. For a larger security margin,
the design approach can easily be scaled for a larger master key size. To provide
resistance against cryptanalytic attacks, DEFAULT-LAYER is combined with a more
conventional DEFAULT-CORE cipher design.

DEFAULT was originally proposed with a simple key schedule where each round
key is identical to the master key [2]. The final published design [1] features a
much stronger rotating key schedule. Here, consecutive round keys are derived
using a 4-round function with full diffusion; after four round keys, the round keys
start rotating. The purpose of this unusually strong construction is to thwart
attacks that try to combine information learned from consecutive rounds.

Our contributions. In this paper, we show that an attacker can indeed combine
information from multiple rounds, contradicting the claim. We propose attacks
on DEFAULT-LAYER for both for the original simple key schedule and the final
strong, rotating key schedule, summarized in Table 1. We even show how an
idealized key schedule of completely independent round keys could be attacked.
Our attacks follow the same classical attacker model as the design paper: we
assume the attacker can induce single bitflip faults on the state between rounds
and uses only DFA-style evaluation to learn key information. In summary:
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Table 1: Overview of DFA attacks on DEFAULT-LAYER with different key schedules
(simple key schedule, strong key schedule, idealized with independent round keys)
and attack strategies (IC: information-combining; NK: normalized-key). 3:
attack is applicable (3?: but fault complexity differs) §: impractical (264).

Approach Faults Offline time Key Schedule Reference

simple strong ideal

DFA 64 264 § § [1]

Enc-Dec IC-DFA 16 ≤ 239 3 Section 3.2, 6.1
Multi-round IC-DFA 16 ≤ 220 3 Section 3.3, 6.2

Generic NK-DFA 1728 20 3 3 3 Section 4.3
Enc-Dec IC-NK-DFA 288 232 3? 3 Section 5.1
Multi-round IC-NK-DFA 84± 15 20 3? 3 Section 5.2, 6.3

– We first target the original simple key schedule and show why and how
an attacker can combine information from multiple DFAs with faults in
different rounds. This allows us to learn more than half the key bits, contrary
to the intuition underlying the original DEFAULT design that the attacker
seems to learn the same information in each round. We demonstrate two
possible approaches: combining information from encryption and decryption,
or combining information from multiple consecutive rounds (IC-DFA in
Table 1).

– To tackle the strong key schedule with full diffusion between round keys,
we consider an idealized version with fully independent round keys. We
identify large classes of equivalent keys that produce the same permutation
and then show how to recover a normalized version of the correct key, i.e.,
a representative of the key’s equivalence class. We derive a generic attack
strategy using these normalized keys that is applicable to all DEFAULT-style
ciphers with linear structures in their S-boxes (Generic NK-DFA in Table 1).

– We show that we can exploit the specifics of the strong DEFAULT key schedule
in combination with the normalized-key attack strategy to build an even
more powerful attack and recover the DEFAULT key (IC-NK-DFA in Table 1).

– Finally, we propose an optimization strategy to minimize the number of
required faulty computations for the proposed attacks. We experimentally
verified the attacks in simulations. Our source code is available online at
https://extgit.iaik.tugraz.at/castle/tool/dfa_on_default.

Outline. In Section 2, we provide more background on DFA and relevant
countermeasures. Additionally, we recall the specification of DEFAULT. In Section 3
we show attacks on the original DEFAULT design with a simple key schedule. In
Section 4, we present the concept of equivalent keys. Based on this concept, we
propose attacks on the updated DEFAULT design with 4 rotating keys in Section 5.

https://extgit.iaik.tugraz.at/castle/tool/dfa_on_default
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In Section 6, we show optimized attacks that require fewer faulted computations.
Finally, we discuss potential mitigations of the attack in Section 7.

2 Background

In this section, we recall the preliminaries on Differential fault analysis and other
fault attacks, previously proposed countermeasures, and the design strategy of
DEFAULT to prevent DFA by design.

2.1 Differential Fault Analysis

For cryptanalysis, the easiest way to see differential fault analysis is to see it as a
short-cut differential [5] or truncated differential [12] attack. However, in contrast
to cryptanalysis, where only inputs of an algorithm are manipulated, DFA makes
use of the ability to insert (bitwise or truncated) differences anywhere during the
computation of a cipher.

An easy example is the following differential fault attack on AES. Assume
that we have an attacker that can insert a fault during the computation of a
single S-box during the penultimate round of AES. For the attack, it does not
matter which S-box is faulted; it just matters that only a single one is faulted.
Then, at the output of AES, we see that 4 bytes have a difference. We can guess 4
bytes of the last round key associated with these differences and partially decrypt
backwards to 4 S-box outputs of the penultimate round. If we observe a difference
in more than one S-box, we know that this partial key guess is definitely wrong.

A similar attack can also be carried out on bit-level. Consider an S-box S
followed by a key addition in the last round of any cipher. An attacker who is
able to trigger precise bitflip faults can fault a bit right before the S-box, thus
inducing an input difference ∆in = u ⊕ u′ between the original value u in the
correct computation and the faulty u′ in the faulted computation. For example,
if they flip the least significant bit, ∆in = 1. This will cause two different output
values after the S-box with an output difference ∆out = v ⊕ v′ = S(u)⊕ S(u′).
The resulting ciphertext bits will be c = v⊕ k and c′ = v′ ⊕ k. As the differential
behaviour of S depends on the values of u and thus of v, the attacker can now try
for each key candidate k whether S−1(c⊕ k)⊕ S−1(c′ ⊕ k) = ∆in and reject all
key candidates that do not satisfy this. The number of remaining key candidates
is given by the corresponding entry for (∆in, ∆out) in the differential distribution
table (DDT) of the S-box S [5]. Thus, small entries in the DDT – which are
otherwise desired for strong S-boxes against differential cryptanalysis – permit
the attacker to learn more information about the key bits k.

Differential fault attacks can not only be performed by observing differences
of outputs. They can also be mounted by inserting differences at inputs aiming
to cancel them with faults. Whether or not this cancellation is possible reveals
information on the propagation of the inserted differences, which in turn reveals
information about the actual values in the computation, which reveals information
about the key. These attacks are known as fault-based collision attacks [7].
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2.2 Design and Specification of DEFAULT

DEFAULT [1] is a 128-bit block cipher designed to inherently resist DFA by
limiting the amount of information a DFA attacker can learn about the key. The
designers of DEFAULT specify two building blocks: DEFAULT-LAYER to provide
security against DFA and DEFAULT-CORE to provide security against classical
cryptanalysis. They propose a construction, where DEFAULT-CORE is sandwiched
between two applications of DEFAULT-LAYER. So, the encryption function E can
be expressed by

E = EDEFAULT-LAYER ◦ ECORE ◦ EDEFAULT-LAYER .

DEFAULT-LAYER uses a 128-bit state and applies a round function R with
successive key addition 28 times. DEFAULT-CORE uses the same round function
with a different S-box 24 times. Each round consists of the same steps (Figure 1):

04812162024283236404448525660646872768084889296100104108112116120124

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

SSSS SSSS SSSS SSSS SSSS SSSS SSSS SSSS

04812162024283236404448525660646872768084889296100104108112116120124

Fig. 1: Two rounds of DEFAULT-LAYER, illustrating the S-box grouping.

SubCells. For DEFAULT-LAYER, the S-box S from Table 2a is applied to every
4-bit nibble of the state. While DEFAULT-CORE uses the S-box Score from Table 2b.
The differential properties of the S-box S are what makes differential fault analysis
difficult. As evident from Table 2c, the S-box contains 4 so-called linear structures:
0 → 0, 6 → a, 9 → f, and f → 5. A linear structure α → β is a differential
transition that happens with 100 % probability. In other words, S(u) = v implies
S(u⊕α) = v⊕β. While this is an undesirable property when considering classical
adversaries, it does make differential fault analysis harder. In the usual DFA
setup, we obtain c = k ⊕ S(u) and c′ = k ⊕ S(u⊕∆in), where ∆in is known but
u is unknown. We solve these equations for the key k and the unknown internal
value u. However, if (k, u) is a solution each non-trivial linear structure α→ β
leads to an additional solution (k ⊕ β, u ⊕ α). Therefore, when applying this
setup to DEFAULT-LAYER, the key space can only be reduced to 264 candidates as
4 candidates per key nibble will always remain.
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Table 2: Differential Distribution Tables (DDT) of the S-boxes used in DEFAULT.

(a) The DEFAULT-LAYER S-box S

u 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(u) 0 3 7 e d 4 a 9 c f 1 8 b 2 6 5

(b) The DEFAULT-CORE S-box Score

u 0 1 2 3 4 5 6 7 8 9 a b c d e f

Score(u) 1 9 6 f 7 c 8 2 a e d 0 4 3 b 5

(c) DDT of S.

O/I 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 · · · · · · · · · · · · · · ·
1 · · · 8 · · · · · 8 · · · · · ·
2 · · · · · · · 8 · · · · · 8 · ·
3 · · · · 8 · · · · · · · · · 8 ·
4 · · · · · · · 8 · · · · · 8 · ·
5 · · · · 8 · · · · · · · · · 8 ·
6 · · · · · · · · · · 16 · · · · ·
7 · · · 8 · · · · · 8 · · · · · ·
8 · · · · · · 8 · · · · · 8 · · ·
9 · · · · · · · · · · · · · · · 16
a · 8 · · · · · · · · · 8 · · · ·
b · · 8 · · · · · 8 · · · · · · ·
c · 8 · · · · · · · · · 8 · · · ·
d · · 8 · · · · · 8 · · · · · · ·
e · · · · · · 8 · · · · · 8 · · ·
f · · · · · 16 · · · · · · · · · ·

(d) DDT of Score.

O/I 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 · · · · · · · · · · · · · · ·
1 · · · · 2 · · 2 2 2 2 2 · 2 2 ·
2 · · · · · · 4 4 · · · · · · 4 4
3 · 2 · 2 2 2 · · 2 · 2 · · · 2 2
4 · · · · · 4 4 · · · · · · 4 4 ·
5 · · · · 2 · · 2 2 2 2 2 · 2 2 ·
6 · 4 · 4 · · · · · 4 · 4 · · · ·
7 · 2 · 2 2 2 · · 2 · 2 · · · 2 2
8 · · · 4 · · · 4 · · · 4 · · · 4
9 · · 2 2 2 · 2 · 2 2 · · · 2 · 2
a · 4 · · · · · · · 4 · · 8 · · ·
b · 2 2 · 2 2 2 2 2 · · 2 · · · ·
c · · 4 · · 4 · · · · 4 · · 4 · ·
d · · 2 2 2 · 2 · 2 2 · · · 2 · 2
e · · 4 · · · · · · · 4 · 8 · · ·
f · 2 2 · 2 2 2 2 2 · · 2 · · · ·

PermBits. A bit permutation is applied to the 128-bit state as depicted in
Figure 1. The design uses the same bit permutation as GIFT-128. Note that the
position of a bit within a nibble is invariant for this bit permutation, i.e., if bit
i is mapped to bit j we have i ≡ j mod 4. Additionally, when examining two
rounds of DEFAULT, there are groups of 8 S-boxes that do not interact with other
groups. Each color in Figure 1 corresponds to one such group.

AddRoundConstants. A 6-bit constant is xored onto the state at indices 23,
19, 15, 11, 7 and 3. Additionally, the bit at index 127 is flipped.

AddRoundKey. The 128-bit state is xored with the 128-bit round key which
is calculated according to the key schedule. In the first preprint version of
DEFAULT a simple key schedule where all round keys equal the master key was
proposed [2]. This simple key schedule is vulnerable to the information com-
bining attacks we present in Section 3. To prevent these attacks, the DEFAULT

designers propose a very strong key schedule in their final design. In their theo-
retical analysis, they first consider an idealized long-key cipher with independent
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round keys K0,K1, . . . ,K27, corresponding to a 28 × 128-bit key K. For that
idealized key schedule, no information combining attacks are possible since
each round uses a completely independent key. For the practical instantiation,
they suggest to generate 4 distinct round keys K0, . . . ,K3 where K0 = K and
Ki = R(R(R(R(Ki−1)))) for i ∈ {1, 2, 3}, where R is the unkeyed round func-
tion. The rounds are then keyed iteratively with K0,K1,K2,K3,K0,K1, . . .. The
designers argue that this definition is a reasonable approximation of the idealized
version since 4 rounds provide full diffusion, and according to their analysis,
combining information throughout 4 rounds is very difficult [1, Section 6.1].
The approach can be parametrized more generally with a variable number of x
keys K0, . . . ,Kx−1 generated using a variable number of rounds Ry for a more
conservative choice at a higher performance cost. For a full specification, we refer
to the design paper [1].

Note that the design does not specify a key addition before the first application
of the round function. To simplify the following descriptions, we assume the
initial unkeyed round is not present as it can be trivially removed.

Claims about DEFAULT. In summary, DEFAULT-LAYER is designed to limit the
information available to a DFA adversary for each round and to prevent combining
information across rounds. The linear structures in the S-boxes ensure that for
each round at least 264 key candidates remain, while the strong key schedule is
designed to prevent combining information across rounds.

3 Information-Combining DFA on Simple Key Schedule

In this section, we consider a simplified version of DEFAULT with a simple key
schedule, where each round key equals the master key K. Such a simple key
schedule was proposed in the first preprint version of DEFAULT [2]. We argue that
for this design variant, the security claim is only valid for attackers targeting
only the first or last round key of the cipher. We demonstrate how an attacker
can efficiently combine key information learned from multiple different rounds of
the cipher, for example from encryption and decryption rounds or from multiple
consecutive rounds. This observation relies crucially on the structure of the bits
of key information that can be derived by attacking a single S-box.

3.1 Limited Information Learned via DFA

As DEFAULT’s designers show, we can only learn a limited amount of information
when inducing bit flips before the S-box. In particular, when faulting encryption,
we can restrict the key at the output of the S-box to a space of {β, β⊕5, β⊕a, β⊕f}
for some β. This allows to effectively reduce the key space for the corresponding
key bits from 4 bits to 2 bits, but not further, since we cannot distinguish the
four values in each set based on the differential behaviour.

However, we can also target an implementation of the decryption algorithm.
When faulting decryption, we can restrict the key at the output of the inverse
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S-box to {α, α ⊕ 6, α ⊕ a, α ⊕ f} for some α. Note that this set is spanned by
different basis vectors: {6, 9} for decryption compared to {5, a} for encryption.
Nevertheless, combining the knowledge from these two sets is not trivial as, during
decryption, we learn information about the nibbles of the base key, while during
encryption, we learn information about the nibbles of the inversely permuted key
due to the bit permutation layer of the final round.

To efficiently represent the information we learn, we observe that we can
express these sets of possible values in terms of linear equations. When faulting
the final S-boxes during encryption, we learn the values of k0 ⊕ k2 and k1 ⊕ k3,
where (k0, k1, k2, k3) is any nibble of the inversely permuted key. For example,
when we observe the transition 2 → 7 in an S-box, we can restrict the output
to the set of {0, 2, 5, 7, 8, a, d, f}. This is equivalent to learning v0 ⊕ v2 = 0,
where (v0, v1, v2, v3) are the output bits of the S-box. Similarly, if we observe the
transition 2→ d, we learn v0 ⊕ v2 = 1. With the knowledge of the ciphertext, we
can then use this knowledge to learn something about the key. In Table 3, we
summarize which expression over the key bits can be learned based on the input
difference of the S-box or inverse S-box.

As evident from Table 3, when faulting decryption, we can learn the values
of k1 ⊕ k2 and k0 ⊕ k3, where (k0, k1, k2, k3) is any nibble of the base key. We
can complement this information by faulting encryption, which allows us to learn
k′0⊕ k2 and k′1⊕ k′3, where (k′0, k

′
1, k
′
2, k
′
3) is any nibble of inversely permuted key.

When structured using linear equations, we can transform the equations about
the inversely permuted key into equations about the base key by multiplying
with the permutation matrix. Because the position of a bit within a nibble is
invariant for the bit permutation, we can learn 3 linearly independent equations
for each nibble of the key.

3.2 Basic Encrypt-Decrypt Attack on Simple Key Schedule

These observations allow us to reduce the key space to 32 bits by inducing 96
single-bit-flip faults. During encryption, we induce a difference of 2 and 8 for
each S-box to learn k0 ⊕ k2 and k0 ⊕ k1 ⊕ k2 ⊕ k3 for each nibble of the inversely
permuted key. Additionally, we induce a difference of 2 before each S-box during
the final round of decryption to learn k0 ⊕ k3. Then, we combine the information
from these faults as explained above to obtain 96 linearly independent equations
about the key. Iterating over the remaining 232 key candidates can be performed
efficiently by computing the kernel of the matrix. We show in Section 6.1 that a
similar reduction in key space can be achieved by using only 16 faults.

3.3 Basic Multi-Round Attack on Simple Key Schedule

An even more powerful attack can be derived by performing the key-recovery over
multiple rounds. The main advantage of targeting multiple rounds is the higher
nonlinearity. This allows us to reduce the key space much more. For example,
when attacking 3 rounds, we can reduce the key space to a set of 216 keys. This
also has the advantage that only a single direction needs to be faulted, i.e., either
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encryption or decryption. For this attack, we are targeting encryption. Thus,
we learn information about the inversely permuted key, which is equivalent to
learning information about the base key.

To implement this attack, we first reduce the key space to 64 bits by performing
the basic differential fault attack on the final round. In the next step, we expand
our analysis to two rounds and analyze each group of 4 + 4 S-boxes, i.e., each
color in Figure 1, separately. Due to the S-box grouping, these 8 S-boxes do
not interact with any other S-boxes in the first 2 rounds. An example of fault
propagation is illustrated in Figure 2b. We place a single fault before each of the
4 considered S-boxes in the penultimate round leading to 5 active S-boxes. For
each fault, we have to guess 4 key nibbles in the final round. As the previous step
restricts each nibble to 4 candidates, we need to try 28 key candidates. For the
key addition right after the faulted S-box, we can pick any of the 4 candidates
identified in the previous attack step as all of them lead to the same subset of the
28 key candidates of the final round. We analyze this property in more detail in
Section 4. For each of these key guesses, we verify whether the difference before
the penultimate round matches the induced fault. We repeat this attack for each
of the 8 groups of 4 + 4 S-boxes each, thus faulting all 32 S-boxes once. This
reduces the key space to 16 potential keys per S-box group or 232 keys in total.

Finally, we can reduce the overall key space to 216 keys by attacking 3
rounds. As with 2 rounds, we only need to consider a subset of S-boxes at a
time. Because we are dealing with 3 rounds of diffusion, a single fault influences
all even- or all odd-numbered S-boxes in the final round. We place our faults
in such a way that the keys we guess for the final round overlap with the
keys needed for the additional two rounds. Thus, we fault each S-box Si with

Table 3: Information learned when injecting a fault ∆in / ∆out.

∆in Learned expression (Enc) ∆out Learned expression (Dec)

0 1 0 1
1 k0 ⊕ k1 ⊕ k2 ⊕ k3 1 k0 ⊕ k1 ⊕ k2 ⊕ k3
2 k0 ⊕ k2 2 k0 ⊕ k3
3 k1 ⊕ k3 3 k1 ⊕ k2
4 k0 ⊕ k2 4 k0 ⊕ k1 ⊕ k2 ⊕ k3
5 k1 ⊕ k3 5 1
6 1 6 k1 ⊕ k2
7 k0 ⊕ k1 ⊕ k2 ⊕ k3 7 k0 ⊕ k3
8 k0 ⊕ k1 ⊕ k2 ⊕ k3 8 k0 ⊕ k3
9 1 9 k1 ⊕ k2
a k1 ⊕ k3 a 1
b k0 ⊕ k2 b k0 ⊕ k1 ⊕ k2 ⊕ k3
c k1 ⊕ k3 c k1 ⊕ k2
d k0 ⊕ k2 d k0 ⊕ k3
e k0 ⊕ k1 ⊕ k2 ⊕ k3 e k0 ⊕ k1 ⊕ k2 ⊕ k3
f 1 f 1
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(a) 1-round propagation: learn 64 bits of information (2 per target S-box)
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(b) 2-round propagation: learn 32 additional bits of information
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(c) 3-round propagation: learn 16 additional bits of information

Fig. 2: Target S-boxes ( ) and fault propagation example ( ) in the multi-round
information-combining DFA on DEFAULT with simple key schedule.
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i ∈ {0, 2, 8, 10, 21, 23, 29, 31} twice: once by flipping the bit at index 1 and once
by flipping the bit at index 2. For example, when faulting the S-box S0, the fault
propagates as shown in Figure 2c. As before, we only iterate over the keys which
are left from the previous step. Because each fault affects 4 S-box groups from
the previous step, we need to try 216 key candidates per fault. The 16 faults we
perform for this step of the attack allow us to reliably reduce the key space for
each half to 256 keys or 216 keys in total.

Overall, we perform 64 + 32 + 16 = 112 faults during this attack. The
computational complexity is negligible as we store the key sets efficiently using
Cartesian products: our straightforward simulated implementation finishes in a
few seconds. We show in Section 6.2 that a similar reduction in key space can be
achieved by using only 16 faults.

Combining information across rounds. Why do faults propagating through
multiple rounds divulge more information than only faulting a single round?
Note that even after reducing the key space to 16 bits as in the above attack, we
are unable to constrain any single nibble of the key to a space of fewer than 4
keys. However, we are able to heavily restrict the space of possible keys when
considering larger parts of the key at once.

When considering the example of two rounds of S-boxes applied to a single
bit flip as depicted in Figure 3, we can observe exactly that effect. Based on
faulting a single round, we have already reduced the space for each key nibble to
4 candidates. Now, we will use the correct ciphertext C and the faulted ciphertext
C ′ to further reduce the key space. Concretely, we will show that if we pick one
value for k0, we can restrict the space of (k1, k2, k3). Thus, when repeating this
process, we can restrict the overall space of (k0, k1, k2, k3). With the knowledge of
k0, we can calculate v0, v

′
0, u0, and u′0. Therefore, we know the most significant bit

of t0, t
′
0, s0, and s′0. When examining the faulted S-box, we can easily derive the

output difference by examining the ciphertext. Due to the DDT, we know only 8
input/output pairs (r, r′, s, s′) are compatible with that differential transition.
When combining this with the knowledge of k0 and the most significant bit of
t0, we can halve the space of (r, r′, s, s′) and thus (t, t′) to 4 potential pairs. In

S

SSSS

r

s
t
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v

k0

k0k1k2k3

u0u1u2u3

DDT

k0

Fig. 3: Information gained by faulting two rounds of single-key DEFAULT.
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turn, this halves the space of potential values for (u1, u2, u3) which translates
into halving the space of (k1, k2, k3).

For the case where a different key is xored after the application of the S-box
in the penultimate round, a very similar reasoning applies. All 4 candidates will
lead to the same restricted set for (t0, t

′
0) and, thus, the same restricted set for

(k1, k2, k3). This is because any difference between the chosen key and the actual
key can be compensated by a difference in the unknown input to the S-box.

4 Exploiting Equivalence Classes of Keys

Most block cipher designs use relatively simple key schedules, such as the simple
key schedule with Ki = K, linear key schedules where Ki = L(K) for some bit
permutation or linear function L(·), or key update functions with similarly weak
diffusion properties as a single cipher round. In such designs, it is usually easy to
combine partial key information from one round with partial information from
the next round and thus derive the full key, as we demonstrated in Section 3.

Therefore, the final DEFAULT design uses a stronger key schedule, as discussed
in Section 2.2. To reasonably approximate a long-key cipher with independent
round keys, it uses 4 round keys K0,K1,K2, and K3 in a rotating fashion.

In this section, we observe that the idealized long-key cipher permits classes of
equivalent keys that generate the same permutation. We characterize these classes
based on the linear structures of the S-box and normalize them, i.e., define a
unique representative for each class. Finally, we propose a generic attack strategy
for ciphers with linear structures based on this observation. This strategy will be
the basis for the concrete, optimized attacks we present in Section 5.

4.1 Equivalent Keys in the DEFAULT Framework

In ciphers with linear structures in its S-boxes and independent round keys, there
exist large classes of keys that lead to exactly identical behavior. As a small
example, consider a toy cipher consisting of one DEFAULT-LAYER S-box with a key
addition before and after: v = S(u⊕ k0)⊕ k1, with (k0, k1) ∈ K ×K = F4

2 × F4
2

(Figure 4). In that case, we have (k0, k1) ≡ (k0 ⊕ 6, k1 ⊕ a) ≡ (k0 ⊕ 9, k1 ⊕ f) ≡
(k0 ⊕ f, k1 ⊕ 5). This works because a difference of, for example, 6 at the input
of the S-box always leads to a difference of a at the output which is cancelled by
the other key. These classes of equivalent keys allow us to define normalized keys

Su v

k0
∈{0, . . . , f}

k1
∈{0, . . . , f}

(a) Original key

Su v

k0 ⊕ 6 k1 ⊕ a

(b) An equivalent key

Su v

k̄0
∈{0, . . . , f}

k̄1
∈{0, . . . , 3}

(c) Normalized key space

Fig. 4: Equivalent keys for a toy cipher with the DEFAULT S-box S.
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(k̄0, k̄1) ∈ F4
2 ×N , where N = {0, 1, 2, 3}, thus heavily constraining the choices

for k1. Crucially, every possible original key maps to one such normalized key.
The same logic applies if there is a linear layer before the second key addition;
the only difference being that the linear layer changes the output differences of
the linear structures.

These linear structures form a linear subspace that we call the linear space
of the round function. We use L to denote the linear space of all n − 1 round
functions. In the case of DEFAULT-LAYER, there are 32 S-boxes with 22 linear
structures each. Thus, one round has a linear space of size 264 and |L| = 264(n−1).

As the effect of a key is invariant under addition of elements from the linear
space, we can partition the key space into equivalence classes. We assign each
key k to the set of keys that can be obtained by xoring k with l ∈ L. In other
words, we consider the quotient space of the space of independent round keys
modulo the linear space, Kn / L. Note that if we consider n − 1 rounds of a
cipher with n independent keys, the effective key space is reduced by all n− 1
linear spaces of the individual rounds. Thus, in the case of DEFAULT-LAYER with
4 independent keys, there are |L| = 2192 linear structures, so we can reduce the
space of |K4| = 24×128 = 2512 keys to the space of |K4 / L| = 2128+3×64 = 2320

equivalence classes.

4.2 Normalized Keys

As working with linear spaces of equivalent keys can be quite tedious, we define one
representative per equivalence class. We refer to this set of class representatives
as the normalized keys N (n), where n is the number of round keys. This choice
is arbitrary but does influence the computational complexity of the following
attacks. Concretely, we want to reduce the potential choices for the parts of
the key we have to guess at first. If we examine this at a per-S-box level, we
can observe that for each of the equivalent keys, we can select a single one and
compensate with the help of the key of the following round (see Figure 4). We
can repeat this process for the first n − 1 round keys and thus restrict these
keys significantly. Thus, we only need to leave the final round key unconstrained.
Therefore, we are able to restrict the space for the first n − 1 round keys to a
much smaller set N . As the last key is unconstrained we have

(K̄0, K̄1, . . . , K̄n−1) ∈ N (n) = N × . . .×N︸ ︷︷ ︸
n− 1 times

×K ,

where K̄ = (K̄0, K̄1, . . . , K̄n−1) denotes such a normalized key.
In the case of DEFAULT-LAYER with 4 independent keys, this leads to a set

of representatives where the nibbles of the first 3 rounds are constrained to the
space {0, 1, 2, 3} while the final key is unconstrained. For example, the sequence
of round keys shown in Figure 5a is equivalent to the one shown in Figure 5b.
The algorithm used to normalize a given sequence of round keys schedule is
outlined in Figure 6. Note that the mapping from Kn, the set of sequences of
round keys of length n, to the set of normalized keys N (n) is linear. Thus, it can
be represented using a 128n× 128n matrix AK→N ,n of rank 64n+ 64.
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K0: 922d8799645a197240612627adac008c

K1: fd034fb83d3f82087ecb3d36ebd5b311

K2: 6c6ebe434de58a603140168a0cbcea2f

K3: ab6472a5fc49ba97a6504da4acaa8113

(a) Sequence of round keys K.

K̄0: 02221100023310122001202132330013

K̄1: 22312310332022020103310210031312

K̄2: 31012322123322300020111133332110

K̄3: 1f95f3c6f75987f847a46938a2ea468c

(b) Equivalent normalized key K̄.

Fig. 5: An exemplary sequence of round keys and its normalized equivalent.

def normal i z e key sequence ( key sequence : L i s t [ L i s t [ int ] ] ) :
for round idx , round key in enumerate( key sequence [ : − 1 ] ) :

n e x t d e l t a = [ 0 ] ∗ 32
for n ibb l e idx , n ibb l e in enumerate( round key ) :

for d e l t a i n , d e l t a o u t in l i n e a r s t r u c t u r e s :
i f ( n ibb l e ˆ d e l t a i n ) < 4 :

round key [ n i b b l e i d x ] ˆ= d e l t a i n
n e x t d e l t a [ n i b b l e i d x ] ˆ= d e l t a o u t
break

n e x t d e l t a = permute b i t s ( n e x t d e l t a )
for n ibb l e idx , d e l t a in enumerate( n e x t d e l t a ) :

key sequence [ round idx + 1 ] [ n i b b l e i d x ] ˆ= d e l t a
return key sequence

Fig. 6: Normalizing a sequence of round keys for DEFAULT-LAYER

4.3 Generic Attack Strategy for Ciphers with Linear Structures

We can use the observation about equivalence classes to recover n− 1 equivalent
round keys by performing DFA on n − 1 rounds with linear structures and
examining the ciphertext. The model which we use for this generic attack is a
cipher with a long key consisting of n independent rounds keys for n− 1 rounds,
as illustrated in Figure 7. Additionally, we assume that the input to these n− 1
rounds is unknown, as is the case for DEFAULT-LAYER. Note that one of the n
keys remains unknown as we do not know the input and no more S-boxes remain
to be faulted. In the case of DEFAULT, we can fault the S-boxes of DEFAULT-CORE
to recover this final key K̄n−1 using classical DFA. We would need 64 additional
faults to recover K̄n−1 using the most basic technique.

CORER· · ·RP

Kn−1

∈ F128
2

K1

∈ F128
2

K0

∈ F128
2

T

(a) Original DEFAULT-LAYER key

CORER· · ·RP

K̄n−1

∈ F128
2

K̄1

∈ N
K̄0

∈ N
T

(b) Normalized DEFAULT-LAYER key space

Fig. 7: Attack scenario for the generally applicable attack strategy.



Information-Combining Differential Fault Attacks on DEFAULT 15

Instead of recovering the original key K = (K0, . . . ,Kn−1), we recover the
first n− 1 round keys of the normalized key K̄ = (K̄0, . . . , K̄n−1). We describe
the attack strategy in terms of decryption. However, the attack on encryption is
analogous with the only difference being that we need a different set of normalized
keys and different indexing. We perform this attack by placing single bit flips
before each S-box of the final round of decryption to recover K̄0 uniquely. Once
we have recovered the final round key, we can repeat the process to recover K̄1

to K̄n−2 uniquely. Thus, only a single round key, K̄n−1, remains unknown.

Consider the toy cipher in Figure 8 which encrypts an unknown internal value
t by using c = k0 ⊕ (S(k1 ⊕ S(k2 ⊕ (k3 ⊕ t)))) with (k0, k1, k2, k3) = (2, b, a, c).
By inducing two faults after the xor of k1, we can reduce the space of k̄0 to
{2, 7, 8, d}. This set corresponds to the linear space at the output of S as it
equals 2 ⊕ {0, 5, a, f}. Therefore, we pick k̄0 = 2. Now we fault after the xor
of k2 to reduce the space of k̄1 to {1, 4, b, e}. Again, this corresponds to the
linear space and we can pick k̄1 = 1. Now we observe a difference between the
normalized key and the actual key: k̄1 ⊕ k1 = a. However, due to the linear
structure 6→ a, we can compensate this by a difference of 6 in k2. Thus, when
faulting after the xor of k3, we can reduce the space of k̄2 to {3, 6, 9, c}. Note
that this includes k2⊕6 = c. We pick k̄2 = 3. Now the difference k̄2⊕(k2⊕6) = f

can be compensated by the linear structure 9→ f. Thus, if we knew the value of
t, we would calculate k̄3 = 5. Alternatively, we can fault the components that
are used to calculate t to get more information about k3. For example, if another
application of S was performed before t, we would be able to reduce k̄3 to a space
of {0, 5, a, f}. In practice, it is not necessary to carry out all these calculations;
instead, it is sufficient to restrict the guessed keys as described in Section 4.2.

S S St c

k3
= c

k2
= a

k1
= b

k0
= 2

(a) Original key

S S St c

k̄3
= ?

k̄2
= 3

k̄1
= 1

k̄0
= 2

(b) Recovered equivalent key

Fig. 8: Toy example for the generic attack.

When applying this attack to DEFAULT, we can recover 27 of the 28 normalized
keys used by the idealized DEFAULT-LAYER. Once we have these keys, we can
continue our attack by faulting DEFAULT-CORE which uses strong S-boxes that
contain no non-trivial linear structures. This allows us to recover K̄27, and subse-
quently, the actual key that was used for the cipher. This attack breaks DEFAULT
in the fault model specified by the authors. As this attack needs a large amount
of faults, we will show more efficient attacks in the next section. Alternatively,
we can apply this strategy to n < 28 independent round keys in which case we
would be able to recover the normalized (K̄0, . . . , K̄n−2) uniquely and K̄n−1 up
to a space of 64 bits by faulting the preceding round of DEFAULT-LAYER.
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5 Information-Combining DFA on Rotating Key Schedule

So far, we have shown generic attacks that apply to idealized ciphers with
independent round keys and exploit only the linear structures of the round
function. In this section, we exploit the specifics of the rotating key schedule in
DEFAULT to build attacks that require much fewer faults.

5.1 Basic Encrypt-Decrypt Attack on Rotating Key Schedule

We can combine the ideas of Section 3.2 and Section 4. By using equivalence
classes, we can recover the normalized key up to 64 bits by faulting decryption.
Then, we can combine this with another 32 bits of information gained by faulting
encryption.

In this attack, we target the normalized key consisting of 4 round keys:
K̄ = (K̄0, K̄1, K̄2, K̄3). First, we recover K̄0, K̄1, and K̄2 by placing faults before
the S-boxes preceding the key addition. Due to the restrictions of the normalized
key schedule, we can recover them uniquely by using 192 faults. Then, we place
64 faults before the S-boxes preceding the addition of K3 to recover K̄3 up to a
space of 264 candidates. As in the attack on DEFAULT-LAYER with a simple key
schedule, we can represent this set of candidates as a system of linear equations.
Next, we perform 32 faults just before the S-boxes in the final round of encryption
to gain 32 additional equations about K̄3. Thus, we can reduce the space for K̄
to a set of 232 normalized key candidates.

With the normalized key schedule reduced to a space that can be brute-forced,
we still need a way to validate each key candidate. In this case, a plaintext-
ciphertext pair is not sufficient as a normalized key does not uniquely identify
the key used in DEFAULT-CORE. Therefore, we inject a single fault just after
DEFAULT-CORE. By using the correct and faulty ciphertexts we obtain, we can
validate each of the 232 key guesses to identify the correct normalized key. Once
the normalized key is recovered, we can invert DEFAULT-LAYER to recover the
intermediate value right after DEFAULT-CORE. Now, we can target DEFAULT-CORE
using classical DFA on the strong S-boxes. The downside of this approach is the
brute-force complexity of searching the 232 normalized key candidates.

5.2 Basic Multi-Round Attack on Rotating Key Schedule

So far, we combined Section 4 and Section 3.2. Similarly, we can also combine
the idea of equivalence classes from Section 4 with the multi-round attack of
Section 3.3. This has the advantage of allowing us to uniquely identify the
normalized key, thus eliminating the brute-force complexity. However, this attack
is more challenging as the identical round keys are so far apart due to the strong
key schedule.

The main idea of this attack is to first recover the first n = 6 keys under
the assumption that they are chosen independently. Then, we want to equate
K0 = K4 and K1 = K5. However, when using the attack strategy from Section 4.3
we only recover a set of normalized keys (K̄0, . . . , K̄5) up to 64 bits. We cannot
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add the equality relations K̄0 = K̄4 and K̄1 = K̄5 as this set of normalized keys
is only a subset of the much larger set of possible non-normalized keys. Therefore,
we need to transform the set of normalized keys to the set of non-normalized
keys before applying the equations. After adding the equations, we can transform
back to the set of normalized candidates for (K̄0, K̄1, K̄2, K̄3).

This leads to an attack that is performed in 4 steps. We store these spaces of
key candidates using systems of linear equations which allows us to perform this
attack with negligible runtime complexity. These spaces are depicted in Figure 9.
In step (1), we assume the first n = 6 round keys K0, . . . ,K5 are independently
chosen. We can restrict these six keys to a space of 264 normalized candidates by
faulting decryption according to the strategy from Section 4.3. In step (2), we
remove the condition that the round keys need to be normalized and obtain a
set of 2384 keys. In step (3), we restrict the set of non-normalized keys to only
those where the conditions of the rotating key schedule are met, i.e., K0 = K4

and K1 = K5. Finally, in step (4), we add the restriction that the first 4 keys
form a normalized sequence of round keys and receive a single result.

In the following description, we use k to denote the column vector correspond-
ing to the bits of (K0,K1, . . . ,K5). Similarly, we use k̄ to denote the column
vector corresponding to the bits of the normalized key (K̄0, K̄1, . . . , K̄5).

F768
2 F768

2 F768
2 F768

2

264
2384

2192

(1) Set of normalized keys

(2) Set of non-normalized keys

(3) Restricted set of non-normalized keys

(4) Recovered normalized key

Fig. 9: The linear spaces used in the attack on DEFAULT.

(1) Creating an equation system for the normalized key K̄: We start
our attack by assuming the first n = 6 keys K = (K0, . . . ,K5) ∈ K6 are chosen
independently and applying the strategy of Section 4.3 on the first 6 keys. For
now, we ignore the fact that K0 = K4 and K1 = K5. Thus, we obtain the
normalized keys K̄0, . . . , K̄4 uniquely using DFA. We need to fault each S-box
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in these 5 rounds twice to achieve this reduction. For example, we can inject a
difference of 1 and 2 before each S-box. Furthermore, we can limit K̄5 to a space
of 264 candidates by faulting the S-boxes before K5 is added. Again, we need to
fault each S-box twice, thus, arriving at a total of 384 faults.

Converting the information about K̄0 to K̄4 into linear equations is trivial as
we uniquely know their value. For K5, we know only know 2 bits of information
per nibble, which we can represent using two linear equations from Table 3 each.
Therefore, we get the following equation, where A is a 128n × 128n matrix of
rank 128n− 64 and k̄, b are column vectors:

A · k̄ = b .

(2) Converting the equation system to all possible keys K: The space
of 264 candidates for the normalized key K̄ corresponds to a much larger space
of candidates for the unrestricted key K = (K0,K1, . . . ,K5). To describe this
larger space using linear equations, we note that AK→N ,n · k = k̄ and substitute
accordingly, where the matrix product is of rank 64n:

A ·AK→N ,n · k = b .

(3) Adding additional constraints due to the rotating key schedule:
Because we know K0 = K4 and K1 = K5, we can add 256 additional equations.
This restricts the space of solutions to 2192 candidates which corresponds to one
equivalence class for 4 independent round keys.

(4) Adding constraints to normalize the keys: Finally, we require that the
first four round keys are normalized: (K0,K1,K2,K3) ∈ N (4). In matrix notation,
this is equivalent to AK→N ,4 · k0...3 = k0...3. Note that we use a matrix that is
related to but distinct from the normalization matrix used earlier. Therefore, we
add the following linear equations:(

AK→N ,4 + I 0
)
· k = 0 ,

where I is the identity matrix. Then, we get a full-rank system, which we can
solve uniquely.

Thus, we are able to recover an equivalent key for DEFAULT-LAYER. As in
Section 4.3, we still need to recover the key for DEFAULT-CORE which we can
achieve by using classical DFA.

We note that this attack is not limited to a rotating key schedule with only 4
distinct round keys: it is applicable to any number of independent round keys, as
long as we have two round keys which are used more than once. For example,
this attack can also be used to recover the key in case the simple key schedule
is used by faulting 3 keys. In general, attacking DEFAULT-LAYER with x rotating
keys requires us to recover 64 bits of information about x+ 2 keys each.
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6 Reducing the Number of Faults

While the attacks discussed so far achieve their goals, they are not optimized for
efficiency and require quite a number of faulted computations with different fault
positions. We can improve the attacks by placing the faults earlier, further from
the known plaintext or ciphertext. For this purpose, we need a differential model
of the cipher that predicts how these faults propagate.

Differential model. To store the set of possible differences for a state of the
cipher, we use a dictionary that maps from one 128-bit difference to its associated
probability. We then examine how this set of possible differences changes round
by round. For each round, we examine all possible differences individually and see
how they propagate through the round function. To achieve this, we look at each
S-box and note the set of possible output difference by examining the differential
distribution table. Then, the set of possible differences after the S-box is the
Cartesian product of all the individual differences. We do not explicitly keep track
of the probability as all transitions for a given input difference are equally likely,
as is evident from the differential distribution table. For each of these differences,
we apply the bit permutation and add them to the set of differences after the
round. To calculate the probability, we divide the probability of observing the
difference before the round by the number of potential differences. If an entry
already exists, we increase the probability by the calculated amount.

Using the Model to Find Suitable Fault Targets. We can use this model
to calculate the expected amount of information learned from a sequence of
faults which allows us to search for suitable fault targets. We first calculate the
set of 128-bit differences before the final S-boxes and their probabilities. We
then convert this set into the set of possible differences for each nibble with
associated probabilities. Now, we examine all 32 nibbles independently. For each
nibble and each fault, we have a list of possible differences. We examine the
Cartesian product of these lists over all faults. Each element in the product is one
possible outcome. We calculate its probability as the product of the individual
probabilities. For each fault, we look up the information we learn according to
Table 3 and enter that into a matrix. The rank of the matrix tells us the overall
amount of information we learn. By repeating that process for every element in
the Cartesian product and each nibble, we can calculate the expected amount of
information learned from that sequence of faults.

In general, we find that placing the faults such that they are processed by 4
S-boxes with successive key-additions, leads to enough diffusion such that most
S-boxes in the final round are active while still allowing us to determine the
input difference of the final S-box by examining the output difference. Therefore,
we apply this model to all possible pairs of fault indices for encryption and
decryption to find suitable targets. We find that when each fault is repeated 3
times, flipping the bits at index 2 and 22 during encryption and 33 and 39 during
decryption provides the best results.
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6.1 Optimized Encrypt-Decrypt Attack on Simple Key Schedule

According to the results of Section 6, we place our faults such that they are
processed by 4 S-boxes. We then combine faulting the bits at index 2 and 22
during encryption with faulting the bits at index 33 and 37 during decryption. To
decrease the size of the remaining key space, we repeat each fault 4 times, thus
performing 16 faults in total. Using these faults, we gather enough information
to reduce the size of the key space to between 233 and 239 in 95 % of all cases.
Figure 10a shows the distribution of the size of the key space after this attack.
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(a) Encrypt-decrypt attack (Section 6.1)
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(b) Multi-round attack (Section 6.2)

Fig. 10: Distribution of the size of the remaining key space (n = 1000).

6.2 Optimized Multi-Round Attack on Simple Key Schedule

To reduce the number of required faults, we can use tricks similar to those in
Section 6.1. Additionally, we can reuse faults instead of gathering new ones
for each round. The following attack applies when faulting the decryption; for
encryption, an analogous attack is possible.

We start the attack by inducing 16 separate faults at the S-boxes Si with
i ∈ {0, 2, 8, 10, 21, 23, 29, 31} such that each fault is processed by 4 key-dependent
rounds of the cipher. Now, we can analyze these faulted encryptions based on the
differential model similar to before and calculate the set of possible differences
before each S-box in each round. We start by analyzing the final round: for each
S-box, we try all 16 keys and verify whether the key is compatible with the set
of possible differences. This reduces the key space per 4-bit key to a set of about
4 candidates: we can reduce the overall key space to a size of 264 in 50 % of all
cases and to at most 266 in about 90 % of all cases.

Next, we analyze all faults across 2 rounds: for each fault and each potentially
active S-box in the penultimate round, we try all keys and filter based on the
possible differences calculated earlier. Usually, we need to iterate over 28 keys.
This step reduces the size of the overall key space to 232 in about 75 % of all
cases and to at most 234 in about 99 % of all cases.

Finally, we analyze the faults across 3 rounds: we can again filter based on
all potentially active S-boxes in our targeted round. As in Section 3.3, however,
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we do not filter based on those S-boxes where we would need to guess the keys
for more than 16 S-boxes. Thus, we usually need to iterate over 216 keys for each
potentially active S-box and fault. After this step, we are left with at most 220

keys in about 90 % of all cases. Figure 10b shows the distribution of the size of
the key space after this attack.

6.3 Optimized Multi-Round Attack on Rotating Key Schedule

For the optimized version of our most powerful attack, we use a dynamic number
of faulted encryptions and fix the success probability at 100 %. As we need to
learn 64 bits of information about 6 round keys each, we target 6 different rounds
during our fault attack. We place the faults such that the are processed by 4
rounds of decryption before the currently targeted key is xored. We target the
indices {1, 5, 9, 13, . . . , 25, 29}, i.e., we induce a difference of 2 for the 8 rightmost
S-boxes. By applying the model of the differential behavior of the cipher to each
fault, we calculate the set of possible differences at the input of the S-box that is
applied before the targeted key is xored. Then, we can filter each nibble of the
targeted key based on this expected difference. As in the basic attack, we restrict
these 6 keys to form a normalized sequence of keys, i.e., the nibbles of the first
5 keys are restricted to {0, 1, 2, 3}. We repeat faulting these 8 S-boxes until we
learn 64 bits of additional information about the key. Once we have gathered all
the required key information, we continue the attack as in Section 5.2.

When performing this attack, we find that we need 83.6±14.8 faults on average
to recover an equivalent key for DEFAULT-LAYER. As before, we can continue by
performing classical DFA on DEFAULT-CORE. The histogram of needed faults is
depicted in Figure 11. We believe the fault complexity of this attack can be
reduced even further by removing the requirement that each normalized round
key needs to be recovered uniquely.
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Fig. 11: Number of faults needed to recover the key (n = 10 000).
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7 Discussion

We now discuss several potential mitigations for our attack and argue why each
of them is not sufficient to preclude information-combining normalized-key DFA
attacks.

Inverting one DEFAULT-LAYER. The attacks combining information from en-
cryption and decryption work because we combine information from a DFA on
the DEFAULT-LAYER, EDEFAULT-LAYER, with information from a DFA on the inverse
DEFAULT-LAYER, E−1DEFAULT-LAYER. Therefore, a possible mitigation for these attacks
is to change one DEFAULT-LAYER to its inverse, so that a DFA during encryption
and decryption is always mounted on the same function:

EDEFAULT-LAYER ◦ ECORE ◦ E−1DEFAULT-LAYER .

However, even then, it is possible to combine information of differential-based
fault attacks of EDEFAULT-LAYER and E−1DEFAULT-LAYER by combining a DFA with a
collision fault attack [7].

Note that this attack is also a threat in the following scenario proposed by the
designers [1, Section 4.1]: they suggest that the cipher could also only be protected
by one DEFAULT-LAYER if the attacker model is limited to a single direction (either
encryption or decryption), e.g., EDEFAULT-LAYER ◦ECORE for an adversary who targets
only encryption. As discussed, this enables differential-based fault attacks on the
core cipher using fault-based collision attacks.

Involutive S-box. Another way to achieve a similar result is to replace the
S-box used in DEFAULT-LAYER with an involutive S-box. This would prevent the
attacks combining information from encryption and decryption. Note that for
this countermeasure to work, care must be taken when choosing the linear layer,
as a different linear layer could lead to more linearly independent equations about
the key. This does not protect against the multi-round or the generic attack.

Strong linear layer. A potential mitigation for the information combining
attacks on DEFAULT with a simple key schedule is to use a strong linear layer. This
would greatly increase the computational complexity of the multi-round attack
from Section 3.3. However, the attacks based on normalized keys including the
attack from Section 5.2 would still apply. Additionally, a strong linear layer would
make attacks combining information from encryption and decryption easier.

Independent round keys. In their design paper, the authors note that using 28
independent round keys for DEFAULT-LAYER would make information combining
attacks useless [1, Section 6.1]. While this is true for combining information across
rounds, the ideas of equivalent keys from Section 4 still apply. In particular, the
generic attack from Section 4.3 defeats this construction.
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8 Conclusion

Due to the practical impact of DFA style attacks, strategies for protecting ciphers
are highly relevant and different strategies have been explored in the past years.
The authors of DEFAULT propose an interesting design strategy to inherently limit
the amount of information an attacker can learn.

In this paper we showed that while indeed only a limited amount of information
can be gained each round, we can combine information across rounds. While it
intuitively appears that a simple key schedule prevents information-combining
attacks, as the same key is used each round, we show that this is possible. For
this reason, the designers proposed a strong key schedule with full diffusion, to
ensure that it is infeasible to combine information from neighboring rounds. This
indeed helps to prevent straight-forward information-combining DFA attacks.

Unfortunately, we can use the properties of the round function to characterize
large classes of equivalent keys by identifying a set of normalized keys. These
normalized keys permit us to combine information across many rounds, thus
breaking DEFAULT with the proposed strong key schedule and even an idealized key
schedule with independent round keys. The key observation is that starting from
the ciphertext, in each round, the adversary can either learn additional information
about the round key or arbitrarily pick one of the remaining candidates and move
on to the next round. By optimizing the placement of faults, we can reduce the
fault complexity to less than 100 faulted computations to recover an equivalent
key for DEFAULT-LAYER with no additional brute-force cost.

Our analysis shows how challenging it is to prevent these implementation
attacks. While cipher-level protection would be a great solution as it does not
offload the responsibility to implementers, it seems substantial ideas beyond
linear structures are necessary. This raises the question of how the DEFAULT

design strategy can be adapted to achieve inherent protection against DFA.
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