
Noname manuscript No.
(will be inserted by the editor)

Rethinking Modular Multi-Exponentiation
in Real-World Applications

Vidal Attias · Luigi Vigneri · Vassil Dimitrov

Received: date / Accepted: date

Abstract The importance of efficient multi-exponen-

tiation algorithms in a large spectrum of cryptographic

applications continues to grow. Many of the algorithms

proposed in the past pay attention exclusively on the

minimization of the number of modular multiplications.

However, a short reduction of the multiplicative com-

plexity can be easily overshadowed by other figures of

merit. In this article we demonstrate a large number

of practical results aimed at concrete cryptographic

tasks requiring multi-exponentiations and provide rec-

ommendations on the best possible algorithmic strate-

gies for different selection of security parameters.

Keywords Multi-exponentiation · OpenSSL · bench-

marking · cryptography · arithmetic

Mathematics Subject Classification (2020) MSC

code1 · MSC code2 · more

V. Attias
IOTA Foundation
Berlin
Germany
E-mail: vidal.attias@iota.org

L. Vigneri
IOTA Foundation
Berlin
Germany
E-mail: luigi.vigneri@iota.org

V. Dimitrov
University of Calgary
Calgary
Canada
E-mail: vdimitro@ucalgary.ca

1 Introduction

1.1 Modular arithmetic

Modular arithmetic is a cornerstone of modern mathe-

matics with innumerable applications in cryptography,

coding theory, computer algebra and more. This field

has been investigated since ancient Greece until today.

For instance, the modular reduction problem

A mod N, (MR)

which consists in obtaining the reminder of an integer A

modulo another integer N , was already studied by Eu-

clid, as written in the Elements [12]. During millennia,

research produced highly sophisticated algorithms to
compute (MR) such as the Barrett reduction [2], which

computes the solution of (MR) by replacing divisions

by multiplications, and the Montgomery reduction [18],

which converts integers into a space where modulo op-

eration is replaced by multiplications. The two algo-

rithms solve the issue by replacing divisions by multi-

plications but the main difference between them is that

Montgomery’s conversion induces an overhead while its

reduction operation per se is faster than Barrett’s and

it allows manipulated converted integers as if they were

in a canonical form. Thus Montgomery is more interest-

ing for computations involving lots of reductions using

the same transformed integers whereas Barrett’s will

be privileged for one-time reductions. Both algorithms

have been thoroughly studied both from a theoretical

[6] and from an implementation perspective [14,7].

Another essential operation is the modular exponen-

tiation defined as

xe mod N, (ME)

2 Vidal Attias et al.

where x is an integer in [0, N − 1], and e is a natural

number. Again, this problem received an important re-

search coverage, both on purely theoretical aspects [10]

and implementation perspective [4], with some research

even focusing on producing quantum algorithms [21].

Sensible improvements in the solution of this problem

has been given by the introduction of the square-and-

multiply technique which uses the product of powers

property, i.e., mp · mq = mp+q, and the binary repre-

sentation of the exponent e as follows:

power(x, e) =


x, if n = 1,

power(x2, n/2), if n is even,

x · power(x2, (n− 1)/2), if n is odd.

(1)

This technique led to a time complexity of O(log(x))

instead of O(x) and paved the way for a whole range of

sophisticated algorithms using it [13].

A generalization of the problem in (ME) is called

modular multi-exponentiation, and it is expressed as the

product of n modular exponentiations:

n∏
i=1

xeii mod N. (MME)

Problem (MME) has been less profusely studied. One

could naively compute each modular exponentiation

separately and then compute their product but this has

been shown to be suboptimal [15], hence the need for

optimized algorithms.

1.2 Our contributions

A relevant metric traditionally used to compare the per-

formance of multi-exponentiation algorithms is the to-

tal number of multiplications to be performed. Most

(MME) algorithms aggregate the exponents during the

scanning phase in order to reduce the amount of mul-

tiplications. This generally induces a precomputation

overhead and adds some complexity resulting in a expo-

nents filtering computation overhead. Although count-

ing the number of modular multiplication is useful to

compare algorithms regardless of the hardware, it does

not catch side computations that can actually make a

difference when it comes to implementation.

In this paper we tackle a practical problem: while

it is easy to find extensive literature on the theoretical

performance and guarantees of multi-exponentiation al-

gorithms, little is known on how these techniques be-

have when implemented in real systems. The goal of

the paper is indeed to provide the knowledge necessary

to select the best algorithm depending on the hard-

ware used and on the input parameters, such as mod-

ulus and base size. Furthermore, it is often non-trivial

to tune the algorithm parameters, and we show that

this is largely affected by the exponents and modulus

size. In short, we found a lack of implementation study

for multi-exponentiation algorithms, and the platform-

dependant effects are not yet fully understood.

We present an extensive performance comparison of

three multi-exponentiation algorithms operating on in-

tegers on single-core machines (in Section 3.6 we discuss

about non-integers groups and multi-core machines).

Specifically, we test different modern hardware: the Ap-

ple ARM M1 brand-new chip, a general-purpose In-

tel Core processor and the two latest generations of

Raspberry Pis. Studying different hardware is impor-

tant because platform-dependant side effects can occur.

For example, the Raspberry Pi devices use a 32-bit op-

erating system as opposed to modern general-purpose

computers using 64 bits systems, which makes a differ-

ence for multi-precision computing libraries. Moreover,

Raspberry Pis, which do not have efficient long divi-

sion routines, make the optimization of the modular

reduction an even more important task than for x86

devices. We reiterate that the contributions of this pa-

per are twofold: (i) evaluate the performance differences

depending on the hardware used to solve (MME); (ii)

provide the reader a way to understand which multi-

exponentiation algorithm to use and how to tune its

parameters depending on application specifications.

The rest of the paper is organized as follows: in Sec-

tion 2, we state the problem we are tackling. Then, in

Section 3, we provide a description of the relevant algo-

rithms used to solve (MME) along with pseudocode and

a theoretical comparison. After that, Section 4 describes

the basic concepts of the Montgomery reduction which

will be an important component of our experiments.

In Section 5, we show the results of these experiments.

Finally, we conclude our paper in Section 6.

2 Problem statement

In this section, we formalize the problem which is ad-

dressed in the rest of the paper. First, consider r as the

solution of the following (MME) problem:

r ≡
n∏
i=1

xeii (modN),

where xi ∈ N with i ∈ [1, n] represent the bases and

have size λ bits, N ∈ N is the modulus and has size

λ bits and ei with i ∈ [1, n] are the exponents and

Rethinking Modular Multi-Exponentiation in Real-World Applications 3

have size k bits. Furthermore, let Θλ,k(r, h,A) – or just

Θ(r, h,A) for the sake of simplicity – be the computing

time needed to solve r, where bases and modulus are

of size λ and exponents are of size k, by algorithm A

using hardware h. Hence, the goal of this paper is to

provide insights to the following optimization problem:

minAΘ̄λ,k(r, h,A), ∀λ, k ∈ N, (2)

where Θ̄ is the average computing time needed to solve

r by algorithm A using hardware h. In other words, in

this paper we provide extensive experimental results,

supported by theoretical findings, in order to answer the

following question: For a given hardware, which multi-

exponentiation algorithm provides the best performance

depending on modulus and exponent sizes?

Extensive studies exist on the number of multipli-

cations needed to solve (MME) problems. We discuss

some of the existing results in the next section, where

we present the multi-exponentiation techniques which

are used as a benchmark in this paper. Unlike prior

work, we focus on the time spent computing the multi-

exponentiation, rather than on the number of multi-

plications. Although the latter has its own merits, we

show in this paper that using time does unveil unex-

pected behavior when choosing the best algorithm with

respect to the hardware available and to the problem

parameters.

3 Multi-exponentiation algorithms

In this section, we present the most relevant algorithms

used to solve Problem (MME), among which we care-

fully analyze the implication of using separate exponen-

tiations and (sliding) windowed algorithms. Each algo-

rithm comes with different implementation complexi-

ties and may be optimal depending on the hardware

considered or on the input parameters. In the rest of

the section we present a description of the algorithms

studied, including their detailed pseudocodes, and we

provide a comparison based on their theoretical guar-

antees (we test empirically these results in a later sec-

tion).

Important notation for pseudocodes

We can access the exponent’s bits individually in the

following way:

– ei[j] returns the j-th (starting with index 0) least

significant bit of ei.

– ei[a . . . b] returns the bits within the a-th and the

b-th least significant bits.

If a or b are negative numbers, |a| or |b| zeros are

added as least significant digits. For example, if ei =

101010112, then ei[3 . . . 1] = 1012 and ei[3 . . .−2] =

1011002.

3.1 Separate exponentiations algorithm (separate)

The simplest way of computing (MME) is to perform

separately the single exponentiations and then multiply

them to get the result. Although being easy to under-

stand and to implement, this method, which we will

denote as separate, is nevertheless suboptimal as we

show later. Algorithm 1 gives a pseudo-code of this al-

gorithm.

The computation through separate method re-

quires:

– k modular multiplications per exponentiation using

square and multiply techniques as presented in Sec-

tion 1.

– n− 1 modular multiplications combining the previ-

ously computed results.

Algorithm 1: separate algorithm

Data: Bases {xi}i∈[1,n], exponents {ei}i∈[1,n]

1 and the modulus N ;
Result: A =

∏n
i=1 x

ei

i

2 A← 1;
3 for i← 1 to n do
4 A← A · xei

i (modN);

5 return A

3.2 Windowed 2w-ary algorithm (2w-ary)

A first optimisation consists of precomputing several

combinations of products of the xis so that we can use

a technique similar to square-and-multiply with the n

bases. This optimisation has been extended to comput-

ing a window of size w bits of all exponents in one

multiplication. This technique is called the Simultane-

ous 2w-ary method and the special case w = 1 is also

known as the “Shamir’s trick” [17]. We will denote this

as the 2w-ary algorithm.

More formally, the algorithm consists of two phases:

1. Precomputation that can be done offline, in which

we compute and store all the
n∏
i=1

xEi
i mod N (3)

4 Vidal Attias et al.

for all (E1, . . . , En) ∈ {0, . . . , 2w − 1}k.

2. Evaluation, a fast exponentiation-like algorithm

that matches precomputation entries to batches w

bits of each exponent and then squares w times in

order to shift the computed exponent by w bits on

the left. Algorithm 2 gives a pseudo-code of this part

of the algorithm.

Algorithm 2: 2w-ary algorithm

Data: Bases {xi}i∈[1,n], exponents {ei}i∈[1,n],
modulus N , precomputed values and window
size w

Result: A =
∏n

i=1 x
ei

i

1 A← 1;

2 for j ← bk−1
w
cw to 0 by w do

3 for ← 1 to w do
4 A← A2 mod N

5 if (ei[j + w − 1, . . . , j] 6= 0, ∀i) then

6 A←
n∏

i=1

x
ei[j+w−1,...,j]
i mod N{Multiply by

the table entry};

7 return A

The precomputation phase has the following com-

putational and storage complexity:

– Storing 2nw − n− 1 non-trivial elements of size λ.

– 2n(w−1)−1 elements can be computed as a squaring

of other entries.

– The remaining 2nw − 2n(w−1) − k elements require

one modular multiplication each.

As for the evaluation phase, the algorithm requires

– bk−1w cw squarings.

– k · 1−
1

2nw

w modular multiplications.

3.3 Simultaneous sliding window algorithm (YLL)

Based on the previous simultaneous 2w-ary method,

Yen, Laih and Lenstra [26] have proposed an optimiza-

tion which replaces the fixed window of the previous al-

gorithm with a sliding window. It still consists in a pre-

computation phase, which can be done offline, followed

by the exponentiation itself. We display the pseudocode

of the multi-exponentiation phase in Algorithm 3. The

optimization is twofold:

1. Before making the multiplication, the algorithm

scans the most significant bits in the window that

will be computed next to each exponent; while they

are all zeros, the window is shifted to the left and we

square the current exponentiation result (denoted

by A in the pseudocode).

2. Once the window cannot be shifted anymore, we

scan the least significant bits using a virtual cursor

denoted J in the algorithm so that we multilply us-

ing only entries in which at least of exponent is odd.

In that way, we save some precomputations by only

computing entries with at least one odd element,

which represents 25% of the precomputations.

Algorithm 3: YLL algorithm

Data: Bases {xi}i∈[1,n], exponents {ei}i∈[1,n],
modulus N , precomputed values and window
size w

Result: A =
∏n

i=1 g
ei

i

1 A← 1;
2 j ← b− 1;
3 while j ≥ 0 do
4 if ∀i ∈ {1, . . . , n}, ei[j] = 0 then
5 A← a2; j ← j − 1
6 else
7 jnew ← max(j − w, 1);
8 J ← jnew + 1
9 while ∀i ∈ {1, . . . , n}, ei[J] = 0 do

10 J ← J + 1

11 for i = 1 to n do
12 Ei ← ei[j, · · · , J]

13 while j ≥ J do
14 A← A2;
15 j ← j − 1;

16 A← A ·
∏n

i=1 g
Ei

i

17 while j > jnew do
18 A← A2;
19 j ← j − 1;

20 return A

This algorithm requires:

– 2nw − 2n(w−1)−n non-trivial entries of size λ as for

the precomputations.

– from k − w up to k − 1 squarings.

– k · 1
w+ 1

2n−1

modular multiplications.

3.4 Basic interleaving method

Like the previous algorithms presented, the basic in-

terleaving method [17] is based on square-and-multiply

using a window of size w model but instead of precom-

puting all possible products of n bases with exponents

of size w, it precomputes all xEi
i where Ei ∈ [0, 2w − 1]

and i ∈ [1, n]. During the evaluation, the returned value

– denoted by A in the previous algorithms – is multi-

plied by a single base exponentiation xEi
i instead of

an aggregate of all of them. The consequence is that

the evaluation takes n times more multiplications but

Rethinking Modular Multi-Exponentiation in Real-World Applications 5

Algorithm Precomputation Evaluation
separate N/a k

2w-ary 2nw − 1− n bk−1
w
cw + k

1− 1

2nw

w

YLL 2nw − 2n(w−1) − n k

(
1

w+ 1

2n−1

− 1

)
− 1

Interleaving n2w−1 nk 1
w+1

Table 1: Worst case number of multiplications expected

for separate, 2w-ary, YLL and the interleaving algo-

rithm.

the precomputations has a space and time complexity

of O(2w) as opposed to O(2nw) for 2w-ary and YLL.

Theoretically, for an equivalent space used for precom-

putations, i.e, winterleaving = nwY LL, the interleaving

algorithm performs slightly better, using at best around

10% less multiplications. However, this difference is de-

creasing as n gets larger and experiments resulting from

our implementation showed that this small improve-

ments are lost in practice due to complex bit scanning

and filtering of large numbers. Furthermore, [17] con-

firms our conclusions showing that YLL is preferred

in real implementations. For these reasons, we decided

to focus our study on the previously mentioned algo-

rithms.

3.5 Comparison between separate, 2w-ary and YLL

In the previous subsections, we provided formulas about

the expected number of modular multiplications needed

for each method. However, it can be hard to grasp how

they compare to each other. For this reason, we show
in Figure 1a the expected number of modular multipli-

cations needed for separate, 2w-ary and YLL as a

function of the exponent bit length. The plot is in log-

arithmic scale. The y-axis considers the sum of number

of multiplications performed during the precomputa-

tion and evaluation phases. While the expected number

of multiplications increases linearly for separate, the

other techniques observe an initial overhead due to the

precomputation phase. The asymptotic vertical offset

between separate and windowed algorithms indicates

that, for large values of the exponent, the difference is

of a multiplicative constant.

Figure 1b shows the theoretical speedup of using 2w-

ary and YLL compared to the naive optimal separate

exponentiations (separate). We can identify the same

behaviour as in the previous plot. The interest in this

plot is rather the numerical data: we can observe that

YLL saves asymptotically more than 2w-ary, achiev-

ing a speedup of around 5% bigger than the latter. This

supports the interest of using YLL.

3.6 Additional remarks

It is important to highlight that modular arithmetic is

not limited to only integer manipulations. Many of its

operations, such as (ME) or (MME), can be generalized

to arbitrary groups. This is important because the in-

ternal structure of specific groups may allow optimiza-

tions compared to the classical algorithms operating on

integers. One of these optimizations is the possibility to

easily invert an element in a group, i.e., for x in a group

G, efficiently find x−1 such that x · x−1 = 1G with 1G
being the neutral element of this group. Elliptic curves

associated with the point addition operation is a rele-

vant example of such groups [20]. This allows a whole

new class of exponentiation and multi-exponentiation

algorithms that use this feature by rewriting the expo-

nents with negative values and then reducing the num-

ber of multiplications to perform [11]. However, efficient

inversion is not available for all groups and this is par-

ticularly true for integers arithmetic. Then this moti-

vates the study for algorithms that does not leverage

this feature [26,17] because integer arithmetic is still

widely used in modern cryptography, it being the foun-

dation layer of the RSA cryptosystem [19] and multi-

exponentiations are found in various applications such

as verifiable delay functions [23,1] in which optimiz-

ing its verification time can be of great importance for

time-sensitive uses.

More recently, after some early work by Chang

and Lou [8,16,9], it has been shown that highly par-

allelizable modern processors allow for a new class of

multi-exponentiation algorithms working on multiple

cores[16,5]. In this paper we focus on single-core ar-

chitectures and we leave multi-core ones as a future

work: in fact, we firmly believe that there is still large

interest into single-core applications as not all hard-

ware can support parallelization, especially Internet-of-

Things devices or embedded technologies that usually

have very low computing power.

4 Montgomery multiplication

When it comes to modular arithmetic, the very

straightforward way to do it is by applying the mod-

ulo operation as soon as the numbers handled grow

in order not to spend time computing huge numbers

that will anyway be reduced. For example computing

x = a · b mod n can be done by computing c = a · b and

then x = c mod n. However, doing so can be inefficient

as the modulus operation on big numbers is a costly

operation due to long divisions involved. In particu-

lar, hardware using RISC sets of instructions can spend

much more time on the modulus operation than on the

6 Vidal Attias et al.

20 21 22 23 24 25 26 27 28 29 210 211 212 213

Exponent bitsize

101

102

103

104

Ex
pe

ct
ed

 n
um

be
r o

f m
ul

tip
lic

at
io

ns

w = 4
w = 3
w = 2
2w-ary
YLL
Separate

(a) Expected number of multiplications in function of expo-
nent length.

20 21 22 23 24 25 26 27 28 29 210 211 212 213

Exponent bitsize

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

in
 p

er
ce

nt
ag

e

w = 4
w = 3
w = 2
2w-ary
YLL
No speedup

(b) Expected speedup comparison in function of exponent
length.

Fig. 1: Theoretical comparison between separate, 2w-ary and YLL.

multiplication. Thus, some techniques have been de-

signed to efficiently compute a · b mod N without in-

volving the modulus operation itself. The most efficient

ones are the Barrett reduction [2] and the Montgomery

reduction [18]. As previously discussed, Montegomery

reduction is better suitted for multi-exponentiation use,

and is based on the idea to transform the numbers a

and b into a special form in which the reduction can be

efficiently computed.

First, an important mathematical result must be

recalled. Let N be our modulus. If we take a natu-

ral number p such that gcd(p,N) = 1, then the set

{p ·x mod N}{x∈[1,N−1]} is a permutation of [1, N − 1].

In other words, the modular multiplication by p is a

bijective application and then can be inverted.

Then, if we assume that our modulus N is odd,

which is often the case in cryptosystems such as RSA

and has a size λ, then we can set R = 2λ and then

gcd(N,R) = 1. Then, for any x in G, we can define

the Montgomery representation of x, x̄ = x · R mod N

and the Montgomery product of ā and b̄ as ū = ā · b̄ ·
R−1 mod N and it is easy to see that ū = a · b. Further-

more can also easily see that a+ b = a+ b then we can

do arithmetic using the Montgomery representation of

each number. In order to retrieve a number x from its

Montgomery representation x, we can just multiply it

by R−1 and take the remainder modulo N .

The trick of using Montgomery representation is

that when R = 2λ, we have algorithms that can com-

pute the Montgomery product without using the mod-

ulo operation, hence speeding the computation up.

However, this technique is not interesting when the

number of products is small amount due to the overhead

required for the Montgomery conversion; conversely, it

is very powerful when it comes to exponentiations in

which a lot of multiplications are involved as the over-

head is amortized by the lower computation cost in the

Montgomery space.

5 Implementation results and discussion

In this section, we compare some of the algorithms pre-

sented in Section 3 to provide valuable insights depend-

ing on the values of sizes k and λ and on the hard-

ware used. The rest of the Section is structured as fol-

lows: First, we introduce the experimental setup in Sec-

tion 5.1, describing which algorithms are compared and

what hardware is used. Then, we show in Section 5.2

the computing time of a specific (MME) problem. After

that, in Section 5.3 we discuss about how using different

hardware impact the algorithm performances. Finally,

in Section 5.4 we perform sensitivity analysis on the bit

sizes k and λ for each hardware and algorithm used.

5.1 Simulation setup

Our implementation uses the OpenSSL library1 as it

provides a convenient built-in interface for using Mont-

gomery reduction. Conversely, the two major compet-

ing libraries, NTL and GMP, do not allow access to this

interface. The algorithms implemented are:

– separate, which consists in merely computing xa

mod N , yb mod N separately using the built-in

1 https://www.openssl.org

https://www.openssl.org

Rethinking Modular Multi-Exponentiation in Real-World Applications 7

primitive BN mod exp for modular exponentiation

and then multiplying them. It is important to

note that the built-in exponentiation primitive uses

Montgomery reduction under the hood.

– 2w-ary, using values of w in {2, 3, 4}.
– YLL, using values of w in {2, 3, 4}.

The (MME) problem considered in our simulations

is of the form:

r ≡ xa · yb(modN), (4)

where x, y,N ∈ N have size of λ bits and a, b ∈ N
have a size of k bits. We invite the reader to note that

we restrict the experimental analysis to the double ex-

ponentiation problem. Compared to Problem (MME),

this is the case where n = 2. Verifiable delay func-

tions [23,1] and some other cryptographic schemes (e.g.,

the signature verification procedure in the digital sig-

nature standard, for example) need the case n = 2.

When n > 2, we can use the same windowing tech-

niques as the ones investigated in the paper or, we can

segment the multi-exponentiation task into n/2 double-

exponentiations and use directly the results presented

here.

As anticipated, we evaluate the above multi-

exponen-tiation techniques on various hardware:

– Raspberry Pi: We compared two generations of

Raspberry Pi: the Raspberry Pi 3 model B (2016)

and Raspberry Pi 4 model B (2020). The Raspberry

Pi 3 represents the older but still largely used gen-

eration whereas the Raspberry Pi 4 is the newer

version.

– Intel Core: It represents a late 2010s Intel CPU

commonly found in general-purpose computers, us-

ing the x 86 instruction set and running in 64-bits.

The exact CPU reference used is i7-7820HQ (8) @

2.90GHz.

– Apple M1: This is the first version of the new ARM

architecture released in 2020 that will equip all Ap-

ple computers in the future. We consider important

to compare this hardware with the Intel CPU as

this is the first ARM processor for general-purpose

laptops.

A word on some technical details seems mandatory.

In order to limit as much as possible the noise due to the

multi-task nature of modern operating systems, we have

tried to mitigate the side effects of preemption on our

experiments. This necessary because of the very short

timing measurements of multi-exponentiations, often in

the order of a few dozen microseconds. Hence, getting

our process preempted even for a few millisecond can

pollute seriously our experiments. As we cannot kill ev-

ery process running on the operating system, we de-

cided to investigate processes priority.

Max priority Normal priority Minimal priority

0.8

1.0

1.2

1.4

1.6

1.8

Co
m

pu
ta

tio
n

tim
e

(m
s)

Fig. 2: Comparison of computation time of a batch of

multi-exponentiations using three priority values: −20

(max priority), default set by the OS (normal priority)

and 20 (min priority) as per UNIX priority definition.

Figure 2 shows on the y-axis the variation of time

take to compute a batch of 100 multi-exponentiations

with parameters k = 512, λ = 1024 using YLL with

w = 3 on a M1 chip with three different levels of priority

set when starting the processes using UNIX priorities,

that is -20 (highest priority), default value set by the

operating system (0) and 20 (lowest priority). We can

see that the impact of priority during our experiments is

negligible. We point out that the following precautions

can help reduce the interferences: i) reducing the work-

load on the machine to limit as much as possible any

other process running; ii) keeping CPU’s temperature

low to avoid thermal throttling. An efficient ventilation

has proved to stabilize the measurements.

5.2 Computing time analysis

The first set of experiments shows the comparative be-

havior of multi-exponentiation algorithms with respect

to the main parameters, such as exponent size k, mod-

ulus size λ and, to a lesser extent, the window size. In

Figure 3 we display a set of five figures showing the time

spent evaluating multi-exponentiations as in Eq. (4):

– Figure 3a represents the computation time using the

Apple M1 as a function of the modulus bit-length

λ, where the exponent size k is set to 256 bits.

– Figure 3b represents the computation time using the

Raspberry Pi 4 as a function of the modulus bit-

length λ, where the exponent size k is set to 256

bits.

– Figure 3c represents the computation time using the

Apple M1 as a function of the exponent size k, where

the modulus size λ is set to 2048.

– Figure 3d displays the speedup of using 2w-ary and

YLL compared to separate, which is used as a

8 Vidal Attias et al.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of modulus

10 2

10 1

100

Co
m

pu
ta

tio
n

tim
e

(m
s)

Separate
YLL
2w-ary
w=2
w=3
w=4

(a) Multiexponentiation algorithms for
k = 256 on the Apple M1 chip with vari-
ation of parameters λ and w.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of modulus

10 1

100

101

Co
m

pu
ta

tio
n

tim
e

(m
s)

Separate
YLL
2w-ary
w=2
w=3
w=4

(b) Multiexponentiation algorithms for
k = 256 on a Raspberry Pi 4 with varia-
tion of parameters λ and w.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of exponent k

10 1

100

Co
m

pu
ta

tio
n

tim
e

(m
s)

Separate
YLL
2w-ary
w=2
w=3
w=4

(c) Multiexponentiation algorithms for
l = 2048 on the Apple M1 chip with vari-
ation of parameters k and w.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of exponent k

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Co
m

pu
ta

tio
n

tim
e

(m
s)

Separate
YLL
2w-ary
w=2
w=3
w=4

(d) Speedup of multiexponentiation al-
gorithms for l = 2028 on a Raspberry Pi
4 with variation of parameters λ and w.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of modulus

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
m

pu
ta

tio
n

tim
e

(m
s)

Separate
YLL
2w-ary
w=2
w=3
w=4

(e) Speedup of multiexponentiation al-
gorithms for k = 256 on a Raspberry Pi
4 with variation of parameters λ and w.

Fig. 3: Hardware comparison for YLL algorithm with w = 3.

baseline scenario, as a function of the exponent size

k for λ = 2048.

– Figure 3e displays the speedup of using 2w-ary and

YLL compared to separate, which is used as a

baseline scenario, as a function of the modulus size

λ for k = 256.

We decided to set λ = 2048 and k = 256 because we

believe they represent reasonable values to be used in

some real cryptosystems such as the Wesolowski’s veri-

fiable delay dunction construction[23]. Finally, in these

figures, the 2w-ary (resp. YLL) method is represented

by dashed (resp. solid) lines, which are blue in case

w = 2, green if w = 3 and red if w = 4. Dash-dotted

yellow lines represent the separate method.

The two first subplots reveal interesting behaviours.

Considering Figure 3a, we can see that the variation

over λ leads to a similar asymptotic behavior amongst

all algorithms. It is important to note that, besides val-

idating the theoretical findings, this plot shows that us-

ing these multi-exponentiation algorithms can be per-

formed under the millisecond for realistic setup values

like λ = 2048 and k = 256.

In Figure 3a we can see an increase from λ = 22

to λ = 26, suddenly followed by a decrease, and then

the plot gradually increases again. This is due to the

fact that 26 = 64 is the size of a word on this 64-bit

device and marks the threshold by which using a multi-

precision library leads to improvements. This can be

verified by looking at Figure 3b which displays the same

parameters but for a Raspberry Pi 4 hardware, running

on a 32-bits operating system. There we can see that

the threshold is for λ = 32.

Figure 3c is very similar to Figure 1a, confirming

the theoretical expectations. It confirms that using dif-

ferent values of w becomes interesting as k increases

in practical settings, and implementation conditions do

not sensibly affect the theoretical improvements.

Figure 3d is much less consistent with theory pre-

dicted in Figure 1b for low values of k, especially in

the curve w = 2. However, for values of k larger than

28, results start to gain consistency. Furthermore, when

comparing the asymptotic improvement factors, we can

observe they are all larger than the predicted one by a

factor of around 5%. The discrepancies seen for low val-

ues of k is due to libraries inner mechanisms that we

do not have control over which get smoothed away with

values of k over 28. Furthermore, we can see that YLL

always outperforms 2w-ary by around 10%. Figure 3e

is showing the expected behavior, i.e., that using differ-

Rethinking Modular Multi-Exponentiation in Real-World Applications 9

ent values of w for the same value of k does not lead to

significant improvements for large values of λ. Someone

implementing multi-exponentiations should then only

consider k when picking a value of w. However, the al-

gorithm used, i.e., 2w-ary or YLL makes a difference,

with YLL performing better for large values of λ.

5.3 Hardware Comparison

An aspect that we considered important in our analy-

sis was the different behavior depending on the hard-

ware architectures. This can help anyone implement-

ing multi-exponentiations to understand what are the

expected discrepancies in case of heterogeneous ecosys-

tems. This is displayed in Figure 4. This analysis is

similar to the one performed in the previous sub-

section: while in Figure 3 we study how fast multi-

exponentiation algorithms perform with a variation on

the parameters k and λ, here we restrict our study by

setting w = 3 and focusing on the impact of different

hardware. We have already started comparing hardware

by showing a behavior happening when using 32-bits

or 64-bits operating systems but in this section we are

going to present a more exhaustive study of hardware

influence.

Figure 4a shows the computation time of YLL al-

gorithm with w = 3 as a function of the exponent size

k with λ = 2048. Each line represents a different hard-

ware as depicted in the legend while Figure 4b shows

the same data in the form of speedup compared to the

separate algorithm, used as a baseline. Figures 4c and

4d display the same information but performing a sen-

sitivity analysis over the modulus size λ where k is set

equal to 256.

The high-level behavior of the plots follows the ob-

servations made in the previous subsection. We can see

that using different hardware can only be observed via

vertical shifts in performances as clearly displayed by

Figure 4a. Moreover, in Figures 4c and 4d we can ob-

serve an horizontal offset between the 32 bits and 64

bits devices as devised in Section 5.2.

Another interesting observation is that in Figure 4b,

the two Raspberry Pi devices have better speedup for

YLL than the Intel Core and Apple M1 processors.

The same behavior can be observed in Figure 4d in

an asymptotic way although there is a rather chaotic

behavior for low values of λ. This is a motivation for

further research to understand how different hardware

perform multi-exponentiation algorithms.

In Table 2 we summarize the results of our exper-

iments with respect to the different hardware for sep-

arate, 2w-ary and YLL with values of w in {2, 3, 4}

when λ = 2048 and k = 256. The last column rep-

resents the speedup achieved by the fastest algorithm

compared to the separate for each line.

We can see the same global behavior as in Sec-

tion 5.2 but taking a closer look at the actual numeric

values is instructive. Each cell contains the minimum of

around a hundred multi-exponentiation runs for each

configuration and algorithm. A first observation tells

us that, without surprise, the desktop-grade processors

perform much better than the Raspberry Pi devices,

outperforming them by a factor of around ×11 for the

Raspberry Pi 4 and ×19 for Raspberry Pi 3, and these

ratios are consistent throughout the whole data. Al-

though this result should be of no surprise for anyone,

we considered having precise measurements for this spe-

cific application would be of interest to anyone building

applications using heterogeneous hardware.

A second observation shows that the behavior is

consistent for all devices when using different algo-

rithms, as showcased in Figure 4c. We finally can see

that the maximum expected speedup is 1.75 for this

specific application.

5.4 Best multi-exponentiation algorithm

A very instructive way of representing data is to show

which algorithm performs the best depending on the

parameters k and λ. Hence, in this subsection we plot

the fastest algorithm for each value of k and λ in

{2i|i ∈ [2..13]} depending on the hardware. We present

the results as a grid for which each cell contains a color

corresponding to the fastest algorithm. The different

hues indicate a change of window size with w = 2 in
green, w = 3 in blue and w = 4 in purple while the

naive implementation is in red. The shade in turn will

show a change of algorithm as described in the plot’s

legend.

Figures 5a, 5b, 5c, 5d show the best algorithm for

respectively the Mac Intel, Mac ARM, Raspberry Pi

3 and Raspberry Pi 4. One can observe two patterns,

each one taking place along one of the two axes and

thus orthogonal with each other. When the exponent

size k varies, adapting the value of the window w is

important. Conversely, depending on the value of the

modulus size λ, a change of algorithm from 2w-ary to

YLL leads to better results, and we notice that this

pattern is consistent for any hardware tested.

The variation along the k axis is explained by the

fact that when performing multi-exponentiation algo-

rithms, there is a certain overhead in precomputations

which is linear with 2w, hence it only depends on the

value w, while the evaluation part is a function of grow-

ing with k and decreasing with w. We can then see that

10 Vidal Attias et al.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of exponent size k

10 1

100

101

Co
m

pu
ta

tio
n

tim
e

(m
s)

Raspberry Pi 3
Raspberry Pi 4
Apple M1
Intel Core i7

(a) Computation time when varying k with l = 2048.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of exponent size k

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Raspberry Pi 3
Raspberry Pi 4
Apple M1
Intel Core i7

(b) Computation time when varying k with l = 2048.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of modulus

10 2

10 1

100

101

Co
m

pu
ta

tio
n

tim
e

(m
s)

Raspberry Pi 3
Raspberry Pi 4
Apple M1
Intel Core i7

(c) Computation time when varying λ with k = 256.

22 23 24 25 26 27 28 29 210 211 212

Bitlength of modulus

0.5

1.0

1.5

2.0

2.5

3.0
Sp

ee
du

p
Raspberry Pi 3
Raspberry Pi 4
Apple M1
Intel Core i7

(d) Speedup when varying λ with k = 256.

Fig. 4: Hardware comparison for YLL algorithm with w = 3.

Hardware separate
2w-ary YLL Max Speedup

w=2 w=3 w=4 w=2 w=3 w=4
Mac ARM 0.41 0.26 0.28 0.38 0.25 0.26 0.38 ×1.58

Intel i7 0.45 0.29 0.31 0.51 0.28 0.29 0.45 ×1.61
Raspberry Pi 3 7.72 4.56 4.83 7.06 4.41 4.57 6.30 ×1.75
Raspberry Pi 4 4.66 2.81 2.95 4.34 2.74 2.80 3.87 ×1.66

Table 2: Multi-exponentiation values for λ = 2048 and k = 256 on Mac ARM.

increasing k diminishes the relative overhead of the pre-

computation phase and at some point it becomes inter-

esting to increase the value of w in order to leverage

the speedup that it brings in the actual evaluation part.

That explains the pattern shift on the k axis.

Concerning the λ axis, the rationale is that increas-

ing the modulus length only impacts the computation

time of modular multiplications in the same way for

all algorithms and for all values of w. Then it becomes

more efficient to optimize the parts of the algorithm

that are not related to the actual modular multiplica-

tions such as filtering and bit testing. In that sense, the

2w-ary method has a simpler mechanic than the sliding

window one. Thus, it is better to use for smaller values

of λ. However for big values, we can benefit from the

reduced number of modular multiplications performed

during the sliding window method.

Another interesting point is that the pattern shifts

around the same value of the exponent k for any hard-

ware. However, we can see that for the λ-axis, the

Rethinking Modular Multi-Exponentiation in Real-World Applications 11

22 23 24 25 26 27 28 29 210 211 212 213

Value of k

22

23

24

25

26

27

28

29

210

211

212

213

Va
lu

e
of

Separate

2-2w-ary

2-YLL

3-2w-ary

3-YLL

4-2w-ary

4-YLL

(a) Best algorithm as a function of λ and k for Intel Core.

22 23 24 25 26 27 28 29 210 211 212 213

Value of k

22

23

24

25

26

27

28

29

210

211

212

213

Va
lu

e
of

Separate

2-2w-ary

2-YLL

3-2w-ary

3-YLL

4-2w-ary

4-YLL

(b) Best algorithm as a function of λ and k for Apple M1.

22 23 24 25 26 27 28 29 210 211 212

Value of k

22

23

24

25

26

27

28

29

210

211

212

Va
lu

e
of

Separate

2-2w-ary

2-YLL

3-2w-ary

3-YLL

4-2w-ary

4-YLL

No data

(c) Best algorithm as a function of λ and k for Raspberry Pi
3.

22 23 24 25 26 27 28 29 210 211 212 213

Value of k

22

23

24

25

26

27

28

29

210

211

212

213
Va

lu
e

of

Separate

2-2w-ary

2-YLL

3-2w-ary

3-YLL

4-2w-ary

4-YLL

(d) Best algorithm as a function of λ and k for Raspberry Pi
4.

Fig. 5: Heat map showing the fastest multi-exponentiation algorithm per hardware depending on modulus and

exponent sizes.

Mac Intel and ARM have a switching value around

210 whereas the Raspberry Pi 3 and 4 have a switch-

ing value around 28. The rationale is that the default

Raspberry Pi operating system works in 32-bits mode

even though he Raspberry Pi 3 and 4 CPU have 64-

bits capabilities. This is due to backward compatibility

issues. This makes the difference in computation time

bigger for big numbers modular multiplication than all

other computations involved because the word length is

smaller. As mentioned above, difference between mod-

ular multiplication and the other operations performed

in important only on the λ-axis, thus the behavior seen

on these plots.

6 Conclusion

One of the main points of our paper is to demonstrate

that there is a need to rethink the use of performance

metrics in considering the (MME) problem (and, of

course, many other essential cryptographic primitives).

The algorithms proposed in the past have been designed

with one chief goal only – minimize as much as possible

the number of modular multiplications. But a small re-

duction of the number of modular multiplications can

be easily overshadowed by other factors like more com-

plex architectures, larger number of precomputations,

less opportunity to use parallelization, to name a few.

Our research unveils the complicated relationship be-

tween many of these factors and presents the best pos-

sible algorithms for a large number of cases essential in

12 Vidal Attias et al.

cryptographic applications. We aim our efforts specifi-

cally on the applications related to verifiable delay func-

tions, but other “users” of multi-exponentiation algo-

rithms can directly benefit from the findings presented

here.

We have presented an implementation study of three

algorithms to solve double exponentiation, separate,

2w-ary, and YLL. We have focused our study on un-

derstanding how computation time is affected by prob-

lems parameters, k and λ, respectively being the expo-

nents bit-size and the modulus bit-size and understand-

ing which optimal parameter w, that is the window size

in 2w-ary and YLL, to pick for a given pair (k, λ). We

have provided extensive experimental results for these

three algorithms, considering four different hardware to

understand how platform-specific behavior happen.

Although experimental results follow theoretical

predictions, there are implementation side effects that

are highlighted in this paper. First, running a 32-bits or

64-bits operating system does impact the performances

and change how algorithms compare to each other. Sec-

ond, although YLL is always theoretically faster than

2w-ary, performing exponents scanning and bit filter-

ing induce an overhead which is not taken into account

in predictions. Thus, for low values of k, the 2w-ary

algorithm actually performs better than YLL.

We show that the two parameters k and λ have an

orthogonal role in double exponentiation performances.

An increase λ yields longest modular multiplications

whereas a larger value of k induces a more impor-

tant number of modular multiplications performed and

make bigger precomputations affordable, hence increas-

ing the value of optimal w.

We finally show that results are pretty consistent

regardless the considered hardware, although using a

32-bits or 64-bits operating system changes the thresh-

old value of λ for which YLL performs better than

2w-ary. This makes algorithm selection easy for real

applications.

This paper opens some perspectives for future work.

Important topics yet to understand include understand-

ing how generalizing to n > 2 exponentiations behaves,

consider the case in which precomputations can be done

offline and then only consider only the evaluation phase

or have a study focusing on a very large variety of hard-

ware to have an even better understanding of platform-

dependent effects. Another topic would be to study side

channel resistant algorithms. Binary GCD [25] is a good

example of such algorithm.

6.1 Generalizations and additional considerations

Over the last few years several new cryptographic

schemes that make use of different algebraic struc-

tures, like quaternions, have been proposed. The

task of computing modular exponentiation and multi-

exponentiations for quaternions has been considered

in [22] and [24]. A similar task for computing multi-

exponentiations in the cases of matrices (it is essen-

tial in some automatic control problems [3]) was also

posed by some researchers. What is the main differ-

ence in these cases? It is the implicit use of commu-

tativity in all of the already existing algorithms! In-

deed, the computation of W = A2B2 (A, B square

matrices) has to be done as W = (AA)(BB); the non-

commutative nature of the matrix multiplication pre-

vents us to use tricks like computing the same state-

ment as (AB)2 = ((AB)(AB)). For readers who might

be interested in exploring these fascinating problems,

we will provide here two basic definitions: a matrix A

is called nilpotent if there exist a positive integer, n,

such that An = 0; a pair of matrices (A,B) is called

mortal if there exist a pair of positive integers (m,n)

such that AmBn = 0. Whilst testing if a matrix A is

nilpotent is relatively easy, testing mortality of pair of

matrices is extremely difficult – there are no provable

bounds on the exponents (m,n) and matrix double-

exponentiation computation cannot use many of the

computational tricks presented in our paper, due to the

non-commutativity. So, for these cases one has to use a

radically different approach. In cryptographic settings

this means that one has to use either separate expo-

nentiations (that would be unfortunate and a serious

drawback to the performance of quaternion-based cryp-

tographic schemes like the one in [22], for example) or

completely different multi-exponentiations techniques

have to be found. We hope this remark of ours will

spark the attention of the cryptographic algorithms de-

signers to take a deeper look into this under-researched

task.

Acknowledgements We would like to thank some people
that helped elaborating this paper. First, we would like to
thank Pr. Paul Zimmermann from Loria, France, who took a
lot of time to help us understand how multiprecision libraries
work. Then Colin Walter who clarified a lot of details on
Montgomery reduction implementation. Thank you also to
Wolgang Welz from the IOTA Foundation for his engineering
advices that helped us define the scope of this paper. Finally,
thank you to Ilan Zajtmann for lending us some computation
time on his Apple M1 computer to help us include cutting
edge technology in this survey.

Rethinking Modular Multi-Exponentiation in Real-World Applications 13

References

1. Attias, V., Vigneri, L., Dimitrov, V.: Implementation
Study of Two Verifiable Delay Functions. In: Tokenomics,
6, pp. 1–6 (2020)

2. Barrett, P.: Implementing the rivest shamir and adleman
public key encryption algorithm on a standard digital
signal processor. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 263
LNCS (1987). DOI 10.1007/3-540-47721-7 24

3. Blondel, V.D., Tsitsiklis, J.N.: When is a pair of matrices
mortal? Information Processing Letters 63(5) (1997).
DOI 10.1016/s0020-0190(97)00123-3

4. Blum, T., Paar, C.: Montgomery modular exponentiation
on reconfigurable hardware. Proceedings - Symposium on
Computer Arithmetic (1999). DOI 10.1109/arith.1999.
762831

5. Borges, F., Lara, P., Portugal, R.: Parallel algorithms
for modular multi-exponentiation. Applied Mathematics
and Computation 292, 406–416 (2017). DOI 10.1016/j.
amc.2016.07.036

6. Bosselaers, A., Govaerts, R., Vandewalle, J.: Compar-
ison of three modular reduction functions. In: Lec-
ture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 773 LNCS (1994). DOI 10.1007/
3-540-48329-2 16

7. Brent, R., Zimmermann, P.: Modern Computer Arith-
metic. October. Cambridge University Press, Cambridge
(2010). DOI 10.1017/cbo9780511921698

8. Chang, C.C., Lou, D.C.: Parallel computation of the
multi-exponentiation for cryptosystems. International
Journal of Computer Mathematics 63(1-2) (1997). DOI
10.1080/00207169708804548

9. Chang, C.C., Lou, D.C.: Fast Parallel Computation of
Multi-Exponentiation for Public Key Cryptosystems. In:
Parallel and Distributed Computing, Applications and
Technologies, PDCAT Proceedings (2003). DOI 10.1109/
pdcat.2003.1236459

10. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An
algorithm for modular exponentiation. Informa-
tion Processing Letters 66(3), 155–159 (1998).
DOI 10.1016/s0020-0190(98)00044-1. URL
https://www.sciencedirect.com/science/article/

abs/pii/S0020019098000441
11. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Complex-

ity and fast algorithms for multiexponentiations. IEEE
Transactions on Computers 49(2), 141–147 (2000). DOI
10.1109/12.833110. URL http://ieeexplore.ieee.org/

document/833110/
12. Euclid: The Elements of Euclid, 2nd edn. Dover Publi-

cations Inc., New York, New York, USA (1956)
13. Gueron, S.: Efficient software implementations of modu-

lar exponentiation. Journal of Cryptographic Engineer-
ing 2(1) (2012). DOI 10.1007/s13389-012-0031-5

14. Koç, Ç.K.: Montgomery Arithmetic, pp. 799–803.
Springer US, Boston, MA (2011). DOI 10.1007/
978-1-4419-5906-5 38. URL https://doi.org/10.1007/

978-1-4419-5906-5_38
15. Kochergin, V.V.: On Bellman’s and Knuth’s Problems

and their Generalizations. Journal of Mathematical Sci-
ences (United States) 233(1) (2018). DOI 10.1007/
s10958-018-3928-4

16. Lou, D.C., Chang, C.C.: An efficient divide-and-conquer
technique for parallel computation of modular multi-
exponentiation. Computer Systems Science and Engi-
neering 15(2) (2000)

17. Möller, B.: Algorithms for multi-exponentiation. In: Vau-
denay, Serge, Youssef, A. M. (eds.) Selected Areas in
Cryptography, vol. 2259, pp. 165–180. Springer Berlin
Heidelberg (2001). DOI 10.1007/3-540-45537-x 13. URL
https://www.bmoeller.de/pdf/multiexp-sac2001.pdf

18. Montgomery, P.L.: Modular multiplication without trial
division. Mathematics of Computation 44(170), 519–521
(1985)

19. Rivest, R.L., Shamir, A., Adleman, L.: A Method for
Obtaining Digital Signatures and Public-Key Cryptosys-
tems. Communications of the ACM 21(2), 120–126
(1978). DOI 10.1145/359340.359342

20. Roberto M., A.R.U.o.B.: The Complexity of Certain
Multi-Exponentiation Techniques in Cryptography. Jour-
nal of Cryptology pp. 357–373 (2005)

21. Van Meter, R., Itoh, K.M.: Fast quantum modular expo-
nentiation. Physical Review A - Atomic, Molecular, and
Optical Physics 71(5) (2005). DOI 10.1103/PhysRevA.
71.052320

22. Wang, B., Hu, Y.: Signature scheme using the root ex-
traction problem on quaternions. Journal of Applied
Mathematics 2014 (2014). DOI 10.1155/2014/819182

23. Wesolowski, B.: Efficient verifiable delay functions. In:
Ishai, Yuval, Rijmen, Vincent (eds.) Advances in Cryp-
tology – EUROCRYPT 2019, vol. 11478 LNCS, pp. 379–
407. Springer International Publishing (2019). DOI
10.1007/978-3-030-17659-4 13

24. Yagisawa, M.: A Digital Signature Using Multi-
variate Functions on Quaternion Ring. IACR
Cryptology ePrint Archive 2010(2), 352 (2010).
URL http://dblp.uni-trier.de/db/journals/iacr/

iacr2010.html#Yagisawa10

25. Yen, S.M., Chen, C.N., Moon, S.J.: Multi-exponentiation
algorithm based on binary GCD computation and its
application to side-channel countermeasure. Journal of
Cryptographic Engineering 2(2), 99–110 (2012). DOI
10.1007/s13389-012-0032-4

26. Yen, S.M., Laih, C.S., Lenstra, A.K.: Multi-
exponentiation. IEE Proceedings: Computers and Digital
Techniques 141(6), 325–326 (1994). DOI 10.1049/ip-cdt:
19941271. URL https://digital-library.theiet.org/

content/journals/10.1049/ip-cdt{_}19941271

https://www.sciencedirect.com/science/article/abs/pii/S0020019098000441
https://www.sciencedirect.com/science/article/abs/pii/S0020019098000441
http://ieeexplore.ieee.org/document/833110/
http://ieeexplore.ieee.org/document/833110/
https://doi.org/10.1007/978-1-4419-5906-5_38
https://doi.org/10.1007/978-1-4419-5906-5_38
https://www.bmoeller.de/pdf/multiexp-sac2001.pdf
http://dblp.uni-trier.de/db/journals/iacr/iacr2010.html#Yagisawa10
http://dblp.uni-trier.de/db/journals/iacr/iacr2010.html#Yagisawa10
https://digital-library.theiet.org/content/journals/10.1049/ip-cdt{_}19941271
https://digital-library.theiet.org/content/journals/10.1049/ip-cdt{_}19941271

	Introduction
	Problem statement
	Multi-exponentiation algorithms
	Montgomery multiplication
	Implementation results and discussion
	Conclusion

