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Abstract

Ring Confidential Transaction (RingCT) protocol is an effective cryptographic component for pre-
serving the privacy of cryptocurrencies. However, existing RingCT protocols are instantiated from one-
out-of-many proofs with only one secret, leading to low efficiency and weak anonymity when handling
transactions with multiple inputs. Additionally, current partial knowledge proofs with multiple secrets are
neither secure nor efficient to be applied in a RingCT protocol.

In this paper, we propose a novel any-out-of-many proof, a logarithmic-sized zero-knowledge proof
scheme for showing the knowledge of arbitrarily many secrets out of a public list. Unlike other partial
knowledge proofs that have to reveal the number of secrets [ACF21], our approach proves the knowledge
of multiple secrets without leaking the exact number of them. Furthermore, we improve the efficiency of
our method with a generic inner-product transformation to adopt the Bulletproofs compression [BBB+18],
which reduces the proof size to 2⌈log2(N)⌉+9.

Based on our proposed proof scheme, we further construct a compact RingCT protocol for privacy
cryptocurrencies, which can provide a logarithmic-sized communication complexity for transactions with
multiple inputs. More importantly, as the only known RingCT protocol instantiated from the partial
knowledge proofs, our protocol can achieve the highest anonymity level compared with other approaches
like Omniring [LRR+19]. For other applications, such as multiple ring signatures, our protocol can also be
applied with some modifications. We believe our techniques are also applicable in other privacy-preserving
scenarios, such as multiple ring signatures and coin-mixing in the blockchain.

I. INTRODUCTION

Blockchain-based cryptocurrencies verify and record each transaction through a decentralized network.
Specifically, a distributed ledger of all legal transactions is renewed and maintained by every user in the
network. As a result, the correctness and immutability of the whole system will be guaranteed in an
honest-majority situation. To allow all transactions to be verified easily, some cryptocurrencies record
all transaction details in plaintext. For example, the balance and address of each account are accessible
to anyone in the Bitcoin network [1]. Such public property inevitably hinders the original blockchain



scheme from application in scenarios with privacy concerns. As a result, this deficiency has impelled
the development of private cryptocurrencies [2], [3], which aim to provide confidentiality and anonymity
meanwhile allowing public verification. Currently, there are two main types of privacy protection schemes
for cryptocurrency, one is zk-SNARKs-based approach, represented by Zcash and Tornadocash [4]–[6],
and the other is ring-signature-based approach, such as Monero [2]. Compared with the former, the
ring-signature-based approach does not require trusted setups and is more friendly to nodes with low
computational resources. However, it scales only to medium-size anonymity sets, leading to weaker
anonymity.

RingCT. Ring confidential transaction (RingCT) protocol is a popular privacy-preserving solution applied
in Monero [7]–[11]. Generally speaking, they focus on two main aspects: (1) confidentiality, hiding the
amounts of money to be transferred; (2) anonymity, hiding the identities of users (spenders) in a transaction.
For the confidentiality property, existing solutions [9]–[11] typically adopt balance proofs to ensure the
sums of inputs and outputs are equal, as well as range proofs to ensure the amount of money of each
account (i.e., account balance) lying in the valid range, e.g., [0, 264−1] in Monero [2]. For the anonymity
property, Groth et al. propose the one-out-of-many proof [12], which enables a prover (spender) to prove
a statement about one message (secret key) among a list of commitments (a set of public keys) in a secure
way with logarithmic size. This technique can be used to construct a ring signature scheme that provides
anonymity by hiding the identity of the signer and is further used in RingCT protocols.

However, the initial design of one-out-of-many proofs does not consider the demand of dealing with
multiple messages, leaving this scheme hard to satisfy the requirements of high TPS (Transaction Per
Second) and sophisticated functions in decentralized finance. Besides, the separate implementation of ring
signatures and confidential transactions consumes extra computation resources of the users.

Challenges. To state the challenges clearly, we first consider an anonymous transaction with k real source
accounts as inputs. This is a prevalent scenario in crytocurrency systems, where a spender may have
multiple unspent accounts. A naive way to sign a transaction with one-out-of-many proofs is generating a
proof (as the signature) for each real source account under an independently selected ring set. Specifically,
k ring signatures are generated in total, and each one consists 1 real source account and n−1 decoy source
accounts. Accordingly, the transaction size grows linearly with k because it cosists of k signatures and kn
public keys. This property may lead to an uneconomic transaction fee, especially for transaction with many
real inputs. Meanwhile, we observe that the transaction can only achieve 1-out-of-n anonymity with kn
accounts. Besides, the scheme leaks the number of real source accounts (k), which further compromises
the anonymity. Due to the inefficiency mentioned above, current anonymous cryptocurrencies can only
use small ring sizes with weak anonymity. For example, Monero [2] uses the ring size of 11 and hence
is vulnerable to the de-anonymization attacks as shown in [13], [14].

Existing work. To overcome the challenge above, several schemes are proposed [9]–[11], [15]–[17].
Generally speaking, these schemes try to overcome the above difficulties in two directions. One is to
optimize the current RingCT structure based on one-out-of-many proofs. Another is to design new proofs
with better efficiency for multiple secrets.

Optimizing RingCT with one-out-of-many proofs. RingCT 2.0 [9], RingCT 3.0 [10], Omniring [11],
and Anonymous Zether [18] improve the performance of RingCT by rearranging the structure of multiple
accounts and applying compression techniques correspondingly. However, the effect is limited since their
underlying building block is still one-out-of-many relations.

New proofs for multiple secrets. Thomas et al. [17] present the first known logarithmic-sized partial
knowledge proof with extended Bulletproofs compression techniques. This proof can prove the knowledge
of k-subset among n public elements in logarithmic size. Although it seems to have a bunch of appealing
merits for RingCT protocols, the use of bilinear pairings hinders efficient combinations with existing
techniques such as range proofs, and leaking number k weakens the anonymity.
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Fig. 1: Structural overview of techniques in this paper. Technique ① is introduced in Section II-B and instantiated in Section V.
Technique ② is introduced in Section II-C, and formally shown in Section IV. Technique ③ is introduced in Section II-A. Technique
④ is introduced in Section II-D and formally presented in Section VI.

A. Our Contributions

In this paper, we follow the second direction and propose an efficient partial knowledge proof that can
be used as a plug-and-play algorithm in RingCT to improve the performance. Specifically, the contributions
are as follows:

Bulletproofs compression for generic relations. Inspired by previous work [15], [19], we first extend the
current Bulletproofs compression technique to generic relations in Section IV. The generic compression
model mainly captures multiple quadratic relations and presents the general transformation approach.

Logarithmic-sized any-out-of-many proofs. Based on the generic compression model, we propose an
efficient zero-knowledge proof of knowledge (zkPoK) for partial knowledge relations without revealing
the number of secrets. We name this scheme as any-out-of-many proof and give the detailed construction
with security proofs in Section V.

Efficient instantiation of RingCT. We present a concrete instantiation of the RingCT protocol based on
our any-out-of-many proofs (Section VI). As the first RingCT constructed with partial knowledge proofs,
our scheme does not require a trusted setup or pairings, improves anonymity with a truly unified ring,
and has a logarithmic spend proof size.

II. TECHNICAL OVERVIEW AND RELATED WORK

In this section, we briefly introduce some core techniques included in this paper, along with their
related work. Figure 1 generally illustrates the building blocks of our RingCT protocol. We first evaluate
the weak anonymity of the existing RingCT protocol and explain the motivation for designing a unified
ring signature (technique ③) with multiple secret keys in Section II-A. To achieve this, we construct a
partial knowledge proof (technique ①) for revealing multiple secrets. Section II-B presents the challenges
of proposing an any-out-of-many relation and gives a high-level description of our solution. To further
optimize our ring signature scheme, we accommodate the Bulletproofs compression technique [19] to our
scheme. Accordingly, we propose a generic compression model (technique ②) for aggregating the signature
with range proofs and compressing them into logarithmic size. Finally, we instantiate an efficient RingCT
protocol based on the stateless blockchain structure with our new proofs (technique ④).

A. Unified Ring with a Private k

As mentioned above, current privacy cryptocurrency systems may frequently initiate transactions with
multiple inputs [10], [18]. Unfortunately, existing RingCT protocols can scarcely handle these cases
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Fig. 2: Arranging k real source accounts acti,1, ..., acti,k in n× k matrix in RingCT 2.0. Each real source account acti,j belongs
to a ring containing act1,j ∼ actn,j , j = 1, ..., k

efficiently. Since the one-out-of-many proof can only prove one opening out of n public commitments.
As a result, each real source account needs to be hidden in an independent n-sized ring.

Figure 2 shows a typical account arrangement in RingCT 2.0 [9]. Real source accounts in pur-
ple boxes consist of public keys and valid coins (non-negative account balances). A spender (prover)
generates a signature for each real account, e.g., acti,k, and takes other decoy source accounts, e.g.,
act1,k, ..., acti−1,k, acti+1,k, ..., actn,k in the same column to build one-out-of-many proofs. We use an
n×k matrix to represent the public keys of the transaction corresponding to the accounts in Figure 2. Al-
though RingCT 2.0 presents a practical way to accumulate accounts in the same row into ACT1, ..., ACTn

to reduce the signature size, the anonymity levele of this scheme remains 1-out-of-n. An adversary who
de-anonymizes one real source account can immediately know other real accounts by referring to the
same row of the public key matrix in the transaction data.

Several researchers are aware of this problem and propose different solutions, such as many-out-of-
many proofs [18], RingCT 3.0 [10], and Omniring [11] as shown in Figure 3. However, none of them
realizes a real partial knowledge proof. In many-out-of-many proofs, Diamond et al. propose a public
permutation to compress multiple signatures but hardly improve anonymity. RingCT 3.0 and Omniring
protocols rearrange the positions of real source accounts in different rows to decrease the relevance between
them. Such property is called anonymity against insider attacks which can improve the anonymity level.
Unfortunately, although the above ideas of overcoming the defects of one-out-of-many proofs are pretty
impressive, they can not essentially solve the problems.

Prior to illustrating our idea of improving the performance of existing RingCT schemes, we first
conclude two properties that a highly anonymous RingCT needs to satisfy: (1) a unified ring and (2) a
private number k with corresponding justifications as follows.

Unified ring. Lai et al. [11] first proposed the concept of the “unified ring” in Omniring. In this paper,
we strengthen this property to provide a higher anonymous level by requiring all source accounts of
a single transaction need to share one ring. Concretely, we require that all k real source accounts are
distributed uniformly in a unified ring of N = kn size at random. Different from the structure in Figure
3, the unified ring signature can still have (k− 1)-out-of-(N − 1) anonymity when a real source account
is de-anonymized. Consider an example of k = 8 and n = 16 in Figure 2. We denote the positions
of real source accounts among the unified ring with a 128-length binary vector b containing 8 bits of
“1”. The possible value of b is

(
128
8

)
≈ 240 in a unified ring (we denote it as anonymity space in the

following) since the 8 bits of “1” is uniformly distributed in the vector at random. However, the RingCT
2.0 can only reach 16 = 24 and Omniring and RingCT 3.0 can reach 168 = 232. We also want to point
out that Omniring [11] uses a different notion of the ring size n, i.e., the number of columns in Figure
3. Therefore, in our strengthened definition, their scheme is not a truly unified ring. To the best of our
knowledge, the k-out-of-N partial knowledge proof [17] is the only known scheme that can provide a
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Fig. 3: Arranging k real source accounts acti,1, act1,2, actn,k−1 and others in an n× k matrix in RingCT 3.0 [FC’19], Omniring
[CCS’19] and many-out-of-many proofs [S&P’21]. Each real account act∗,j belongs to a ring containing act1,j ∼ actn,j

unified ring and achieve the anonymity space of about 240.

Private k. we notice that the anonymity space of the unified ring with k-out-of-N proofs is still far
less than the ideal upper bound. Since the number of secrets is also unnecessary in some applications such
as RingCT, the prover can keep it privately and only prove b is a binary vector in the space of {0, 1}128.
Here we claim that b being a zero vector is also legal in anonymous cryptocurrencies, while this case
should be excluded in some other applications (more detailed discussions in Section V). Accordingly, the
anonymity space achieves 2128. More precisely, we can regard the number k as auxiliary information that
is highly correlated to the positions of secrets. Therefore, leaking k increases the probability of correctly
guessing the indices of real source accounts. If k is hidden, the signature has (∗ − 1)-out-of-(N − 1)
anonymity after a real source account is de-anonymized (∗ means “unknown number”), while the (∗− 1)
and ∗ have no difference from the view of adversary’s and hence it does no help. As a result, hiding k
can significantly improve the anonymity of RingCT protocols. The formal analysis of this point is given
in Appendix C.

To achieve the above two properties, redesigning partial knowledge proofs for RingCT protocols seems
to be a better way, which gives us an explicit goal for the following work.

B. Efficient Partial Knowledge Proofs without Pairing

Although partial knowledge proofs with randomly distributed secrets can improve the anonymity of
RingCT protocols (or ring signatures), designing a logarithmic-sized proof scheme still comes with several
technical problems. Among them, transforming the secret key verification into a “compression-friendly”
form is a major challenge.

To state it clearly, we use vectors s ∈ Zk
q and P ∈ GN to denote k secrets and N public commitments,

and ij links the index i in P to the index j in s, e.g., Pi = Pij = gsj . Let b = {bi}Ni=1 be an N -dimensional
binary vector with “1” at the ij-th position and “0” everywhere else for j = 1, ..., k. For instance, the
following b indicates that the commitments (P2, P4) = (P21 , P42) = (gs1 , gs2) are the commitments to
the secrets s1, s2 which prover wants to prove.

b = (0, 1, 0, 1, 0, 0, 0, 0),
P = (P1, [P2], P3, [P4], P5, P6, P7, P8).

We further use the binary vector b to show the relation between P and s. As shown below, we can
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compute the exponentiation of each commitment Pi with a bit bi ∈ b as the exponent,

P b :=

N∏

i=1

P bi
i =

k∏

j=1

P 1
ij =

k∏

j=1

gsj , (1)

where the commitments with an exponent of 0 are canceled out from the products.

A direct approach to prove Equation (1) holds is instantiating extra zkPoKs for b and s, and checking
Equation (1) correspondingly with the encoding of b and s. However, the proof size of this approach is
linear, which is inefficient and leaks the number of k. One may consider to use Bulletproofs compression
to reduce the proof size, but it incurs two additional problems: (i) the Discrete Logarithm (DL) relation
may not be secure between elements in P ; (ii) the relation in Equation (1) can not be transformed into
an inner-product form of b||s. We think these are the main reasons for RingCT 3.0 [10] and Omnirnig
[11] to use only one “1”-bit in each vector b.

Thomas et al. introduce a feasible compression approach to Equation (1) [17]. They construct a poly-
nomial with its evaluations to indicate vector b. Additionally, they can concatenate b and the polynomial
coefficient vector into one and compress them with an extended Bulletproofs compression mechanism for
homomorphic relations. This approach is the only known logarithmic-sized partial knowledge proof, but
it still has some unwanted properties for RingCT. First, the approach uses a bilinear pairing mechanism
to reduce the proof size, which makes it inefficient when combining this approach with range proofs in
RingCT constructions such as Omniring [11]. Second, this approach does not consider the “public k”
problem as discussed in Section II-A, which leads to a weak anonymity level.

Based on the discussions above, we aim to propose a novel logarithmic-sized partial knowledge proof
for a hidden k without pairings. Our main idea is to leverage the amortization technique [17] (in Section
III-C) to compress the openings of secret key vector s into a single fs. Briefly speaking, we use a random
challenge y ∈ Zq to encode the secret keys into a field element fs =

∑k
j=1 y

ij ·sj . Note that the masking
value in fs is omitted for simplicity. Accordingly, Equation (1) can be rewritten as:

P yN◦b =

k∏

j=1

Pij
yij ·1 = gfs . (2)

where yN ◦ b = (yb1, y
2b2, ..., y

NbN ).

Since the amortized equation only has one field element fs, it follows the same form as the one-
out-of-many relation, which enables us to further use Bulletproofs compressions. Perhaps surprisingly,
our new partial knowledge proofs have nearly the same proof size as the one-out-of-many proofs. More
importantly, since there is no need to restrict the number k of “1” bits in b nor to include k in the relation.
Our protocol can be used to prove multiple secrets. The RingCT instantiated from it can achieve both
anonymous properties of unified rings and hidden k described in Section II-A.

We also want to highlight that our partial knowledge proofs have a wider application range beyond
the RingCT protocol. For the case that k = N , the proof can be used as a Coin-Mixing proof without a
trusted setup. We can also instantiate a multi-party ring signature while an extra proof of k ̸= 0. More
detailed discussions are given in Section VIII-B.

C. Generic Compression Model for ZKP of Vectors

For real-world applications, we need to further instantiate the above proof relation as a concrete proof
scheme. A straightforward idea is to write the relation into arithmetic circuits and prove it with generic
zk-SNARKs such as Groth16 and Sonic [20], [21]. However, this solution has two main problems. First,
running a zk-SNARKs system requires a lot of resources from the node, which deteriorates the performance

6



of the cryptocurrency. Second, although existing generic zk-SNARKs systems capture arithmetic circuits
satisfiability, it is inefficient to prove the exponentiation constraint in Equation (2). Actually, most zk-
SNARKs-based systems use Merkle tree for partial knowledge proofs (which requires a large circuit)
instead of Σ-protocols, as mentioned by Attema et al. [17].

As a result, we aim to find an approach to transform our any-out-of-many proofs into a compression-
friendly form for Bulletproofs technique [19]. The target scheme is a specific Σ-protocol that can be
executed directly by nodes without a trusted setup. Furthermore, we extend the above transformation
approach slightly to obtain a more general inner-product transformation technique for quadratic relations.
We also introduce feasible aggregation and combination techniques for multiple relations in Section IV,
which allows us to aggregate the partial knowledge proofs and combine it with range proofs.

D. RingCT Protocol based on Stateless Blockchain

As a direct application of our any-out-of-many proofs, we mainly construct the RingCT protocol based
on the formalized model proposed by Lai in [11]. By applying a combination technique for two inner-
product relations of partial knowledge proofs and range proofs, our RingCT protocol can achieve the
same proof size of O(Nk + md) as Omniring with better anonymity under the exact ring size, where
N, k,m represents the size of the ring, the number of real source accounts and target (output) accounts
respectively, and 2d is the maximum currency amount that can be sent in a single transaction.

Besides, to alleviate the burdensome ledger state data requirements in most of the existing RingCT
protocols, we improve the original transaction validation mechanism with a trapdoor-less accumulator
[22]. As a result, we build a RingCT protocol based on a stateless blockchain, allowing the verifier to
validate each transaction efficiently with only a commitment to the ledger state.

III. SECURITY DEFINITIONS AND BUILDING BLOCKS

A. Notation

Let λ be a security parameter. A commitment key ck is generated with a setup algorithm ck ←
Setup(1λ), which further indicates a cyclic group G determined by ck. Let g, h, u, v be generators of G,
conforming to the DL assumption. Zq denotes the ring of integers modulo q. Let Gn and Zn

q be vector
spaces of dimension n over G and Zq respectively, x ←$ Zq denotes sampling x from Zq uniformly at
random.

We use bold-type lower-case letters to denote vectors, e.g., a ∈ Fn is a vector of elements a1, ..., an ∈
F, where F can be Zq or G. Let ca = (c·a1, c·a2, ..., c·an) denotes the scalar product of scalar c and vector
a; ⟨a, b⟩ = ∑n

i=1 aibi ∈ F denotes the inner product of vectors a and b; a ◦ b = (a1b1, ..., anbn) ∈
Fn denotes the Hadamard product of vectors a and b; and ab =

∏n
i=1 ai

bi ∈ F denotes the multi-
exponentiation of two vectors. For k ∈ Zq , we define kn as (1, k, k2, ..., kn−1) ∈ Zn

q . |a| represents the
number of non-zero elements in vector a. Let a ∥ b denotes the concatenation of two vectors a ∈ Zn

q

and b ∈ Zm
q , then a ∥ b ∈ Zm+n

q .

B. Commitment Scheme

A non-interactive commitment scheme (over a commitment key ck) can output a commitment c ∈ G
based on input secret message m ∈ M (M is the message space) and randomness r ∈ R (randomness
space) in the commitment stage. In the opening stage, encoding of m and r are sent to allow anyone
to verify that c is indeed a commitment to m. We use Comck to denote a commitment and require that
a commitment scheme satisfies the hiding and binding properties: (1) The hiding property requires the
commitment not to reveal the message. (2) The binding property requires the commitment can only be
opened to one message. Formal definitions are given in Appendix A.
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In this paper, we instantiate our zkPoK with the Pedersen commitments [23] and its extended version
of Pedersen vector commitments. For m, r ∈ Zq , we define Comck (m; r) = gmhr ∈ G, and for m ∈
Zn
q , r ∈ Zq , define Comck (m; r) = gmhr = (

∏n
i=1 g

mi
i )hr ∈ G.

C. Σ-Protocol and Amortization Technique

A Σ-protocol is a 3-move zero-knowledge protocol between a prover and a verifier in which a binary
relation (x, y) ∈ R of witness x and statement y is proved. The prover generates and sends a commitment
t first, and then the verifier chooses a random public coin c as a challenge. According to the challenge,
the prover computes the response z. Finally, the verifier checks the validity of statement y based on the
transcript. Typically, a Σ-protocol must satisfy three properties: perfect completeness, special soundness,
and HVZK (honest verifier perfect zero-knowledge). The formal definitions are given in Appendix A.

1) Σ-protocol for Opening Homomorphisms: Σ-protocols can be instantiated with different commit-
ment schemes for different relations, providing a basis for the design of zero-knowledge proofs. This paper
only focuses on the Σ-protocol for opening homomorphic relations proposed by Thomas et al. [17], built
on the Pedersen commitment scheme. Assume a prover wants to prove the knowledge of a value x ∈ Zq

and its constraint with a public element y ∈ G as f(x) = y (without revealing x), where f ∈ Hom(Zq,G)
is a homomorphism. The relation for the proof of argument can be written as:

Rf = {(A ∈ G, y ∈ G;x ∈ Zq) : A = gx, y = f(x)} .
Based on the relation Rf , a zkPoK scheme Π0 can be constructed with the Pedersen commitment as
below:

Π0 : ⟨P(A, y;x),V(A, y)⟩
P :

(1) r ←$ Zq

(2) B := gr

(3) t := f(r)

P → V : B, t

V :

(4) c←$ Zq

P ← V : c

P :

(5) z := cx+ r

P → V : z

V : Check if the following equations hold:

(6) gz ?
= AcB

(7) f(z) ?
= cy + t

According to the results in [17], Π0 satisfies perfect completeness, special soundness, and special HVZK.

2) Amortization Techniques: we consider a scenario where the prover wants to proves knowledge of
multiple secrets x1, ..., xn conformed with the same homomorphism f as follows:

Rnf =

{
(A1, ..., An ∈ Gn, y1, ..., yn ∈ Gn;x1, ..., xn ∈ Zn

q ) :
A1 = gx1 , y1 = f(x1), ..., An = gxn , yn = f(xn).

}
.
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It is practical to simply run Π0 n times, while this method will introduce a high communication com-
plexity with both linear-sized commitments B1, ..., Bn and responses z1, ..., zn. We use the amortization
technique already adopted in a lot of previous work such as Bulletproofs [19] and compressed Σ-protocols
[24]. By compressing the n responses z1, ..., zn with a challenge c to z =

∑n
i=1 c

ixi + r, the verifier can
check the following equations instead as long as the DL assumption holds.

gz = Ac
1A

c2

2 · · ·Acn

n B (3)
f(z) = t+ cy1 + c2y2 + · · ·+ cnyn (4)

Note that instead sending n commitments B1, ..., Bn, only a new commitment B of randomness r ←$ Zq

needs to be sent.

D. Bulletproofs Compression Technique

Bulletproofs protocol is an interactive approach to compress n-size vectors to scalars with log(n) times
of iterations [19]. This scheme is mainly based on the inner-product argument [15], which aims to prove
that the prover knows the openings of two Pedersen vector commitments that satisfy an inner-product
relation.

We define a commitment scheme with commitment key ck, with cyclic group G determined by ck
and g, h ∈ G. The inner-product relation guanratees that the prover knows two secret vectors a, b to
the commitment B, which satisfying inner-product relation ⟨a, b⟩ = t. We give the formal definition of
relation Rip as

Rip =

{
(g,h ∈ Gn, B ∈ G, t ∈ Zq;a, b ∈ Zn

q ) :
B = gahb ∧ ⟨a, b⟩ = t.

}
.

In most cases the inner-product is also embedded into B by using another generator u ∈ G, and we
can obtained a compact commitment C = gahb · u⟨a,b⟩. To reduce this size sent in the opening stage
from linear to logarithmic, an elegant compression mechanism is given in [19]: assume that n is an even
number and n′ = n/2, we define the slices of vectors:

aL = (a0, ..., an′−1) ∈ Zn′

q ,

aR = (an′ , ..., an−1) ∈ Zn′

q , (5)

so do bL, bR, gL, gR,hL,hR. Therefore, we can compute compressed vectors a′, b′ and corresponding
group vectors g′,h′ with a random challenge x←$ Zq as follows:

a′ = xaL + aR, b′ = bL + xbR,

g′ = gL ◦ gx
R, h′ = hx

L ◦ hR, (6)

which indicates the following relation holds:

C ′ = (g′)a
′
(h′)b

′
u⟨a′,b′⟩ = LCxRx2

, (7)

where L = gaR

L hbR

L u⟨aR,bL⟩ and R = gaL

R hbL

R u⟨aL,bR⟩. The new relation in Equation (7) shows that the
original relation Rip still holds on the new elements a′, b′, g′,h′, L,R. Therefore, only half of the origin
vectors a′ and b′ and extra two group elements L and R need to be sent, and finally the original vector
of length n can be reduced to 1 after ⌈log2(n)⌉ rounds of iterations.

IV. GENERIC INNER-PRODUCT TRANSFORMATION

According to the discussion in Section IV, our main task in designing a generic compression model
is to generalize and extend the transforming process from quadratic relations to inner-product forms. We
start from a quadratic relation and further extend to multiple inner-product relations.
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A. Quadratic Relation

We consider the problem of proving the knowledge of a secret vector b ∈ Zn
q with the following

relation:
Rquad =

{
(g ∈ Gn, B ∈ G; b ∈ Zn

q ) : B = gb, f(b) = 0n
}
,

where f is a quadratic relation in general form as f(b) = α ◦ (b ◦ b) + β ◦ b+ γ = b ◦ (α ◦ b+ β) + γ
with public coefficients α,β,γ. A linear relation can be regarded as a special case of the quadratic
relation where α = 0n. Here we omit the randomness for hiding because it can be simply represented
by concatenation b′ = (b||r) and g′ = (g||h).

To ensure that f(b) = 0n holds, it is equivalent to show the following equations hold by writing b as
b0 and α ◦ b0 + β as b1 satisfying:

b0 ◦ b1 = −γ ∧ b1 = α ◦ b0 + β. (8)

With a challenge y ∈ Zq , relation Rquad can be further transformed into inner-product forms:

⟨yn, b0 ◦ b1⟩ = −⟨yn,γ⟩ ∧ ⟨yn,α ◦ b0 + β − b1⟩ = 0. (9)

We can write the above two equations into one inner-product with another challenge z ∈ Zq as:

⟨yn, b0 ◦ b1⟩+z ⟨yn,α ◦ b0+β−b1⟩
⇐⇒ ⟨ζ(b0), η(b1)⟩= δ, (10)

where ζ(b0) = b0 − z1n, η(b1) = (zα+ b1) ◦ yn, and δ = −⟨yn, z2α+ zβ⟩ − ⟨yn,γ⟩. With the steps
above, we can transform a generic quadratic relation into inner-product forms. We formally conclude this
process as Lemma 1.

Lemma 1: Any quadratic relation Rquad of a vector b can be transformed into a compression-friendly
form of inner-product relation Rip with ⟨ζ(b0), η(b1)⟩ = δ, by regarding b0 = b and b1 = α ◦ b+ β.

Proof: Following the process in Equation (10), we can get expected forms of ζ(b0) and η(b1).

B. Multiple Inner-product Relations of Same Pairs

With Lemma 1, we can transform any quadratic relation into inner-product forms. Here we further
consider the following relation of b0, b1 with k independent inner-product relations:

Rmip-1 =

{
(g,h ∈ Gn, B ∈ G; b0, b1 ∈ Zn

q × Zn
q ) :

B = gb0hb1 ∧ IP0∧, ...,∧IPk−1.

}
,

where IPj denotes ⟨ζj(b0), ηj(b1)⟩ = δj . ζj(b0) = ζj ◦ b0 + µj and ηi(b1) = ηj ◦ b1 + νj are linear
relations for j = 0, ..., k − 1.

We can also transform the above multiple inner-product relations into one inner product. We formally
conclude this process as Lemma 2. We claim that the relation Rmip-1 satisfies the following lemma:

Lemma 2: For Rmip-1 of a single pair (b0, b1) ∈ Zn
q × Zn

q with independent inner-product relations
IP0, ..., IPk−1, it can be transformed into Rip of a single pair (τ ,ω) ∈ Zn

q × Zn
q with an inner-product

relation IP.

To show the idea above, we first consider two equations, ⟨ζ0(b0), η0(b1)⟩ = δ0 and ⟨ζ1(b0), η1(b1)⟩ =
δ1 in relation Rips. we can rewrite the two inner-products with a challenge z as follows:

⟨ζ0(b0), η0(b1)⟩+ z⟨ζ1(b0), η1(b1)⟩ = δ0 + zδ1. (11)

10



The Equation (11) can also be rewritten as one inner-product relation:

⟨τ(b0), ω(b1)⟩ = δ, (12)

where τ(b0) = τ ◦ b0 + κ0, ω(b1) = b1 + τ−1 ◦ ω, and δ = δ0 + zδ1 − κ1 + ⟨κ0, τ
−1 ◦ ω⟩.

τ ,ω,κ0,κ1 are coefficients computed by constraints η0(b1) ◦ ζ0 + zη1(b1) ◦ ζ1 = τ ◦ b1 + ω,
κ0 = µ0 ◦ η0 + zµ1 ◦ η1 and κ1 = ⟨µ0,ν0⟩+ ⟨zµ1,ν1⟩.

We can further iteratively conduct the above approach to transform two inner-product relations into a
single inner-product form, and finally convert k-many inner-product relations into one.

When dealing with multiple quadratic relations, fi(b) = αi ◦ b + βi = 0n, we need an additional
step as the b1’s in Equation (8) can be different due to distinct αi’s and βi’s, i.e., b1,i = αi ◦ b0 + βi.
Nevertheless, we have b1,i = αi ◦α−1

1 ◦ (b1,1 − β1) + βi, which indicates a linear relation between b1,i
and b1,1. Therefore, we can set b1 = b1,0 and convert ⟨ζi(b0), ηi(b1,i)⟩ = δ0 to ⟨ζi(b0), ρi(b1)⟩ = δ0 for
all 0 ≤ i < n, where ρi(·) is a linear function. By adopting the multiple inner-product transformation, we
can rewrite them into one inner-product form.

C. Multiple Inner-product Relations of Different Pairs

Another special case is dealing with multiple secrets, (a0,a1) and (b0, b1) such that ⟨a0,a1⟩ = δa and
⟨b0, b1⟩ = δb (e.g., after adopting the transformation of Equation (10) for f1(a) = 0n and f2(b) = 0m).
This can be simply converted into an inner-product form ⟨a0||(zb0),a1||(zb1)⟩ = δa+zδb with a challenge
z. For one inner-product relation, the prover can use a similar process in the quadratic relation to encode
τ(b0) and ω(b1) to ζ and η respectively. Finally, we can use the Bulletproofs compression [15], [19]
directly to reduce the proof size.

We give a formal definition of the above idea as follows. For multiple inner-product relation of different
pairs (b0,0, b0,1), ..., (bk−1,0, bk−1,1), we can transform the following relation into one Rip

Rmip-2 =

{
(gj ,hj ∈ Gnj , Bj ∈ G; bj,0, bj,1 ∈ Znj

q × Znj
q ) :

Bj = g
bj,0

j h
bj,1

j ∧ IPj ,∀j = 0, ..., k − 1.

}
,

where IPj denotes ⟨ζj(bj,0), ηj(bj,1)⟩ = δj . ζj(bj,0) = ζj ◦ bj,0 + µj and ηj(bj,1) = ηj ◦ bj,1 + νj are
linear relations for j = 0, ..., k − 1. Note that we use nj to denote different lengths. The transformation
can be concluded with the following lemma:

Lemma 3: For Rmip-2 of multiple pairs (bj,0, bj,1) ∈ Znj
q × Znj

q , j = 0, ..., k − 1 with independent
inner-product relations IP0, ..., IPk−1, it can be transformed into Rip of a single pair (τ ,ω) ∈ Zkn

q ×Zkn
q

satisfying an inner-product relation IP∗.

V. ANY-OUT-OF-MANY PROOFS

This section presents a new technique, any-out-of-many proof of partial knowledge without leaking the
secret number k. We start by defining the any-out-of-many relation and reformulating it into a compression-
friendly form. Then we present the basic proof scheme with elaborated descriptions of each step. Finally,
we describe how to reduce the proof size of our scheme to logarithmic and discuss its potential applications.

A. Basic Definitions

We first define the relation of a partial knowledge proof with the hidden secret number k as follows:

R*/N=

{
(ck,P ∈ GN ; s ∈ Zk

q ) :
|s| ∈ [1, N ], Pij = Comck (0; sj) ∀j = 1, ..., k.

}
,
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where ck is the commitment key, P is a public set of commitments generated by ck. Besides, we use
s to denote the set of secrets for arbitrary k commitments among P , where |s| = k. Specifically, each
sj ∈ s, j = 1, ..., k corresponds to a commitment Pij = Comck (0; sj) = gsj ∈ P , ij ∈ [1, N ], where ij
is defined in Section II-B that links the index of Pi to sj . Therefore, the relation R*/N requires that the
prover does know the witness for partial P as secrets s, and for each secret sj ∈ s, j = 1, ..., k, it is
valid for Pij , i.e., it satisfies the relation Pij = Comck (0; sj).

Following the intuition to prove R*/N (Section II-B) in zero-knowledge, we describe more concretely.
Equation (1) formulates the relation R*/N by using an N -dimensional binary vector b, the prover can send
a k-dimensional encoding vector fs ∈ Zk

p for s directly to the verifier for checking. However, instantiating
a zkPoK is neither secure (leaking) nor efficient according to our analysis in Section II-B. Thus, we first
amortize sj’s into one field element fs ∈ Zp as follows:





fs[1] = ys1 + r1
fs[2] = ys2 + r2

· · ·
fs[k] = ysk + rk

Amortize−→ fs =
∑k

j=1 y
ijsj + rs, (13)

where fs[j] denotes the j-th element in the vector. According to the amortization technique in Section
III-C by Thomas et al. [17], since each sj satisfies the same form of a homomorphic relation Pij = gsj ,
it is secure to amortize them into one encoding value with a challenge value y. The amortized relation is
given in Equation (2). Note that Equation (2) has a similar form of the one-out-of-many proofs used in
previous work [9]–[11] except that the binary vector b is not restricted to contain only one “1” bit.

The remaining task is to build a binary proof for b with a Bulletproofs-friendly form. It is known
that b ∈ {0, 1}N is equivalent to the constraint b ◦ (1N − b) = 0 [25], [26], which is a quadratic form
conformed with our model in Section IV-A. Then according to Lemma 1, the binary constraint can be
transformed into an inner-product form of ⟨ζ(b0), η(b1)⟩ = t̂ with an extra challenge x ∈ Zq , where
b0 = b, b1 = 1N − b.

Remarks. In some applications such as multiple ring signatures, we also need an additional constraint
to ensure |s| = k is in a valid range (more detailed discussions in Section VIII-B). Since the binary
form of b only ensures that |s| lies in the range [0, N ], the case |s| = 0 may allow a malicious prover
to prove the knowledge of the empty set, i.e., s = ∅, b = 0N . Thankfully, we observe that attackers
cannot leverage this case to compromise the security of RingCT since the input coins (account balances)
are balanced with output coins by balance proofs. Additionally, with range proofs, the output coins must
be zero in this empty secret case. Although a malicious prover can generate valid transactions without
any real source account, our RingCT still ensures that no valid coin is transferred in a “zero-to-zero”
transaction. In fact, “zero-to-zero” transactions are allowed in some existing anonymous cryptocurrencies
such as Monero [2]. The only difference is that the user must own some input accounts with a 0 balance to
generate “zero-to-zero” transactions in current approaches, while our approach allows these transactions
even without owning any input accounts.

B. Proof Scheme

Before proposing the concrete scheme of our any-out-of-many proofs Π∗, we first define necessary
notations as below.

Notations: commitment keys ck , gk are generated under security parameters λ1, λ2 and setup algorithm
as ck ← Setup(1λ1), gk ← Setup(1λ2). P = (P1, ..., PN ) represents a public commitment set consisting
of N ≥ 1 elements. Denote secret keys that the prover knows as a set s ∈ Zk

q with k (hidden) number of
elements and each element sj satisfies Pij = Comck (0; sj). In case the public key encryption algorithm
uses different security parameters from our zkPoK scheme, all used field and group elements are generated
from a different key gk such as ZN

q ,Zq,G. We further explain Π∗ as follows:
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Π∗ : ⟨P(ck, g,h, u, v,P ; b, s),V(ck, g,h, u, v),P ⟩
P :

(1) α, β ←$ Zq

(2) r0, r1 ←$ ZN
q

(3) b0 := b, b1 := b0 − 1N

(4) A := gb0hb1uα, B := gr0hr1uβ

P → V : A,B

V :

(5) y, z ←$ Zq

P ← V : y, z

P : Defines the following polynomials in X and computes t1, t2

(6) ζ(X) = (b0 + z · 1N + r0 ·X) ◦ yN

(7) η(X) = z · 1N + b1 + r1 ·X
(8) t̂(X) = ⟨ζ,η⟩ = δ(y, z) + t1X + t2X

2

P :

(9) τ1, τ2 ←$ Zq

(10) E := P (yN◦r0) Comck (0;−rs)
(11) T1 := vt1uτ1 , T2 := vt2uτ2

P → V : E, T1, T2

V :

(12) x←$ Zq

P ← V : x

P :

(13) ζ := ζ(b0),η := η(b1)

(14) t̂ := ⟨ζ,η⟩
(15) τx := τ1x+ τ2x

2

(16) µ := α+ βx

(17) fs :=

k∑
j=1

yij sj + rsx

P → V : ζ,η, t̂, τx, µ, fs

V : Checks if the following equations hold :

(18) vt̂uτx ?
= vδ(y,z)T x

1 T
x2

2

(19) (g′)ζhηuµ ?
= ABxg−z1N

hz1N

(20) P ζ ?
= Comck (0; fs)E

xP (−zyN )

(21) t̂ ?
= ⟨ζ,η⟩

- In steps 1 and 2, the prover randomly samples α, β from Zq as the randomness for the Pedersen
commitments and r0, r1 from ZN

q as the masking value for the openings.
- In step 3, the prover generates binary vectors b0, b1 according to the transformation process in Section

IV.
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- Step 4 computes the commitments A and B of the vectors b0, r0, b1, r1 respectively with random
values α and β.

- After receiving the challenges, the prover computes the corresponding t1, t2 with the opening polyno-
mials ζ(X), η(X) for the inner-product relation in steps 6,7,8.

- In steps 9 and 11, the prover samples random values τ1, τ2 from Zq and computes commitments T1, T2

of t1, t2 for the verification in step 8.
- In step 10, the prover computes the commitment E for the verification of Equation (2).
- The prover calculates opening vectors and values in steps 13-17, including two opening vectors ζ,η

of the inner-product expression and their result t̂. τx, µ are openings of random values, and fs is the
amortized opening of secret s.

- Finally, according to the received transcript, the verifier checks that:
- t̂ is correctly computed with Equation (18);
- the commitments of vectors b0, b1 are correct with Equation (19), where (g′)y

N

= g for simplicity;
- P (b◦yN ) is a commitment to zero with Equation (3);
- the inner-product relation between vectors ζ,η and t̂ holds with Equation (4).

Theorem 1: Π∗ is perfectly complete, and perfect special HVZK with a constant round complexity.
Π∗ has computational special soundness under the discrete logarithm assumption on G.

The proof of the above theorem is given in Appendix B.

C. Optimizations

To further reduce the proof size in Π∗, we modify the protocol as follows. First, steps 19 and 20 can
be aggregated into one as

(g′ ◦ P ′)ζhηuµ ?
= ABxg−z1N

hz1N

Comck (0; fs)E
xP (−zyN ),

where P ′ = (P y
1 , P

y2

2 , ..., P yN

N ) ∈ GN . The DL relation holds in the new equation because steps 19
and 20 are committed under different commitment keys ck, gk. It also follows the inner-product form of
vectors ζ,η under the group vectors G = g′ ◦ P ′,H = h. The new inner-product relation is defined as
follows:

Rip*/n=

{
(G,H ∈ GN , v, C ∈ G; ζ,η ∈ ZN

q ) :

C = GζHηv⟨ζ,η⟩.

}
,

We claim that our new inner-product argument is almost the same as given the relation Rip in Section
III-D except that the group vector G is not uniformly sampled from GN . According to the conclusion
(Corollary 1) given in the Omniring [11], we claim that this chosen vector G does not break the security
of the inner-product argument.

Next, the prover executes the Bulletproofs compression process described in Section III-D. According
to Equation (7), each round the prover compresses vectors ζ,η into half length with received c from
the verifier and sends the group elements L,R. After running the above process for ⌈log2(N)⌉ rounds,
the two N -dimensional vectors can be reduced to two field elements. And we claim that the following
theorem for Πip holds.

Theorem 2: Πip*/n is perfectly complete, and perfect special HVZK with ⌈log2(N)⌉ round complexity.
Πip*/n has computational witness-extended emulation under DL assumption on G.

Theorem 2 follows theorem 1 and the security of inner-product arguments concluded in Bulletproofs [19].
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VI. RINGCT PROTOCOL

The RingCT protocol is a direct application of our any-out-of-many proofs. In this section, we will
give a comprehensive discussion on the instantiation of this protocol based on the formalized definitions
in Omniring [11].

A. Improved Tagging Schemes

We first introduce a technique to improve the efficiency of transaction validation for our RingCT
protocol. For most existing cryptocurrency systems, transactions can only be validated by full nodes with
the ledger’s current state. Since ring signatures hide the identity of real spenders (signers), nodes in a
RingCT-based system cannot distinguish which transaction output (TXO) is spent. Consequently, they
must keep a record of all historical transaction outputs with ever-growing size. For example, Omnring
[11] uses “tag” to mark each output uniquely, and other schemes apply similar techniques (“serial number”
in Zcash [4] and RingCT 2.0 [9], and “key images” in Monero [2] and RingCT 3.0 [10]). Unfortunately,
these techniques lead to a state size of gigabytes, raising common concerns about systems’ usability and
decentralized property as mentioned in [27].

To mitigate this problem, we propose a new transaction validation scheme with constant state size
based on the trapdoor-less accumulator proposed by Boneh et al. in [22]. Prior to presenting the concrete
scheme, we define some necessary notations first.

A hash-function with prime domains maps elements in Z to odd prime values. Denote Hprime :
{0, 1}∗ → Prime(1λ), where Primes(1λ) is the subset of odd prime generators in G. Several feasible
constructions of Hprime is presented in [28].

An algorithm Bezout(x, y) outputs Bézout coefficients a, b ∈ Z for a pair of co-prime integers x, y
satisfying the relation ax+ by = 1 [29].

A trapdoorless universal accumulator is denoted with its current state (At, s̃) under the RSA assump-
tion, where At = gs̃ mod n ∈ G, and s̃ is the production of all accumulated odd prime generators in
Primes(1λ). Typically, the accumulator has the following core operations:

- AccGet(): Return current accumulator state (At, s̃).
- AccAdd(At, x): Add a new item x ∈ Primes(1λ) to At by computing At+1 = Ax

t mod n.
- AccMemWitGen(At, s̃, x): Compute a membership witness for x, i.e., the accumulator without x

as gs̃/x. Return w = gs̃/x.
- AccNonMemWitGen(At, s̃, x): Compute a non-membership witness for x based on the fact that

gcd(x, s̃) = 1, i.e., (a, b)← Bezout(s̃, x). Return w = (a, b).

Tagging schemes can be regarded as one-way permutations over group elements and therefore are used
to mark the secret key uniquely. Lai et al. present a formalized description of tagging schemes in [11] as:

- TagSetup(1λ): Sample the commitment key ck based on the security parameters 1λ. Return ck.
- TagKGen(sk): Compute pk = Comck (0; sk) based on the input sk. Return pk.
- TagEval(sk): Compute tag = Comck (0; sk

−1) based on the input sk. Return tag.

A non-interactive proof of exponentiation algorithm NIPoE(x,A,B) is proposed by Boneh [22], it
generates a proof π to shown the relation that Ax = B holds.

We improve the original tagging scheme with the accumulator [22] for our new RingCT protocol as
follows:

By applying the improved tagging scheme (TagSetup∗, TagKGen∗,TagPf∗,TagVf∗), verifiers
only need to check whether the proof output by TagVf∗ is correct or not without comparing with all
previous tag’s.
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We further introduce an amortization technique for multiple tags to reduce the proof size. Denote
tagij = Comck (0; sk

−1), we map k tags of real source accounts to Q ∈ GN with the same b in the ring
signature. The prime tag Qi ̸=ij of other ring accounts is generated with a randomly sampled tag. The
general idea is amortizing Q in the same way as (2):

QyN◦b =

k∏

j=1

Qij
yij ·1 = Q̃, (14)

where y ∈ Zq is the challenge and b is the binary vector defined in Section II-B. Accordingly, we can
run the tagging scheme on the amortized value Q̃. It is not hard to see that accumulating Qij

yij
does

not incur security problems in our tagging scheme since gcd(am, bn) = 1 holds if gcd(a, b) = 1, where
a, b ∈ Primes(1λ),m, n ∈ Zq .

AccSetup∗(1λ)

1 : g ←$ G

2 : Hprime : Z→ Prime(1λ)

3 : return pp = (g,Hprime)

TagSetup∗(pp, 1λ)

1 : ck ← TagSetup(1λ)

2 : (At, s̃)← AccGet()

3 : return ppTag = (ck, (At, s̃), Hprime, g)

TagKGen∗(ppTag, sk)

1 : tag← TagKGen(sk)

2 : Q← Hprime(tag)

3 : return tag, Q

TagPf∗(ppTag, p, (a,B))

1 : At+1 ← AccAdd(At, Q)

2 : (a, b)← AccNonMemWitGen(At, s̃, Q)

3 : π1 ← NIPoE(Q,At, At+1)

4 : return πTag = (π1, π2)

TagVf∗(ppTag, πTag)

1 : πTag as (π1, π2)

2 : b0 ← NIPoE.Vf(π1)

3 : b1 ← NIPoE.Vf(π2)

4 : return b0 · b1

1

Fig. 4: New tagging scheme.

B. Notation and Optimization

As mentioned in Section I, a transaction in a RingCT protocol needs to satisfy two properties:
anonymity and confidentiality. For anonymity, we can build an efficient ring signature by leveraging
the any-out-of-many proofs in Section V. For confidentiality, two specific constraints need to be ensured:
(1) the balance between the inputs and outputs of the transaction and (2) the validity of the range of each
output. Since these proof schemes are well-defined in previous work [9], [19], we do not give formal
definitions due to space constraints. Here, we mainly focus on two optimization techniques. The first is
rewriting the balance proof into amortization form and therefore combining it with our ring signature and
tagging scheme. The second is aggregating the combined proofs with range proofs by concatenating the
binary vector b and the vectors of value in range proofs. Both the above two techniques can reduce the
proof size and verification complexity of our RingCT scheme.

We define the parameters used and introduce two optimization techniques in building the RingCT
protocol. Define R,S, T as the set of ring accounts, real source accounts, and target accounts, respectively.
Each account consists of the corresponding public key and coin. Other parameters used are defined in
Table I.

1) Combining Balance Proofs: The balance proofs are used to prove the “balance” property of
transaction amounts on both sides, i.e., the amount vector aS of the real source accounts and the amount
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TABLE I: Notations of Parameters in RingCT

Notation Description

P ∈ G|R| Vector of ring account public keys.
s ∈ Z|S|

q Vector of source account secret keys.
b ∈ {0, 1}|R| Binary vector for any-out-of-many proofs.
aS ∈ Z|S|

q Amount vector of source accounts.
CR ∈ Z|R|

q Coin vector of ring accounts
aT ∈ Z|T |

q Amount vector of target accounts.
CT ∈ Z|T |

q Coin vector of target accounts.
tag ∈ G|R| Tag vector of ring account.
Q ∈ G|R| Prime tag vector generated from tag.
ck ← Setup(1λ) Commitment keys for tagging scheme.
gk ← Setup(1λ) Commitment keys for Pedersen commitment scheme.

vector aT of the target accounts should satisfy the following relation:

|S|∑

j=1

aS,j =

|T |∑

i=1

aT ,i. (15)

To provide confidentiality for aS and aT , the prover needs to compute the commitments CS,j =
Comgk (aS,j ; rS,j) for all j = 1, ..., |S| and CT ,j = Comgk (aT ,i; rT ,i) for all i = 1, ..., |T | as the
coins of accounts.

Additionally, we need to use ring signatures (any-out-of-many proofs) to provide anonymity for the
relation above. Specifically, we use the binary vector b in ring signature to indicate the indices of an
|S|-dimensional vector CS in a |R|-dimensional vector CR (the unified ring) The amounts of ring coins
not in CS can be generated as randoms.

Therefore, the modified relation of CR and CT is

Cb
R =

|R|∏

i=1

Cbi
R,i =

|S|∏

j=1

Cbi
S,ij

= (

|T |∏

i=1

CT ,i) ·R (16)

where R = Comgk (0;
∑|S|

j=1 rS,j −
∑|T |

i=1 rT ,i). It is not hard to see that (16) has a similar form with
(2) of amortized secret key verification: both of them share the common vector b. Thus, we can multiple
each pair of Pi and CR,i into one base Pi · CR,i for i = 1, ..., k safely since Pj’s and CR,i’s are from
different generators (ck and gk).

Similarly, this technique can also be applied to the relation of prime tag vector Q given in (14) and
the relation of tag vector tag as follows:

tagyN◦b =

|S|∏

j=1

tagij
yij ·1 = Comck (0;

|S|∑

j=1

yijsj
−1). (17)

Finally, we can combine the three proof schemes above to obtain a compact relation of b with
commitments {(Pu2

i · tagu ·Q)y
i ·CR,i}|R|

i=1 as bases. This compact relation reduces three group elements
of the proof size.
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2) Aggregating Range Proofs: Besides balance proofs, the prover also needs to show that each amount
in aT lies in a valid range of [0, 2β − 1] with range proofs. According to Bulletproofs [19], the prover
first computes the binary representation of each value aT ,i for all i = 1, ..., |T | − 1 as bT ,i ∈ {0, 1}β .

The prover transforms the relation of bT ,i into an inner-product form and computes the opening vector
ζT ,i and ηT ,i for i = 1, ..., |T | according to our generic compression model in Section IV. Similarly,
we denote the opening vectors of the any-out-of-many proofs as ζR,ηR. According to Lemma 3, it is
feasible to aggregate the multiple inner-product relations above into one with vectors:

τ = (ζR||ζT ,1|| · · · ||ζT ,|T |) ∈ Z|R|+β|T |
q ,

ω = (ηR||ηT ,1|| · · · ||ηT ,|T |) ∈ Z|R|+β|T |
q .

(18)

As a result, the above aggregation technique can reduce the proof size of RingCT from O(log(|R|)+
log(β|T |)) to O(log(|R|+ β|T |)).

Setup(1λ, 1α, 1β)

1 : ppHC ← HCSetup(1λ)

2 : ppTag ← TagSetup(1λ)

3 : pp := (β, ppHC, ppTag)

4 : return pp

SAKGen(pp)

1 : s←$ Zq

2 : P ← TagKGen(s)

3 : tag← TagEval(s)

4 : Q← HPrime(tag)

5 : return (P, s, tag, Q)

OTAccGen(pp,P,a)

1 : r ←$ Zq

2 : C := Comgk(a; r)

3 : act := (P,C)

4 : ask := (a, r)

5 : return (act, r)

Spend(pp,{accR,i}|R|
i=1, tag, {accT ,i}|T |

i=1, µ)

1 : tx := tx({accR,i}|R|
i=1, tag, {accT ,i}|T |

i=1, µ)

2 : stmt := ((P ,CR),CT , tag, Q̃)

3 : wit := (b, s, (aS , rS , ), (aT , rT ))

4 : σ ← NIPoK(stmt,wit)

5 : return (tx, σ)

Vf(pp,tx,σ)

1 : parse tx as ({accRi }|R|
i=1, tag, {accTi }

|T |
i=1, µ)

2 : compute stmt := ((P ,CR),CT , tag, Q̃)

3 : if |T | > 2α then return 0

4 : b← NIPoK.Vf(stmt, σ, tx)

5 : return b

1

Fig. 5: RingCT construction.

C. Protocol Instantiation

The RingCT protocol requires non-interactive zero-knowledge proofs to spend the coins with a valid
transaction. In general, the relation of proofs should include the any-out-of-many proofs, range proofs,
balance proofs, and tag proofs we mentioned before. By transformation and optimization, the relation
can be written into a compact inner-product form and further be compressed to logarithmic size by the
Bulletproofs technique [19]. Furthermore, according to the Fiat-Shamir heuristic [30], the prover can
transform the interactive proof of knowledge into a non-interactive one (also known as the signature of
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knowledge) under the Random Oracle Model (ROM) [31].

RNI-PoK(ppTag, ppHC) :=





(
stmt = ((P ,CR),CT , tag, Q̃);wit = (b, s, (aS , rS , ), (aT , rT ))

)
:

∀j ∈ 1, ..., |S|,





Pij = TagKGen(0; sj);

CR,ij = Comgk (aS,j , rS,j);

tagij = TagEval(0; s−1
j );

∀i ∈ 1, ..., |T |,
{
CT ,i = Comgk (aT ,i, rT ,i);

aT ,i ∈ [0, 2β − 1],

Q̃ is well-formed and valid in the accumulator.





,

We denote our non-interactive zero-knowledge proof of knowledge as NI-PoK. And the relation RNI-PoK(ppTag, ppHC)
is given as follows, where ppTag is the public parameters for tagging scheme, ppHC is the public
parameters for Pedersen commitment scheme.

We propose a new RingCT protocol with Φ = (Setup,SAKGen,OTAccGen,Spend,Vf ,CheckTag).
Specifically, the protocol is designed as follows:

- Setup(1λ, 1α, 1β): Take the security parameter 1λ and integers 1α, 1β as inputs, where 1α indicates the
upper bound of the number of outputs in the transaction (2α), 1β indicates the upper bound of the account
balance (2β). Call HCSetup(1λ) to generate commitment key gk for Pedersen commitment scheme
and hash function H : {0, 1}∗ → {0, 1}λ for NIPoK. Call TagSetup(1λ) to generate commitment key
ck for tagging scheme, current state (At, s̃), HPrime : {0, 1}∗ → Prime(1λ) and g for the accumulator.
Return pp = (β, ck,H, gk, (At, s̃), HPrime, g).

- SAKGen(pp): Sample s←$ Z as the secret key. Call TagKGen(s) to compute P as the public key.
Call TagEval(s) to compute tag as the tag. Compute prime tag Q with HPrime(tag). Return one-time
key pair (P, s, tag, Q).

- OTAccGen(P, a): Mint a coin C = Comgk (a; r) with the amount a and a randomly generated value
r. Generate account act = (P,C). Generate account key ask = (a, r). Return (act, r).

- Spend({accR,i}|R|
i=1, tag, {accT ,i}|T |

i=1, µ): Compute prime tag Q̃ with Q of real source accounts.
Generate transcript tx with {accR,i}|R|

i=1, tag, {accT ,i}|T |
i=1 and µ. Generate the signature σ with

algorithm NIPoK algorithm, inputs stmt, wit, and tx. Return (tx, σ) as the transaction.

- Vf(pp, (tx,σ)): Parse tx as {accR,i}|R|
i=1, tag, {accT ,i}|T |

i=1 and µ. Generate stmt = ((P ,CR),CT , tag, Q̃).
Check the signature σ with algorithm NIPoK.Vf , inputs stmt, and tx. Return true if all check passes,
and false otherwise.

Note that we omit the steps generating master keys and receiving coins since they are almost identical
to Omniring [11]. A sketch of the security properties for our RingCT protocol is also given as follows.
The formal security definitions and their proofs can be referred to in appendix D.

Theorem 3: (Balance). Our protocol is unforgeable if the DL assumption holds in G in the ROM. Our
protocol is equivalent w.r.t. insider corruption if the DL assumption holds in G in the ROM and the range
proof is zero-knowledge. Our protocol is linkable w.r.t. insider corruption if the DL assumption holds in
G in the ROM.

Theorem 4: (Anonymity). Our protocol is anonymous against the recipient, anonymous against ring
insider, and anonymous under spender revelation if the q-decisional Diffie-Hellman inversion assumption
holds in G in the ROM, where q is the number of Spend oracle query.

Theorem 5: (Non-slanderability). Our protocol is non-slanderable w.r.t. insider corruption if the DL
assumption holds in G in the ROM.
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VII. EVALUATION

A. Any-out-of-Many Proofs

We first compare the proof size of our ZKP method with existing approaches [15], [17]. The theoretical
performance of any-out-of-many proofs is given in Table II.

TABLE II: Comparison of the proof sizes between our schemes and other membership
proof approaches [15], [17] for k secrets in a ring set of N public elements.

Scheme # G # Zq Pairing

1/N [15] 2 ⌈log2 N⌉+ 7 7 No

k/N [17] 4 ⌈log2(2N − k + 1)⌉ − 5 4 No

k/N with pairing [17] 2 ⌈log2(2N − k + 1)⌉ − 1 in GT 7 Yes

∗/N (this work) 2 ⌈log2 N⌉+ 3 6 No

Note that the protocols above are all non-interactive versions, and some optimization techniques for
reducing the constant terms are applied accordingly, Clearly, our proof scheme has the same coefficient of
the logarithmic term as the one-out-of-many proof scheme, while the constant term is relatively small. For
the k-out-of-N proof scheme [17], it seems that the bilinear pairing can help the scheme achieve better
performance. However, we want to highlight that this scheme is impractical in real-world applications
because the group elements in GT is far larger than G under the same security level. For instance,
the bls12-381 with pairing G1 × G2 → GT can achieve 128-bit security with 381-bit field modulus q.
Unfortunatelly, the pairing output in GT is an element in the extended field Fq12 , which is almost 18-times
of a group element in secp256k1.

We also validate the theoretic results by implementing our any-out-of-many proofs scheme in Golang
on both secp256k1 [32] and bls12-381 [33] (128-bit secure bilinear mapping curves for k-out-of-N proofs
[17]) The proof size in terms of the ring size is shown in Figure 6. It is obvious that our scheme has a
smaller asymptotic proof size compared with k-out-of-N proofs, and a smaller constant size than one-
out-of-many proofs.

Fig. 6: Proof size comparison of our
any-out-of-many proofs, partial knowl-
edge proofs [17], and many-out-of-
many proofs [18] with different size of
public set.

Fig. 7: Anonymity space comparison
of our RingCT, Omniring [11], RingCT
3.0 [10] and RingCT 2.0 [9] with differ-
ent ring size (number of output accounts
|T | = |R|/16).

Fig. 8: Proof size comparison of our
RingCT, Omniring [11], and RingCT
3.0 [10] with different ring size (number
of output accounts |T | = |R|/16).
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B. RingCT Protocol

We further compare the performance between our RingCT protocol, RingCT 3.0 [10], and Omniring
[11]. First, we define a transaction with N input accounts, k real accounts among them, m output accounts,
and 2β upper bound of the amount. Suppose the range proof size takes 2 log2(β|T |)+9 elements for each
scheme (based on Bulletproofs [19]), the theoretical comparison of communication cost (including both
the sizes of signature and range proofs) as well as anonymity space is given in Table III. As the RingCT
3.0 only aggregate k signatures, its proof size is O(log(β|R||T |)). Our RingCT scheme, in contrast,
aggregates the signature with range proofs, which leads to a much smaller size of O(log(|R|+ β|T |)).

TABLE III: Comparison of the proof size and anonymity space between our proofs and other RingCTs

Scheme Proof size (# G and Zq) Anonymity Pairing Trusted Setup

RingCT 2.0 [9] 2 ⌈log2(β|R||S||T |)⌉ (|R|/|S|)|S| Yes Yes

RingCT 3.0 [10] 2 ⌈log2(β|R||S||T |)⌉ (|R|/|S|)|S| No No

Omniring [11] 2 ⌈log2((3 + 2|R|+ 4|S|+ β|T |)⌉
(|R|
|S|

)
No No

Our RingCT 2 ⌈log2(|R|+ β|T |)⌉ 2|R| No No

We further compare the anonymity space of RingCT protocols under different ring sizes as shown
in Figure 7. Clearly, our approach can achieve the highest anonymity level with the smallest ring size.
Taking an empirical anonymity space of 44.3 for real-world applications (represented by the dotted line),
it only requires a 64-sized ring in our scheme, while k-out-of-N requires a ring of size 181 and RingCT
3.0 requires a ring of size 256, which are nearly 1.8 and 3 times more.

To analyze the real-world performance of our RingCT protocol, we build a prototype in Golang
based on the elliptic curve Secp256k1 library with 128-bit security [34]; the codes can be referred to the
link (https://github.com/egoistzty/Any-out-of-Many-Proofs). All experiments are performed on an Intel
i5-4210U system throttled to 1.70 GHz, using a single thread and less than 200 MB of memory.

We first analyze the proof size of our RingCT protocol. The ring size scales from 1 to 4096 in our
experiment. Figure 8 demonstrates the size of a single transformation in different RingCT protocols in
terms of the ring size, with different numbers of output accounts, i.e., m = N/16. Clearly, our RingCT
has a smaller asymptotic proof size compared with RingCT 3.0, mainly due to the aggregation technique
used in Section VI-B. Besides, our approach is also smaller than Omniring [11] due to a smaller constant
term. When the ring size is bigger than 500, the proof size of our method is almost half of RingCT 3.0,
which fits with the theoretical result well.

The average running time of our RingCT protocol under different rings is shown in Figure 9 and Figure
10. Since Bulletproofs compression requires linear time for proving and verifying, the running time of our
approach scales linearly with the ring size. To generate a transaction with a 16-size ring (larger than the
existing ring size of 11 in Menoro), our approach only costs 249 ms, and the verification is almost 5 times
faster than proving. Thus, the time cost of our RingCT protocol is acceptable in real-world applications.
Compared to Omniring, our RingCT protocol runs faster both on proving and verification. For partial
knowledge proofs, our any-out-of-many proofs also outperform the k-out-of-N proofs on the proving
time since we avoid pairing in our design.
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Fig. 9: Proving time comparison of our any-out-of-
many proofs, partial knowledge proofs [17], our RingCT
protocol and Omniring [11] with different size of the
public set (ring size).

Fig. 10: Verifying time comparison of our any-out-of-
many proofs, partial knowledge proofs [17], our RingCT
protocol and Omniring [11] with different size of public
set (ring size).

VIII. DISCUSSIONS

A. Validity of the coefficients in Generic Compression Model

We first discuss how to ensure τi is invertible in Equation (12). Based on the deduction in Section IV,
we can find τi is determined by η0,i, ζ0,i, η1,i, ζ1,i, and the challenge z, which can be written as follows:

τi = η0,iζ0,i + zη1,iζ1,i. (19)

As the coefficients of b0 and b1 terms in ηj,i and ζj,i are determined by the challenge y (or is a constant)
for j ∈ {0, 1}, the probability of τi being non-invertible is negligible under a super-poly challenge space. In
an interactive proof, the verifier can ensure τi is invertible by selecting proper y and z. Moreover, acquiring
a non-invertible value τi will not contribute to failure when running the non-interactive protocol. Since
the challenge values y, z are determined by the Hash function based on the Fiat-Shamir heuristic, the
prover only needs to rollback to the previous step and regenerates the blinding vectors. The hash values
will be totally different.

B. Further Applications of Any-out-of-many Proofs

1) Multiple Ring Signature: Different from the RingCT protocol, a multiple ring signature [35] aims to
provide anonymity for multiple independent signers. That is, the secret key of each signer is unknown to
others. It is feasible to build this scheme by replacing the core proof scheme in the Schnorr multi-signatures
model proposed by Maxwell [36] with our any-out-of-many proofs. Besides, an additional range proof
for k ∈ [1, N) should be applied to prevent the s = ∅ case mentioned in Section V-A since generating
a signature without real signer is illegal in this scenario. This can be done by proving ⟨b,1N ⟩ ∈ [1, N)
with the range proof in [19].

2) Coin Mixing: Coin mixing is another practical approach to enhance the anonymity of cryptocurren-
cies by combing multiple transactions into one to obscure the relationship between spenders and recipients.
Current coin mixing schemes need a trustless third party (Mixer) to perform the mixing process, while
the security and anonymity of such centralized service are questionable. Our any-out-of-many proofs can
also be applied in this application by using a ring size precisely of the number of source accounts, i.e.,
proving N -out-of-N relation. Additionally, proof for k = N should be included. Since N is public, it
can be done efficiently with the Bulletproofs compression for ⟨b,1N ⟩ = N . To compute the opening of
amortized secret keys of multiple spenders, we believe a secure Multiple Party Computation [37] is also
needed.
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C. Open Problems

Our generic inner-product transformation focuses on quadratic relations. This transformation can be
applied in more applications if extended to polynomial relations. Though we have some progress in
downgrading an n-degree relation, the transformation requires O(n) elements to be committed, which
cannot reduce the proof size even with Bulletproofs compression. Therefore, ensuring only a minimum
number of elements are sent in the transformation is critical.

For the tagging scheme, we highlight that each tag of the real account or decoy account must be unique.
This may cause the exhaustion of prime numbers used in the accumulator after the network deals with a
large number of transactions. An alternative approach to avoid this problem is to use the updatable public
key scheme proposed in Quisquis [38], while it introduces extra work of updating the key. Therefore, we
believe a more efficient way is to design a partial knowledge proof for real account tags without leaking
k.
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APPENDIX

A. Formal Definitions

1) Commitment Scheme: We give definitions of the hiding and binding properties of a secure com-
mitment scheme.

Definition 1: (Hiding Property). A commitment scheme is hiding if a commitment does not reveal the
message. For all PPT (probabilistic polynomial time) adversaries A

Pr

[
ck ← Setup

(
1λ

)
; (m0,m1)← A(ck); b← {0, 1}

r ← Zq; c = Comck (mb, r) : A(c) = b

]
≈ 1

2
,

where A outputs messages m0,m1 ∈M. If the probability is exactly 1/2 we say the commitment scheme
is perfect hiding.

Definition 2: (Binding Property). A commitment scheme is binding if a commitment can only be
opened to one message. For all PPT adversaries A

Pr

[
ck ← Setup

(
1λ

)
; (m0, r0,m1, r1)← A(ck) :

m0 ̸= m1 ∧ Comck (m0, r0) = Comck (m1, r1)

]
≈ 0,

where A outputs messages m0,m1 ∈ M and r0, r1 ∈ Zq . If the probability is exactly 0 we say the
commitment scheme is perfect binding.

2) Σ-Protocol: Σ-protocol is a type of 3-move interactive proof system between two parties, a prover
P and a verifier V . With the setup algorithm mentioned above, the prover can convince the verifier
that a statement is true. Specifically, we define R as a polynomial-time decidable ternary relation, with
a commitment key ck generated by the algorithm Setup(1λ), a statement c and its witness r, where
(ck, c, r) ∈ R.

First, the prover generates an initial message m according to the given parameter (ck, c, r) ∈ R. After
receiving the message m, the verifier chooses a challenge value x←Z∗

q and sends it to the prover. Then
prover computes the response message z according to the challenge x. Finally, the verifier will check the
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proof with (ck, c,m, x, z) and returns 1 if accepted. We call the triple (Setup,P,V) a Σ-Protocol if it
satisfies the following three properties.

Definition 3 (Perfect Completeness): (Setup,P,V) is perfectly complete if for all probabilistic poly-
nomial time adversaries A

Pr

[
V(ck, c,m, x, z) = 1

ck ← Setup(1λ); (c, r)← A(ck);
m← P(ck, c, r);x←Z∗

q ; z ← P(x)

]
= 1.

Definition 4 (n-Special Soundness): (Setup,P,V) is n-special sound if there exists an efficient PPT
extractor E that can extract the witness r given n accepting transcripts with the same m.

Pr

 (ck, c, r) ∈ R

ck ← Setup
(
1λ

)
;

(c,m, x1, z1, ..., xn, zn)← A(ck);
V(ck, c,m, xi, zi) = 1, ∀i ∈ [1, n];
r ← E(ck, c,m, x1, z1, ..., xn, zn)

 = 1− µ(λ),

where the function µ(λ) is negligible, and we say that the protocol is n-special sound.

Definition 5 (Honest Verifier Zero-Knowledge): (Setup,P,V) is special honest verifier zero-knowledge
if there exists a probabilistic polynomial time simulator S such that for all interactive probabilistic
polynomial time adversaries A∣∣∣∣∣∣∣∣∣

Pr

[
A(m, z) = 1

ck ← Setup
(
1λ

)
; (c, r, x)← A(ck);

a← P(ck, c, r); z ← P(x);

]
−

Pr

[
A(m, z) = 1

ck ← Setup
(
1λ

)
; (c, r, x)← A(ck);

(m, z)← S(ck, c, r);

]
∣∣∣∣∣∣∣∣∣ ⩽ µ(λ).

B. Details for Section IV

1) Section IV-A: In (10), we can rewrite the two equations with a challenge z ∈ Zq into an inner-
product form:

⟨yn, b0 ◦ b1⟩+z ⟨yn,α ◦ b0+β−b1⟩
= ⟨b0 ◦ yn, b1⟩+⟨b0 ◦ yn, zα⟩+⟨yn, zβ⟩−⟨yn, zb1⟩
= ⟨b0−z1n, (zα+b1) ◦ yn⟩+

〈
yn, z2α+zβ

〉

= −⟨yn,γ⟩
⇐⇒ ⟨ζ(b0), η(b1)⟩= δ,

where ζ(b0) = b0 − z1n, η(b1) = (zα+ b1) ◦ yn, and δ = −⟨yn, z2α+ zβ⟩ − ⟨yn,γ⟩.
In a Σ-protocol, instead of sending ζ(b0) and η(b1) directly, a prover will response with ζ = (b0 −

z1n)+xs0 and η = (zα+b1+xs1)◦yn with a challenge x ∈ Zq and some masking values s0, s1 ∈ Zn
q .

Thus, Equation (20) becomes

⟨ζ,η⟩ = ⟨ζ(b0), η(b1)⟩+ xt1 + x2t2,

where t1 =
(
⟨s0, η(b1)⟩ + ⟨ζ(b0), s1 ◦ yn⟩

)
, t2 = ⟨s0, s1 ◦ yn⟩. As ζ(·) is a linear function, we can

compute B0 = gζ based on B in relation Rquad and the commitment of s0, S0 = gs0 (so does B1 = gη

based on gb1 and gs1 for the linear function η(·)) and further apply the Bulletproofs compression directly
with inputs ζ,η, ⟨ζ,η⟩.
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2) Section IV-B: The left-hand side of Equation (11) can be rewritten as one inner-product relation:

⟨ζ0(b0), η0(b1)⟩+ z⟨ζ1(b0), η1(b1)⟩
= ⟨b0, η0(b1) ◦ ζ0⟩+ ⟨µ0, η0(b1)⟩

+⟨b0, zη1(b1) ◦ ζ1⟩+ ⟨zµ1, η1(b1)⟩
= ⟨b0, η0(b1) ◦ ζ0 + zη1(b1) ◦ ζ1⟩+ ⟨µ0 ◦ η0, b1⟩

+⟨µ0,ν0⟩+ ⟨zµ1 ◦ η1, b1⟩+ ⟨zµ1,ν1⟩
= ⟨b0, η0(b1) ◦ ζ0 + zη1(b1) ◦ ζ1⟩

+⟨µ0◦η0+zµ1◦η1, b1⟩+⟨µ0,ν0⟩+⟨zµ1,ν1⟩.

As η0 and η1 are linear functions, η0(b1)◦ζ0+zη1(b1)◦ζ1 is also linear. Let η0(b1)◦ζ0+zη1(b1)◦ζ1 =
τ ◦ b1 + ω, κ0 = µ0 ◦ η0 + zµ1 ◦ η1 and κ1 = ⟨µ0,ν0⟩+ ⟨zµ1,ν1⟩. We can rewrite Equation (20) as:

⟨b0, τ ◦ b1 + ω⟩+ ⟨κ0, b1⟩+ κ1

= ⟨τ ◦ b0, b1 + τ−1 ◦ ω⟩+ ⟨κ0, b1 + τ−1 ◦ ω⟩
−⟨κ0, τ

−1 ◦ ω⟩+ κ1

= ⟨τ ◦b0+κ0, b1+τ−1◦ω⟩−⟨κ0, τ
−1◦ω⟩+κ1,

where τ−1 is to inverse each element of τ (i.e., τ−1
i ). Thus, the prover needs to ensure τi ̸= 0 for

the above transformation (which is true with all but negligible probability for a challenge space larger
enough, more discussions in Section VIII-A). Taking Equation (20) and (20), we have one inner-product
relation

⟨τ(b0), ω(b1)⟩ = δ,

where τ(b0) = τ ◦ b0 + κ0, ω(b1) = b1 + τ−1 ◦ ω, and δ = δ0 + zδ1 − κ1 + ⟨κ0, τ
−1 ◦ ω⟩.

C. Proof of Theorem 1

In this section, the security proofs of any-out-of-many proofs in Theorem 1 is presented.

1) Completeness.: With correct transcripts from the honest prover, the verifier can verify the following
equations hold:

Equation (1) in Protocol 4:

vt̂uτx = vδ(y,z)+t1x+t2x
2

= vδ(y,z)vt1xvt2x
2

= vδ(y,z)T x
1 T

x2

2 .

Equation (2) in Protocol 4:

g′ζhηuµ

= g(b0−z·1N+xs0)h(z·1N+b1+xr1)uα+βx

= (gb0hb1uα)(gr0hr1uβ)xg−z·1N

hz·1N

= ABx(g−1h)z·1
N

.
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Equation (3) in Protocol 4:

P ζ = P (b0−z·1N+xs0)◦yN

= P b0◦yN · [Comck(0; rs)]
x · P (−z·1N◦yN )

·[P r0◦yN · Comck(0;−rs)]x

= Comck(0; fs) · Ex · P (−z·1N◦yN ).

Equation (4) in Protocol 4:

t̂ = δ(y, z) + t1x+ t2x
2

=
〈
(b0 − z ·1N + xr0)◦yN , z ·1N + b1 + xr1

〉

= ⟨ζ,η⟩ .

2) Special-HVZK: With randomly chosen elements (B, T2, τc, µ, fs, ζ,η), and the challenge values
(x, y, z) from their corresponding domains, the simulator can compute:

t̂ = ⟨ζ,η⟩ ,
T1 = [vt̂uτxv−δ(y,z) · T−x2

2 ]1/x,

A = (g′ζ(h)ηuµ) ·B−x(gh−1)z·1
N

,

E = [P ζ · Com−1
ck (0; fs) · P (z·1N◦yN )]1/x.

We can observe that the transcript output by the simulator has an identical distribution with the true prover.
Thus, an honest verifier can not distinguish the transcripts generated above from those generated in the
legal conversation if the Pederson commitment is perfect hiding. And Protocol 4 is said to be perfect
special-HVZK.

3) Special Soundness: Suppose the adversary can return the transcripts of the same witness as the
extractor rewinds with different challenges. We use the subscript i to denote the elements in the return
transcript of i−th rewind. To extract A, the adversary returns two transcripts for rewinding with 2 different
challenges x0, x1. According to the two verification equations written as (g′)ζihηiuµi = ABxi(g−1 ◦
h)z·1

N

, where i ∈ {0, 1}, we can compute A as

A = (g′)
(b′

0−z·1N )◦yN

· h(z·1N+b′
1)uα′

(g ◦ h−1)z·1
N

= gb′
0hb′

1uα′
.

Similarly, we can also extract B by using the same transcripts.

B = (g′)
(s′

0◦yN )
hs′

1uβ′
= gs′

0hs′
1uβ′

.

Putting back the extracted values into the verification Equation (2) in Protocol 1, we can get:

(g′)ζhηuµ = A ·Bx · (g−1 ◦ h)z·1N

= gb′
0hb′

1uα′
[gs′

0hs′
1uβ′

]x · (g−1 ◦ h)z·1N

.

Since the above holds for all challenge c, and assuming the DL assumption holds between g, h and u,
we can extract the vectors ζ,η as

ζ = (b′0 − z · 1N + xs′0) ◦ yN ,

η = b′1 + z · 1N + xs′1.
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Elements T1, T2 can also be extracted by using other 3 rewinding transcripts with challenge x2, x3, x4.
The rewinding transcripts are vt̂iuτxi = vδ(y,z)T xi

1 T xi
2

2 according to Equation (1) in Protocol 4, where
i ∈ {2, 3, 4}. Then we can compute T1, T2

T1 = vt
′
1uτ ′

1 , T2 = vt
′
2uτ ′

2 .

Also, putting back the extracted values into the verification Equation (1), we have

vt̂uτx = vδ(y,z)T x
1 T

x2

2 = vδ(y,z)(vt
′
1uτ ′

0)(vt
′
2uτ ′

1)x.

As the equation above holds for all challenge c and the DL assumption between u, v is not known to
the adversary, we have:

t̂ = δ(y, z) + t′1 + t′2x.

Note that we can also compute t̂ as follows with the vectors ζ,η above.

t̂ = ⟨ζ,η⟩
=

〈
(b′0 − z · 1N + xr′0) ◦ yn, b′1 + z · 1N + xr′1

〉

=
〈
yN , b′0 ◦ b′1

〉
+ z

〈
yN , b′0 − 1N − b′1

〉

+δ(y, z) + t′′1 + t′′2x.

Since the expression above holds for all challenges x, y, z, we can get the relations as follows by comparing
the two expressions of t̂. b′0 ◦b′1 = 0N , b′0−1N −b′1 = 0N , and further ensure that b′0 is a binary vector.

On the other hand, using the same set of 2 rewinding transcripts, we can also calculate the following
expression based on Equation (3) in Protocol 1.

P (b′
0−z·1N )◦yN

= Comck(0;
∑

i∈S

yis′i) · P (−z·1N◦yN ),

P (b′
0◦yN ) = Comck(0;

∑

i∈S

yis′i).

Note that the expression above can actually be regarded as a product of N different exponentiation,

P0
b′0,0 · (P1

y)b
′
0,1 · ... · (PN−1

yN−1

)b
′
0,N−1 = Comck(0;

∑

i∈S

yis′i),

and since b′0 is a binary vector, all of the values b′0,0 are either 0 or 1. As a result, with totally |S| + 1
challenges y0, y1, ..., y|S|, we can calculate the following equations:

Pi = Comck(0; s
′
i) ∀i ∈ S.

Thus, we can reveal the set S of the witnesses, which also represents the secret vector b of the challenger.
What’s more, each witness s′i can be extracted from Equation (3) in Protocol 4 with |S| + 1 rewinding
transcripts. Finally, we can extract x′

sk = sk′ if the Pederson commitment is perfect binding. Thus,
Protocol 4 is special sound.

27



D. Security Proofs for RingCT

In RingCT 3.0 [10], Yuen et al. propose a stronger security model for their new RingCT protocol,
taking the recipient and insider attack into consideration. This is mainly because, in the previous version
(e.g., RingCT 2.0 [9]), the security definition of anonymity only emphasizes on the indistinguishability
of the transcripts. However, the author points out that the anonymity of the RingCT protocol is more
complicated than the anonymity of linkable ring signatures. This is because the recipient in a RinCT
protocol will be given the knowledge of the input and output amount, and the level of anonymity of
RingCT protocol may be reduced consequently. For a transaction with multiple input accounts, multiple
linkable ring signatures are generated. Yet, they are correlated when validating the balance of input and
output amount. This extra relationship may reduce the level of anonymity. Moreover, the previous model
of anonymity neither considers the threat of insider attacks. As a result, the authors in [9] develop a
stronger security model by defining two new models for anonymity, anonymity against the recipient (who
knows all the output account secret keys and their amounts) and anonymity against ring insider (who
knows some input account secret keys and their amounts). We will first give a comprehensive description
of this security model for RingCT and prove that our RingCT protocol also satisfies these stronger security
requirements.

Perfect Correctness. The perfect correctness property requires that a user can spend any group of her
accounts w.r.t. an arbitrary set of groups of input accounts, each group containing the same number of
accounts as the group she intends to spend.

Balance. The balance property requires that any malicious user cannot

1) spend any account of an honest user,
2) spend her own accounts with the sum of input amount being different from that of output amount,

and
3) double-spend any of her accounts.

Therefore, the balance property can be modeled by three security models: unforgeability, equivalence, and
linkability.

Anonymity against Recipients. The anonymity against recipients property requires that without the
knowledge of any input account secret key and input amount (which are within a valid Range: from 0
to a maximum value), the spenders’ accounts are successfully hidden among all the honestly generated
accounts, even when the output accounts and the output amounts are known.

Anonymity against Insider Attacks. The anonymity against ring insiders requires that without the
knowledge of the output account secret key and output amount (which are within a valid Range), the
spenders’ accounts are successfully hidden among all uncorrupted accounts.

Non-slanderability. The non-slanderability property requires that a malicious user cannot prevent any
honest user from spending. It is infeasible for any malicious user to produce a valid spending that shares
at least one serial number with an honestly generated spending.

The Perfect Correctness property follows in a straightforward manner. So we only consider the Balance,
Anonymity, and Non-slanderability properties in our security proofs. Before describing the proof in detail,
we need to give a formal definition of our security model first. Here are several oracles that will be used
in the security proofs:

• PKGen(i): on the i− th query picks randomness ri, runs (Pi, ski)← SAKGen(pp) and returns Pi.
• ActGen(P, a): on input a public key P and an amount a, runs (C, r) ← OTAccGen(P, a), and

outputs account (act, r) for address P .
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• Spend({accR,i}|R|
i=1, tag, {accT ,i}|T |

i=1, µ): returns
σ ← Spend({accR,i}|R|

i=1, tag, {accT ,i}|T |
i=1, µ), provided (Pi, si) has been generated by PKGen and

Pi ∈ P .
• Corrupt(i): returns si provided Pi has been generated by PKGen.

We denote Orc as a tuple of oracles including PKGen, ActGen, Spend, Corrupt. And we say that
a tuple of PPT algorithms of Φ = (Setup, SAKGen, OTAccGen, Spend, Vf , CheckTag) is a
RingCT Protocol satisfying the properties as follows:

Definition 6 (Unforgeability): A RingCT protocol is called unforgeable if it is infeasible to forge a
valid transaction without controlling one of the members in the ring. Formally, it is unforgeable when for
all PPT adversaries A:

Pr
{

pp← Setup(1λ);
(tx, σ, I)← AOrc(pp)

: MVerifypp(tx, σ, tag,Q) = 1

}
≈ 0,

where tx = ({accR,i}|R|
i=1, tag, {accT ,i}|T |

i=1, µ).

Definition 7 (Equivalence): A RingCT protocol is called equivalent w.r.t insider corruption if it is
infeasible to forge a valid transaction where the sum of the input amount is different from the sum of the
output amount. Formally, it is equivalent w.r.t insider corruption when for all PPT adversaries A:

Pr

 pp← Setup(1λ);
(tx, σ, I)← AOrc(pp)

:
Vf pp(tx, σ, tag,Q) = 1;
ActGen(P, s, C, r) ̸= 0;∑

j aS,j · bj =
∑

i aR,i

 ≈ 0.

Definition 8 (Linkability): A RingCT protocol is called linkable if it is infeasible to forge two valid
transactions with distinct serial number vectors Q1, Q2 where at most |Q1|+ |Q2|−1 input accounts are
corrupted or not generated by the challenger. Formally, it is linkable when for all PPT adversaries A:

Pr

pp← Setup(1λ);
{txi, σi,Qi, }i=1,2

← AOrc(pp)
:
Vf pp(tx, ϕ, tag,Q) = 1;
Q1 ∩Q2 = ∅; |Acorrupt|
≤ |Q1|+ |Q2| − 1

≈ 0.

Definition 9 (Non-slanderability): A RingCT protocol is called non-slanderable if it is infeasible to
forge a valid spending that shares at least one serial number with a previously generated honest spending.
Formally, it is non-slanderable when for all PPT adversaries A:

Pr

pp← Setup(1λ);
(Q′, tx, σ,Q)
← AOrc(pp)

:
Vfpp(tx, ϕ,Q) = 1;

ActGen(P, s, C, r) ̸= 0;∑
j aS,j · bj =

∑
i aR,i

 ≈ 0.

1) Proof of Theorem 3: Our scheme is unforgeable if the DL assumption holds in G in the random
oracle model. Our scheme is equivalent w.r.t. insider corruption if the DL assumption holds in G in the
random oracle model and RP is a secure zero-knowledge range proof. Our scheme is linkable w.r.t. insider
corruption if the DL assumption holds in G in the random oracle model.

2) Proof of Theorem 4: Our scheme is anonymous against the recipient if the q-DDHI assumption
holds in G under the ROM, where q is the number of Spend oracle queries. Our scheme is anonymous
against ring insiders if the q-DDHI assumption holds in G under the ROM and the range proof is secure.

Proof. Assume that an adversary tends to crack the anonymity of our RingCT protocol. Given a
transcript included Aout, proof ϕ and image vector I , the adversary can only refer to the identity
information of real spenders from the ϕ and I . Therefore, a simulator can be applied to simulate the
proof and key images in the reduction process. Based on the q-DDHI assumption and Random Oracle
model, the simulator can reduce the de-anonymization attack from the adversary to a break instance to
the hard problem.
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Specifically, suppose the simulator is given the DDHI problem instance (g, ga, ..., ga
q

, T ) and wants
to decide if T = g1/a. To achieve this goal, the simulator interacts with an adversary who claimed that
he has the ability to de-anonymizing the RingCT protocol. The simulator first samples some distinct
randomnesses ϵ, h∗, h1, ..., hq ∈ Zq and let u = gϵ·

∏q
i=1(a−h∗+hi) as part of the system parameters. Next

we describe how the simulator runs the oracles PKGen,ActGen, Spend,Corrupt above.

To respond to the PKGen query, the simulator samples the long-time key pair (ltpk, ltsk) and
computes the one-time public key P honestly in most cases. Except for one time, the simulator generates
a faked public key as ltpk∗ = (ga−h∗,gx2

). Then the simulator runs the ActGen oracle correctly excluding
the ltpk∗.

To respond to the Corrupt query, the simulator returns the secret key of every act queried, except
for act∗, it declares failure and exits.

To respond to the Spend query with inputs M,accR,accS ,accT , if the public key P ∗ = ga−h∗
ghj , Sj ∈

[1, q] belongs to the set accS , then the simulator can generate the key image tag∗ based on the parameters
g, ga, ..., ga

q

, T , otherwise it declares failure and exits. For the remaining part of this algorithm, the
simulator simply follows the correct steps and generates the transcripts accordingly.

To begin with the reduction process, the simulator first issues PKGen queries in polynomial times.
After he acquired enough public keys for cracking, he sends a request for a RingCT transcript on the
parameters M,PR,PT . The simulator first checks if P ∗ = (ga−h∗

ghj ) ∈ PR. For other well-formed
public keys, the simulator retrieves their secret keys it records and randomly generates a valid set of
values accS ,accT to simulate the range proofs and balance proofs. For the ring signature, the simulator
will forge the key images of P∗ as tag∗ = gϵ·

∏q
i=1,i ̸=j(a−h∗+hi)/a = gϵ·

∑q−1
i=0 p(a)T ϵ · k(−1), where p(a) =∑q−1

i=0 k(i)ai is a (q-1)-degree polynomial of a. Obviously, the simulator can compute the expression of
tag∗ by knowing the parameters g, ga, ..., ga

q

, T only. The simulated transcript of accR,accT , σ, tag
will be given to the adversary.

Finally, the adversary shall output the public key Padv of a real spender if they successfully de-
anonymize the RingCT protocol. And with probability of 1/(N − k∗), P ∗ = Padv , where N is the ring
size and k∗ is the number corrupted accounts in accS . Then the simulator can output T = g1/a as the
solution to the DDHI problem. As a result, the proof above reduces the de-anonymization attack issued
by the adversary to a break of the q-DDHI hard assumption with non-negligible probability.

3) Proof of Theorem 5: Our scheme is non-slanderable w.r.t. insider corruption if the DL assumption
holds in G under the ROM. The proof is the same as RingCT 3.0.
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