Focus is Key to Success: A Focal Loss Function
for Deep Learning-based Side-channel Analysis

Maikel Kerkhof!, Lichao Wu!, Guilherme Perin' and Stjepan Picek!

Delft University of Technology, The Netherlands

Abstract. The deep learning-based side-channel analysis represents one of the most
powerful side-channel attack approaches. Thanks to its capability in dealing with raw
features and countermeasures, it becomes the de facto standard evaluation method
for the evaluation labs/certification schemes. To reach this performance level, recent
works significantly improved the deep learning-based attacks from various perspectives,
like hyperparameter tuning, design guidelines, or custom neural network architecture
elements. Still, limited attention has been given to the core of the learning process -
the loss function.

This paper analyzes the limitations of the existing loss functions and then proposes a
novel side-channel analysis-optimized loss function: Focal Loss Ratio (FLR), to cope
with the identified drawbacks observed in other loss functions. To validate our design,
we 1) conduct a thorough experimental study considering various scenarios (datasets,
leakage models, neural network architectures) and 2) compare with other loss functions
commonly used in the deep learning-based side-channel analysis (both “traditional”
one and those designed for side-channel analysis). Our results show that FLR loss
outperforms other loss functions in various conditions while not having computation
overheads compared to common loss functions like categorical cross-entropy.

Keywords: Side-channel analysis, Deep Learning, Loss function, Focal loss

1 Introduction

Side-channel analysis (SCA) is one of the most popular tools to exploit the implementation
weakness of an algorithm [MOPO06]. Commonly, SCA attacks can be divided into two
categories: direct attacks and profiling attacks. The former attack method analyzes the
leakages from the target device directly, while the latter requires a copy of the target
device. An attacker would first learn the characteristic of the copied device (profiling
phase), then launch an attack on the target device (attack phase).

With stronger attack assumptions, profiling attacks are considered more powerful
than their counterpart. The rise of deep learning in recent years further increased the
profiling attacks’ capability. Specifically, such attacks can break targets protected with
countermeasures [KPH*19, WP20,ZBHV19]. Moreover, compared with the conventional
profiling attack (i.e., template attack [STP03]) that relies upon points of interest selection,
deep learning-based SCA has softer restrictions on data pre-processing/feature engineering.

Unfortunately, deep learning-based SCA still requires a significant effort to reach its
full potential. There are many open questions when applying such attacks, such as network
architecture design [ZBHV19, WAGP20, RWPP21], evaluation metric design [ZZN"20],
as well as model’s interpretability and explainability [WWJ*21]. Unfortunately, those
issues represent only a part of the problem. A perspective that cannot be neglected is
that classical machine learning metrics/loss functions do not necessarily give an accurate
representation of the performance of an SCA model [PHJ"18,ZZN"20]. On the other
hand, launching practical attacks and averaging the key rank to estimate the guessing

2 Focal Loss Function for Deep Learning-based Side-channel Analysis

entropy is computationally costly (especially if also done during the training phase, see,
e.g., [RZCT21,PBP20]). Consequently, the SCA community put a significant attention on
developing SCA-specific metrics and loss functions.

The cross-entropy ratio, or CER loss, is one of the recently developed methods to
improve the performance of deep learning models in the SCA domain [ZZN120]. When
comparing the CER loss and the conventional categorical cross-entropy (CCE) loss, the
CER loss introduces a denominator to the CCE loss that calculates the correlation between
multiple traces and incorrect labels so that the difference between the target cluster and
other clusters can be maximized. Similar implementations are proved to be efficient in
the machine learning domain as well [ZYJY18]. However, CER loss has two limitations.
First, the CER’s denominator calculation can be a challenging task. Indeed, even for the
traces that belong to the same cluster, the classification difficulties of each other can be
different. The easily classified traces can significantly increase the denominator’s value
for CER loss, thus reducing the overall loss. From a higher level, when performing the
classification tasks, learning from easy samples is not helpful but could easily trigger model
overfitting. The hard samples, on the contrary, help the classifiers learn the underlying
data’s properties, thus could lead to better classification performance.

Returning to the CER loss, although one can include more traces to increase the
possibility of picking up hard samples 1) since the samples are randomly selected, the
samples’ difficulties are uncertain; 2) including too many samples would significantly slow
down the training process. As presented in this work, using ten traces for the denominator
calculation doubles the training times compared with the CCE loss. Therefore, to overcome
the limitations mentioned before, and inspired by the focal loss, we propose a novel loss
function for SCA: Focal Loss Ratio (FLR). The main contributions of this paper are:

e We design a novel loss function that enables deep learning models to learn from the
noisy or imbalanced data efficiently.

e We discuss the hyperparameter tuning strategy of the proposed loss function.

e We perform systematic evaluation and benchmark on commonly used and recently
proposed loss functions.

The remainder of this paper is organized as follows: Section 2 describes the background
and defines the loss functions and datasets used in this paper. The related work is presented
in Section 3, followed by a new loss function - Focal Loss Ratio being proposed in Section 4.
Section 5 validates the proposed loss function experimentally and provides benchmarks
with other loss functions. Finally, Section 7 concludes this paper.

2 Background

This section provides an introduction to deep learning-based profiling side-channel attacks.
Afterward, we discuss various loss functions and the datasets used in our experiments.

2.1 Deep Learning-based Side-channel Analysis

Supervised machine learning aims to learn a function f mapping an input to the output
based on examples of input-output pairs. The function f is parameterized by 6 € R",
where n denotes the number of trainable parameters. Supervised learning consists of
two phases: training and test. Moving to profiled side-channel attacks, those two phases
are commonly denoted as the profiling and attack phase. In our work, the function f
is a deep neural network with the Softmaz output layer. We encode classes in one-hot
encoding, where each class is represented as a vector of ¢ values (that depend on the
leakage models and the considered cipher) that has zero on all the places, except one,

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 3

denoting the membership of that class. This paper considers two commonly used deep
learning models, multilayer perceptron (MLP) and convolutional neural networks (CNNs).

The multilayer perceptron (MLP) is a feed-forward neural network that maps sets
of inputs onto sets of appropriate outputs. MLP consists of multiple layers (at least three:
input layer, output layer, and hidden layer(s)) of nodes in a directed graph, where each
layer is fully connected to the next one, and training of the network is done with the
backpropagation algorithm [GBC16].

Convolutional neural networks (CNNs) commonly consist of three types of layers:
convolutional layers, pooling layers, and fully-connected layers. The convolution layer
computes the output of neurons connected to local regions in the input, each computing a
dot product between their weights and a small region they are connected to in the input
volume. Pooling decrease the number of extracted samples by performing a down-sampling
operation along the spatial dimensions. The fully-connected layer computes either the
hidden activations or the class scores.

A dataset is a collection of side-channel traces (measurements) T, where each trace t;
is associated with an input value (plaintext or ciphertext) d; and a key value k;. Similar
to the conventional machine learning process, the dataset is divided into disjoint subsets
where the training set has M traces, the validation set has V traces, and the attack set
has @ traces.

1. The goal of the profiling phase is to learn € (vector of parameters) that minimize
the empirical risk represented by a loss function L on a dataset T of size M (i.e., on
the profiling (training) set).

2. In the attack phase (also known as test or inference), predictions are made for the
classes

y(xla k*)a ce 7y(xQ7k*),

where k* represents the secret (unknown) key on the device under the attack. The
outcome of predictions with a model f on the attack set is a two-dimensional matrix
P with dimensions equal to @ x ¢. The probability S(k) for any key candidate k is
then used as a maximum log-likelihood distinguisher in the following way:

Q
S(k) = log(pi)- (1)
i=1

The value p; , is the probability for a key &k and input d;, we obtain the class v (with
> o piw = 1,Vi). A specific class v is obtained from the key and input through a
cryptographic function and a leakage model.

In SCA, an adversary aims at revealing the secret key k*. More specifically, given
(@ amount of traces in the attack phase, an attack outputs a key guessing vector g =
[91,92,- -, 9x|] in decreasing order of probability. Thus, g; is the most likely and gx| the
least likely key candidate. The attack performance is evaluated by standard performance
metrics such as success rate (SR) and the guessing entropy (GE) [SMY09]. Guessing
entropy is the average position of k* in g. Success rate is the average empirical probability
that g; is equal to the secret key k*. In this work, both metrics are considered.

2.2 Loss Functions

In the machine learning domain, the loss indicates the difference between the predicted
outputs of the model and the ground truth labels that belong to the input. The result of
the loss function L is used to update the weights in the network with gradient descent,
finally reducing the deviation between the predicted and real labels.

4 Focal Loss Function for Deep Learning-based Side-channel Analysis

For classification, the common loss function is the categorical cross-entropy (CCE)
and it has been used in various classification tasks [KLSS17, YWL'20,HZRS15]. Since
side-channel attack can be considered as a classification task as well, CCE is also usually
adopted in SCA [BPS'20, MPP16, KPH"19]. Cross-entropy is a measure of the difference
between two distributions. Minimizing the cross-entropy between the distribution modeled
by the deep learning model and the true distribution of the classes would improve the
predictions of the neural network:

R It .
cee(y,9) ==~ > D> vijog(vi), (2)

i=1 j=1

where ¢ denotes the number of classes.

Categorical cross-entropy loss has several variants depends on usage cases. Focal loss
is one of the popular ones in dealing with class imbalance problems as well as improving
learning efficiency. The definition of the focal loss is given in Equation 3.

Lfocal(yvg) = _a(l - g)’yCE(y,@), (3)
where C'E is the categorical cross-entropy function. « is a vector of weights for each class
and <y is the parameter that increases the loss for correctly classified examples with low
confidence.

More recently, two SCA-specific loss functions have been proposed. One of them is
the ranking loss (RKL) proposed by Zaid et al. [ZBD%20]. The ranking loss uses both
the output score of the model and the probabilities produced by applying the Softmax
activation function to these scores. The idea behind the ranking loss is to compare the
rank of the correct key byte and the other key bytes in the score vector before the Softmax
function is applied:

rkl(s) = Z <log2 (1 + e_a(s(k*)_s(k)))> , (4)

ke
kA k*
where s is the predicted vector with scores for each key hypothesis, K is the set of all
possible key values, kx is the correct key, and s(k) is the score for key guess k, calculated
by looking at the rank of k in k. Finally, « is a parameter that needs to be set dependent
on the size of the used profiling set. The implementation of the ranking loss function is
provided by [ZBD*20] on Github .
Zhang et al. proposed the cross-entropy ratio (CER) [ZZNT20]. CER can be used as a
metric to estimate the performance of a deep learning model in the context of SCA, which
can be further extended as a loss function:

CE(y,9)
% Z?:l CE(ym 9 g) ’

where CE is the categorical cross-entropy, and y,, denotes the one-hot encoded vector
with the incorrect labels. Here, the variable n denotes the number of incorrect sets to
use. [ZZN7120] do not provide a value for n but state that increasing n should increase
the accuracy of the metric. In our experiments, we use n = 10 to balance computational
complexity and attack performance.

()

cer(y,§) =

2.3 Datasets

Our experiments consider three publicly available datasets representing a typical sample
of commonly encountered scenarios. These datasets are a common choice for evaluating
the performance of deep learning-based SCA.

Ihttps://github.com/gabzai/Ranking-Loss-SCA

https://github.com/gabzai/Ranking-Loss-SCA

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 5

2.3.1 ASCAD Datasets

The ASCAD dataset is generated by taking measurements from an ATMega8515 running
masked AES-128 and is proposed as a benchmark dataset for SCA [BPS'20]. There are
two versions of the dataset. The first version consists of 50000 profiling traces and 10 000
attack traces, each trace consisting of 700 features. The profiling and attacking sets use
both the same fixed key. We denote this dataset as ASCAD_ fixed. The dataset is provided
on the ASCAD GitHub repository 2.

The second version of the ASCAD dataset uses random keys to build the profiling traces.
The dataset consists of 200 000 profiling and 100000 attack traces, each consisting of 1400
features. The ASCAD_ variable dataset is available on the ASCAD GitHub repository 2.

2.3.2 CHES CTF Dataset

The CHES CTF dataset was released in 2018 for the Conference on Cryptographic Hardware
and Embedded Systems (CHES). The traces consist of masked AES-128 encryption running
on a 32-bit STM microcontroller. In our experiments, we use 45000 traces for the training
set, which contains a fixed key. The validation and test sets consist of 5000 traces each.
Unlike the ASCAD dataset, the key used in the training and validation set is different
from the key for the test set. We attack the first key byte. Each trace consists of 2200
features. This dataset is available at https://chesctf.riscure.com/2018/nevs.

3 Related Works

To improve the side-channel attack performance, in recent years, deep learning has received
more attention within the SCA community, see, e.g., [ZBHV19,PSK*18, MPP16,CDP17,
KPH'19, MDP19, Tim19, RWPP21]. Among them, MLP and CNN become the most
popular candidates to launch such attacks. The results turn out that by carefully tuning
the model’s hyperparameters, the required number of attacks traces can be dramatically
reduced to obtain the secret key. For instance, [ZBHV19] proposed a methodology to
find well-performing architectures for SCA, while [KPH"19] also researched different
architectural choices and the influence of noise. More recently, [PCP20] showed how
ensembles of deep learning models can be used for SCA.

Although the model design methodologies have been widely studied, less attention
has been put on the loss function. [MPP16] first explored the usage of deep learning
techniques for SCA and mentioned the usability of the categorical cross-entropy or the
mean squared error loss functions, which is followed by later works on deep learning-based
SCA [ZBHV19,PCP20,BPS™20, Tim19, MWM21].

More recently, two novel loss functions optimized for SCA have been proposed [ZBD*20,
ZZNT20]. As already mentioned, Zaid et al. proposed ranking loss, a loss function that
maximizes the models’ success rate by performing a pairwise comparison between the
possible different key hypotheses. Zhang et al. proposed the cross-entropy ratio, the ratio
between the categorical cross-entropy of the original profiling traces and a set of profiling
traces with incorrect labels. The CER loss function should, according to the authors, be
better suited for imbalanced profiling data [ZZNT20].

For both papers, although the newly proposed loss functions are compared to the
categorical cross-entropy, the generality of such loss functions is unclear due to the limited
testing on different test scenarios (i.e., deep learning models and leakage models). Our
work proposes a novel loss function optimized for SCA, and we perform a broad benchmark
with the loss functions mentioned above. Finally, Kerkhof et al. recently conducted a

2https ://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
3https ://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key

https://chesctf.riscure.com/2018/news
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key

6 Focal Loss Function for Deep Learning-based Side-channel Analysis

systematic evaluation of a number of loss functions (“traditional” machine learning ones
like categorical cross-entropy and mean squared error) but also the SCA-related ones (CER
and ranking loss) [KWPP21]. Their analysis showed that CER performs the best in SCA,
followed by the categorical cross-entropy. Interestingly, the reported results for ranking
loss indicate significant issues with that loss function.

4 A Novel Loss Function for SCA

In this section, we introduce our novel loss function. First, we provide a formal problem
statement, followed by a discussion about the FLR loss function, and how to tune its
hyperparameters.

4.1 Problem Statement

Before introducing the Focal Loss Ratio, we first formally define the easy and hard samples.
Let a, p, and n denote anchor (i.e., ground truth), positive (with a label same as the
anchor), and negative samples (with a label different from the anchor). We can categorize
the positive samples p into two categories based on their similarity .S to the anchor sample:

o Easy samples: S(a,p) < S(a,n).
o Hard samples: S(a,n) < S(a,n).

The way of calculating the similarity depends on the selection of the loss function.
Nevertheless, the samples closer to the anchor have higher confidence to be classified to
the corresponding clusters. Following this, based on the classification outcomes, we define:

» Easy positives/negatives: samples classified as positive/negative examples.
o Hard positives/negatives: samples misclassified as negative/positive examples.

Recall, the CER loss takes advantage of samples with incorrect labels to increase the
attack performance. However, the training would become inefficient if most samples are
easy negatives that have limited contribution to the learning process. The bias introduced
by easy negatives makes it difficult for a network to learn rich semantic relationships from
samples: cumulative easy negatives loss overwhelms the total loss, which degenerates the
model. Moreover, one should notice that the class imbalance can be introduced based
on the leakage model. For instance, when using the Hamming weight leakage model,
information related to middle classes (i.e., HW=4) in a dataset or mini-batches used in
training is over-represented compared to the other classes. Indeed, training a network
on an imbalanced dataset will force the network to learn more representations of the
data-dominated class than other classes. Unfortunately, besides re-balancing from the
dataset level (thus reducing the profiling traces size), there are no special measures to
address this problem during the training process. Finally, the accurate estimate of CER
requires a sufficient number of negative samples (infinite in the ideal case), but it would
reduce the training efficiency as a trade-off.

4.2 Focal Loss Ratio

Two actions are essential to be taken to address the problems identified in the previous
section. First, the hard samples should be prioritized in the training process than the
easier ones. Second, the weight of each class should be parameterized. Following this, we
propose the Focal Loss Ratio (FLR). The definition is shown in Equation 6.

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 7

—a(l - 9)"CE(y,9)
7 Lo —a(l=9)CE(ys, §)’

where y are the true labels, ys are the shuffled labels, C'E is the categorical cross-entropy,
and n is the number of sample-incorrect label pairs to use. In Equation 6, o and v are
introduced to weigh the classes and emphasize hard samples for both numerator and
denominator, respectively. When looking at the numerator, aligned with the focal loss,
the samples with lower prediction probability (hard samples) have a greater impact on the
loss function, which is further controlled by the « value. The same statement holds for the
denominator as well. Besides, the introduction of the denominator further separates the
prediction distribution between the correct cluster and other clusters.

Figure 1 demonstrates the above mentioned effects. Given that input in the prediction
probability § ranges from zero to one and the ground truth y equals zero, as shown in
the left graph, FLR introduces the greatest penalty to the hard samples compared to
others. When y,,.cq is getting closer to y;4e, the FLR value is neglectable, thus reducing
the contribution of the easy negatives. The effect of « is shown on the right graph: the
influence of the hard samples is reduced when « decreases. Consequently, the FLR loss
could be a good candidate when the classes are imbalanced (i.e., the HW leakage model).
Moreover, since a can effectively control the hard sample’s influence, then the improvement
of the model’s performance can be realized by different tuning strategies. More discussions
are presented in Section 6.

FLR(y,9) = (6)

10 10

—— Categorical Crossentropy
Focal Loss

Crossentropy Ratio
Ranking Loss

Focal Loss Ratio

Loss value
Loss value

0 : ‘ ; ‘ 0 ‘ ‘ ‘ ‘
0.0 02 0.4 056 08 00 02 04 06 08

Prediction probability Prediction probability
(a) Comparison between loss functions. (b) The influence of « towards the FLR.

Figure 1: Demonstration of different loss functions.

4.3 Hyperparameter Tuning

Compared with other loss functions, FLR loss introduces additional hyperparameters, thus
it requires careful tuning. For « and < selection, to investigate their influence as well
as to reach the top performance in the considered testing scenarios, three strategies are
introduced in this paper. For the first strategy, we use the values given by [LGG117],
namely o = 0.25 and v = 2.0. Models with these settings are denoted as FLR. The second
strategy optimizes both « and ~ via random search, denoted as FLR,_ optimized. The
search ranges are defined in Table 1.

Finally, we introduce class re-balancing into our loss function [CJLT19]. With class
balancing, the weights for each class (a) are set based on the classes’ size. For each class,
the corresponding weight is calculated as shown in Equation 4.3.

8 Focal Loss Function for Deep Learning-based Side-channel Analysis

Table 1: Hyperparameter space for multi-layer perceptrons.

a 0.1, 0.25, 0.5, 0.75, 0.9

o 0, 0.5, 1.0, 2.0, 5.0

_1-8
ai—m» (7)

where «; is the weight for class i, n, is the number of samples in the considered class in the
profiling set, and 3 is a new parameter to be tuned. In this paper, aligned with [CJL*19],
we set § = 0.999. In our results, models trained with these settings are referred to as
focal balanced.

Exhaustive search is used to determine the optimal value of n. In Figure 2, we show
the performance of the same model on the CHES__CTF dataset using FLR and different
values of n. While the difference in N7, is small, the median N7, reaches the minimum
when n equals three. This observation also holds when tested on the other datasets. Also,
the impact on training time of using n = 3 is negligible in comparison to n = 1. Therefore,
we set n to three for our experiments with FLR.

Guessing entropy - CHES_CTF - MLP - HW Success rate - CHES_CTF - MLP - HW

fir_1
fir_2
fir_3
fir_5
fir_10
fir_20

Success rate

0 200 400 600 800 1000 0 200 400 600 800 1000
Traces # Traces
(a) Guessing entropy. (b) Success rate.

Figure 2: Guessing entropy and success rate for FLR with different values of n.

5 Experimental Results

In this section, we provide the experimental results for our new loss function. First,
we provide details about the experimental setup. Afterward, we provide results for all
considered datasets.

5.1 Experiment Setup

We consider the combinations of datasets, leakage models, and architecture types. Regard-
ing model architecture tuning, we notice that using one or a few optimized models from
the literature may introduce bias as they are optimized for a specific dataset-loss function
combination. Besides, the model’s performance may fluctuate with each training due to
the random weight initialization. Therefore, we follow Algorithm 1 to tune the model’s
hyperparameters for each loss functions.

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 9

Algorithm 1 Model tuning and the evaluation strategy.

Generate, train, and test M models sampled from range S with loss function L.
Select the best performing model 7.

Train and test the model T, N times.

Select the median performing model Ty, .

Evaluate Ty, with evaluation metrics

This paper compares our function against the CER loss, categorical cross-entropy,
ranking loss, and focal loss. For each loss function, we set M to be 100 with hyperparameters
sampled from Tables 2 and 3. n is set to be 10. We use guessing entropy to evaluate the
model’s performance during the tuning process (steps 2 and 4). While for the evaluation
(step 5), we look at the guessing entropy, success rate, and training time.

Table 2: Hyperparameter space for multilayer perceptrons.

Hyperparameter Options

Dense layers 2 to 8 in a step of 1

Neurons per layer 100 to 1000 in a step of 100

le-6 to le-3 in a step of le-5
100 to 1000 in a step of 100

Learning rate

Batch size
Activation function (all layers) ReLU, Tanh, ELU, or SeL.U
RMSProb, Adam

Loss function

Table 3: Hyperparameter space for convolutional neural networks.

Hyperparameter

Options

Convolution layers

1to 2 in a step of 1

Convolution filters

8 to 32 in a step of 4

Kernel size

10 to 20 in a step of 2

Pooling type

Max pooling, Average pooling

Pooling size

2 to 5 in a step of 1

Pooling stride

2 to 10 in a step of 1

Dense layers

2 to 3 in a step of 1

Neurons per layer

100 to 1000 in a step of 100

Learning rate

le-6 to le-3 in a step of le-5

Batch size

100 to 1000 in a step of 100

Activation function (all layers) ReLU, Tanh, ELU, or SeLU
RMSProb, Adam

Loss function

Besides that, we compare the performance of models trained with FLR on an unpro-
tected implementation of AES, then introducing masking and random desynchronization
countermeasures. For this experiment, we use the ASCAD_ fixed, ASCAD_ plain, and
ASCAD_ desynch0 datasets.

For our experiments on the ASCAD datasets, 50 000 profiling traces are used. For the
CHES__CTF, we use 45000 profiling traces. In the attacking phase, we use up to 2000

10 Focal Loss Function for Deep Learning-based Side-channel Analysis

traces for the ASCAD fixed dataset and up to 3000 traces for the ASCAD_ variable and
CHES_ CTF datasets. In some of the plots, the x-axis is reduced to increase visibility.

5.2 ASCAD_fixed

We present the results of the models with different functions on the ASCAD_ fixed dataset.
Figure 3 and Figure 4 show the guessing entropy and success rate with different attack
models and leakage models.

Guessing entropy - ASCAD - MLP - ID Guessing entropy - ASCAD - MLP - HW
140
1007, — fir — fir
flr_balanced flr_balanced
flr_optimised —— flr_optimised
cce — cce
cer_loss —— cer_loss
focal_loss —— focal_loss
w rkl w rki
[G] [G]
a a
0 200 400 600 800 1000 0 200 400 600 800 1000
Traces # Traces
(a) MLP models, ID leakage. (b) MLP models, HW leakage.
Guessing entropy - ASCAD - CNN - ID Guessing entropy - ASCAD - CNN - HW
— fr 140 — fir
flr_balanced | flr_balanced
—— flr_optimised 120 —— flr_optimised
—— cce —— cce
—— cer_loss 100 —— cer_loss
—— focal_loss —— focal_loss

rkl 80 rki

PGE
PGE

60

40

“ .

400 600 800 1000 0 200 400 600 800 1000
Traces # Traces
(c) CNN models, ID leakage. (d) CNN models, HW leakage.

Figure 3: Guessing entropy of the optimized models on the ASCAD_ fixed dataset.

From the results, models trained with FLR loss outperform the CCE and focal loss in
all test scenarios. Specifically, when the HW leakage model is considered, the FLR model
halves the required attack traces compared with categorical cross-entropy or focal loss to
reach a GE of 1. Surprisingly, ranking loss performs mediocre in most cases, indicating its
low generality towards different deep-learning models and test scenarios. On the other
side, FLR loss and CER loss perform comparably. Still, as shown in Table 4, where the
median N7, are evaluated, models trained with FLR outperform the CER loss in three
out of four of the test scenarios. Interestingly, all three FLR tuning strategies (for o and
) work well and lead to successful attacks with few traces. Although optimal strategy
differs per scenario, their variation is limited.

Figure 5 shows the training times for the 100 random models with each of the loss
functions. Except for the CER loss, there is no significant difference between the compared
loss functions. The slowdown for the CER loss is caused by choice for n (equals 10).

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 11

Success rate - ASCAD - MLP - ID

— fir
flr_balanced
—— flr_optimised

Success rate

—— cce

—— cer_loss

—— focal_loss
rkl

0 500 1000 1500 2000 2500 3000
Traces

(a) MLP models, ID leakage.

Success rate - ASCAD - CNN - ID

=
0.8
3
© 0.6
0
g fir
504 fir_balanced
n —— fir_optimised
—— cce
0.2 —— cer_loss
—— focal_loss
0.0 rkl
0 200 400 600 800 1000

Traces

(c) CNN models, ID leakage

Success rate

Success rate

Success rate - ASCAD - MLP - HW

fir
flr_balanced
—— flr_optimised
— cce

cer_loss
focal_loss
rki

200 40

0 600 800 1000
Traces

(b) MLP models, HW leakage.

Success rate - ASCAD - CNN - HW

— fir T
flr_balanced
flr_optimised
cce

cer_loss
focal_loss

rki

200 400 600 800 1000

Traces

(d) CNN models, HW leakage.

Figure 4: Success rate of the optimized models on the ASCAD_ fixed dataset.

Table 4: Median NTGE on the ASCAD fixed dataset. The lowest NTGE for each scenario

is marked blue.

Ltocal CCE CER loss RKL FLR FLR_balanced FLR_ optimized
MLP ID 580 860 570 900 810 540 680
MLP HW 1480 1560 560 1620 460 570 510
CNN ID 1250 1360 600 1760 610 850 550
CNN HW 1840 >2000 540 >2000 570 790 560

Although choosing a lower n would reduce the training time, it reduces the probability of
selecting hard samples, influencing the attack performance.

From our results on the ASCAD_ fixed dataset, we can conclude that the FLR is a
suitable loss function for deep learning-based SCA. It outperforms other loss functions in
most cases without negative impacts on training efficiency.

5.3 ASCAD_variable

Next, loss functions are tested on the ASCAD_ variable dataset. The guessing entropy of
each loss function is presented in Figure 6. For the ID leakage model, neither the MLPs or
CNNs reach a GE of 1 with less than 3000 traces. Indeed, the ASCAD_ variable dataset
is a more difficult dataset to attack than its fixed-key counterpart. Still, the CER loss and

12 Focal Loss Function for Deep Learning-based Side-channel Analysis

Training time - ASCAD - MLP - ID Training time - ASCAD - MLP - HW
3500 600 T
+
-
3000 H
500 i
_. 2500 - H
a2 £ 400 ¥
£ 2000 g s : .
=} B + #
o o 300] %
£ 1500 < + T
£ £ * *
+
g 1000 g 200 : % % i ;
.
i i !
5007 i 100 ? i % 1
]
Jb b i
0

d (\m\sedc’(’e (_e\',\o55 ca\,\oss w

nced L ised cce 1055 11055 1K ¢ nce
v a2 opt™ cef " gocal - ar 022 o0 fo

(a) ID leakage (b) HW leakage

Figure 5: Training time of 100 random models per loss function on the ASCAD__ fixed
dataset.

FLR perform the best: the CER loss reaches a GE of 1.7 with MLP and 3.13 with CNN,
while the models with FLR reach 2.11 and 1.18. When the HW leakage model is considered,
as shown in Table 5, the secret key can be retrieved successfully with all considered loss
functions. For MLP, FLR loss performs slightly worse than CER (Nr,, = 1800 versus
N7, = 1340). While for CNN, FLR outperforms CER (N1, = 800 versus N, = 950).
In terms of ranking loss, unfortunately, it performs the worst in most of the test scenarios.

Table 5: Median Nr,, on the ASCAD variable dataset. The lowest Nr, for each
scenario is marked blue.

Ltocal CCE CER loss RKL FLR FLR_ balanced FLR_ optimized

MLP ID >3000 >3000 >3000 >3000 >3000 >3000 >3 000
MLP HW 1940 2600 1340 2910 2180 2460 1800

CNN ID >3000 >3000 >3000 >3000 >3000 >3000 >3000
CNN HW >3000 2840 950 >3000 880 1670 1020

Next, the success rates (SR) of each loss function are shown in Figure 7. Interestingly,
the FLR (default version) equipped model reaches a higher SR slightly faster than the
other loss functions with the ID leakage model. For the HW leakage scenarios, the FLR
and CER loss perform equally well. Note that the performance of FLR can fluctuate with
different hyperparameter tuning strategies. For the ASCAD_ variable dataset, however,
FLR with default values (o = 0.25, v = 2.0) would be a solid choice.

5.4 CHES_CTF

In this subsection, we discuss the results of the CHES CTF dataset. Figure 8 shows the
guessing entropy in the different scenarios and Figure 9 shows the success rates.
Together with the success rates presented in Figure 9, for all considered loss functions,
3000 attack traces is not sufficient to obtain the correct key for the ID leakage model. Still,
from the results, we see a significant performance improvement with the MLP models and
the ID leakage when using FLR__balanced. Such an improvement is also visible in some
of the CNN models with FLR. However, these models turned out to be less consistent in
terms of performance when changing the attack settings. For instance, the FLR_ balanced
performs the best with MLP, but it performs mediocre with CNN. Something similar is

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 13

Guessing entropy - ASCAD_VARIABLE - MLP - ID Guessing entropy - ASCAD_VARIABLE - MLP - HW
— fir — fir
100 fir_balanced 120 fir_balanced
—— flr_optimised —— flr_optimised
80 —— cce — cce
—— cer_loss —— cer_loss
—— focal_loss —— focal_loss
w 60 rkl rkl
[G]
a \
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Traces # Traces
(a) MLP models, ID leakage. (b) MLP models, HW leakage.
Guessing entropy - ASCAD_VARIABLE - CNN - ID Guessing entropy - ASCAD_VARIABLE - CNN - HW
0 — fir 120 — fir
flr_balanced flr_balanced
—— flr_optimised 100 —— fir_optimised
100 —— cce — cce
—— cer_loss cer_loss
80 —— focal_loss focal_loss
w rkl rki
[G]
a
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Traces # Traces
(c) CNN models, ID leakage. (d) CNN models, HW leakage.

Figure 6: Guessing entropy of the optimized models on the ASCAD_ variable dataset.

also visible for the FLR_ optimized.

When the HW leakage is considered, we again see a significant increase in the perfor-
mance when a CNN is used. As shown in Table 6, the models with FLR and FLR_ optimized
were the only models that successfully retrieved the correct key with a CNN model. The
median out of 10 models with FLR and FLR,_optimized were successful with a Nt of
2740 and 2000 respectively. When MLPs are used, there is no significant increase, and
the performance is approximately equal to the CER loss.

Table 6: Median N, on the CHES CTF dataset. The lowest N, for each scenario
is marked blue.

Local CCE CER loss RKL FLR FLR_ balanced FLR_ optimized
MLP ID >3000 >3000 >3000 >3000 >3000 >3000 >3000
MLP HW 1220 630 480 1860 1080 2030 2450
CNN ID >3000 >3000 >3000>3000 >3000 >3000 >3000 >3000
CNN HW >3000 >3000 >3000 >3000 2740 >3000 2000

We can conclude that the FLR is a good candidate when attacking difficult datasets as
the performance is better than the CER loss and ranking loss in most cases. Additionally,
FLR outperforms conventional loss functions such as categorical cross-entropy. It does so
without increasing the training efficiency.

14 Focal Loss Function for Deep Learning-based Side-channel Analysis

Success rate - ASCAD_VARIABLE - MLP - ID Success rate - ASCAD_VARIABLE - MLP - HW
o8] — fir 1.0
flr_balanced
—— flr_optimised
_op 0.8
—— cce
0.6
—— cer_loss
—— focal_loss 0.6

fir

Success rate
<)
S
Success rate

0.4 flr_balanced
—— flr_optimised
0.2 —— cce
0.2 —— cer_loss
A —— focal_loss
ool 0.0 {# ki
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Traces # Traces
(a) MLP models, ID leakage. (b) MLP models, HW leakage.
Success rate - ASCAD_VARIABLE - CNN - ID Success rate - ASCAD_VARIABLE - CNN - HW
— fir 1.0

flr_balanced
flr_optimised
cce

cer_loss
focal_loss

rkl

0.8

— fir
flr_balanced
flr_optimised
cce

o
o

o
IS

cer_loss

Success rate
Success rate

0.4

focal_loss

rki
0.2 0.2
0.0 0.0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Traces # Traces
(c) CNN models, ID leakage. (d) CNN models, HW leakage.

Figure 7: Success rate of the optimized models on the ASCAD__variable dataset.

5.5 Countermeasures

Finally, we look at the difference in the performance of the different loss functions when
considering unprotected implementations and countermeasures. Figure 10 shows the
guessing entropy on the ASCAD_ plain dataset (where we assume that the mask is known).

As visible from the GE plots, the unprotected dataset is easily broken. Every test
scenario retrieves the correct key byte trivially with less than ten traces. The models
trained with the FLR perform slightly better, within every scenario a median N, of 6
or 7, while the other loss functions often need 8 or more traces.

If we look at the impact that adding masks has by comparing these results with the
models in Figure 3, we see the largest increase N, for the models with focal loss or
categorical cross-entropy. This shows that the FLR and CER loss are slightly more resilient
to a countermeasure such as masking.

The trace desynchronization decreases the performance of every model drastically.
Figure 11 shows the GE of the models on the ASCAD __desync50 dataset. Similar to before,
the MLPs perform poorly, and none of the loss functions results in a successful attack.
When we look at the performance of the CNNs, we see that when the ID leakage model
is used, the FLR and CER loss functions are not very successful. None of the models
equipped with these functions leads to a successful attack, while only the successful model
is trained with the categorical cross-entropy. Indeed, trace desynchronization significantly
increases the cross-entropy between the predicted and ground-truth labels. When using
the ratio loss such as FLR and CER, a huge loss value would be used for gradient descent

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek

15

Guessing entropy - CHES_CTF - MLP

-1D

fir
flr_balanced
flr_optimised
cce

cer_loss
focal_loss

Guessing entropy - CHES_CTF - MLP - HW

140

120

1004

fir
flr_balanced
flr_optimised
cce

cer_loss
focal_loss

rkl rki

S

o

70

60

50
0

500 1000 1500

Traces

2000 2500 3000 0

1000

1500
Traces

2000 2500 3000

(a) MLP models, ID leakage. (b) MLP models, HW leakage.

Guessing entropy - CHES_CTF - CNN - ID Guessing entropy - CHES_CTF - CNN - HW

fir
flr_balanced
flr_optimised
cce

cer_loss
focal_loss

rkl

fir
flr_balanced
flr_optimised
cce

cer_loss
focal_loss

rki

140 120

120 100

80 \

601 |

—= —~—_

0 - S — —

3000 0 500 1000 1500
Traces

PGE
PGE

40

20

0 500 1000 1500

Traces

2000 2500 2000 2500 3000

(c) CNN models, ID leakage. (d) CNN models, HW leakage.

Figure 8: Guessing entropy of the optimized models on the CHES__CTF dataset.

and may cause the model difficult to converge. Naturally, reducing the learning rate could
be a good choice the deal with this problem. Interestingly, this effect is not visible when
the HW leakage model is considered. In that case, the FLR functions outperform every
other function, requiring less than half the number of traces compared to the categorical
cross-entropy (1250 versus 2660). CER loss and focal loss do not reach a GE of 1 when
using 3000 traces or less to attack. It is important to note that the FLR loss function
performs well while not incurring additional computational complexity in the calculation
process.

Finally, we can conclude that the FLR loss is a robust solution in presence of coun-
termeasures. As expected, there is an increase in the required number of traces for a
successful attack, but this increase is smaller when compared to other loss functions. When
random desynchronization is introduced, the losses with a ratio perform poorly when the
ID leakage model is used. When the HW leakage model is considered, models with FLR
outperform the other loss functions by a large margin.

6 Discussion

FLR loss performs well in various test scenarios. The only downside to using FLR as a
loss function is the introduction of the a and v parameters. In our experiments, we used
three different strategies: IN

e Fixed value: a = 0.25 and v = 2.0.

16 Focal Loss Function for Deep Learning-based Side-channel Analysis

Success rate - CHES_CTF - MLP - ID Success rate - CHES_CTF - MLP - HW
— fir T
flr_balanced
—— flr_optimised
— cce
® —— cer_loss ®
© —— focal_loss ©
0 rkl 0
g g — fir
S S flr_balanced
n n —— fir_optimised
T —— cce
”‘ “ | —— cer_loss
I ‘\ —— focal_loss
I rkl
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Traces # Traces
(a) MLP models, ID leakage. (b) MLP models, HW leakage.
Success rate - CHES_CTF - CNN - ID Success rate - CHES_CTF - CNN - HW
0101 — ff 1.0 fir S
flr_balanced fir_balanced Nl
008! flr_optimised 08l flr_optimised /‘(\“//
— cce — cce S
° —— cer_loss o —— cer_loss !
E’ 0.06{ —— focal_loss E 0.6{ —— focal_loss
0 rkl v rkl
g / W
S 0.04 S04 N M
[} 7] -
L[M
0.0y I 0.2]
| (LI »:;,3%/“ WA ~
o.oo{y [T 0.0 4 =
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Traces # Traces
(c) CNN models, ID leakage. (d) CNN models, HW leakage.

Figure 9: Success rate of the optimized models on the CHES_CTF dataset.

e Optimized via random search.
¢ Determined by the frequency of each class.

Throughout the experiments, there was not a single strategy that worked best in every
scenario. However, in almost all cases, the best performing FLR variants have the fixed
« values for every class. In some of the scenarios with the ID leakage model, the class
re-balance strategy improves the performance. However, using class balancing with the ID
leakage model results in almost constant and low values of a. This leads us to conclude
that the best strategy is the variant where « is the same for every class and where the «
and v parameters are optimized. Optimization via random search can be performed to
set the a and ~ values. In combination with an increased range of the possible values,
e.g., the addition of lower « values, FLR_ optimized should outperform the other variants.
Indeed, from Section 4.2, one should note that with lower «, the samples that trigger high
loss value are the ones misclassified with high confidence (probability).

Compared with other loss functions that require models to be confident about predicting,
this FLR configuration softens the restriction for the predictions: only (very) hard negative
will be penalized, while the others that are correctly classified, or even misclassified but
with low confidence would have limited loss contributions. From the learning perspective,
loss functions that force the model to reach high accuracy/low loss would normally lead
to the learning from the major classes/overfitting. FLR with low « allows the models to
make mistakes, thus increasing the generality of the model and helping to learn from the
imbalanced data.

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 17

Guessing entropy - ASCAD_PLAIN - MLP - ID

40

fir
flr_balanced
flr_optimised
cce

cer_loss
focal_loss

rkl

35

30

25

0.0 2.5 5.0 7.5 10.0 125
Traces

15.0 17.5 20.0

(a) MLP models, ID leakage.

Guessing entropy - ASCAD_PLAIN - CNN - ID

— flr
flr_balanced
flr_optimised
cce

cer_loss
focal_loss
rkl

0.0 2.5 5.0 7.5 10.0 125
Traces

15.0 17.5 20.0

(c) CNN models, ID leakage.

Guessing entropy - ASCAD_PLAIN - MLP - HW

— fir

50 flr_balanced
flr_optimised
cce

cer_loss
focal_loss
rki

0.0 2.5 5.0 7.5 10.0 125
Traces

15.0 17.5 20.0

(b) MLP models, HW leakage.

Guessing entropy - ASCAD_PLAIN - CNN - HW

50 — flr
flr_balanced
flr_optimised
cce

cer_loss
focal_loss
rki

40

30

PGE

20

10

0.0 2.5 5.0 7.5 10.0 125

Traces

15.0 17.5 20.0

(d) CNN models, HW leakage.

Figure 10: Guessing entropy of the optimized models on the ASCAD_ plain dataset.

To test our hypothesis, we performed an additional set of experiments on the 12 test
scenarios. The search space for o enlarges to 0.005,0.01,0.05,0.1,0.25,0.5,0.75, and 0.9.
We use FLR as the loss function for each test scenario and again optimize hyperparameters
via random search. The results of these experiments are listed in Table 7 and Table 8.

Table 7: Median Nr,,, on the ASCAD_fixed dataset. The lowest N, for each scenario
is marked blue.

Lioewsr CCE CERloss RKL FLR
MLP ID 580 860 570 900 640
MLP HW 1480 1560 560 1630 490
CNNID 1250 1360 600 1760 520
CNN HW 1840 >2000 540 >2000 500

These results confirm our hypothesis. In the scenarios in which the class balanced FLR
was previously best, such as the ASCAD _ fixed scenarios, the FLR with our new strategy
still performs very well. For instance, when attacking ASCAD_ fixed with MLP and the
ID leakage model, the best performing model uses a fixed « that equals 0.005. Although
it did not perform as well as the CER loss or FLR_ balanced in this case, it did perform
better than the other strategies. We also see results similar to the previous experiments
when using the HW leakage model on the ASCAD_ variable dataset. FLR outperforms

18 Focal Loss Function for Deep Learning-based Side-channel Analysis

Guessing entropy - ASCAD_DESYNC50 - MLP - ID Guessing entropy - ASCAD_DESYNC50 - MLP - HW
160 — fir 200 fir 5|
R e fir_balanced fr_balanced
m N A —— fir_optimised - .
10 ANV e — cce flr_optimised
—— cer_loss cce
—— focal_loss cer_loss
| Wﬁw\“\r\ focal_loss
120
w rkl
¢ %W 7
100) o
80 “’_\/vx,\
|
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
#Traces # Traces
(a) MLP models, ID leakage. (b) MLP models, HW leakage.
Guessing entropy - ASCAD_DESYNC50 - CNN - ID Guessing entropy - ASCAD_DESYNC50 - CNN - HW
— fir 160 fir
flr_balanced 140 flr_balanced

< —— flr_optimised flr_optimised

—— cce 120 cce
—— cer_loss cer_loss

80 —— focal_loss focal_loss
w rkl rki
U]
% 60

40

\\/\———\/\\’\
20
0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Traces # Traces
(c) CNN models, ID leakage. (d) CNN models, HW leakage.

Figure 11: Guessing entropy of the optimized models on the ASCAD__desync50 dataset.

Table 8: Median N7, on the ASCAD_variable dataset. The lowest N1, for each
scenario is marked blue.

Ljvear CCE CERloss RKL FLR
MLPID >3000 >3000 >3000 >3000 >3000

MLP HW 1940 2600 1340 2910 1340
CNN ID >3000 >3000 >3000 >3000 >3000
CNN HW >3000 2840 950 >3 000 800

Table 9: Median N, on the CHES CTF dataset. The lowest N, for each scenario
is marked blue.

Lyocal CCE CER loss RKL FLR
MLP ID >3000 >3000 >3000 >3000 >3000

MLP HW 1220 630 480 1860 1080
CNN ID >3000 >3000 >3 000 >3000 >3000
CNN HW >3000 >3000 >3 000 >3 000 2070

the CER loss in most cases. The benefit, however, is that a single strategy can be used for
each scenario, namely the same optimized value for « for each class.

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 19

7 Conclusions and Future Work

In this paper, we proposed a novel loss function that is optimized for deep learning-based
side-channel analysis. More precisely, we started by identifying the pros and cons of several
loss functions in the context of SCA. Using those characteristics, we constructed a new loss
function for deep learning-based SCA called the focal loss ratio (FLR). By testing FLR on
various combinations of datasets, leakage models, and neural network architectures, we
confirmed the outstanding performance of FLR. Finally, we showed that neural network
models using FLR work with different parameter optimization strategies and that FLR
outperforms the CER loss and other loss functions like the categorical cross-entropy in
most of the considered scenarios. We plan to explore the hyperparameter selection for
FLR loss when considering datasets with more complex countermeasures for future work.

References

[BPS*20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Study of Deep Learning Techniques for Side-Channel Analysis and
Introduction to ASCAD Database-Long Paper. Journal of Cryptographic
Engineering, 10(2):163-188, 2020.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional Neural
Networks with Data Augmentation against Jitter-Based Countermeasures-
Profiling Attacks without Pre-Processing. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 45-68, 2017.

[CJLT19] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J Belongie. Class-
Balanced Loss Based on Effective Number of Samples. CoRR, abs/1901.05555,
2019.

[GBC16] TIan J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition, 2015.

[KLSS17] Nataliia Kussul, Mykola Lavreniuk, Sergii Skakun, and Andrey Shelestov.
Deep Learning Classification of Land Cover and Crop Types Using Remote
Sensing Data. IEEE Geoscience and Remote Sensing Letters, PP:1-5, 7 2017.

[KPH*19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make Some Noise Unleashing the Power of Convolutional Neural Networks for

Profiled Side-channel Analysis. JACR Transactions on Cryptographic Hardware
and Embedded Systems ISSN 2569-2925, 2019(3):148-179, 2019.

[KWPP21] Maikel Kerkhof, Lichao Wu, Guilherme Perin, and Stjepan Picek. No (good)
loss no gain: Systematic evaluation of loss functions in deep learning-based
side-channel analysis. Cryptology ePrint Archive, Report 2021/1091, 2021.
https://ia.cr/2021/1091.

[LGGT17] Tsung-Yi Lin, Priya Goyal, Ross B Girshick, Kaiming He, and Piotr Doll4r.
Focal Loss for Dense Object Detection. CoRR, abs/1708.02002, 2017.

[MDP19] Loic Masure, Cécile Dumas, and Emmanuel Prouff. A Comprehensive Study
of Deep Learning for Side-Channel Analysis, 2019.

http://www.deeplearningbook.org
https://ia.cr/2021/1091

20

Focal Loss Function for Deep Learning-based Side-channel Analysis

[MOP06]

[MPP16]

[MWM21]

[PBP20]

[PCP20]

[PHJ*+18]

[PSK*18]

[RWPP21]

[RZC*21]

[STPO3]

[SMY09]

[Tim19)]

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer, December 2006.
ISBN 0-387-30857-1, http://www.dpabook.org/.

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In International
Conference on Security, Privacy, and Applied Cryptography Engineering, pages
3-26. Springer, 2016.

Thorben Moos, Felix Wegener, and Amir Moradi. Dl-la: Deep learning leakage
assessment: A modern roadmap for sca evaluations. TACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(3):552-598, Jul. 2021.

Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning when to stop:
a mutual information approach to fight overfitting in profiled side-channel
analysis. Cryptology ePrint Archive, Report 2020/058, 2020. https://ia.cr/
2020/058.

Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in numbers:
Improving generalization with ensembles in machine learning-based profiled
side-channel analysis. TACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(4):337-364, Aug. 2020.

Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. JACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(1):209-237, Nov. 2018.

Stjepan Picek, Ioannis Petros Samiotis, Jachun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In International Conference on Security, Privacy,
and Applied Cryptography Engineering, pages 157-176. Springer, 2018.

Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement
learning for hyperparameter tuning in deep learning-based side-channel analy-
sis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):677-707, Jul. 2021.

Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet, and Amaury
Habrard. Online performance evaluation of deep learning networks for profiled
side-channel analysis. In Guido Marco Bertoni and Francesco Regazzoni,
editors, Constructive Side-Channel Analysis and Secure Design, pages 200-218,
Cham, 2021. Springer International Publishing.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, pages 13-28,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

Frangois-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, pages 443-461, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

Benjamin Timon. Non-Profiled Deep Learning-based Side-Channel attacks
with Sensitivity Analysis. JACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(2):107-131, 2 2019.

http://www.dpabook.org/
https://ia.cr/2020/058
https://ia.cr/2020/058

Maikel Kerkhof, Lichao Wu, Guilherme Perin and Stjepan Picek 21

[WAGP20]

[WP20]

[WWJT21]

[YWL*20]

[ZBD+20)]

[ZBHV19)

[ZYJY18]

[ZZN+20]

Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisit-
ing a Methodology for Efficient CNN Architectures in Profiling Attacks. JACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):147—
168, 2020.

Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of
side-channel measurements with autoencoders. TACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages 389-415, 2020.

Lichao Wu, Yoo-Seung Won, Dirmanto Jap, Guilherme Perin, Shivam Bhasin,
and Stjepan Picek. Explain some noise: Ablation analysis for deep learning-
based physical side-channel analysis. TACR Cryptol. ePrint Arch., page 717,
2021.

Baoguo Yuan, Junfeng Wang, Dong Liu, Wen Guo, Peng Wu, and Xuhua Bao.
Byte-level malware classification based on markov images and deep learning.
Computers € Security, 92:101740, 2020.

Gabriel Zaid, Lilian Bossuet, Francois Dassance, Amaury Habrard, and Alexan-
dre Venelli. Ranking loss: Maximizing the success rate in deep learning
side-channel analysis. TACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021(1):25-55, Dec. 2020.

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Method-
ology for efficient cnn architectures in profiling attacks. TACR Transactions
on Cryptographic Hardware and Embedded Systems, 2020(1):1-36, Nov. 2019.

Donglai Zhu, Hengshuai Yao, Bei Jiang, and Peng Yu. Negative Log Likelihood
Ratio Loss for Deep Neural Network Classification. 4 2018.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu. A
novel evaluation metric for deep learning-based side channel analysis and its
extended application to imbalanced data. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 73-96, 2020.

	Introduction
	Background
	Deep Learning-based Side-channel Analysis
	Loss Functions
	Datasets

	Related Works
	A Novel Loss Function for SCA
	Problem Statement
	Focal Loss Ratio
	Hyperparameter Tuning

	Experimental Results
	Experiment Setup
	ASCAD_fixed
	ASCAD_variable
	CHES_CTF
	Countermeasures

	Discussion
	Conclusions and Future Work

