
SME: Scalable Masking Extensions
Toward software portability and hardware security for masking

countermeasures.

Ben Marshall1,2 and Dan Page1

1 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom.
{ben.marshall,daniel.page}@bristol.ac.uk

2 PQShield Ltd, Oxford
ben.marshall@pqshield.com

Abstract. Supporting masking countermeasures for non-invasive side-channel security
in instructions set architectures is a hard problem. Masked operations often have a
large number of inputs and outputs, and enabling portable higher order masking has
remained a difficult. However, there are clear benefits to enabling this in terms of
performance, code density and security guarantees. We present SME, an instruction
set extension for enabling secure and efficient software masking of cryptographic
code at higher security orders. Our design improves on past work by enabling the
same software to run at higher masking orders, depending on the level of security
the CPU/SoC implementer has deemed appropriate for their product or device at
design time. Our approach relies on similarities between implementations of higher
order masking schemes and traditional vector programming. It greatly simplifies
the task of writing masked software, and restores the basic promise of ISAs: that
the same software will run correctly and securely on any correctly implemented
CPU with the necessary security guarantees. We describe our concept as a custom
extension to the RISC-V ISA, and its soon to be ratified scalar cryptography extension.
An example implementation is also described, with performance and area tradeoffs
detailed for several masking security orders. To our knowledge, ours is the first
example of enabling flexible side-channel secure implementations of the official RISC-
V lightweight cryptography instructions.
Keywords: side-channel attack, micro-architectural leakage, instruction set extension,
masking, RISC-V

1 Introduction
Writing power side-channel secure software is hard. While tooling to aid developers in this
has progressed significantly recently [BBYS21], there remain several challenges to making
these tools portable across the multitude of different devices used to create side-channel
secure products in industry, or which are used as the basis of research in academia.

A significant problem with the portability of these tools lies in how different devices
have very different leakage characteristics, even though they may implement the same In-
struction Set Architecture (ISA). These micro-architectural differences are well documented
[MPW21, SSB+19], and undermine masked implementations by causing un-expected share
collisions. This forces any software which tries to be portably secure to be extremely
conservative in it’s assumptions about underlying devices, often making it unacceptably
large (in terms of code size) or slow.

mailto:{ben.marshall,daniel.page}@bristol.ac.uk
mailto:ben.marshall@pqshield.com

2 SME: Scalable Masking Extensions

Similarly, increasing the masking order of an implementation (perhaps to increase the
security margin due to micro-architectural power leakages) often leads to a substantially
larger executable code size, which is too large for an embedded device for which cryptogra-
phy is only a small part of its actual function. Further, there has been no way for existing
software to automatically and portably take advantage of improvements in security and
performance guarantees offered by hardware in the context of masking countermeasures.

One way to view this is as a problem stemming from the ISA abstraction. This
abstraction has proved to be exceptionally good at guaranteeing functional characteristics
across devices, but was never designed to give guarantees about analog side-channel
security. Recent works have sought to repair or augment the ISA by adding instructions
which give software control over leaking micro-architectural state [GMPP20], by adding
dedicated instructions which explicitly require some level of side-channel security in their
implementation [KS20, GGM+20], or by creating a masked representation of the entire
data-path transparently to software [GJM+17, DMGH19]. These approaches have achieved
some successes, but suffer from two common problems: extending to higher masking orders,
and avoiding the code size and performance penalty associated with higher order masking.

In this work, we note some similarities between operating on shared representations of
variables, and the kind of scalable vector programming paradigms which first appeared
many years ago, and are currently being popularised by SVE [SBB+17] from ARM and the
RISC-V Vector Extension [ris]. Stemming from this observation, the main contributions of
this work are:
• A concrete architectural design for allowing support for scalable masking orders in a

CPU, such that the same software can execute on any CPU at some maximum supported
masking order, while retaining all of the associated security guarantees. This includes
techniques for automatically managing the additional state required by masked software.

• A discussion of design issues which an ISE must consider when designing for side-channel
security, and how the architecture can promote or encourage side-channel secure software
design.

• An example implementation of this architecture, based on RISC-V and the open source
SCARV-CPU core.

• A performance evaluation of the implementation at multiple masking orders for important
cryptographic workloads, including (to our knowledge) the first side-channel secure
implementation in hardware of the official RISC-V scalar cryptography extensions for
AES [MNP+20].
We focus without loss of generality on power side-channel leakage, and emphasise

that we consider the architecture as the main contribution. Our main aim is to define an
appropriate interface which can be easily implemented in hardware, and which provides
all of the security guarantees necessary for software as part of its definition. Hence, it is
the interface definition which is more important than any one implementation, though we
nonetheless show empirically that our interface can be implemented realistically. Our hope
is that the concrete architecture definition allows those with expertise above (in terms of
formal modelling) and below (in terms of masked hardware implementations) the ISA to
experiment with, extend and improve our design.

2 Background
RISC-V. RISC-V is a (relatively) new instruction set architecture designed around a
very small core set of simple instructions, which can be extended with domain specific
extensions. For example, the F extension adds Floating Point support, or the C extension
adds 16-bit instructions for improved code density. The base ISA comes in three main
variants: 32, 64 or 128-bit, denoted by XLEN. User-mode applications can access 31 general

Ben Marshall and Dan Page 3

purpose registers, and a zero constant register. Privileged applications can also access
the Control and Status Registers (CSRs), which control things like interrupts, virtual
memory and exception handling. A small number of CSRs are also visible to user-mode
applications for managing things like floating point flags.

Also of note is the soon to be ratified RISC-V Scalar Cryptography extension [ZGS+21].
This adds support for hardware accelerated cryptography using only the general purpose
register file, without needing large SIMD or vector registers. The combination of being
free to implement, and the first ISA to add lightweight hardware accelerated cryptography
means that RISC-V is likely to see wide adoption in embedded platforms with side-channel
security requirements.

Vector v.s. SIMD programming. These are two overlapping but distinct notions in
computer architecture. In SIMD programming, one typically uses a single instruction to
operate on multiple pairwise elements of a wide register. Often, SIMD instructions have
been added to architectures to opportunistically support parallel operation on narrower
data types than the machine word width. E.g. DSP cores enabling two 16-bit elements
stored in a single 32-bit register to be added together in one instruction. This is sometimes
called “SIMD within a register” or SWAR. The key characteristic of SIMD programming is
that there is little support for arrays of elements which are not an integer multiple of the
number of elements which can be operated on by a single SIMD instruction. This leads to
a considerable amount of “loop maintenence” code.

Vector programming is similar to SIMD in that it allows a single instruction to operate
on multiple data items. However, vector processors include explicit support for managing
arbitrary length vectors. This is done by making the maximum number of elements which
can be processed in hardware available dynamically to software, which considerably reduces
the amount of loop management code which is common with SIMD instructions.

2.1 Related Work
Here we describe some of the closest works to our own and how they compare in terms of
scope and aims.

In [GJM+17], the authors describe an augmented RISC-V CPU which can also protect
software from power side channel attacks using masking. It does this by separating the
data-paths, and adding dedicated hardware support for certain masked operations. A
DOM [GMK16] representation is used to implement the core masked operations, which
are versions of the the basic RISC-V ALU instructions. Their design also supports a
synthesis-time parameter to change the masking order, and the paper includes overhead
results using upto four shares. The entire register file uses a shared representation. Though
not explicitly described in the paper, we believe individual shares are loaded or stored as
needed, with some un-described mechanism to select which share is stored or loaded. This
is also no described way for software to determine how many shares are used to represent
variables, meaning software is not portable between instances of a design with different
numbers of hardware supported shares. We would hence classify this work as being "below"
the ISA boundary. That is, software cannot interrogate the hardware support for masking,
requiring a human to write code specific to it.

In [DMGH19] the authors describe a commercial solution for an entirely masked CPU
implementation, where the “register file, the data-path including the ALU, memory, and the
memory interface” are all protected using a masked representation. Software is unaware of
the masking, allowing native software to work transparently, which is a serious advantage in
terms of programmer effort. However, only 1’st order masking is supported. An interesting
solution to transparently protecting shared variables in memory is described. An internal
“seed” value is used to generate an extra share based on the seed and the memory address.
This share is used to collapse the internal 2-share representation into a single variable,

4 SME: Scalable Masking Extensions

which can be turned back into a 2-share representation on a load by re-generating the
additional share from the seed and address again. This removes the usual memory overhead
associated with masking, where additional shares increase the memory requirement with
the masking order. There are no concrete hardware overhead numbers for this design, we
assume because they are commercially sensitive.

Both [KS20] and [GGM+20] describe complete instruction set extensions for supporting
1′st order masking within the CPU. [GGM+20] includes a complete engineering prototype,
and a side-channel evaluation of several algorithms including AES. While these examples
show well how 1’st order masking can be supported, both point out that supporting higher
order masking is an open question. One particular problem in [GGM+20] is the difficulty of
safely storing multiple shares in the general purpose register file without causing accidental
unmasking. Solving this required considerable engineering effort in the micro-architecture,
stemming from the fact that architecturally combining shares was valid behaviour for the
architecture.

3 Architecture
Here, we describe our design as an extension to the base RISC-V ISA. The key concept to
SME is that any CPU implementing it provides support for upto some maximum fixed
number of shares, which software can determine at runtime. So long as the software
is written according to some basic rules, it can be executed on any CPU implementing
SME, with upto d-order security, where d is the maximum number of shares supported in
hardware by the CPU with no changes to the software itself.

This is similar to the standard notion of vector programming, as adopted by the
RISC-V vector extension [ris]. While our extension could possibly be built on top of the
base RISC-V vector extension, we opted for a dedicated, orthogonal design for the purposes
of explaining it. This was to avoid much of the complexity and additional state which the
RISC-V vector extension adds, though we hope similarities are clear to the reader, and
leave open the possibility of a merged design in the future. A more detailed discussion on
the similarities and differences between SME and the RISC-V vector extension is found in
Section 6.

While designing the SME extension, we tried to follow these principles:
1. Add as little new architectural state as possible to achieve useful 1’st order security.

Any more architectural state added after that must directly contribute to increasing the
maximum security order.

2. Keep the programmer model as simple as possible. The programmers life should not be
made more complex with an increasing security order.

3. New instructions should read at most two general purpose registers and write at most
one. This is in keeping with the existing RISC-V principles. Likewise, any additional
state should not require register files with more than two architectural read ports and
one architectural write port.

4. Allow for as much implementation diversity as is useful, with tradeoffs between area,
performance and code size explicitly noted.

5. Avoid the temptation to bolt on functionality which would obviously be better imple-
mented as a memory mapped co-processor1.

6. Design something which could be commercially viable or standards appropriate. In terms
of building a practical implementation, this means giving SoC builders a reasonable
tradeoff between size, performance, security and efficiency. A good guide is to take the
1While this approach can give dramatic performance improvements for little area cost by (e.g.) reusing

the general purpose registers files, it can be a disaster for wider system efficiency when not doing a
cryptographic operation.

Ben Marshall and Dan Page 5

Figure 1: Diagram of base RISC-V architecture state, and additional state due to SME.

area required for dedicated side-channel secure ECC, AES and SHA accelerators, and
re-purpose a comparable amount of silicon area for SME. See Section 3.5 for a short
discussion on this.

7. Consider interactions with other parts of the RISC-V ISA, re-using functionality where
appropriate and avoiding additional complexity.
All implementations of SME define an implementation specific constant SMAX. This

is the maximum number of physical shares supported by the SME implementation. We
deliberately do not call this a security order. This is because different masking schemes
require different numbers of shares to give the same security, and SMEdoes not mandate a
particular masking scheme.

It is essential to de-couple the exact masking scheme from the architecture and pro-
grammer model, as it allows for future schemes which are more efficient or secure to be
implemented without architectural changes to SME. Or, it enables a degree of agility if an
existing scheme is found to be insecure.

3.1 SME State
A diagram of additional state added by SME is shown in Figure 1. To control the SME
extension, we introduce a single user-mode Control and Status Register (CSR) to the
RISC-V architectural state called smectl, shown in Figure 2. The fields in smectl are:
1. smectl.D - d-share security. This is a read/write field which indicates the number of

shares to use. A value of 0 indicates SME is currently turned off. A value of 2 indicates a
two share scheme, 3 indicates a three share scheme etc. A value of 1 is currently reserved.
Only values upto SMAX may be written to smectl.D. Note that implementations may
make smectl.D support only a single writable value, in which case the number of shares
for any computation will always be fixed.

2. smectl.T - Masking Type. When zero, this bit indicates that boolean masking is being
used. When set, it indicates arithmetic masking is being used. This bit controls the
behaviour of the masking instructions described in Section 3.3.2, and modifies some
existing instructions in Section 3.2.

3. smectl.B - Share Bank. This read/write field may hold values between 0 and smectl.D.
It is used by load and store instructions (described later) to select which set of shares
to load or store to memory. Writing smectl.B with an invalid value raises an Invalid
Opcode Exception.

4. smectl.p* - Previous Fields. These fields are used to gracefully handle traps and interrupts.
Their operation is described fully in Section 3.1.1.
Using smectl., software can configure the number of shares to use to fit some perfor-

6 SME: Scalable Masking Extensions

012345678910111213141516171819202122232425262728293031

Reserved pD pT pB D T B

Figure 2: Layout of the register for XLEN =32. For XLEN =64, bits 63 : 32 are reserved.

mance/security trade off. Or, software can write −1 (i.e. all ones) to smectl.D, and always
use the maximum number of shares available. For our initial description of SME, the maxi-
mum supported SMAX is 16. A well defined off state for SME means that implementations
can (for example) clock gate registers efficiently when they are not in use, or even power
down that part of the chip completely.

Note that the low five bits of the smectl register can be set/cleared with a single RISC-V
csr*i instruction.

An implementation of SME will also include SMAX banks of registers used to hold
shares. Each bank contains 16 registers. Each share register is denoted SMRX [Y], where
X is the bank number and Y is the Y ’th register of the bank. Bank 0 is an alias for the
top 16 base RISC-V GPRs, while Bank N > 1 is additional state which is only accessible
by SME aware software. Hence, a variable X, with its 0’th share in GPR[i] is represented
as smectl.D shares: X ={SMR0[i], SMR1[i], ..., SMRD[i] }.

We deliberately chose 16 registers per bank, rather than to simply have SMAX coppies
of the GPR register file. This was to recognise that when implementing a masked
cryptographic primitive, not all registers are ever used to hold shares: some are used for
loop counters and array addresses. Hence, we use the top 16 RISC-V GPRs to represent
the 0’th share of any variable, and additional register banks for i’th additional shares.
GPRs 0..15 can then be used to hold loop counters, pointers, return addresses and so on2.

Further, registers and flip-flops often dominate the area of small CPU implementations
and side-channel secure hardware operations. Duplicating all 31 GPRs would give 1
additional share, with less than optimal register utilisation. After all, who cares about
shared representations of the stack pointer? Our scheme allows for 3 share variable
representations with the same number of additional architectural registers, and better
register utilisation for sensitive variables.

We believe being able to hold 16 sensitive variables inside the CPU core at any one
time is enough, given that the ARMv7-M architecture so often used in side-channel secure
implementation research has only 12 general purpose registers in total. Our empirical
evaluations in Section 5 suggest that while there are corner cases which result in additional
register spilling, even the worse case is considerably better than the status quo for software
masked implementations.

3.1.1 Interrupt and Trap Handling

Any addition of state to an ISA inevitably leads to the cry of “what about interrupt latency?”
or “what about context switches?”. We have two responses in this case. The first, is that
interrupts may be disabled for the duration of a cryptographic operation, though this is
hardly ideal and not always possible. Second, we provide an efficient (three instructions)
way to check if SME is in use by the current thread, so SME related state only needs to be
saved/restored as needed. This is similar to the mechanism RISC-V provides for checking
if floating point state needs to be saved or restored.

Further, we add dedicated support for trapping through the smectl.p* fields of smectl..
Whenever a trap or interrupt occurs, the following happens inside smectl.: All smectl.p*
fields take on the current value of the corresponding smectl.D/T/B field. The smectl.D
field is then set to zero, turning off SME for the duration of the trap or interrupt handler.
Software may interrogate the smectl.p* fields to discover the previous operating state

2One could choose a more complex sharing of the RISC-V GPRs and SME registers, optimising for the
RISC-V ABI and register usage conventions. We leave this as a clear optimisation for the future.

Ben Marshall and Dan Page 7

of SME, and save registers as needed. This mirrors how the base RISC-V Privileged
Architecture handles interrupt enable and privilege level signals across traps and interrupts.
If the servicing routine itself does not need to use SME, then it may safely save and restore
any registers of SME Bank 0 (i.e. those that overlap with the GPRs) without worrying
about share collisions, as other shares are safely locked away in other Banks.

Upon returning from a trap or interrupt service routine, the values of smectl.D/T/B
have their values restored from the corresponding smectl.p* fields, and execution may
continue as normal.

We belive graceful interrupt and trap handling for instruction set extensions which
add architectural state is often an underdeveloped point in many works. For example,
[GGM+20] contains no discussion on the topic, and we believe the design would trivially
leak during an interrupt service routine which sequentially stored GPRs to the stack. We
hope the considerations here offer routes for handling this in other works.

3.2 Modifications to Existing Instructions
Rather than adding newmasked variants of base ISA instructions, as was done in [GGM+20],
instead we overload the behaviour of existing base ISA ALU instructions. We do this,
because it re-inforces the notion of SME adding a side-channel secure mode to the host
CPU core. It also preserves opcode space, which is an essential consideration for standards
appropriate extensions. In reality however, it would be perfectly reasonable to realise SME
using new, dedicated instruction encodings if the wider system constraints make sense.
For the overloaded instructions, when smectl.D is non-zero:
• ALU instructions which write to and source only the top 16 RISC-V GPRs (I.e. SMR0[i])

automatically perform a smectl.D-share version of their operation.
• If an ALU instruction performs a linear operation, and writes SMR0[i] and sources

one SMR0[j] and one GPR[k < 16] then the operation is performed as normal, but the
non-existent shares of the GPR[k < 16] register are treated as zero. This allows for
simple addition of round constants, which do not need to be masked, or rotations and
shifts by values held in a register.

• An ALU instruction may not source an SMR0[j] and write a GPR[k < 16]. This will raise
an Invalid Opcode Exception. Register-Immediate variants of add/sub, when sourcing
an SMR0[j], will also raise an Invalid Opcode Exception.

• When ALU instructions source and write to GPR[k < 16], they behave as normal. This
enables standard address arithmetic etc.

• Arithmetic instructions add, sub are polymorphic with smectl.T. Depending on the
value of smectl.T when executed, they perform their respective operations using boolean
or arithmetic masked representations of their input variables. This allows SME to be
used for algorithms favouring boolean masking, such as block ciphers, or arithmetic
masking, such as some public key cryptography.

• Arithmetic instructions mul, mulh, mulhu, mulhsu only support arithmetic masking
(smectl.T = 0). Executing any of these instructions on an SMRw[h] en smectl.T = 1
results in an Invalid Opcode Exception.

When smectl.D is zero, the base ISA instructions work as normal, regardless of which
registers they address. The following ALU instructions work with the SME extension: add,
sub, srli, slli, xor, or, and, rori, mul, clmul, grevi, shfli. We also note
that more specialist instructions from the scalar cryptography ISE for SHA2, SM3, SM4
and AES acceleration can also be made to work with this scheme, which we demonstrate
later.

The polymorphism of the arithmetic instructions based on smectl.T requires some
justification. We expect algorithms which require mixed arithmetic and boolean operations

8 SME: Scalable Masking Extensions

to pick boolean masking, and stick with it. The main use case for this mechanism is
switching between algorithms dominated by one type of masking or another.

3.3 New Instructions
SME introduces a small number of new instructions for managing the additional state, and
creating, refreshing and destroying shared variables.

3.3.1 Loading and Storing Shares

Loading and storing of shares is an expensive part of any masked software implementation
in terms of energy consumption, performance, static code size and dynamic instruction
fetch bandwidth. It also represents a serious risk to security, where undocumented registers
in the memory data paths cause collisions between shares. This problem increases with
the number of shares, so providing good architectural support for it is essential. Here, we
detail several mutually complementary approaches to this problem. Figure 3 gives pseudo
code for each of the various approaches.

Given the design outlined in Section 3.1, there is some overhead in switching between
share banks to do loads and stores. This cost is only paid if the software is truly generic
and supported hardware security order independent. For software written specifically for
N ≤SMAX shares, this cost can be removed.

We note that the bank select mechanism rewards programmers who load and store
all the i’th shares of N variables, followed by all i + 1’th shares of N variables. This
implicitly avoids share collisions caused by sequentially loading and storing all shares of
variable N , followed by all shares of variable M . This is because the total number of
instructions is minimised by minimising the number of changes to the bank select field.
Give that accidentally storing shares of the same variable sequentially is a well documented
“gotcha” for side-channel engineers [CGD18, SSB+19, MPW21] we believe that providing
a performance incentive for not doing this is a nice way to minimise the likelihood of it
occurring.

The following sub-sections explain the different kinds of load and store instructions we
considered including in SME, and finish which the rationale for what we actually included.
Pseudo-code for each instruction variant is found in Figure 3.

Single share load and store. This is the simplest approach, where we overload the
existing RISC-V load and store instructions to load and store shares between SME registers
and memory. The base load word/half/byte instructions will load data from memory into
the SMRsmectl.B[x] when x ≥ 16 (remembering that SMR0[16 ≤ x ≤ 31] aliases the GPRs)
and GPR[x] when x ≤ 15. Likewise, store instructions can write the value SMRsmectl.B[x]
when x ≥ 16 and GPR[x] when x ≤ 15.

This approach requires the programmer to carefully schedule instructions to avoid share
collisions. Though they are incentivised to avoid this when loading multiple variables by
the bank switching mechanism, loading or storing a single shared variable will still result
in share collisions when the instructions are executed back to back. This would require the
implementation to transparently flush registers when load and store instructions operate
on SME registers. Additionally, this approach causes an overhead in terms of instruction
execution counts proportional to the number of shares. Note the code size need not grow
with the number of shares, since we can loop over values of smectl.B rather than explicitly
loading and storing registers from each bank.

Single variable load and store. This approach also overloads the base ISA load and
store instructions. However, instead of loading or storing a single share of variable V in
SMRi≤smectl.B[V], we have the instructions load or store all shares of the variable in a single

Ben Marshall and Dan Page 9

lw rd, imm(rs1):
→ if rd < 16 or !smectl.D: GPR[rd] ← MEM[GPR[rs1] + imm]
→ else: SMRsmectl.B[rd] ← MEM[GPR[rs1] + imm]
(a) Functionality of the load single share instructions, which overload the base RISC-V load/store

word instructions when smectl.D 6= 0
sme.lv rd, stride(rs1):
→ for i = 0..smectl.D: SMRi[rd] ← MEM[GPR[rs1] + stride× i]

(b) Functionality of the load whole variable instruction.
sme.lis {rdx,..rdy}, stride(rs1):
→ for i = rdx..rdy: SMRsmectl.B[i] ← MEM[GPR[rs1] + stride× i]

(c) Functionality of the load i’th shares instruction.
sme.lmv {rdx,..rdy}, stride(rs1):
→ for i = rdx..rdy:
→→ for j=0..smectl.B: SMRsmectl.j[i] ← MEM[GPR[rs1] + smectl.B× j + stride× i]

(d) Functionality of the load multiple variables instruction.

Figure 3: Pseudo-code showing the functionality of the different load share instructions.
Store instructions are defined the same way but wit the direction of the memory/register
assignment reversed.

instruction. If the set of SME banks is viewed as a matrix where each bank is a column
and each variable is a row, these instructions work row-wise across variables. This is very
similar to the instructions in the base RISC-V vector extension which load and store an
entire vector register.

This means that for the programmer, the instruction sequence for loading an un-masked
implementation is identical to a masked implementation. They never need to query the
value of smectl.D, or change the value of smectl.B, since the instruction can loop over
the relevant shares automatically. It also means the instruction memory accesses are
the same regardless of the number of shares, resulting in an energy, static code size and
instruction count improvement. A performance improvement is possible based on the exact
implementation, but not guaranteed.

In this case, the implementation (rather than the programmer) is responsible for making
sure that shares do not collide during loading and storing. This might involve flushing the
data path with dummy operations or random data. This is perfect in terms of making
the SME implementation for maintaining security (and so freeing the programmer of the
burden), though it does make the implementation much more complex. This complexity
may be disproportionate considering the implications it has for the wider CPU sub-system
and SoC system.

Multiple share load and store. Here, rather than overloading the existing load and store
instructions, we introduce new, dedicated instructions for loading and storing the i’th
shares of a set of multiple variables. For example, we load or store SMRsmectl.B[i] ∀i ∈ 16..31.
Looping over values of smectl.B allows us to store entire variables of smectl.D shares. When
smectl.D = 0, these instructions act like base ISA load/store instructions, i.e. they operate
as if smectl.D = 1. Continuing the matrix analogy for the SME state, these instructions
work column-wise across banks.

This sort of instruction can be thought of as fusing together multiple single share
load and store instructions. It forces programmers to operate on all i’th shares, then all
i + 1’th shares, and so implicitly guards against manipulating shares of the same variable
sequentially, causing security problems. It also provides a code size and instruction count
benefit.

However, in the case where we only want to (for example) spill a single variable to

10 SME: Scalable Masking Extensions

the stack, we still need to iterate over every share and load/store it individually again,
which considerably increases the code size and instruction execution counts over the single
variable load and store instructions. Further, there is some complexity in how to select
which registers to be loaded or stored. E.g. should the instruction allow only contiguous
registers (e.g. 16, 17, 18) to be loaded and stored, or allow any arbitrary list (e.g. 16, 19, 22).
The former is easier to implement, the latter makes register allocation simpler. In either
case, the exact method of delivering the operand is also an open question. An additional
register input could be used, or an immediate.

Multiple variable load and store. These instructions allow all shares of multiple variables
to be loaded and stored in a single instruction. They allow the implementation to easily
order loads and stores such that corresponding shares of the same variable do not interact
when loading or storing multiple variables. They are very similar to the base RISC-V vector
extension load/store whole register instructions, which allow multiple vector registers to
be loaded or stored in a single instruction.

These instructions are maximally complex in their implementation, but give the largest
benefit in terms of code size and executed instruction counts. There is also the problem of
how to select which registers to load/store, as the the multiple share load/store instructions.

Included load/store instructions. After considering these various approaches and con-
sidering the implementation complexity, we opted only to include overloaded versions of
the single share load/store instructions. Our rationale is:
• They require the least overhead in terms of additional logic, which keeps implementation

complexity down. While this is useful in its own right, it is especially important for
leakage resistant designs, since any additional complexity makes it harder to track
separation of shares.

• They best fit with the “RISC” design principles of the host ISA. This has important
implications for standards adoption, and indeed, whether any engineers will even want
to implement the design.

• They give programmers the most flexibility in terms of scheduling instructions. In our
experiments, we found that very rarely were we loading or storing just one variable at a
time, meaning we could make sure that shares of a corresponding variable were never
accessed adjacently.

• Other instruction variants which stored multiple shares of the same variable had this
problem hard-coded into their design. We believe avoiding codifying such implementation
difficulties into the ISA is essential.
While the power, performance and code size impact of our choice is detrimental, we

think it is acceptable to spend some of the improvements gained through more efficient
masked computations in keeping the rest of the design simple and easy to implement.
Indeed, our final evaluations still came out smaller and faster than either pure-software
masked implementations, or ISE assisted ones.

3.3.2 Masking Operations

We also introduce two new instructions for en-masking and re-masking values. These are
very similar to those introduced in [GGM+20], but adapted to work on multiple shares.
sme.mask rd, rs1 - Given source register GPR[rs1], create an smectl.D-share boolean or

arithmetic masked representation (according to smectl.T), writing the result shares to
SMRi[rd] ∀i ∈ {0..smectl.D}.

sme.remask rd, rs1 - Given source register SMRi[rs1], re-mask each share using fresh
masks, writing the result shares to SMRi[rd] ∀i ∈ {0..smectl.D}.

Ben Marshall and Dan Page 11

Unlike [GGM+20], we deliberately omit an sme.unmask instruction. Any un-masking
logic in a system must be well isolated from the main masked data-path so it does not
cause un-intended un-masking of values during normal operation. For a 2-share designs,
this is fairly simple, but the complexity grows considerably for higher order schemes. Given
that un-masking is inherently not a secure operation, we believe the complexity and logic
cost is wasted by supporting this in hardware. While there is a performance cost associated
with doing un-masking in software, this is more than made up for by the performance
gains SME provides to the compute part of masked operations.

3.4 Verification of Security Guarantees: A discussion
Power side-channels destroy every abstraction boundary that computer science and micro-
electronics / VLSI design has erected in order to manage the complexity of building
hardware and software systems. They are a caused by interactions at every point in
the abstraction stack, making it extremely difficult to express security guarantees about
them at any single point in the stack. Contrast this with timing channels, which can
be effectively mitigated at several points in the abstraction stack (with varying levels of
performance implications), and which exist only because software has access to accurate
timers. We cannot simply take away the observability of power consumption.

As such, the following guarantees we want SME to provide should serve as the starting
point for a discussion around what sorts of guarantees an ISA can and should make about
power side-channel security. Are they strong enough to support formal reasoning? Are they
enough to make secure implementations portable between different devices implementing
SME? Are they possible to evaluate, verify or falsify? Are the requirements they place
on implementations weak enough to make their realisation feasible, both in terms of
complexity, cost, and commercial or standardisation viability?

Going forward, we define an “SME Instruction” as one which executes when smectl.D > 0,
and which reads and writes at-least one SME register. We suggest this list of security
claims each implementation of SME should provide:
1. When smectl.D is set to 0, the implementation provides no guarantees of side-channel

security.
2. When smectl.D is set to i > 0, the implementation provides some level of security

guarantee, which is a function of the number of shares being used. Again, this accounts
for decoupling the number of shares used from the architecture of SME. The platform or
software environment should provide a mechanism for discovering the security order based
on smectl.D. Going forward, we refer to the security order provided by an implementation
as O(smectl.D).

3. The SME implementation must not cause any intra-instruction leakage which is visible
to O(smectl.D) analysis. That is, the implementation of the instructions themselves must
not cause a security order reduction. This can be verified by executing SME instructions
in isolation and using a TVLA flow to check for leakage.

4. The SME implementation must not cause inter-instruction leakage between N -adjacent
SME instructions. That is, instruction i will not interact with any other instructions
within N instructions of it in a way which undermines O(smectl.D) security. N will be
guaranteed by the implementation, and will likely be dependent on the length of any
processing pipelines.

5. The SME implementation must document when it does not flush registers which contain
sensitive values.

6. The SME implementation does not guarantee any security order if the programmer
explicitly manipulates shares outside the other SME guarantees. That is, SME is not
impervious to willful misuse, and will not trap or cause an exception if this happens.
For comparison, a programmer can willfully cause their program to segfault, causing

12 SME: Scalable Masking Extensions

the processor to catch the invalid access and stop it to prevent a security hole. No such
guarantee or safety net exists for deliberately undermining the security of SME.
We hope that this list is necessary and sufficient, but welcome feedback to the contrary,

or ways to better express the security requirements. In terms of verifying these claims an
implementation must make, there are several overlapping considerations.

Side-channel based security guarantees resist standard methods for testing or certifying
compliance with an ISAs functional specification, simply because they make claims about
things (power consumption) which are traditionally far outside the remit of the ISA to
specify. We belive that the functional aspects of SME are no more or less challenging to
verify than any other comparable architectural extension. Indeed, they are well suited to
any co-simulation, constrained random stimulus (CRS) based verification methodology as
used in industry, or even model-checking based verification. One difficulty is the inherently
non-deterministic result values of some instructions. In a CRS verification environment,
this can be handled by hinting to the golden reference model what the actual values are
from the hardware, which is a well established method for handling permissable non-
determinism in a design. For formal functional verification, one may write assertions such
that the combination of share values always represent the correct value.

For verifying the security aspects of SME, the job of the verification engineer is
considerably harder. We note that there are standard evaluation techniques for devices
seeking certification for side-channel security, which implementers may aim for even before
fabricating a chip. E.g. ISO 17825, though this particular standard is not without
shortcomings [WO19]. There is also increasing literature in design-time tooling for side-
channel security, which is well summarised in [BBYS21]. One promising approach is the
one described in [GHP+21], where the authors are able to co-verify a software masked
implementation inside the CPU hardware which executes it. We believe this is an excellent
way to approach the security verification of ISA-assisted masking. Our point overall is to
note the inherent challenge of ISA based side-channel security, and that there are tools
and standards which tame this problem to the point of feasibility.

3.5 Implementation Considerations
Here we consider various implementation choices for the SME architecture. Most of these
considerations also exist in a standard vector processor, but with important intersections
with security considerations. We acknowledge that most computer architects would not
call our design a vector processor in the most accurate sense. We believe however that
there are enough similarities to make it a useful tool for explaining the concepts of SME,
and as a comparison point.

The first obvious choice for implementers is to decide on the maximum number of
shares supported by their hardware design. We include support for upto 16 shares in the
smectl.r egister, which we felt was more than sufficient3 for any reasonable implementation.

As a guide for how many shares are “affordable”, we use the cost of an ECC accelerator
and an AES accelerator as a rough guide. An un-masked ECC accelerator takes 2− 5K4

FFs to store its state for certain parameter sizes. An unmasked AES accelerator supporting
upto AES-256, requires 128 FFs for the state, and 256 FFs for the key, at minimum,
before intermediate processing registers are accounted for. For an un-masked pair of
accelerators, this totals 2.5-5.5K FFs. For an SMAX-share implementation of SME, we
need XLEN ∗ (SMAX − 1) ∗ 16 additional register bits, on top of the 31 ∗ XLEN general
purpose register file. Again, ignoring registers needed for intermediate processing, For
XLEN =32, we could have SMAX =4 and still save architectural registers. Of-course, we

3At the risk of falling into the “X should be enough for anyone” trap, so often evident in the history of
computer engineering.

4https://eprint.iacr.org/2020/1148.pdf - Table III.

https://eprint.iacr.org/2020/1148.pdf

Ben Marshall and Dan Page 13

cannot expect SME to achieve the same level of performance, but this is the trade-off SME
offers, flexibility and size at the cost of raw speed.

Given a number of hardware shares, the next decision is the width of the data-path
for the shared operations. For linear operations where shares do not need to interact,
this can be dictated by how many instances of the linear operations can be implemented
in parallel. For example, in a 4 share design, the implementer might only instance a
single ALU containing xor/not/shift/rotate etc, and process each share sequentially (with
appropriate barriers between shares to prevent leakage), with an obvious saving of silicon
area at the cost of performance. Alternatively, a high performance implementation might
build one linear operation per share, and execute them all in parallel, sacrificing silicon
area for performance gain.

Care must be taken with the sequential processing approach not to overwrite shares
and cause a security order reduction in the micro-architecture. This can be solved easily
by transparently adding and removing temporary masks pre/post instruction execution.

For non-linear operations (AND, SBoxes) where shares must interact, we note that
implementers could vary the width of the data-path to trade off between area and perfor-
mance. For example, they could process the low 16 bits of a bitwise AND, followed by the
high 16 bits over two cycles.

4 Example Hardware Implementation
Here we describe an example implementation of SME. We emphasise that this is an
implementation, and has been constructed as a proof of concept. A large space of possible
implementations exist, and the main focus of this work is the architecture of SME. This
proof of concept is only to demonstrate it’s feasibility.

Our implementation is based on the free and open source SCARV-CPU core. It is a
5-stage pipelined, in order, micro-controller class CPU. The 5 stages are fetch, decode,
execute, memory and write-back. A micro-architecture block diagram, showing the SME
enhanced core is show in Figure 4.

Domain Oriented Masking (DOM) [GMK16] is used to guarantee side-channel security
for all of the SME operations. This was chosen because it scales well to higher masking
orders and so acts as a good low level primitive for SME to expose at the ISA level. It is
also able to provide formal guarantees of security under certain assumptions. This makes
our implementation amenable to the kind of co-verification described in [GHP+21].

Our hardware is designed such that with a single Verilog parameter change, we can
increase or decrease the masking order of the design. We do this by generating the required
number of SME Bank registers, shared data-paths and DOM gadgets at synthesis time.
We use this later to show that identical code can automatically take advantage of higher
masking orders, as supported by the underlying hardware.

4.1 Data-path Description
For load instructions, when SME is off, load instructions behave as normal. When SME is
on, and the loaded data is sent to either the GPRs if the register address is < 16, or to
the i’th register of the currently selected SME Bank. For store instructions, the register
write data is sourced from either the GPRs in the decode stage, or later, the SME Bank
register is sourced in the Execute stage, before the memory transaction is started in the
Memory stage.

The SME compute instructions implemented as an additional execute stage functional
unit. If SME is turned off, then the normal ALU handles the operations, as all of the
operands come from the GPRs via pipeline registers s2_opr_a/b. If SME is turned on,
and the instruction is an SME instruction, then upto two shares (of different variables)

14 SME: Scalable Masking Extensions

Figure 4: Micro-architecture diagram of the modified SCARV-CPU with the SME extensions
implemented.

are fed to the SME functional unit via the s2_opr_a/b pipeline registers. The remaining
shares are sourced from the SME Bank registers. Other than for store instructions, shares
from SME Bank Registers cannot enter the main execution pipeline, making reasoning
about share collisions a much smaller problem. We discuss this further in a later section.

To show that SME lends itself to small, embedded class cores which are most susceptible
to side-channel attack, we opt for an area optimised design. To this end, the SME data-path
from the Bank register read ports, through the execution units to the Bank register write
ports is single cycle (baring any multi-cycle instructions described later), with no additional
pipelining. While this adds a penalty in terms of maximum operating frequency, it adds
a considerable saving in terms of core area, and as described in the evaluation section,
the core is still able to run at a reasonable frequency even in an FPGA. Further, the lack
of micro-architectural registers makes reasoning about possible sources of leakage much
simpler.

4.1.1 Randomness Generation

To generate the fresh randomness used by the SME instructions, we use a single round of
the Keccak permutation [BDPVA13]. The exact parameterisation of the permutation is
chosen to be the smallest one such that the state size is large enough to provide enough
random bits for the current SMAX value. Keccak was chosen for its very good mixing of
the state even after a single round. The Keccak state is seeded with a constant at reset,
but continually re-seeded every cycle when SME is turned on. The additional entropy is

Ben Marshall and Dan Page 15

sourced from a single bit of a ring-oscillator based TRNG, which is mixed into the state at
every cycle.

While secure sourcing of random numbers is essential for masking, it is not the primary
focus of this work. Other design questions include whether it would have been more
efficient to use many instances of very small Keccak permutations, and what security
tradeoffs this might bring. Other constructions could also be investigated other than
Keccak.

We have listed this topic under “Implementation Considerations”, though if a design
like this were to be standardised, it is like that a minimum rate and quality of entropy
for the mask generation would need to be defined. This would make it an architectural
concern, so that software could rely on it.

4.1.2 Non-linear Base ISA Instructions

To implement the and instruction, we use the standard DOM AND gate implementation
from [GMK16]. The add instruction is implemented using an iterative Kogge-Stone adder,
as described in [GGM+20]. See Table 1 for how the randomness requirements of the and
and add instructions scales with SMAX.

4.1.3 AES Instruction Implementation

To show that SME can handle instructions beyond the simple ones in the base ISA, we
also implement the RISC-V Zkne extension instructions for accelerating AES encryption:
aes32es and aes32esm. These instructions were specifically chosen to be lightweight to
implement and be feasible for small cores to include. A full explanation of these instructions
can be found in the draft RISC-V Cryptography ISE specifications [ZGS+21], and the
associated paper [MNP+20]. We include a short description here for completeness.

They are based on a T-tables in hardware approach, where a single byte from one
register operand, and the entire Sub-bytes, Shift-rows and Mix-columns steps are applied
to this byte. In software, this would be done by performing a lookup into memory. The
instructions wrap this lookup into a single instruction, and dynamically calculate the steps
with each execution. The final step is to XOR the lookup result into the second register
operand, which effectively performs the AddRoundKey step.

For our masked design, the key concern is the single SBox operation the instruction
performs, as this is the only non-linear part of the computation. We created a naive
N -order masked implementation of the AES Forward SBox5. The SBox takes 4 cycles
to execute as the data propagates through the circuit. During this time, the rest of the
CPU stalls, similarly to how it does for a multi-cycle multiply operation. While it would
be possible to pipeline the instructions to hide this additional latency, this would require
multiple 32-bit registers to pipeline the second register operand as well, which would be
disproportionately expensive in the context of the wider system.

We note that the software using these AES instructions only ever uses 8 GPRs to
store secret data. This raises the possibility of custom implementations of just these AES
instructions, with only 8 sets of shared registers rather than the full SME complement of
16. We believe this could be a popular way for vendors to add side-channel security to
these instructions.

4.2 Instruction Latencies
SME instruction latencies are shown in Table 1. Linear operations are single cycle. Non-
linear operations are multi-cycle, but we utilise the very small combinatorial path depth

5Again, we treat the problem of an optimal N -order masked AES SBox as an important but separate
problem from the one we are really trying to address in this paper.

16 SME: Scalable Masking Extensions

Table 1: Table of instruction latencies and randomness consumption for SME instructions.
Latency is measured in clock cycles, from rising edge to rising edge.
Instruction Latency Baseline Latency Masked Random Bits Consumed / cycle
mask 1 1 SMAX × XLEN
remask 1 1 SMAX × XLEN
and 1 1 XLEN× SMAX(SMAX+1)

2
add/sub 1 6 XLEN× SMAX(SMAX+1)

2
aes32es[m] 1 4 34× SMAX(SMAX+1)

2
Linear Instrs 1 1 0

Table 2: Table of hardware overheads for the baseline SCARV-CPU, and when enhanced
with SME at various masking orders. Timing Slack is shown targeting 50MHz on an FPGA.
Negative Timing Slack implies the design does not meet the 50MHz frequency requirement.

Core Variant Timing Slack FFs LUTs
SCARV-CPU Baseline 9.480ns 1814 5576
SCARV-CPU + SME (SMAX =2) 3.324ns 2714 8618
SCARV-CPU + SME (SMAX =3) 2.239ns 3437 10339
SCARV-CPU + SME (SMAX =4) 2.287ns 4716 12441

between DOM masking stages to reduce the latency by clocking subsequent registers on
positive and negative edges of the clock. Hence, the AND operation which would normally
take two cycles, now effectively takes one. The same is done for the AES instructions.

4.3 Overheads
To measure the overhead in a real system, we implemented the modified SCARV-CPU
with SME in a SASEBO-GIII [HKSS12] side-channel analysis platform. The platform
contains two FPGAs: a Xilinx Kintex-7 (model xc7k160tfbg676) target FPGA, and a
Xilinx Spartan-6 (model xc6slx45) support FPGA. Our design uses only the former, and
was implemented using Xilinx Vivado 2019.2. We used the default synthesis settings, with
no extra effort put into post-synthesis or post-layout optimisation.

The design runs at 50 MHz in a single clock domain, driven from a down-scaled 200 MHz
differential external clock.

Table 2 describes the overhead of SME on the SCARV-CPU for different masking orders.
Note that we include these multiple masking orders to show approximately how our design
scales, but have not yet evaluated that our specific design is secure for every masking order
shown.

5 Software Performance Evaluation
This section describes our experiences writing side-channel secure software using SME. We
also describe our efforts to empirically gain confidence in the side-channel security of our
design.

To test real world cryptographic workloads using SME, we chose The AES-128 Key
Schedule and Block Encryption, plus the ChaCha20 [Ber08] round function. These were
chosen for their popularity in real-world deployments, in academic literature, and because
they are very different primitives in terms of their implementation. Using AES also allowed
us to test our side-channel secure implementation of the RISC-V Scalar Cryptography
Instruction Set Extensions for AES.

All algorithms were checked for correctness and their performance for a range of SMAX
values, representing different designs with increasing side-channel security levels, with
results shown in Table 3.

Ben Marshall and Dan Page 17

Table 3: Table of software performance figures for different variants of SMAX.
AES KS AES Enc ChaCha20

Core Variant Cycles Inst Cycles Inst Cycles Inst
SCARV-CPU Baseline 378 222 296 241 1275 1068

SCARV-CPU + SME (SMAX =2) 769 382 1142 454 3071 1231
SCARV-CPU + SME (SMAX =3) 978 470 1333 549 3224 1323
SCARV-CPU + SME (SMAX =4) 1187 558 1524 644 3389 1415

For the AES Key-Schedule and Block Encryption, we had no struggles at all implement-
ing the algorithms in the SME paradigm. The actual round functions remained identical
to the standard assembly code. Our only modifications were to how the secret state was
loaded into the CPU. This was done using a loop, to accommodate all values of SME using
the same software. A typical example this loop is shown in Figure 5 for reference, as it
is a common pattern in SME based software. This loop adds a small performance and
code-size overhead due to the loop management instructions, but this is small compared to
the necessary overhead due to loading in SMAX-times the amount of data for secret values.

For ChaCha20, again there were no major problems with the round function, which
again, is identical to the un-protected variant. The 16 state words of ChaCha20 fit exactly
into the 16 SME register banks. However, ChaCha20 does show the limitations of SME at
the end of the algorithm, where the original state must be loaded back into the CPU and
arithmetically added to the final round output. This requires us to push half of the final
round state to the stack, load half the original state and add it to the final state, store
this result, and then repeat for the other half of the state. For implementations with a
high SMAX, this is potentially a very slow operation. However, our experiments showed it
is still a small part of the runtime of the overall algorithm, which is still much faster for
the hardware support offered by SME.

Comparing to [GGM+20] our design is almost identical in speed for AES-128 block
encryption in terms of cycles (1113 v.s. 1142), but executes fewer than half the number
of instructions (1012 v.s. 454) owing to the use of the RISC-V scalar cryptography
extensions for AES. This alone would likely result in a considerable power and energy
efficiency improvement. We also note our design could use pipelined implementations of
the AES instructions (at a cost of hardware resources) to improve the cycle counts. We
emphasise that allowing for this power/performance/area tradeoff while keeping software
compatability is a key benefit of SME. For ChaCha20, our design is faster than [GGM+20]
for both instruction and cycle counts by 1.26× and 1.2× respectively. Further, our
architecture scales to higher masking orders while [GGM+20] does not.

Comparing to [GPSS18], which uses the ARM Neon SIMD extensions to implement a
4-share masked AES, we can see how beneficial the lightweight RISC-V AES instructions
can be. Their implementation takes 12.3K clock-cycles or 474 cycles per byte when using
pre-loaded randomness for re-sharing operations. Our implementation enables a 4-share
AES-128 encryption to be executed in 1524 cycles, or 95.25 cycles per byte. We must note
that this is not the most direct comparison, since the ARM Neon implementation they use
has no dedicated instructions for AES, and relies on an external source of randomness.
It does illustrate how much more efficient a RISC-V based design can be. We also note
that ARM Neon designs come with no side-channel guarantees in their implementation
(this is not a problem they are designed to solve), which is something SME tries to address
directly.

6 On the Standard RISC-V Vector Extension
Though the key concept of our design is inspired by vector programming principles, we
accept that from a computer architecture perspective, ours is not strictly a generic vector

18 SME: Scalable Masking Extensions

l i t0 , 0x1E0 // Constant to s e l e c t h i ghe s t supported SMAX
csrrw x0 , smectr l , t0 // S e l e c t 0 th bank , h i ghe s t SMAX
c s r r t1 , smect r l // Read back SMAX and ex t r a c t the maximum
s r l i t1 , t0 , 5 // bank number . Used as loop end va r i ab l e .
or t1 , t1 , t0 // Create the loop s t a r t v a r i a b l e .
load_sme_state :

csrrw x0 , smectr l , t0 // S e l e c t i ’ th SME r e g i s t e r bank
lw x16 , 0∗4(a1) //
lw x17 , 1∗4(a1) // Load 4 words o f shared s t a t e and
lw x18 , 2∗4(a1) // increment base r e g i s t e r by s i z e
lw x19 , 3∗4(a1) // o f unmasked s t a t e .
addi a1 , a1 , 44∗4 //
addi t0 , t0 , 1 // Increment the bank r e g i s t e r
bne t0 , t1 , load_sme_state

Figure 5: RISC-V assembly code, showing how to loop over the shares of a state array
and load them into the SME registers. This specific example is for AES. The code for
ChaCha20 is identical, but we load 16-words per loop iteration rather than 4. Storing
the shares to memory is identical, but the lw instructions are simply replaced with sw
instructions. We note the overhead of deriving the loop counter and end variables. This
is amortised somewhat, as they are re-used for other subsequent loops (e.g. to store the
state back to memory) and can be kept in registers to avoid re-deriving them. This was a
benefit of using only half of the RISC-V GPRs to store mask shares, as the others are free
for these sorts of control path variables.

processor. This comparison to vector programming is useful for explaining the concept,
but there are some key tradeoffs we have made which are un-reasonable or non-sensical
for more general purpose vector processing extensions, like the standard RISC-V Vector
Extension (RVV). Here, we discuss these differences in approach, and how our design could
be retrofitted onto RVV.

Data-path interactions. In RVV, very few vector instructions interact with the main
general purpose registers, meaning they can potentially be executed in parallel. This is
impossible in SME, because we re-use a portion of the GPRs to store shares. This is
undesirable in a general purpose vector engine, since enabling instruction level parallelism
leads to a performance gain. Our expectation is that this aspect of our design would be
most distasteful to a computer architect. Though, we believe it is reasonable given our
design goals, because we are optimising for security and then performance.

Number of registers. The major difference between SME and RVV is the choice of
architectural registers. RVV adds 32 separate vector registers on top of the 32 base RISC-V
GPRs, where each vector register is a power-of-two > XLEN bits long. SME in contrast
adds SMAX− 1 16-entry register files, each of which are XLEN bits wide, and uses the top
16 existing GPRs to represent the 0’th share.

For RVV, this makes perfect sense as a general purpose vector engine. The choice for
SME was motivated by the supposition that, given 32 extra XLEN registers were going
to be added, from a security perspective it is better to support 16 3-share variables in
hardware, than 32 2-share variables. E.g. some must hold loop counters, stack pointers,
return addresses and array pointers, none of which need masking. Essentially, it allowed us
to represent the most variables with the highest security order for the minimum number
of additional architectural registers.

Ben Marshall and Dan Page 19

Choice of instructions. For SME, we include only the instructions most useful for im-
plementing (masked) cryptographic code, which is obviously a much smaller set than is
supported by the more general purpose RVV. The omission of most instructions from SME
can be explained simply by the fact they are un-necessary.

However, there are some instructions in RVV which are intrinsically dangerous in the
context of hardware masking support through an ISE. These can be broadly described as
instructions which allow data to move laterally across a vector register. For example, the
slideup and slidedown instructions, which move all vector elements one to the left or
right. These are a built in danger to masking schemes, because they implement functionality
which enables/forces shares to collide and thus undermine the security.

In SME, there is no architectural way to overwrite one SME share with another. No
instruction exists which takes a value from SMRi[x] and moves it to SMRj 6=i[x]. The only
way to do this is for the programmer to explicitly do this by moving values to memory and
back again, which we consider a reasonable indicator that this is a bad idea. We believe
this is a clear advantage over designs such as [GGM+20], where the programmer must be
very careful not to accidentally combine shares, owing to it being supported explicitly in
the architecture.

Flexible Vector Lengths. RVV is extremely capable at supporting variable length vectors,
and comes with some necessary additional complexity to support this. This includes
variable lengths of vector, with different data types. For example, it supports N length
vectors of bytes or words natively.

SME, in contrast, is designed only to work with short vectors upto smectl.D in length,
which are made up of XLEN wide elements. Again, this is simply because it focuses only
on the masked cryptography use case.

Possible Extensions to RVV. Having described SME, it is useful to consider how RVVcould
be extended with similar support for hardware assisted software masking countermeasures.

Architecturally speaking, we believe the most useful instructions to add from a pro-
grammers perspective are masked bitwise non-linear logic instructions: and/or. This is
because they are the most difficult and expensive operations to implement securely in pure
software. However, these are also the most awkward to add from a hardware perspective,
because (assuming shares are represented laterally across the vector registers) they require
all shares to be combined to compute the result, rather than the result being computable
share-wise as with linear operations like xor. RVV already well supports instructions for
linear operations which operate a share at a time. Also, RVV would benefit from masking
and re-masking instructions as described in Section 3.3.2.

In this sense, we believe that a modified vector programming model is a compelling
one for supporting higher order-masked cryptographic implementations at the ISA level.
However, the main difficulty clearly lies in upholding the assumptions on which masking
security relies in the implementation, as discussed in Section 3.4. This is particularly
hard in a more general purpose vector engine like RVV, which must balance the security
requirements described here with wanting to be as performant as possible. For example,
the need to flush registers to guarantee security will often have a performance cost. Recent
work analysing how high-performance micro-architectures ruin the security of carefully
crafted side-channel secure code [GPM21] shows this is clearly an interesting open research
problem.

A compromise is to simply accept that a D-share implementation will not achieve the
maximum level of security theoretically possible with D shares. The implementation must
simply report a lesser value of O(smectl.D). Critically, this still allows for some guarantee
of security, while still providing maximal performance for the general purpose use cases.

Overall, we believe this comparison to RVV shows just how special purpose software

20 SME: Scalable Masking Extensions

based masking countermeasures are as a workload. As architectures like RISC-V allow for
more and more domain specific processor designs, we believe this sort of hardware-software
co-design will become much more common. Though, the impact of modifying a generic
core for a specific workload must still be weighed against how affects the efficiency of other
operations the core must perform.

7 Conclusion
We have described an Instruction Set Extension for supporting power and EM based
side-channel security using higher order masking based countermeasures. The ISE allows
the same software to benefit from the maximum security order supported by the underlying
hardware, which restores a key promise of ISAs: that improvements to underlying hardware
(both in terms of performance and security) are automatically passed on to software for
free. The key concept being to give software visibility of how many hardware shares
are supported, allowing generic code to be written supporting however many shares the
hardware does.

Our design works well for popular cryptographic workloads, and is suitable not just for
very simple “base” ISA instructions, but also for lightweight cryptographic instructions
proposed for the RISC-V ISA. We believe this is important, because it shows our archi-
tecture works well as a framework for managing the additional state required by masking
countermeasures. This means it can compose with other cryptographic instructions defined
in the future, perhaps which target Post-Quantum Cryptographic workloads, or schemes
from the NIST Lightweight Cryptography competition.

We recognise that our evaluations so far only focus on showing how the hardware and
software remains functionally correct and performant across multiple masking orders. Our
current and future work is focusing on demonstrating the actual side-channel security of
the system.

Future research is also needed on whether or not the ISA is indeed the right place to put
side-channel security guarantees in the hardware/software stack. While our work shows
this is possible and efficient as a real-world solution, a framework for objective comparisons
of the pros and cons of where security guarantees exist in the hardware/software stack,
and the implications for side-channel security is still needed.

We hope our implementation acts as a platform or data point which others can use as
a basis for this sort of research.

Acknowledgements
This work-in-progress has been supported in part by EPSRC via grant EP/R012288/1,
under the RISE (http://www.ukrise.org) programme.

References
[BBYS21] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont.

Sok: Design tools for side-channel-aware implementions. arXiv preprint
arXiv:2104.08593, 2021.

[BDPVA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Kec-
cak. In Annual international conference on the theory and applications of
cryptographic techniques, pages 313–314. Springer, 2013.

[Ber08] D.J. Bernstein. ChaCha, a variant of Salsa20. 2008. https://cr.yp.to/
chacha/chacha-20080120.pdf.

http://www.ukrise.org
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf

Ben Marshall and Dan Page 21

[CGD18] Y. Le Corre, J. Großschädl, and D. Dinu. Micro-architectural power sim-
ulator for leakage assessment of cryptographic software on ARM Cortex-
M3 processors. In Constructive Side-Channel Analysis and Secure De-
sign (COSADE), LNCS 10815, pages 82–98. Springer-Verlag, 2018. https:
//doi.org/10.1007/978-3-319-89641-0_5.

[DMGH19] Elke De Mulder, Samatha Gummalla, and Michael Hutter. Protecting risc-v
against side-channel attacks. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1–4. IEEE, 2019.

[GGM+20] Si Gao, Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham, and
Francesco Regazzoni. An instruction set extension to support software-
based masking. Cryptology ePrint Archive, Report 2020/773, 2020. https:
//eprint.iacr.org/2020/773.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-design and co-verification of masked software implementa-
tions on cpus. In 30th {USENIX} Security Symposium ({USENIX} Security
21), 2021.

[GJM+17] Hannes Gross, Manuel Jelinek, Stefan Mangard, Thomas Unterluggauer,
and Mario Werner. Concealing secrets in embedded processors designs. In
Kerstin Lemke-Rust and Michael Tunstall, editors, Smart Card Research and
Advanced Applications, pages 89–104, Cham, 2017. Springer International
Publishing.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In TIS@ CCS, page 3, 2016.

[GMPP20] S. Gao, B. Marshall, D. Page, and T. Pham. FENL: an ISE to mitigate
analogue micro-architectural leakage. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2020(2):73–98, 2020.

[GPM21] Barbara Gigerl, Robert Primas, and Stefan Mangard. Secure and efficient
software masking on superscalar pipelined processors. Cryptology ePrint
Archive, Report 2021/1110, 2021. https://ia.cr/2021/1110.

[GPSS18] Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and Ko Stoffe-
len. Vectorizing higher-order masking. In Junfeng Fan and Benedikt Gierlichs,
editors, Constructive Side-Channel Analysis and Secure Design, pages 23–43,
Cham, 2018. Springer International Publishing.

[HKSS12] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. SASEBO-GIII: A hardware
security evaluation board equipped with a 28-nm FPGA. In IEEE Global
Conference on Consumer Electronics, pages 657–660, 2012.

[KS20] Pantea Kiaei and Patrick Schaumont. Domain-oriented masked instruction
set architecture for risc-v. IACR Cryptol. ePrint Arch., 2020:465, 2020.

[MNP+20] Ben Marshall, G. Richard Newell, Dan Page, Markku-Juhani O. Saarinen,
and Claire Wolf. The design of scalar aes instruction set extensions for risc-
v. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(1):109–136, Dec. 2020.

[MPW21] Ben Marshall, Dan Page, and James Webb. Miracle: Micro-architectural
leakage evaluation. Cryptology ePrint Archive, Report 2021/261, 2021. https:
//eprint.iacr.org/2021/261.

https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.1007/978-3-319-89641-0_5
https://eprint.iacr.org/2020/773
https://eprint.iacr.org/2020/773
https://ia.cr/2021/1110
https://eprint.iacr.org/2021/261
https://eprint.iacr.org/2021/261

22 SME: Scalable Masking Extensions

[ris] RISC-V vector specification. https://github.com/riscv/riscv-v-spec.

[SBB+17] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole,
Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez,
Nathanael Premillieu, et al. The arm scalable vector extension. IEEE micro,
37(2):26–39, 2017.

[SSB+19] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. arXiv preprint arXiv:1912.05183, 2019.

[WO19] Carolyn Whitnall and Elisabeth Oswald. A critical analysis of iso 17825
(‘testing methods for the mitigation of non-invasive attack classes against
cryptographic modules’). In International Conference on the Theory and
Application of Cryptology and Information Security, pages 256–284. Springer,
2019.

[ZGS+21] Alexander Zeh, Andy Glew, Barry Spinney, Ben Marshall, Daniel Page, Derek
Atkins, Ken Dockser, Markku-Juhani O Saarinen, Nathan Menhorn, Richard
Newell, et al. Risc-v cryptographic extension proposals volume i: Scalar
& entropy source instructions. https://github.com/riscv/riscv-crypto,
2021.

A Example Software
Here we give an example of writing an AES-128 block encryption for generic masking
orders, as supported by SME:

1 . g l oba l sme_aes128_enc_block
2 . func sme_aes128_enc_block
3 sme_aes128_enc_block :
4 // a0 − uint32_t ct [4] ,
5 // a1 − uint32_t pt [4] ,
6 // a2 − uint32_t rk [SME_SMAX] [AES128_RK_WORDS]
7 addi sp , sp , −32
8 sw x18 , 0∗4(sp)
9 sw x19 , 1∗4(sp)
10 sw x20 , 2∗4(sp)
11 sw x21 , 3∗4(sp)
12 sw x22 , 4∗4(sp)
13 sw x23 , 5∗4(sp)
14
15
16 l i t0 , 0x1E0 // D=max , bank=0
17 csrrw x0 , 0x006 , t0 // Turn on SME with MAX share s and 0 ’ th bank .
18 c s r r t1 , 0x006
19 s r l i t1 , t1 , 5 // t1 conta in s loop end var f o r share ld / s t
20
21 or t1 , t1 , t0 // Load 0 ’ th round key .
22 mv t2 , a2
23 . aes128_enc_blk_ldkey0 :
24 csrrw x0 , 0x006 , t0 // S e l e c t i ’ th bank
25 lw x16 , 0∗4(t2) // Load i ’ th share s
26 lw x17 , 1∗4(t2) // Load i ’ th share s

https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-crypto

Ben Marshall and Dan Page 23

27 lw x18 , 2∗4(t2) // Load i ’ th share s
28 lw x19 , 3∗4(t2) // Load i ’ th share s
29 addi t2 , t2 , 44∗4
30 addi t0 , t0 , 1
31 bne t0 , t1 , . aes128_enc_blk_ldkey0
32
33 lw a3 , 1∗4(a1)
34 lw a4 , 2∗4(a1)
35 lw a5 , 3∗4(a1)
36 lw a1 , 0∗4(a1) // Load p l a i n t e x t . a1 now ava i l a b l e .
37
38 xor x17 , x17 , a3
39 xor x18 , x18 , a4
40 xor x19 , x19 , a5
41 xor x16 , x16 , a1 // 0 ’ th add round key .
42
43 mv a1 , x0 // Clear p l a i n t ex from non SME r e g i s t e r s .
44 mv a3 , x0
45 mv a4 , x0
46 mv a5 , x0
47
48 addi a1 , a2 , 16∗10 // Loop end po in t e r
49
50 . aes128_enc_blk_l0 :
51
52 l i t0 , 0x1E0 // D=max , bank=0
53 mv t2 , a2
54 . aes128_enc_blk_ldkey1 :
55 csrrw x0 , 0x006 , t0 // S e l e c t i ’ th bank
56 lw x20 , 16+0∗4(t2) // Load i ’ th share s
57 lw x21 , 16+1∗4(t2) // Load i ’ th share s
58 lw x22 , 16+2∗4(t2) // Load i ’ th share s
59 lw x23 , 16+3∗4(t2) // Load i ’ th share s
60 addi t2 , t2 , 44∗4
61 addi t0 , t0 , 1
62 bne t0 , t1 , . aes128_enc_blk_ldkey1
63 xor x0 , x0 , x0 ; xor x0 , x0 , x0 ; xor x0 , x0 , x0 ;
64
65 aes32esmi x20 , x20 , x16 , 0 // Even Round
66 aes32esmi x20 , x20 , x17 , 1
67 aes32esmi x20 , x20 , x18 , 2
68 aes32esmi x20 , x20 , x19 , 3
69 aes32esmi x21 , x21 , x17 , 0
70 aes32esmi x21 , x21 , x18 , 1
71 aes32esmi x21 , x21 , x19 , 2
72 aes32esmi x21 , x21 , x16 , 3
73 aes32esmi x22 , x22 , x18 , 0
74 aes32esmi x22 , x22 , x19 , 1
75 aes32esmi x22 , x22 , x16 , 2
76 aes32esmi x22 , x22 , x17 , 3
77 aes32esmi x23 , x23 , x19 , 0
78 aes32esmi x23 , x23 , x16 , 1

24 SME: Scalable Masking Extensions

79 aes32esmi x23 , x23 , x17 , 2
80 aes32esmi x23 , x23 , x18 , 3 // x20−x23 conta in s new s t a t e
81
82 l i t0 , 0x1E0 // D=max , bank=0
83 mv t2 , a2
84 . aes128_enc_blk_ldkey2 :
85 csrrw x0 , 0x006 , t0 // S e l e c t i ’ th bank
86 lw x16 , 32+0∗4(t2) // Load i ’ th share s
87 lw x17 , 32+1∗4(t2) // Load i ’ th share s
88 lw x18 , 32+2∗4(t2) // Load i ’ th share s
89 lw x19 , 32+3∗4(t2) // Load i ’ th share s
90 addi t2 , t2 , 44∗4
91 addi t0 , t0 , 1
92 bne t0 , t1 , . aes128_enc_blk_ldkey2
93 xor x0 , x0 , x0 ; xor x0 , x0 , x0 ; xor x0 , x0 , x0 ;
94
95 addi a2 , a2 , 32 // Increment round key po in t e r .
96 beq a1 , a2 , . aes128_enc_blk_final
97
98 aes32esmi x16 , x16 , x20 , 0 // Odd Round
99 aes32esmi x16 , x16 , x21 , 1

100 aes32esmi x16 , x16 , x22 , 2
101 aes32esmi x16 , x16 , x23 , 3
102 aes32esmi x17 , x17 , x21 , 0
103 aes32esmi x17 , x17 , x22 , 1
104 aes32esmi x17 , x17 , x23 , 2
105 aes32esmi x17 , x17 , x20 , 3
106 aes32esmi x18 , x18 , x22 , 0
107 aes32esmi x18 , x18 , x23 , 1
108 aes32esmi x18 , x18 , x20 , 2
109 aes32esmi x18 , x18 , x21 , 3
110 aes32esmi x19 , x19 , x23 , 0
111 aes32esmi x19 , x19 , x20 , 1
112 aes32esmi x19 , x19 , x21 , 2
113 aes32esmi x19 , x19 , x22 , 3 // x16−x19 conta in s new s t a t e
114
115 j . aes128_enc_blk_l0
116 xor x0 , x0 , x0 ; xor x0 , x0 , x0 ; xor x0 , x0 , x0 ;
117
118 . aes128_enc_blk_final :
119 a e s 3 2 e s i x16 , x16 , x20 , 0 // Odd Round [F ina l]
120 a e s 3 2 e s i x16 , x16 , x21 , 1
121 a e s 3 2 e s i x16 , x16 , x22 , 2
122 a e s 3 2 e s i x16 , x16 , x23 , 3
123 a e s 3 2 e s i x17 , x17 , x21 , 0
124 a e s 3 2 e s i x17 , x17 , x22 , 1
125 a e s 3 2 e s i x17 , x17 , x23 , 2
126 a e s 3 2 e s i x17 , x17 , x20 , 3
127 a e s 3 2 e s i x18 , x18 , x22 , 0
128 a e s 3 2 e s i x18 , x18 , x23 , 1
129 a e s 3 2 e s i x18 , x18 , x20 , 2
130 a e s 3 2 e s i x18 , x18 , x21 , 3

Ben Marshall and Dan Page 25

131 a e s 3 2 e s i x19 , x19 , x23 , 0
132 a e s 3 2 e s i x19 , x19 , x20 , 1
133 a e s 3 2 e s i x19 , x19 , x21 , 2
134 a e s 3 2 e s i x19 , x19 , x22 , 3 // x16−x19 conta in s new s t a t e
135
136 l i t0 , 0x1E1 // D=max , bank=1
137 . aes128_enc_blk_unmask :
138 csrrw x0 , 0x006 , t0 // S e l e c t i ’ th bank
139 sw x16 , 0∗4(a0) // Store r e s u l t s
140 sw x17 , 1∗4(a0)
141 sw x18 , 2∗4(a0)
142 sw x19 , 3∗4(a0)
143 addi a0 , a0 , 16 // increment ct po in t e r
144 addi t0 , t0 , 1
145 b l tu t0 , t1 , . aes128_enc_blk_unmask
146
147 csrrw x0 , 0x006 , x0 // Turn o f f SME
148
149 lw x18 , 0∗4(sp) // Saved reg r e s t o r e
150 lw x19 , 1∗4(sp)
151 lw x20 , 2∗4(sp)
152 lw x21 , 3∗4(sp)
153 lw x22 , 4∗4(sp)
154 lw x23 , 5∗4(sp)
155 addi sp , sp ,32 // Stack r e s t o r e
156 r e t
157
158 . endfunc

	Introduction
	Background
	Related Work

	Architecture
	SME State
	Modifications to Existing Instructions
	New Instructions
	Verification of Security Guarantees: A discussion
	Implementation Considerations

	Example Hardware Implementation
	Data-path Description
	Instruction Latencies
	Overheads

	Software Performance Evaluation
	On the Standard RISC-V Vector Extension
	Conclusion
	Example Software

