
Improving First-Order Threshold
Implementations of SKINNY

Andrea Caforio1, Daniel Collins1, Ognjen Glamočanin2, and Subhadeep Banik1

1 LASEC, Ecole Polytechnique Fédérale de Lausanne, Switzerland
{andrea.caforio,daniel.collins,subhadeep.banik}@epfl.ch

2 PARSA, Ecole Polytechnique Fédérale de Lausanne, Switzerland
ognjen.glamocanin@epfl.ch

Abstract. Threshold Implementations have become a popular generic
technique to construct circuits resilient against power analysis attacks.
In this paper, we look to devise efficient threshold circuits for the light-
weight block cipher family SKINNY. The only threshold circuits for this
family are those proposed by its designers who decomposed the 8-bit
S-box into four quadratic S-boxes, and constructed a 3-share byte-serial
threshold circuit that executes the substitution layer over four cycles. In
particular, we revisit the algebraic structure of the S-box and prove that
it is possible to decompose it into (a) three quadratic S-boxes and (b)
two cubic S-boxes. Such decompositions allow us to construct threshold
circuits that require three shares and executes each round function in
three cycles instead of four, and similarly circuits that use four shares
requiring two cycles per round. Our constructions significantly reduce
latency and energy consumption per encryption operation. Notably, to
validate our designs, we synthesize our circuits on standard CMOS cell
libraries to evaluate performance, and we conduct leakage detection via
statistical tests on power traces on FPGA platforms to assess security.1

Keywords: DPA · Masking · SKINNY· Threshold Implementation

1 Introduction

Side-channel attacks have been widely successful at efficiently attacking imple-
mentations of cryptosystems. Power analysis has been particularly effective in
part due to the relatively low cost of the requisite equipment. In differential
power analysis [17] (DPA) and its generalizations [6,18], an attacker observes
the power consumption of a cryptographic primitive over time and applies sta-
tistical analysis to infer the underlying secret key. An attacker can perform a d-th
order attack, e.g., by probing up to d internal wires of the circuit at once [15].

In an attempt to mitigate the damaging effects of side-channel attacks, the
development of countermeasures has proliferated. Masking is one such approach

1 For reproducibility’s sake, we provide a public repository containing the source
code to all proposed schemes together with a script to run the SILVER verifica-
tion suite [8].

2 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

which uses secret sharing to randomize input and intermediate values within
a circuit. To standardise the error-prone and often ad-hoc process of designing
secure masked circuits, Threshold Implementations (TI) were introduced which
provide provable security with respect to side-channel attacks [4,10,20]. When
implemented in hardware, a TI is secure even in the presence of glitches, an
inherent side effect not considered in earlier schemes [15].

A correct TI must satisfy so-called non-completeness and uniformity to en-
sure security. Satisfying these properties for linear components of a given circuit
is relatively straight-forward. Non-linear components are less trivial; a t-degree
function must be split into at least (td+ 1) coordinate functions in the canoni-
cal higher-order TI [4] to provide d-th order security guarantees. Approaches to
reduce this complexity like adding additional randomness exist [3], but there is
an inherent trade-off between area, randomness requirements and latency when
designing a TI of a given circuit. Unsurprisingly, TI schemes for AES and Keccak
have enjoyed the most attention the literature. Recent works include [25,27,29]
and [1,28] respectively.

1.1 SKINNY

SKINNY is a lightweight family of tweakable block ciphers designed by Beierle et
al. [2]. The cipher performs extremely well on both software and hardware plat-
forms, and is the core encryption primitive used in the authenticated encryption
scheme Romulus [14] which is a finalist in the NIST lightweight cryptography
competition [26]. Moreover, a criterion for the competition is the efficiency of
protected circuit implementations. In the 64-bit block size versions of SKINNY,
the underlying S-box defined over four bits. Designing Threshold Implementa-
tions for 4-bit S-boxes is a well-studied problem [5], and so in this work we focus
on the 128-bit block size versions of SKINNY which use an 8-bit S-box, hereafter
denoted by S.

S is very lightweight and uses only sixteen cross-connected two-input logic
gates. Using the fact that S can be decomposed in the form I ◦ H ◦ G ◦ F
(hereafter denoted by S2222

2) where each sub-function is quadratic, the designers
of SKINNY proposed a first-order TI of SKINNY using a byte-serial circuit.
However, when this decomposition is used to construct a TI of a round-based
circuit, a single S-box layer takes four cycles to execute. This increases the latency
and hence energy consumption per encryption operation in the circuit, as was
shown in [7].

1.2 Contributions and Organization

In this paper, we take a closer look at first-order Threshold Implementations of
the 8-bit substitution box of round-based SKINNY instantiations. As previously
mentioned, the only in-depth analysis and indeed proposal of such a masked

2 Note that throughout this paper we use the notation Si1...ik to denote decompositions
of the same S-box S into k component S-boxes of algebraic degrees i1 . . . ik.

Improving First-Order Threshold Implementations of SKINNY 3

circuit is that of S2222 which appeared in the design paper [2] for the byte-serial
variant of SKINNY. This 3-share scheme is likely the optimal choice for a first-
order secure realization in the byte-serial setting when it comes to area, latency
and power/energy consumption. However, for round-based circuits, this assertion
does not hold true anymore. In fact, we propose two novel decompositions that
eclipse the existing variant in both latency, power and energy consumption with-
out significantly increasing the circuit area. More specifically, our contributions
are summarized as follows:

1. We devise an approach that exploits the simple 4× 4 cross-connected struc-
ture of S and automatizes the search for decompositions and thus Threshold
Implementations.

2. The proposed technique is then used as a gateway to efficiently decompose
S into three quadratic functions S222 = H ◦ G ◦ F that is computed over
three cycles. The resulting 3-share masked circuit exhibits a similar area
footprint to S2222 but cuts the number of required cycles for an encryption
by one quarter and consumes around 30% less energy across different clock
frequencies and cell libraries.

3. In a second step, by extending the previous technique, we propose a decom-
position of S into two cubic functions S33 = G ◦ F that is thus computed in
two cycles. The corresponding 4-share TI halves the number of encryption
cycles and consumes 30% less energy while moderately increasing the circuit
area relative to S2222. We emphasise that neither of the above circuits require
additional randomness beyond the initial plaintext masking.

4. We provide an extensive suite of synthesis measurements on both ASIC and
FPGA targets for all investigated schemes showcasing the advantages of both
S222 and S33.

5. The proposed schemes are proven sound via the SILVER verification frame-
work [16] that performs its analysis on ASIC netlists, which in our case are
generated by the NanGate 45 nm standard cell library. In addition, we per-
form practical leakage assessments using the TVLA methodology [12,24] by
taking power traces on FPGA targets.

The paper unfolds as follows: Section 2 reiterates some preliminaries regard-
ing masking and Threshold Implementations. Subsequently in Section 3, we de-
tail the derivation of S222 and S33. Synthesis results are given in Section 4 and
leakage assessment is performed in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

Masked hardware implementations of cryptographic algorithms use the secret
sharing methodology in which key-related, intermediate values xi are split into
s independent shares xi,0, xi,1, . . . , xi,s−1 such that

∑s−1
j=0 xi,j = xi. In practice,

sharing variables implies that each function f(xn−1, . . . , x0) = z within an al-
gorithm needs to be decomposed into functions fi(·) = zi adhering to the same

correctness requirement
∑s−1

i=0 fi = f .

4 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

In the following, we assume that an attacker is capable of probing individual
wires of a circuit and can extract their intermediate values during the computa-
tion [15]. More specifically, we consider d-th order security, where information of
any d wires can be gathered and processed. Different d-th order security prop-
erties can be defined and satisfied by a given design [9], the most natural being
d-probing security which is satisfied given that any observation made on up to d
wires is statistically independent of the secret [15]. Security properties are fur-
ther considered with respect to a leakage model. Two such models of interest
are the standard model, where a circuit without any glitching or unintended be-
haviour is assumed, and the glitch-robust model [10,11] which accounts for such
behaviour. Hereafter, we say that a masked implementation in a given leakage
model is d-th order secure if it is d-probing secure. There is a correspondence
between d-probing security and security against d-th order differential power
analysis (hereafter DPA), where the latter is implied by d-th glitch-robust prob-
ing security [3].

Threshold Implementation. The task of designing d-th order secure masking
schemes has spawned various approaches, of which Threshold Implementations
have crystallized themselves as one of the most adopted strategies. First intro-
duced by Nikova et al. [4,19] Threshold Implementations provide some d-th order
security guarantees against DPA in the presence of hardware glitches that are in-
herent to any CMOS circuit. We note that higher-order TI as defined below does
not necessarily ensure d-th order security without additional measures [22,23].
Nonetheless, in the first-order setting, our setting of interest in this work, a first-
order Threshold Implementation achieves first-order security in the glitch-robust
model [10].

The decomposition of an n-variable Boolean function f(xn−1, . . . , x0) = z

into a set of s functions f0, . . . , fs−1 such that
∑s−1

i=0 fi = f is a d-th order
Threshold Implementation if and only if the following conditions are met:

1. Non-Completeness. The functions f0, . . . , fs−1 are d-th order non-complete,
if any combination of at most d functions is independent of at least one input
share.

2. Uniformity. For all x such that f(x) = z, the input masking is said to be
uniform if each set of valid input shares of x (i.e., those sum to x) have
equal probability of occurring. If this holds, the shared implementation of f
is said to be uniform if each valid output share also have equal probability
of occurring.

The number of input shares sin respectively output shares sout required to
achieve a non-complete and uniform sharing of a function of algebraic degree t
is given by the below bounds [4]:

sin ≥ td+ 1, sout ≥
(
td+ 1

t

)
.

Note that a first-order TI of a quadratic function can thus be obtained with
sin = sout = 3. In this work, we will bootstrap the sharing of an arbitrary

Improving First-Order Threshold Implementations of SKINNY 5

quadratic function via the canonical direct sharing of the function f(x2, x1, x0) =
x0 + x1x2, i.e.,

f0 = x0,1 + x1,1x2,1 + x1,1x2,2 + x1,2x2,1

f1 = x0,2 + x1,0x2,0 + x1,2x2,0 + x1,0x2,2

f2 = x0,0 + x1,0x2,0 + x1,1x2,0 + x1,0x2,1.

We use an analogous direct sharing for cubic terms.

2.1 SKINNY-128 Substitution Box

As Threshold Implementations of linear functions are obtained by simple de-
compositions, the crux lies in finding efficient sharings for non-linear mappings.
In our case, this involves the 8-bit substitution box of the 128-bit block size vari-
ants of SKINNY with different tweakey sizes which we denote by SKINNY-128,
SKINNY-256 and SKINNY-384 given by the iterative mapping

Π ′ ◦ T ◦ [Π ◦ T]
3

(x7, x6, x5, x4, x3, x2, x1, x0) = (z7, z6, z5, z4, z3, z2, z1, z0),

composed of a transformation T and two bitwise permutations Π, Π ′ such that

T (x7, . . . , x1, x0) = (x7, x6, x5, x4 + (x7
−∨ x6), x3, x2, x1, x0 + (x3

−∨ x2))

Π(x7, . . . , x1, x0) = (x2, x1, x7, x6, x4, x0, x3, x5)

Π ′(x7, . . . , x1, x0) = (x7, x6, x5, x4, x3, x1, x2, x0).

Here, −∨ denotes the logical NOR gate, i.e., x −∨ y = xy + x+ y + 1. A graphical
depiction of the 8-bit S-box circuit is given in Figure 1a. Note that the highest
algebraic degree of six is reached in output term z0. The full expression of each
term is given in Appendix A.

3 Partitioning the S-box S

In [21], the authors showed how to decompose the S-box SP of the PRESENT
block cipher into two quadratic S-boxes F , G such that SP = G◦F . This enabled
the authors to construct a 3-share TI of PRESENT by constructing Threshold
Implementations of F and G separately with a register bank in between which
suppresses and thus prevents the glitches produced by the F layer from propa-
gating to the G layer. This however means that every evaluation of the shared
S-box requires two cycles to complete. However, this is compensated by the fact
that the construction requires only three shares and thus the total silicon area
required for the circuit is minimal. The approach used by the authors to obtain
the decomposition can be summarized as follows:

1. Evaluate all quartets of 4-bit vectorial Boolean functions f0, f1, f2, f3 such
that all the fi’s are quadratic. There are 211 quadratic functions in 4 bits
and so a total of 244 such quartets are possible.

6 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

x7x6 x5x4 x3x2 x1x0

z7 z6 z5 z4 z3 z2 z1 z0

T

Π

T

Π

T

Π

T

Π′

(a)

x7x6 x5x4 x3x2 x1x0

z7 z6 z5 z4 z3 z2 z1 z0

F

G

H

I

(b)

Fig. 1. (a) Definition of the 8-bit SKINNY-128 substitution box given the transforma-
tion T and two permutations Π, Π ′. (b) TI decomposition proposed in [2] using four
quadratic functions F , G, H and I.

2. Of the above list only filter for the quartets such that the function F :
{0, 1}4 → {0, 1}4 with F (x0, x1, x2, x3) = (f0, f1, f2, f3) is a bijective S-box.

3. For all such F check if G = SP ◦F−1 is also a quadratic S-box. If so, output
the pair of S-boxes (G,F).

It was later shown in [5] that SP belongs to the affine equivalence class C266 of
4-bit S-boxes. All S-boxes in this class allows decomposition into two quadratic S-
boxes. The above approach can not be extended to 8-bit S-boxes even considering
the authors’ suggested optimisations. To begin with there are 237 quadratic
functions over 8 bits, and therefore the number of octets of the form f0, f1, . . . , f7
will be 237×8 = 2296.

3.1 The Techniques

As done with PRESENT our goal lies in finding decompositions of the 8-bit
SKINNY S-box S that allow for efficient Threshold Implementations in terms of
circuit area, latency and energy consumption. In turn, this implies finding an
appropriate balance between the number of shares, coordinate functions, and
their degrees and gate complexity. To obtain a similar decomposition of S let us
first state the following definitions:

Definition 1 (i-representable). A Boolean function B has AND-complexity
n, if its circuit can be constructed with a total of n 2-input AND gates or fewer.
Its AND-depth is i (or equivalently it is i-representable) if there exists a circuit

Improving First-Order Threshold Implementations of SKINNY 7

x7x6 x5x4 x3x2 x1x0

z7 z6 z5 z4 z3 z2 z1 z0

F

G

H

(a)

x7x6 x5x4 x3x2 x1x0

z7 z6 z5 z4 z3 z2 z1 z0

u2u0

u1

u4

u7

u3

u5

u6

u0

F

G

(b)

Fig. 2. (a) S232 = H ◦G◦F decomposition with deg(F) = deg(H) = 2 and deg(G) = 3.
(b) S24 = G ◦ F decomposition with deg(F) = 2 and deg(G) = 4. We later introduce
the terminology SBlue and SRed to denote F, G respectively in (b).

in which the AND gates can be arranged in i distinct levels in the following
sense: all quadratic functions are 1-representable of some order, and a function
Bi is i-representable if it can be expressed as Bi = Q(t0, t1, . . . , tm−1) where Q
is quadratic and the functions t0, t1, . . . , tm−1 are each k-representable of some
order for k ≤ (i − 1). B is i-representable of order n if there exists a circuit
which constructs it with AND-depth i and AND-complexity n.

Thus a function which is i-representable of order n can be necessarily imple-
mented by n or a smaller number of 2-input AND gates (connected such that
the total AND-depth is at most i) along with other linear gates. Thus all four
coordinate functions of SP are 2-representable of some fixed order, which allows
a 3-share TI over two clock cycles.

Regarding S, the eight output functions z0, z1, . . . , z7 are of different algebraic
degrees. z2, z3, z5, z6 are themselves quadratic and their algebraic expressions
contain only one quadratic term and hence are 1-representable of order one.
z4, z7 have algebraic degree four: the fact that z7 is 2-representable of order
three can be easily deduced from Figure 3a: the paths from the input bits to
the z7 node go through exactly three NOR gates arranged so that the depth is
two. We have z4 = z7

−∨ z6 + x3. Hence z4 is at most 3-representable (in fact we
will later prove that it is 2-representable too). z0 and z1 have algebraic degree
six and five respectively: they can not be 2-representable since the set of all
2-representable functions contains members of degree four or less.

8 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

3.2 Exhaustive Partition Search

As mentioned, the byte-serial scheme presented in the SKINNY design paper [2],
and later adapted to round-based setting in [7], considers a three-share decom-
position into four functions of degree two which we denote by S2222. As a conse-
quence, the S-box operation is performed in a pipelined fashion over four clock
cycles which incurs a large latency thus energy penalty, i.e., a single encryption
of a plaintext takes four times the number of rounds when implemented as a
round-based circuit.

Since z0 and z1 are not 2-representable, the decomposition of S into quadratic
S-boxes Fi ◦ Fi−1 ◦ · · · ◦ F1 is not possible for i ≤ 2. Consequently, we aim to
decompose every coordinate Boolean function of S into 3-representable functions
of low order. Given that S can be realized in only 16 logical two-input gates, a
natural approach to obtain efficient decompositions is by partitioning the circuit
into connected sub-circuits. For example, the S2222 decomposition corresponds
to making three horizontal cuts after each row of gates. The number of possible
partitions of 16 gates into n sets is n16, however among those, only a small
fraction of those partitions respect functional correctness. Hence, if n = 3, it is
feasible to enumerate all correct partitions. Although this procedure does not
admit a 3-representable decomposition of each coordinate function, we found
many decompositions of the form S = H ◦ G ◦ F where deg(F) = deg(H) = 2
and deg(G) = 3. One such example denoted by S232 is shown in Figure 2a.

3.3 A Deeper Dive

As noted above, all coordinate functions of S except z0 and z1 are 3-representable.
If we can argue that z0 and z1 are also 3-representable, then it becomes straight-
forward to decompose S into three quadratic S-boxes. z1 is clearly 3-representable
of order five as can be deduced from Figure 3b. The set of all paths from the
input bits to z1 traverses exactly five NOR gates arranged in three levels and so
the result follows (they are marked in red in Figure 3b).

z0 is of algebraic degree 6 and from Figure 1 it is at least 4-representable of
order 7. This is because all but one of the 8 NOR gates are used to produce the
z0 bit and they are clearly arranged in 4 levels. However the question is: Is z0
also 3-representable of a suitable low order? If yes, a 3-share first-order TI which
evaluates the S-box in only three cycles is possible.

In this part we will show that z0 is indeed 3-representable of order 8. Note
that since the algebraic expression for z0 is very complex, we avoid directly
working with it to prove 3-representability: it would be very difficult to keep
the AND-complexity down to a suitable value. Instead, consider the function
π(x, y, z) = (x−∨ y) + z, whose algebraic expression is given by xy+x+ y+ z+ 1.
Note that π is completely linear in the last input z. In Figure 4, π is represented
by a green circular node, and the figure represents the circuit graph for z0. The
figure itself is redrawn by isolating the circuit path for z0 as in Figure 1, and
will help us prove the 3-representability of z0. Note that Figure 4 also makes it
clear that z0 is 4-representable of order 7.

Improving First-Order Threshold Implementations of SKINNY 9

x7x6 x5x4 x3x2 x1x0

z7 z6 z5 z4 z3 z2 z1 z0

1 1

2

(a)

x7x6 x5x4 x3x2 x1x0

z7 z6 z5 z4 z3 z2 z1 z0

1 1

21

3

(b)

Fig. 3. (a) The path up to z7 is marked in blue. There are 3 NOR gates, whose levels
are marked inside. There is a single NOR gate at level 2, which takes inputs from the
2 other level 1 NOR gates in the first row. (b) The path up to z1 is marked in red.
There are 5 NOR gates, whose levels are marked inside. There is a single NOR gate at
level 3, which takes inputs from the level 2 NOR gate and another level 1 NOR gate
in the second row.

Lemma 1. It is possible to transform the circuit graph for z0 according to the
transformation (a) → (b) shown in Figure 5.

Proof. This transformation is easy to prove: consider the nodes labeled in darker
green in Figure 5a. The output bit e = π(b, x3, x1) is given by the following
algebraic expression:

e = π(b, x3, x1) = π(π(x2, x3, x0), x3, x1)

= π(x2x3 + x2 + x3 + x0 + 1, x3, x1)

= x3(x2x3 + x2 + x3 + x0 + 1) + x3 + (x2x3 + x2 + x3 + x0 + 1) + x1 + 1

= x0x3 + x2x3 + x2 + x0 + x1

= x3(x0 + x2) + (x0 + x2) + x3 + (x1 + x3 + 1) + 1

= π(x0 + x2, x3, x1 + x3 + 1)

Lemma 2. It is possible to transform the circuit graph for z0 according to the
transformation (a)→ (b) shown in Figure 6. Thus, z0 is 3-representable of order
eight.

Proof. The proof for this transformation is slightly more involved. Consider again
the gates labeled in dark green in Figure 6a. They lie entirely in levels 3 and 4

10 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

x6 x7 x2 x3

x4 x0

x1 x2 x2 x3
a b

x5 x6 x0

d c b
x3

x1x7

f e

x2

z0

x y

z =
x

y z

Depth 1

Depth 2

Depth 3

Depth 4

Fig. 4. Circuit graph for z0. Its AND-complexity is 7 (note the gate π(x2, x3, x0) is
shown twice for a clearer representation).

of the circuit graph, and takes as input the signals d, c, e, x7, x2 and produces z0
as output. The expression can be written as:

z0 = π(f, e, x2) = π(π(d, c, x7), e, x2)

= π(dc+ d+ c+ x7 + 1, e, x2)

= e(dc+ d+ c+ x7 + 1) + e+ (dc+ d+ c+ x7 + 1) + x2 + 1

= edc+ ed+ ec+ ex7 + dc+ d+ c+ x7 + x2

= d(ec+ e+ c+ 1) + ec+ ex7 + c+ x7 + x2

= d(π(e, c, 0)) + (ec+ e+ c+ 1) + d+ (d+ e+ 1 + ex7 + x7 + x2)

= d(π(e, c, 0)) + π(e, c, 0) + d+ (ex7 + e+ x7 + x2 + 1 + d)

= π

(
π(e, c, 0), d, d+ π(e, x7, x2)

)
This completes the proof of the transformation. Figure 6 also proves that z0 can
be constructed with a AND-depth of 3 and so it is 3-representable.

This allows us to decompose the S-box into H ◦ G ◦ F = S222, where F :
{0, 1}8 → {0, 1}8, G : {0, 1}8 → {0, 1}9 and H : {0, 1}9 → {0, 1}8 are each
quadratic S-boxes. The algebraic expressions are as follows:

F (x7, x6, x5, x4, x3, x2, x1, x0) = (u7, u6, u5, u4, u3, u2, u1, u0)

u0 = x4 + x6x7 + x6 + x7 + 1, u1 = x0 + x2x3 + x2 + x3 + 1

u2 = x0x3 + x0 + x1 + x2x3 + x2, u3 = x1x2 + x1 + x2 + x6 + 1

Improving First-Order Threshold Implementations of SKINNY 11

u4 = x2, u5 = x3, u6 = x5, u7 = x7

G(u7, u6, u5, u4, u3, u2, u1, u0) = (v8, v7, v6, v5, v4, v3, v2, v1, v0)

v0 = u6 + u0u1 + u0 + u1 + 1, v1 = u5 + u6u0 + u6 + u0u1 + u1

v2 = u2u3, v3 = u0, v4 = u1, v5 = u2, v6 = u3,

v7 = u4, v8 = u7

H(v8, v7, v6, v5, v4, v3, v2, v1, v0) = (z7, z6, z5, z4, z3, z2, z1, z0)

z0 = v2v0 + v2 + v5v0 + v8v5 + v6v0 + v6 + v0 + v8 + v7,

z1 = v8 + v0v6 + v0 + v6 + 1,

z2 = v6, z3 = v5, z4 = v1, z5 = v4, z6 = v3, z7 = v0

Note that the additional output bit v2 = u2u3 roughly corresponds to the
π(e, c, 0) node created at level 2, i.e. v2 is the only non-linear term in π(e, c, 0). As
can be seen that this output bit of S2 is constructed by a standalone AND gate,
and correction terms have to be added to construct a 3-input/3-output share
TI of the SKINNY S-box. In the supplementary material [8], we present explicit
algebraic expressions for all 3 shares of the S-boxes F , G and H. While non-
completeness and correctness are easy to argue, we additionally argue uniformity
of our construction too.

x6 x7 x2 x3

x4 x0

x1 x2 x2 x3
a b

x5 x6 x0

d c b
x3

x1x7

f e

x2

z0

(a)

x6 x7 x2 x3 x3 x0 + x2

x1 + x3 + 1x4 x0

x1 x2
a b

x5 x6

d c

x7

f

x2

z0

e

(b)

Fig. 5. Transformation (a)→(b) of the circuit graph of z0 for Lemma 1.

12 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

x6 x7 x2 x3 x3 x0 + x2

x1 + x3 + 1x4 x0

x1 x2
a b

x5 x6

d c

x7

f

x2

z0

e

(a)

x6 x7 x2 x3 x3 x0 + x2

x1 + x3 + 1

x1 x2

x4 x0 x6

x7
a b c e e

x5 x20

d

z0

(b)

Fig. 6. Transformation (a)→(b) of the circuit graph of z0 for Lemma 2, proving that
z0 is 3-representable of order 8 (right).

3.4 Decomposition into Two Cubic S-boxes

Note that it is straightforward to decompose S into two S-boxes of degree 4 each.
For example from S2222 = I ◦ H ◦ G ◦ F , both G ◦ F and I ◦ H are degree 4
S-boxes. A first order TI of degree 4 S-box requires 5 shares. So by using the
above decomposition we can implement a circuit that evaluates the shared S-box
in only 2 clock cycles but requires 5 shares. Suppose we were able to decompose
S into two cubic S-boxes: if this were so then a first order TI would need only
4 shares. Such a circuit would require smaller circuit area and hence consume
less power on account of the reduced number of shares and also consume less
energy to encrypt a plaintext on account of the reduced power consumption.
So in principle it is an interesting exercise to see if this decomposition is at all
possible.

In order to decompose S into two cubic S-boxes, we can again mount an
exhaustive search on all partitions of two sets as done in Section 3.3. This pro-
cedure does not yield such a decomposition but many of the form S = G ◦ F
where deg(F) = 2 and deg(G) = 4 or vice-versa as shown in Figure 2b. However,
we can follow a similar strategy as in detailed in the previous section. We begin
with the following definition:

Definition 2. A Boolean function B is said to have cubic depth 2, if it can be
expressed as B = C(c1, c2, . . . , cn) where C, c1, c2, . . . , cn are each either cubic
Boolean functions or functions of algebraic degree strictly less than 3. The cubic
order of such a function is said to be i, if the total number cubic terms in the
algebraic expressions of C, c1, c2, . . . , cn combined is i.

Note that lower cubic depth allows us to construct a TI of the given function
lower number of cycles using only 4 shares. Since every cubic term wxy in the

Improving First-Order Threshold Implementations of SKINNY 13

algebraic expression has to be opened up as (w1 +w2 +w3 +w4)(x1 +x2 +x3 +
x4)(y1 + y2 + y3 + y4) to construct a 4 share TI, a low cubic order will obviously
help make the circuit more lightweight and efficient. It is straightforward to
see that z1, z2, . . . , z7 all have cubic depth 2: z2, z3, z5, z6 are quadratic. z7 has
algebraic degree 4 and we have already seen that it is 2-representable, and so
it automatically follows that its cubic depth is 2 and cubic order is 0. The fact
that z1, z4 also have cubic depth equal to two can be seen in Figure 2b of the
SKINNY S-box circuit. The part shaded in blue is an 8× 8 quadratic S-box, call
it SBlue and the part in red is another 8× 8 S-box of degree 4 (call it SRed). Note
we obviously have S = SRed ◦ SBlue. The algebraic expressions are as follows:

SBlue(x7, x6, x5, x4, x3, x2, x1, x0) = (u7, u6, u5, u4, u3, u2, u1, u0)

u7 = x2, u6 = x3, u5 = x3x2 + x3x0 + x2 + x1 + x0, u4 = x7,

u3 = x6 + x2x1 + x2 + x1 + 1, u2 = x5,

u1 = x3x2 + x3 + x2 + x0 + 1, u0 = x7x6 + x7 + x6 + x4 + 1

SRed(u7, u6, u5, u4, u3, u2, u1, u0) = (z7, z6, z5, z4, z3, z2, z1, z0)

z7 = u2 + u1u0 + u1 + u0 + 1, z6 = u0, z5 = u1

z4 = u6 + u2u0 + u2 + u1u0 + u1, z3 = u5, z2 = u3,

z1 = u4 + u3u2 + u3u1u0 + u3u1 + u3u0 + u2 + u1u0 + u1 + u0,

z0 = u7 + u5u4 + u5u3u2 + u5u3u1u0 + u5u3u1 + u5u3u0 + u5u2

+ u5u1u0 + u5u1 + u5u0 + u5 + u4 + u3u2 + u3u1u0

+ u3u1 + u3u0 + u2 + u1u0 + u1 + u0 + 1

From the expression we can see that z1 as the output of SRed is a cubic function
with only a single cubic term. And since the ui’s are at most quadratic this
follows that the cubic depth of z1 is 2 and its cubic order is 1. Also the expression
for z4 is quadratic in SRed, which proves that not only is its cubic depth 2 and
cubic order 0, but it is also 2-representable. It is elementary to verify that its
AND-complexity is 3.

The only problematic part is proving that z0 also has cubic depth 2 of some
suitably low order, since it is not clear from this decomposition. Note that there
is only one degree 4 term u5u3u1u0 in the expression of z0. Also u5u1 = x3x2x1+
x3x1 +x1 +x1x2 +x0x1 is a cubic expression in the xi’s. Therefore, we construct
the following S-box S′Blue : {0, 1}8 → {0, 1}9 where

S′Blue(x7, x6, x5, x4, x3, x2, x1, x0) = (u8, u7, u6, u5, u4, u3, u2, u1, u0)

such that u8 = x3x2x1+x3x1+x1+x1x2+x0x1 and the other ui’s are as defined
for SBlue. Correspondingly we define S′Red : {0, 1}9 → {0, 1}8 where

S′Red(u8, u7, u6, u5, u4, u3, u2, u1, u0) = (z7, z6, z5, z4, z3, z2, z1, z0)

such that z0 = u7+u5u4+u5u3u2+u8u3u0+u5u3u1+u5u3u0+u5u2+u5u1u0+
u5u1 + u5u0 + u5 + u4 + u3u2 + u3u1u0 + u3u1 + u3u0 + u2 + u1u0 + u1 + u0 + 1
and the other zi’s are as defined for SRed. Since both S′Blue and S′Red are cubic

14 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

S-boxes this proves that the cubic depth of z0 is also 2. It is easy to count that
there are 5 cubic terms in the modified expression of z0 and one cubic term in
the expression for u8, which implies that the cubic order of z0 is 6. Since we also
have that S = S′Red ◦ S′Blue, this also gives us the cubic decomposition required
to construct a first order TI using 4 input/output shares that can evaluate the
shared S-box in just 2 cycles. In the supplementary material [8], we present
explicit algebraic expressions for all 4 shares of the S-boxes S′Red,S

′
Blue, where we

additionally argue uniformity of our construction too.

4 Implementation

After decomposing the S-box into quadratic and cubic component functions, we
use the direct sharing approach to obtain the algebraic expressions for each of the
individual shares of the masked S-box. In all cases, except for S2222, correction
terms were required to ensure uniform sharing (all the algebraic expressions for
the individual shares can be found in [8]).

All the investigated schemes in this work have been synthesized on both ASIC
and FPGA platforms. In particular, we used Synopsys Design Vision v2019.03
to synthesize the hardware description into a netlist via the compile_ultra

-no_autoungroup directive that respects entity boundaries and thus prevents
the optimizer from potentially interfering with the threshold properties of the
circuit. Additionally, the power figures were obtained using back annotation of
the switching activity onto the netlist performed by the Synopsys Power Com-
piler. In order to obtain a comprehensive set of measurements, our circuits were
synthesized using three standard cell libraries of different sizes, namely the low-
leakage TSMC 28 nm and UMC 65 nm libraries and the high-leakage NanGate
45 nm process.

In Table 1, we detail the measurements for the investigated S-box circuits
and note that both in latency and power, S222 as well as S33 eclipse the other
variants. This trend is amplified when the entire SKINNY circuit is implemented
as shown in Table 2. We denote by SKINNYi1...ik the full SKINNY circuit using
the S-box Si1...ik .

The schemes have also been implemented on a 65 nm Xilinx Virtex-5 FPGA
and a 45 nm Xilinx Spartan-6 FPGA using the Xilinx ISE synthesis and imple-
mentation tool. To prevent optimisations that might break the masking scheme,
DONT_TOUCH, KEEP, and KEEP_HIERARCHY constraints have been added to the
HDL source files. The resulting measurements are tabulated in Table 3.

5 Leakage Assessment

SILVER [16] is a formal verification tool for masking countermeasures. For a
given security property [9], the tool exhaustive evaluates the input netlist using
reduced-ordered binary decision diagrams. We compile the netlist for the S222
and S33 S-boxes using the NanGate 45nm standard cell library and verified that
both netlists satisfied first-order probing security in the standard and robust

Improving First-Order Threshold Implementations of SKINNY 15

Table 1. ASIC synthesis measurements for the investigated substitution boxes.

Scheme Library Latency Area Timing Power (µW)

(Cycles) (GE) (ns) 10 MHz 100 MHz

S2222 TSMC 28 nm 4 550.3 0.20 4.880 45.32

NanGate 45 nm 4 584.3 0.24 43.81 157.1

UMC 65 nm 4 597.9 1.15 5.735 56.14

S232 TSMC 28 nm 3 922.0 0.50 6.490 59.17

NanGate 45 nm 3 915.3 1.11 86.15 166.2

UMC 65 nm 3 941.3 3.82 7.986 77.86

S222 TSMC 28 nm 3 598.9 0.24 4.561 42.03

NanGate 45 nm 3 600.6 0.31 46.77 154.4

UMC 65 nm 3 616.5 1.73 5.395 52.63

S33 TSMC 28 nm 2 1995 0.72 11.12 99.49

NanGate 45 nm 2 1906 1.21 159.7 553.7

UMC 65 2 1924 4.79 14.35 139.1

probing models as well as uniformity. A script together and the corresponding
netlist files are given in the auxiliary repository [8].

5.1 t-tests

The TVLA methodology [12,24] provides a set of best-practice guidelines for
performing non-invasive leakage detection on a device under test (DUT). To
verify the security of our designs, we follow this approach using Welch’s t-test
and the min-p strategy for null hypothesis rejection. In particular, we perform
non-specific fixed versus random t-tests, where we aim to determine the validity
of the null hypothesis that encryptions with a fixed and uniformly sampled plain-
text admit the same mean power consumption (i.e., are indistinguishable under
first-order statistical analysis). Following the state of the art [1,24,30], we set a
threshold |t| > 4.5 for any t-value to reject the null hypothesis.

To perform t-tests, power traces of SKINNY222 and SKINNY33 were mea-
sured using the Sakura-X and Sasebo-GII power side-channel leakage evaluation
boards. These boards contain a core FPGA target on which a cryptographic
circuit can be programmed, allowing the evaluation of custom hardware imple-
mentations of cryptographic primitives. To reduce noise, the boards contain an
additional FPGA for communication with the host PC, which is used to send
keys and plaintexts and read ciphertexts. Moreover, these boards contain direct
connectors for oscilloscope probes, facilitating the acquisition of the power sup-
ply voltage traces for the side-channel evaluation. The encryption FPGA has

16 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

Table 2. ASIC synthesis figures for all investigated schemes for three cell libraries.

Scheme Library Latency Area Critical Path Power (µW) Energy (nJ/128 bits)

(Cycles) (GE) (ns) 10 MHz 100 MHz 10 MHz 100 MHz

SKINNY-1282222 TSMC 28 nm 872 4461 0.31 21.91 186.2 1.911 1.623

Byte-Serial NanGate 45 nm 872 5039 0.51 100.6 343.5 8.772 2.995

UMC 65 nm 872 4989 1.59 25.82 244.5 2.251 2.132

SKINNY-2562222 TSMC 28 nm 1040 5280 0.33 25.90 219.6 2.694 2.284

Byte-Serial NanGate 45 nm 1040 5993 0.52 120.7 420.8 12.55 4.376

UMC 65 nm 1040 5876 1.64 30.33 287.3 3.154 2.988

SKINNY-3842222 TSMC 28 nm 1208 6122 0.35 26.97 222.5 3.258 2.688

Byte-Serial NanGate 45 nm 1208 6949 0.57 140.3 496.4 16.94 5.993

UMC 65 nm 1208 6782 1.69 34.98 333.1 4.226 4.024

SKINNY-1282222 TSMC 28 nm 160 13671 0.35 80.01 707.0 1.280 1.131

NanGate 45 nm 160 14637 0.47 917.3 2199 14.68 3.518

UMC 65 nm 160 15116 2.03 93.57 898.7 1.497 1.438

SKINNY-2562222 TSMC 28 nm 192 15197 0.36 88.13 776.9 1.692 1.491

NanGate 45 nm 192 16315 0.47 1041 2490 19.98 4.781

UMC 65 nm 192 16735 2.12 103.1 990.3 1.979 1.901

SKINNY-3842222 TSMC 28 nm 224 16641 0.38 95.98 844.8 2.149 1.892

NanGate 45 nm 224 17991 0.47 1166 2774 26.12 6.213

UMC 65 nm 224 18357 2.12 113.4 1088 2.538 2.437

SKINNY-128222 TSMC 28 nm 120 14452 0.44 77.58 683.3 0.931 0.819

NanGate 45 nm 120 14899 0.66 474.9 1890 5.699 2.268

UMC 65 nm 120 15413 3.40 93.05 892.7 1.156 1.071

SKINNY-256222 TSMC 28 nm 144 15975 0.44 86.74 761.1 1.249 1.095

NanGate 45 nm 144 16576 0.66 501.5 2010 7.222 2.894

UMC 65 nm 144 17031 3.51 104.0 997.1 1.497 1.436

SKINNY-384222 TSMC 28 nm 168 17484 0.44 95.51 838.7 1.604 1.410

NanGate 45 nm 168 18253 0.66 632.1 2298 10.62 3.861

UMC 65 nm 168 18654 3.51 115.6 1109 1.942 1.863

SKINNY-12833 TSMC 28 nm 80 24375 0.66 114.7 988.5 0.917 0.791

NanGate 45 nm 80 23954 0.88 980.1 3200 7.841 2.560

UMC 65 nm 80 24923 4.13 139.1 1391 1.113 1.113

SKINNY-25633 TSMC28 nm 96 26192 0.66 126.3 1090 1.212 1.046

NanGate 45 nm 96 25888 0.87 1109 3678 10.64 3.531

UMC 65 nm 96 26767 4.23 159.3 1542 1.529 1.480

SKINNY-38433 TSMC 28 nm 112 27964 0.66 137.5 1190 1.540 1.333

NanGate 45 nm 112 27820 0.87 1382 4001 15.48 4.481

UMC 65 nm 112 28621 4.24 147.7 1636 1.654 1.832

direct connections to header pins on the board, allowing easy synchronisation
using a dedicated trigger signal.

The Sakura-X board contains a more recent FPGA from the Xilinx 7-Series
(Kintex-7, XC7K160T), while the Sasebo-GII board contains an older FPGA
from the 5-Series (Virtex-5, XC5VLX30) architecture. To prevent unwanted op-
timizations during the FPGA toolchain synthesis and implementation, DONT_-
TOUCH, KEEP_HIERARCHY, and KEEP constraints are added. The clock frequency
of our designs is constrained to a low 3 MHz on both boards. All power measure-

Improving First-Order Threshold Implementations of SKINNY 17

Table 3. Xilinx Virtex-5 and Spartan-6 substitution and cipher synthesis results.

Scheme Target Slices Flip-Flops Lookup Tables Max. Frequency (MHz)

S2222 Virtex-5 35 72 24 600

Spartan-6 41 72 32 375

S222 Virtex-5 30 51 46 472

Spartan-6 42 51 52 316

S33 Virtex-5 106 36 296 278

Spartan-6 178 36 300 202

SKINNY-1282222 Virtex-5 1348 1672 1514 280

Spartan-6 2204 1672 928 194

SKINNY-128222 Virtex-5 956 1337 1689 250

Spartan-6 791 1328 1619 105

SKINNY-12833 Virtex-5 2883 1224 5834 180

Spartan-6 2640 1216 5641 110

ments are performed using a Tektronix MDO3104 oscilloscope with a sampling
rate of 1 GS/s and AC coupling; we take 10000 sample points per trace with 1
microsecond horizontal graduations.

To perform non-specific t-tests, all encryptions were performed with a fixed
key. The cryptographic primitive was reset before every encryption to ensure
identical initial conditions for both the fixed and random traces. Consequently,
this allowed us to record traces for t-tests in a deterministic interleaving fashion,
where a random plaintext preceded a fixed plaintext and vice-versa, reducing
bias in any one dataset from potential variation in noise and environmental
conditions over time. To avoid leakage arising from generating random masks on
the DUT itself, we sent pre-masked plaintext shares to the FPGA.

In order to verify the soundness of our experimental setup, we first ran t-
tests in the masks off setting by setting all but one share of the plaintext to
the zero vector. We perform the masks off t-tests on 10000 traces for each de-
sign. Figures 10a and 10b plot a sample trace for the two designs. Note that
we take traces corresponding to 10 rounds of an encryption operation in each
experiment. Recall that executing a round of SKINNY with S33 uses two cycles,
rather than three like with S222. The encryption operation for the SKINNY33

experiments only begins after a few thousand data points, whereas we record
from the beginning of an encryption for the SKINNY222 experiments.

The results in Figures 7a and 8a indicate that there is potentially exploitable
leakage with just 10000 traces, even with measurements with low SNR taken on
the Sakura-X board. We then record 1 million traces with randomly generated
masks to assess the first-order security of our designs (Figures 7b and 8b). Our
results indicate that the threshold of 4.5 is not crossed in any of the trace samples,
and that no leakage is detected with this number of traces. Since Threshold
Implementations are well-studied, we expect these results to hold with a larger
number of traces also.

18 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

t-
V
a
lu
e

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

Number	of	Samples
0 2000 4000 6000 8000 10000

(a)

t-
V
a
lu
e

−5
−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

0

1
1.5
2

2.5
3

3.5
4

4.5
5

Number	of	Samples
0 2000 4000 6000 8000 10000

(b)

Fig. 7. t-test results for SKINNY222 on the Sakura-X with (a) 10000 traces and masks
off and (b) one million traces and masks on.

To demonstrate that our Threshold Implementation of SKINNY222 is secure
even on a smaller FPGA with a higher SNR (lower noise), we also performed
t-tests with both randomly generated and zero masks using the Sasebo-II side-
channel evaluation board. Figure 10c shows a sample trace taken during the
experiments, where the power consumption from the encryption operation in
each clock cycle is clearly visible. Figure 9 shows the t-values obtained for the
power traces. As before, with 10000 traces in the masks off setting, we note
substantial leakage. With one million traces and masks on, we find no evidence
of leakage.

6 Conclusion and Future Work

In this work, we re-envision first-order TI for the SKINNY family of tweakable
block ciphers in the round-based setting. More specifically, we propose different
decompositions of the 8-bit S-box which enable significantly more efficient im-
plementations of a protected SKINNY circuit in terms of latency and energy
consumption, which we demonstrate through an extensive suite of synthesis
benchmarks. We conclude by assessing the security of our designs via lever-
aging existing leakage detection and formal verification techniques. In terms of
future work, we identify the following problems as of particular interest:

– Higher-Order Schemes. This paper covers first-order realizations but against
a more capable adversary, security against higher-order attacks is required.
As TI schemes become increasingly expensive in this setting, a suitable can-
didate approach is d + 1 sharing e.g., using Domain-Oriented Masking [13]
to reduce the number of required shares.

– Area Optimizations. Although S222 and S33 optimize for latency and energy
consumption in comparison to S2222, their circuit area is roughly the same

Improving First-Order Threshold Implementations of SKINNY 19

t-
V
a
lu
e

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

35

40
45

Number	of	Samples
0 2000 4000 6000 8000 10000

(a)

t-
V
a
lu
e

−5
−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

0

1
1.5
2

2.5
3

3.5
4

4.5
5

Number	of	Samples
0 2000 4000 6000 8000 10000

(b)

Fig. 8. t-test results for SKINNY33 on the Sakura-X with (a) 10000 traces and masks
off and (b) one million traces and masks on.

or moderately larger. It is thus an interesting exercise to determine whether
the area footprint can be reduced as well.

Acknowledgements. We wish to thank the anonymous reviewers whose com-
ments helped improve this work. Subhadeep Banik is supported by the Swiss
National Science Foundation (SNSF) through the Ambizione Grant PZ00P2_-

179921.

A Algebraic expressions for SKINNY S-box S

z0 = x7x6x3x2x1x0 + x7x6x3x2x0 + x7x6x3x2 + x7x6x3x1x0 + x7x6x2x1+

x7x6x1x0 + x7x3x2x1x0 + x7x3x2x0 + x7x3x1x0 + x7x3x0 + x7x2x1+

x7x2 + x7x1x0 + x7x1 + x7x0 + x7 + x6x5x3x2 + x6x5x3x0 + x6x5x2+

x6x5x1 + x6x5x0 + x6x5 + x6x4x3x2x1 + x6x4x3x1 + x6x4x3x0+

x6x4x3 + x6x4x2x1 + x6x4x1x0 + x6x3x2x1x0 + x6x3x2x1 + x6x3x2x0+

x6x3x1x0 + x6x3x1 + x6x3 + x6x2 + x6x1 + x6x0 + x6 + x5x3x2x1x0+

x5x3x2x0 + x5x3x2 + x5x3x1x0 + x5x2x1x0 + x5x2x1 + x5x2x0+

x5x1x0 + x4x3x2x1x0 + x4x3x2x0 + x4x3x2 + x4x3x1x0 + x4x2x1+

x4x1x0 + x3x2x1x0 + x3x2x0 + x3x1x0 + x3x0 + x2x1x0 + x2x1+

x2x0 + x1x0 + x1 + x0 + 1

z1 = x7x6x3x2x1 + x7x6x3x1 + x7x6x2x1x0 + x7x6x2x0 + x7x6x2+

x7x6x1x0 + x7x3x2x1 + x7x3x1 + x7x2x1x0 + x7x2x0 + x7x2+

x7x1x0 + x7 + x6x5 + x6x4x3x2 + x6x4x3 + x6x4x2 + x6x4x0+

x6x3x2x1 + x6x3x2 + x6x3x1 + x6x3 + x6x2x1x0 + x6x2x0+

20 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

t-
V
a
lu
e

−27.5
−25

−22.5
−20

−17.5
−15

−12.5
−10
−7.5
−5

0

5
7.5
10

12.5
15

17.5
20

22.5
25

Number	of	Samples
0 2000 4000 6000 8000 10000

(a)

t-
V
a
lu
e

−5
−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

0

1
1.5
2

2.5
3

3.5
4

4.5
5

Number	of	Samples
0 2000 4000 6000 8000 10000

(b)

Fig. 9. t-test results for SKINNY222 on the Sasebo-II with (a) 10000 traces and masks
off and (b) one million traces and masks on.

Number	of	Samples
0 2000 4000 6000 8000 10000

(a)

Number	of	Samples
0 2000 4000 6000 8000 10000

(b)

Number	of	Samples
0 2000 4000 6000 8000 10000

(c)

Fig. 10. Sample power traces of encryption operations for (a) SKINNY222 on the
Sakura-X, (b) SKINNY33 on the Sakura-X and (c) SKINNY222 on the Sasebo-II.

x6x1x0 + x6x0 + x6 + x5x2x1 + x5x2 + x5x1 + x4x3x2x1 + x4x3x1+

x4x2x1x0 + x4x2x0 + x4x2 + x4x1x0 + x2x1 + x2 + x1

z2 = x6 + x2x1 + x2 + x1 + 1, z3 = x3x2 + x3x0 + x2 + x1 + x0

z4 = x7x6x5 + x7x6x3x2 + x7x6x3 + x7x6x2 + x7x6x0 + x7x6 + x7x5+

x7x3x2 + x7x3 + x7x2 + x7x0 + x7 + x6x5 + x6x3x2 + x6x3 + x6x2+

x6x0 + x6 + x5x4 + x4x3x2 + x4x3 + x4x2 + x4x0 + x4 + x3

z5 = x3x2 + x3 + x2 + x0 + 1, z6 = x7x6 + x7 + x6 + x4 + 1

z7 = x7x6x3x2 + x7x6x3 + x7x6x2 + x7x6x0 + x7x3x2 + x7x3 + x7x2+

x7x0 + x6x3x2 + x6x3 + x6x2 + x6x0 + x5 + x4x3x2 + x4x3+

x4x2 + x4x0

Improving First-Order Threshold Implementations of SKINNY 21

References

1. Arribas, V., Bilgin, B., Petrides, G., Nikova, S., Rijmen, V.: Rhyth-
mic Keccak: SCA security and low latency in HW. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2018(1), 269–290
(2018). https://doi.org/10.13154/tches.v2018.i1.269-290, https://tches.iacr.

org/index.php/TCHES/article/view/840

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016, Part II. Lecture Notes in Computer Science, vol. 9815, pp. 123–
153. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016).
https://doi.org/10.1007/978-3-662-53008-5 5

3. Bilgin, B.: Threshold implementations: as countermeasure against higher-order dif-
ferential power analysis. Ph.D. thesis, University of Twente, Netherlands (May
2015). https://doi.org/10.3990/1.9789036538916, cum laude

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order thresh-
old implementations. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology –
ASIACRYPT 2014, Part II. Lecture Notes in Computer Science, vol. 8874, pp.
326–343. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11,
2014). https://doi.org/10.1007/978-3-662-45608-8 18

5. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3× 3 and 4× 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) Cryptographic
Hardware and Embedded Systems – CHES 2012. Lecture Notes in Computer Sci-
ence, vol. 7428, pp. 76–91. Springer, Heidelberg, Germany, Leuven, Belgium (Sep 9–
12, 2012). https://doi.org/10.1007/978-3-642-33027-8 5

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Embedded
Systems – CHES 2004. Lecture Notes in Computer Science, vol. 3156, pp. 16–
29. Springer, Heidelberg, Germany, Cambridge, Massachusetts, USA (Aug 11–13,
2004). https://doi.org/10.1007/978-3-540-28632-5 2

7. Caforio, A., Balli, F., Banik, S.: Energy analysis of lightweight AEAD circuits. In:
Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 20: 19th International Con-
ference on Cryptology and Network Security. Lecture Notes in Computer Science,
vol. 12579, pp. 23–42. Springer, Heidelberg, Germany, Vienna, Austria (Dec 14–16,
2020). https://doi.org/10.1007/978-3-030-65411-5 2

8. Caforio, A., Collins, D., Glamocanin, O., Banik, S.: Improving First-Order Thresh-
old Implementations of SKINNY (Repository) (10 2021), https://github.com/

qantik/skinny-dipping

9. De Meyer, L., Bilgin, B., Reparaz, O.: Consolidating security notions in hardware
masking. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(3), 119–147 (2019). https://doi.org/10.13154/tches.v2019.i3.119-147, https:
//tches.iacr.org/index.php/TCHES/article/view/8291

10. Dhooghe, S., Nikova, S., Rijmen, V.: Threshold implementations in the ro-
bust probing model. In: Bilgin, B., Petkova-Nikova, S., Rijmen, V. (eds.) Pro-
ceedings of ACM Workshop on Theory of Implementation Security Workshop,
TIS@CCS 2019, London, UK, November 11, 2019. pp. 30–37. ACM (2019).
https://doi.org/10.1145/3338467.3358949

11. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.X.: Compos-
able masking schemes in the presence of physical defaults & the robust probing

https://doi.org/10.13154/tches.v2018.i1.269-290
https://tches.iacr.org/index.php/TCHES/article/view/840
https://tches.iacr.org/index.php/TCHES/article/view/840
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.3990/1.9789036538916
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-642-33027-8_5
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-030-65411-5_2
https://github.com/qantik/skinny-dipping
https://github.com/qantik/skinny-dipping
https://doi.org/10.13154/tches.v2019.i3.119-147
https://tches.iacr.org/index.php/TCHES/article/view/8291
https://tches.iacr.org/index.php/TCHES/article/view/8291
https://doi.org/10.1145/3338467.3358949

22 Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik

model. IACR Transactions on Cryptographic Hardware and Embedded Systems
2018(3), 89–120 (2018). https://doi.org/10.13154/tches.v2018.i3.89-120, https:

//tches.iacr.org/index.php/TCHES/article/view/7270

12. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST non-invasive attack testing workshop.
vol. 7, pp. 115–136 (2011)

13. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. In: Bilgin, B., Nikova,
S., Rijmen, V. (eds.) Proceedings of the ACM Workshop on Theory of Implemen-
tation Security, TIS@CCS 2016 Vienna, Austria, October, 2016. p. 3. ACM (2016).
https://doi.org/10.1145/2996366.2996426

14. Guo, C., Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1.3.
Tech. rep. (2021)

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003. Lecture
Notes in Computer Science, vol. 2729, pp. 463–481. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 17–21, 2003). https://doi.org/10.1007/978-3-540-
45146-4 27

16. Knichel, D., Sasdrich, P., Moradi, A.: SILVER - statistical independence and
leakage verification. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology –
ASIACRYPT 2020, Part I. Lecture Notes in Computer Science, vol. 12491, pp.
787–816. Springer, Heidelberg, Germany, Daejeon, South Korea (Dec 7–11, 2020).
https://doi.org/10.1007/978-3-030-64837-4 26

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology – CRYPTO’99. Lecture Notes in Computer Sci-
ence, vol. 1666, pp. 388–397. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 15–19, 1999). https://doi.org/10.1007/3-540-48405-1 25

18. Moradi, A., Standaert, F.X.: Moments-correlating dpa. In: Proceedings of the 2016
ACM Workshop on Theory of Implementation Security. pp. 5–15 (2016)

19. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 06: 8th
International Conference on Information and Communication Security. Lecture
Notes in Computer Science, vol. 4307, pp. 529–545. Springer, Heidelberg, Germany,
Raleigh, NC, USA (Dec 4–7, 2006)

20. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. Journal of Cryptology 24(2), 292–321 (Apr
2011). https://doi.org/10.1007/s00145-010-9085-7

21. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2,300 GE. Journal of Cryptology 24(2), 322–345 (Apr
2011). https://doi.org/10.1007/s00145-010-9086-6

22. Reparaz, O.: A note on the security of higher-order threshold implementations.
Cryptology ePrint Archive, Report 2015/001 (2015), https://eprint.iacr.org/
2015/001

23. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology
– CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 764–
783. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015).
https://doi.org/10.1007/978-3-662-47989-6 37

24. Schneider, T., Moradi, A.: Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic

https://doi.org/10.13154/tches.v2018.i3.89-120
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9086-6
https://eprint.iacr.org/2015/001
https://eprint.iacr.org/2015/001
https://doi.org/10.1007/978-3-662-47989-6_37

Improving First-Order Threshold Implementations of SKINNY 23

Hardware and Embedded Systems – CHES 2015. Lecture Notes in Computer Sci-
ence, vol. 9293, pp. 495–513. Springer, Heidelberg, Germany, Saint-Malo, France
(Sep 13–16, 2015). https://doi.org/10.1007/978-3-662-48324-4 25

25. Shahmirzadi, A.R., Božilov, D., Moradi, A.: New first-order secure AES perfor-
mance records. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2021(2), 304–327 (2021). https://doi.org/10.46586/tches.v2021.i2.304-
327, https://tches.iacr.org/index.php/TCHES/article/view/8796

26. Sönmez Turan, M., McKay, K., Chang, D., Çalık, Ç., Bassham, L., Kang, J., Kelsey,
J.: Status report on the second round of the nist lightweight cryptography stan-
dardization process. Tech. rep., National Institute of Standards and Technology
(2021)

27. Sugawara, T.: 3-share threshold implementation of AES s-box without fresh ran-
domness. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019(1), 123–145 (2018). https://doi.org/10.13154/tches.v2019.i1.123-145,
https://tches.iacr.org/index.php/TCHES/article/view/7336

28. Wegener, F., Baiker, C., Moradi, A.: Shuffle and mix: On the diffusion of ran-
domness in threshold implementations of Keccak. In: Polian, I., Stöttinger, M.
(eds.) COSADE 2019: 10th International Workshop on Constructive Side-Channel
Analysis and Secure Design. Lecture Notes in Computer Science, vol. 11421, pp.
270–284. Springer, Heidelberg, Germany, Darmstadt, Germany (Apr 3–5, 2019).
https://doi.org/10.1007/978-3-030-16350-1 15

29. Wegener, F., De Meyer, L., Moradi, A.: Spin me right round rotational symmetry
for FPGA-specific AES: Extended version. Journal of Cryptology 33(3), 1114–1155
(Jul 2020). https://doi.org/10.1007/s00145-019-09342-y

30. Zarei, S., Shahmirzadi, A.R., Soleimany, H., Salarifard, R., Moradi, A.: Low-latency
keccak at any arbitrary order. IACR Transactions on Cryptographic Hardware and
Embedded Systems pp. 388–411 (2021)

https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.46586/tches.v2021.i2.304-327
https://doi.org/10.46586/tches.v2021.i2.304-327
https://tches.iacr.org/index.php/TCHES/article/view/8796
https://doi.org/10.13154/tches.v2019.i1.123-145
https://tches.iacr.org/index.php/TCHES/article/view/7336
https://doi.org/10.1007/978-3-030-16350-1_15
https://doi.org/10.1007/s00145-019-09342-y

	Improving First-Order Threshold Implementations of SKINNY

