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Abstract. Extended permutation (EP) is a generalized notion of the
standard permutation. Unlike the one-to-one correspondence mapping
of the standard permutation, EP allows to replicate or omit elements
as many times as needed during the mapping. EP is useful in the area
of secure multi-party computation (MPC), especially for the problem of
private function evaluation (PFE). As a special class of MPC problems,
PFE focuses on the scenario where a party holds a private circuit C
while all other parties hold their private inputs x1, . . . , xn, respectively.
The goal of PFE protocols is to securely compute the evaluation result
C(x1, . . . , xn), while any other information beyond C(x1, . . . , xn) is hid-
den. EP here is introduced to describe the topological structure of the
circuit C, and it is further used to support the evaluation of C privately.
For an actively secure PFE protocol, it is crucial to guarantee that the
private circuit provider cannot deviate from the protocol to learn more in-
formation. Hence, we need to ensure that the private circuit provider cor-
rectly performs an EP. This seeks the help of the so-called zero-knowledge
argument of encrypted extended permutation protocol. In this paper, we
provide an improvement of this protocol. Our new protocol can be in-
stantiated to be non-interactive while the previous protocol should be
interactive. Meanwhile, compared with the previous protocol, our proto-
col is significantly (e.g., more than 3.4×) faster, and the communication
cost is only around 24% of that of the previous one.

Keywords: ElGamal encryption · Extended permutation · Private func-
tion evaluation · Zero-knowledge.

1 Introduction

The notion of extended permutation (EP) is a generalized notion of the stan-
dard permutation. Different from the one-to-one correspondence mapping of the



standard permutation, EP allows replication and omission of elements during
the mapping. An EP π maps elements in a set {1, . . . ,M} to a set {1, . . . , N}
for positive integers M and N . Here, for every y ∈ {1, . . . , N}, there exists ex-
actly one x ∈ {1, . . . ,M}, such that π(x) = y. We note that π may not be a
function, while π−1 is indeed a function.

EP is a very useful notion in many areas. In particular, EP is implicitly or
explicitly used in the area of secure multi-party computation (MPC) [27]. In the
setting of MPC, EP could be introduced to illustrate the topological structure
of circuits. More concretely, EP can be used to describe the connections between
wires of a circuit, and thus the topology of the circuit. To describe a circuit using
EP, we divide the wires of the circuit into two types: incoming wires (IW) and
outgoing wires (OW). All input wires of gates in the circuit are incoming wires,
while the input wires of the circuit and the output wires of gates are outgoing
wires. An example for a circuit C using such a naming rule is given in Fig. 1. It
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Fig. 1: An illustration of a circuit C, where wires are denoted by incoming wires (IW)
and outgoing wires (OW).

is easy to see that every incoming wire connects to exactly one outgoing wire.
Meanwhile, an outgoing wire may connect to one or multiple incoming wires, or
has no connection to any incoming wires. It is clear that for a circuit, its outgoing
wires correspond to the domain of an EP, and its incoming wires correspond to
the range of an EP. Therefore, after indexing the incoming wires and outgoing
wires of a circuit, we can extract an EP that describes the topology of the circuit.
In Fig. 2, we provide the corresponding EP for the circuit C in Fig 1. 4 Moreover,
given an EP (together with the numbers of gates, inputs, and outputs), we can
easily reconstruct the topological structure of the corresponding circuit.

EP is especially useful for the problem of (general-purpose) private function
evaluation (PFE) [1]. PFE is a special class of MPC problems. It focuses on
designing a protocol for the scenario where a party holds a private circuit C,
while other parties possess their own private inputs x1, . . . , xn. The goal of PFE
is to privately evaluate C on x1, . . . , xn, i.e., to compute the evaluation result

4 Since OW8 and OW9, as output wires of the circuit C, have no connections to other
wires, we can simply omit them in the EP.
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IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10

OW2OW1 OW3 OW4 OW5 OW6 OW7

Fig. 2: The extended permutation corresponding to the circuit C in Fig. 1.

C(x1, . . . , xn). After the execution of PFE, parties receive the evaluation result
C(x1, . . . , xn) while information beyond C(x1, . . . , xn) is hidden. Note that this is
different from traditional secure function evaluation problem, in which the circuit
C is publicly known. In fact, PFE problem can be reduced to securely evaluating
a universal circuit [26, 19, 18, 22, 13, 28, 2, 23], such that the description of the
circuit C is used as inputs to the universal circuit. However, using universal
circuits leads to a logarithmic blow-up. In other words, the universal circuit for
evaluating a circuit C with size n has size at least Θ(n log n), where the constant
factor (e.g., 12) and the low-order terms are significant. Starting from the original
work of Katz and Malka [17], another line of research focuses on designing PFE
protocols while avoiding the usage of universal circuits, such as [24, 20, 25, 5, 15,
4]. This line of work has linear complexity in the size of the circuit n. It was
shown [17, 15] that they outperformed the state-of-the-art PFE protocol based
on universal circuits theoretically and experimentally. The basic idea for this
line of work is to use EP. More concretely, the party holding the private circuit
C derives an EP from C, and obliviously performs an EP on a set of outgoing
wires to establish the connections between outgoing wires and incoming wires.
Then parties are able to follow the results from the EP to evaluate C on private
inputs while keeping C hidden.

Although this line of work usually has good performance, only the work
in [25] is secure against malicious adversaries, and all other results only work
in the semi-honest model. One of the main challenges for designing an actively
secure PFE protocol is to guarantee that the private function owner performs
a valid EP on elements representing outgoing wires. In the setting of [25], the
private circuit owner performs an EP on a set of encrypted elements locally
and re-randomizes all encrypted elements in the resulting list. Then the private
circuit owner is required to publish the resulting encrypted list and prove that
the resulting encrypted list is derived from a valid EP on the encrypted elements
in a zero-knowledge manner. The protocol for proving the validity of this result
is called zero-knowledge argument of encrypted extended permutation, and it is
also the efficiency bottleneck of the protocol [25].

1.1 Contribution

In this paper, we provide an improved version of the zero-knowledge argument
of encrypted extended permutation protocol. Both our protocol and the original
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protocol in [25] are designed based on the ElGamal encryption scheme [11]. It
is possible to extend our ideas to other encryption schemes. We note that our
protocol can be instantiated to be non-interactive while the previous protocol
should be interactive. Compared with the original work [25], the communication
cost of our protocol is only around 24% of that of [25]. For computation cost, our
protocol is significantly (e.g., more than 3.4×) faster than the previous protocol.
Moreover, protocols based on our protocol, such as the linear actively secure
PFE protocol in [25], can also gain better performance.

1.2 Overview of Our Idea

Before the full description of our protocol, we here briefly provide an overview
of our idea. We denote the EP π by a mapping π : {1, . . . ,M} → {1, . . . , N}.
Informally, given two lists of ciphertexts α⃗ = [α1, . . . , αM ] and c⃗ = [c1, . . . , cN ],
the goal of the prover in our protocol is to prove that there exists an EP π, such
that the encrypted element of ci is the same as the encrypted element of απ−1(i).
A formal definition for the relation corresponding to our protocol will be given
in Section 2. The idea of our protocol is to decompose a valid EP into four steps:
extension, placement, replication, and finalization, and then the prover shows
their validity respectively. The four steps are described in the following.

Extension If M < N , we know that the length of the resulting ciphertext list
c⃗ is longer than that of the original ciphertext list α⃗. Therefore, all parties
append N −M ciphertexts at the end of α⃗ as dummy ciphertexts. To ensure
that the dummy ciphertexts are meaningless while the resulting new list
is derived from a valid EP performed on the original list, all parties could
append N −M ciphertext α1 at the end of α⃗. If M ≥ N , we can safely skip
this extension step.

Placement If the encrypted element of a ciphertext in α⃗ does not appear in the
resulting list c⃗ (in an encrypted form), i.e., this element is omitted according
to the mapping of the EP π, the prover can label this ciphertext also as
a dummy ciphertext. The prover now permutes the list, such that for each
ciphertext encrypting the (non-omitted) element in the original list, if it is
mapped to k different outputs according to π, k− 1 dummy ciphertexts are
placed after this ciphertext. If M > N , extra dummy ciphertexts are moved
to the end of the list. Then all ciphertexts are re-randomized.

Replication The prover replaces all dummy ciphertexts except extra dummy
ciphertexts with their first non-dummy ciphertext. In other words, if a non-
omitted element is mapped to k different outputs according to π, its corre-
sponding ciphertext is replicated k−1 times thereafter. Then all ciphertexts
are re-randomized.

Finalization If M > N , parties can remove the last M − N extra dummy
ciphertexts from the list. Now the prover can permute the list to their final
place according to π. Finally, all ciphertexts are re-randomized to derive c⃗.

Then the prover is required to prove that each step is executed correctly in the
protocol. We give an illustration of these four steps for the EP corresponding
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to the circuit C (Fig. 1) in Fig 3, where we use βi’s to denote the encrypted
elements of ciphertexts in the list α⃗.

β1 β3 β5 β7β2 β4 β6

β1 β1 β1β1 β3 β5 β7β2 β4 β6

β1 β1 β1β1 β3 β5 β7β2 β4 β6

β2 β3 β7β1 β3 β5 β7β2 β4 β6

β2 β3 β7β1β3 β5β7β2β4 β6

Extension

Placement

Replication

Finalization

Fig. 3: The four steps for the proof corresponding to the circuit C in Fig. 1.

The organization for the rest of this paper is as follows. In Section 2, we
present preliminaries for our further presentation. Then we provide a formal
description for our main protocol in Section 3. Subsequently, sub-protocols inside
our main protocol are given in Section 4. Finally, performance of our protocol
and comparisons between our protocol and the original work [25] are presented
in Section 5, from both communication and computation aspects.

2 Preliminaries

In this paper, the security of protocols is proved under standard security def-
initions (see [14, 21] for more information). This paper mainly focuses on con-
structing a public-coin honest-verifier zero-knowledge protocol (see [12]). Note
that this kind of protocols can be compiled by the Fiat–Shamir heuristic [9] to
be non-interactive and secure against malicious verifiers with low overhead.

We use the notation ∥S∥ to denote the number of bits required to represent
elements in the set S. We write x←$S to indicate that an element x is uniformly
sampled from the set S. Define [n] = {1, . . . , n}. The function max(·, ·) takes as
input two values and returns the maximum of these two values. We say that
a function f in a variable κ mapping natural numbers to [0, 1] is negligible if
f(κ) = O(κ−c ) for every constant c > 0.

We give the formal definition of EP in the following.

Definition 1 (Extended Permutation [24]). For positive integers M and
N , a mapping π : [M ] → [N ] is an extended permutation (EP) if for every
y ∈ [N ], there exists exactly one x ∈ [M ], such that π(x) = y. We often denote
x by π−1(y).
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Here, we give a brief description of the ElGamal encryption scheme [11].
This encryption scheme is over a cyclic group G = ⟨g⟩ of prime order q. It
is semantically secure under the decisional Diffie-Hellman (DDH) assumption
(see [16]) for G. The description of the scheme is in the following.

Key Generation The algorithm KGen takes as input the security parameter
1κ, picks s←$Zq, and sets h ← gs. Then the algorithm outputs the public
key pk← (G, q, g, h) and the private key sk← s.

Encryption The algorithm Enc takes as input a message m ∈ G and a public
key pk, and returns the ciphertext c← (c(0) = gr, c(1) = mhr) for a random
coin r←$Zq.

Decryption The algorithm Dec takes as input a ciphertext c = (c(0), c(1)) and
a key pair (pk, sk), and returns the plaintext m← c(1)/(c(0))s.

Remark 1. For the ElGamal encryption scheme with pk = (G, q, g, h), it is
easy for a prover to prove in zero-knowledge that two ElGamal ciphertexts en-
crypt the same value. Without loss of generality, we denote two ciphertexts by

c1 = (c
(0)
1 , c

(1)
1 ) = (gr1 ,mhr1) and c2 = (c

(0)
2 , c

(1)
2 ) = (gr2 ,mhr2), such that they

encrypt the same value m.

When we compute c3 ← (c
(0)
1 (c

(0)
2 )−1, c

(1)
1 (c

(1)
2 )−1) = (gr1−r2 , hr1−r2), the

resulting ciphertext c3 indeed encrypts 1. Therefore, c1 and c2 encrypt the same
value if and only if c3 encrypts 1. Let r = r1−r2. If a prover knows r, she is able

to prove that c1 and c2 encrypt the same value via proving that (g, h, c
(0)
3 , c

(1)
3 )

is a Diffie-Hellman (DH) tuple. More concretely, it is equivalent for the prover

to prove in zero-knowledge that there exists a value r ∈ Zq, such that c
(0)
3 = gr

and c
(1)
3 = hr.

In this paper, we aim to provide a zero-knowledge protocol for the relation
REncEP based on the ElGamal encryption scheme:

REncEP = {(G, q, g, h, {(α(0)
i , α

(1)
i )}i∈[M ], {(c

(0)
i , c

(1)
i )}i∈[N ]) | ∃{ri}i∈[N ], π, s.t.

c
(0)
i = α

(0)
π−1(i)g

ri ∧ c
(1)
i = α

(1)
π−1(i)h

ri ∧ π is an extended permutation}

Our construction utilizes a zero-knowledge protocol ΠShuffle
zk for the relation

RShuffle based on the ElGamal encryption scheme:

RShuffle = {(G, q, g, h, {(c(0)i , c
(1)
i )}i∈[ℓ], {(c′i

(0)
, c′i

(1)
)}i∈[ℓ]) | ∃{ri}i∈[ℓ], π, s.t.

c′i
(0)

= c
(0)
π(i)g

ri ∧ c′i
(1)

= c
(1)
π(i)h

ri ∧ π is a permutation}

We note that there exist efficient (non-interactive) protocols with sub-linear
communication cost that can be used to instantiate ΠShuffle

zk , such as the protocol
in [3].
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3 Our Main Protocol

Based on the idea introduced in Section 1.2, we provide a full description of our
main protocol in this section. The sub-protocols inside our protocol are given in
Section 4.

The zero-knowledge protocol ΠEncEP
zk for REncEP between a prover P and a

verifier V is given as follows.

Public Inputs: A group G of order q with generator g, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). Two
lists of ElGamal ciphertexts α⃗ = [α1, . . . , αM ] and c⃗ = [c1, . . . , cN ] corresponding

to pk. Each ciphertext αi (resp. ci) is of the form αi = (α
(0)
i , α

(1)
i ) ∈ G2 (resp.

ci = (c
(0)
i , c

(1)
i ) ∈ G2).

Witness: An EP π : [M ]→ [N ] and a list R = [r1, . . . , rN ], where ri ∈ Zq.

Statement: There exists an EP π and a list R = [r1, . . . , rN ], such that c
(0)
i =

α
(0)
π−1(i)g

ri and c
(1)
i = α

(1)
π−1(i)h

ri .

Protocol Description

1. Extension. Both parties append max(N −M, 0) ciphertexts α1 to the list
α⃗ as dummy ciphertexts. The new list is denoted by e⃗ = [e1, . . . , eN ]. Let
N ′ = max(M,N).

2. Placement. If the index i of a ciphertext in e⃗ satisfies i ≤M and {j | i =
π−1(j)} = ∅, i.e., this encrypted element is omitted after the EP, P also labels
this ciphertext as a dummy ciphertext. P now permutes the list e⃗, such that
for each non-dummy ciphertext in e⃗ with index j, if |π(j)| = k, k−1 dummy
ciphertexts are placed after this ciphertext. The condition |π(j)| = k means
that this encrypted element is mapped to k different outputs according to π.
If M > N , extra dummy ciphertexts are moved to the end of the list. This
permutation is denoted by π′ and the resulting list of ciphertexts is denoted
by ⃗̂p = [p̂1, . . . , p̂N ′ ], where p̂i = eπ′(i).
Then P picks r′i←$Zq for i ∈ [N ′] and computes the ElGamal ciphertext

pi ← (p̂
(0)
i gr

′
i , p̂

(1)
i hr′i) for i ∈ [N ′]. We denote the resulting list by p⃗ =

[p1, . . . , pN ′ ]. P sends p⃗ to V.
3. Replication. P replaces all dummy ciphertexts except extra dummy cipher-

texts by the nearest non-dummy ciphertexts before each of them. In other
words, if a non-omitted element is mapped to k different outputs according
to π, its corresponding ciphertext is replicated k − 1 times thereafter. We
define a function ω : [N ]→ [N ] that maps an input index i to the index of a
non-dummy ciphertext j, such that j is the maximum index of non-dummy
ciphertext in p⃗ that satisfies j ≤ i. We note that for a dummy ciphertext
with index i, ω(i) is the index of the ciphertext that replaces it during this
replication procedure.
Let the resulting list be ⃗̂ρ = [ρ̂1, . . . , ρ̂N ′ ]. We have ρ̂i = pω(i) for i ∈ [N ]. P

picks r′′i ←$Zq, and computes the ElGamal ciphertext ρi ← (ρ̂
(0)
i gr

′′
i , ρ̂

(1)
i hr′′i )
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for each i ∈ [N ]. This resulting list is denoted by ρ⃗ = [ρ1, . . . , ρN ′ ]. Note that
ifN−M < 0, the lastN−M ciphertext are still the extra dummy ciphertexts
in p⃗. P sends (the first N elements of) ρ⃗ to V.

4. Finalization. V obtains ρ⃗. If N −M < 0, both parties remove the last
M − N extra ciphertexts from ρ⃗. No matter whether we need to remove
extra ciphertexts or not, we denote the current list of ciphertexts by ρ⃗′.
P permutes all ciphertexts to their final location as prescribed by π. We

denote this permutation by π′′ and the resulting list by
⃗̂
f = [f̂1, . . . , f̂N ],

where f̂i = ρπ′′(i). Then P computes r̂i ← ri − r′′π′′(i) − r′ω(π′′(i)) mod q for

i ∈ [N ]. It is easy to verify that (f̂
(0)
i gr̂i , f̂

(1)
i hr̂i) = ci.

The remaining work is to show that these four steps are executed correctly. Since
the extension step is done by both parties, P only needs to show that what she has
done is correct in the last three steps. Namely, P needs to prove in zero-knowledge
that p⃗ and c⃗ are derived from valid shuffles applied to e⃗ and ρ⃗′, respectively, and
ρ⃗ is derived from a valid dummy ciphertext replacement (replication) applied
to p⃗. Hence, P and V together follow the detailed procedure below to prove the
correctness of P’s operations in these last three steps.

5. P uses the protocol ΠShuffle
zk to prove that p⃗ is derived from a valid shuffle

applied to e⃗ with witness ({r′i}i∈[N ′], π
′).

6. P uses the protocol ΠShuffle
zk to prove that c⃗ is derived from a valid shuffle

applied to ρ⃗′ with witness ({r̂i}i∈[N ], π
′′).

7. To prove that ρ⃗ is derived from a valid dummy ciphertext replacement from
p⃗, P needs to prove that the plaintext of ρ1 is equal to p1, and that the
plaintext of each ρi is equal to that of ρi−1 or that of pi for i = 2, . . . , N .
According to Remark 1, the goal can be translated to prove the correctness
of the corresponding DH tuple. Both parties compute two ciphertexts

γi,0 ← (ρ
(0)
i (ρ

(0)
i−1)

−1, ρ
(1)
i (ρ

(1)
i−1)

−1)

and
γi,1 ← (ρ

(0)
i (p

(0)
i )−1, ρ

(1)
i (p

(1)
i )−1)

for i = 2, . . . , N , together with

γ1,0 = γ1,1 ← (ρ
(0)
1 (p

(0)
1 )−1, ρ

(1)
1 (p

(1)
1 )−1) .

For i = 2, . . . , N , if the plaintext of ρi is equal to that of ρi−1, the random
coin of γi,0 is νi,0 = r′′i − r′′i−1 mod q, and we let bi = 0. If the plaintext of ρi
is equal to that of pi, the random coin of γi,1 is νi,1 = r′′i , and we let bi = 1.
In addition, the random coin for both γ1,0 and γ1,1 is ν1,0 = ν1,1 = r′′1 .
P computes {νi,bi}i∈[N ] and uses the protocol ΠDH

zk to prove the following
statement:

There exists a set of elements {νi,bi}i∈[N ], where bi ∈ {0, 1} and

νi,bi ∈ Zq, such that γ
(0)
i,bi

= gνi,bi and γ
(1)
i,bi

= hνi,bi for all i ∈ [N ].
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8. If all the executions of ΠShuffle
zk and ΠDH

zk output accept, V outputs accept.
Otherwise, V outputs reject.

In what follows, we present a theorem for the security of the protocol ΠEncEP
zk .

Theorem 1. The protocol ΠEncEP
zk is a zero-knowledge argument of knowledge

for the relation REncEP.

Proof. It is easy to verify the completeness of the protocol. We first show that

(f̂
(0)
i gr̂i , f̂

(1)
i hr̂i) = ci. More concretely, we can verify that

f̂
(0)
i gr̂i = ρ

(0)
π′′(i)g

ri−r′′
π′′(i)−r′

ω(π′′(i))

= ρ
(0)
π′′(i)g

−r′′
π′′(i)g−r′

ω(π′′(i))gri

= ρ̂
(0)
π′′(i)g

r′′
π′′(i)g−r′′

π′′(i)g−r′
ω(π′′(i))gri

= ρ̂
(0)
π′′(i)g

−r′
ω(π′′(i))gri

= p
(0)
ω(π′′(i))g

−r′
ω(π′′(i))gri

= p̂
(0)
ω(π′′(i))g

r′
ω(π′′(i))g−r′

ω(π′′(i))gri

= p̂
(0)
ω(π′′(i))g

ri

= e
(0)
π′(ω(π′′(i))g

ri

= α
(0)
π−1(i)g

ri

Similarly, we have f̂
(1)
i gr̂i = α

(1)
π−1(i)h

ri . Then, if the prover P honestly proves

that all the operations conducted in the four steps are correct using related
parameters derived in the operations, the completeness of the protocol directly
follows from the completeness of the protocols ΠShuffle

zk and ΠDH
zk .

Then we show that the protocol achieves the zero-knowledge property. For
an adversary A controlling the verifier V, we construct a simulator S that in-
ternally runs V and simulates V’s view. S firstly sets N ′ ← max(M,N) as in
the protocol. For the step of placement, S randomly picks pi←$G2 for i ∈ [N ′]
and sends the list p⃗ = [p1, . . . , pN ′ ] to A. For the step of replication, S randomly
generates ρi←$G2 for i ∈ [N ′] and sends ρ⃗ = [ρ1, . . . , ρN ′ ] to A. Then S in-
vokes the simulator SShuffle for the protocol Π

Shuffle
zk twice, for both Steps 5 and 6,

to simulate the view of A in the execution of ΠShuffle
zk . S computes elements of

{γi,b}i∈[N ],b∈{0,1} as in the protocol and uses the simulator SDH for the protocol

ΠDH
zk to simulate the view of A in the execution of ΠDH

zk . Finally, S outputs what
A outputs to complete the simulation.

In the simulation, we note that elements in the lists p⃗ and ρ⃗ are all randomly
generated ciphertexts, while those elements in a real execution are based on the
extended permutation π. However, since the ElGamal encryption scheme in the
protocol is semantically secure under the DDH assumption, all computationally
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bounded adversaries cannot distinguish these simulated ciphertexts from cipher-
texts generated in a real execution except for a negligible probability. The other
difference between the simulation and the real execution of the protocol is for
the sub-protocols ΠShuffle

zk and ΠDH
zk . Because both the sub-protocols ΠShuffle

zk and
ΠDH

zk are also zero-knowledge, A’s view simulated by the corresponding simula-
tors SShuffle and SDH is computationally indistinguishable from a real execution.
Therefore, the protocol is zero-knowledge.

We analyze the soundness of the protocol as follows. The prover P follows the
four steps to perform the extended permutation on the original list of ciphertexts
α⃗ and derive the list of resulting ciphertexts c⃗. Intuitively, the protocols ΠShuffle

zk

and ΠDH
zk guarantee that no new ciphertexts except encrypted values inside α⃗

are added to the resulting list of ciphertexts c⃗, and thus a valid extended per-
mutation is performed on the encrypted values in α⃗. Our goal now is to extract
the extended permutation π and random coins {ri}i∈[N ]. In the following, we
construct an extractor E that internally runs the prover P∗ and extracts the
corresponding witness.

The extractor E runs the prover P∗ as a subroutine. Then E uses the ex-
tractor EShuffle for the sub-protocol ΠShuffle

zk in Steps 5 and 6 to extract the wit-
ness in these two execution of ΠShuffle

zk . Namely, E uses EShuffle to extract witness
({r′i}i∈[N ′], π

′) and ({r̂i}i∈[N ], π
′′) in Steps 5 and 6, respectively. Meanwhile, E

invokes the extractor EDH for the sub-protocol ΠDH
zk in Step 7 to extract the

random coins {νi,bi}i∈[N ] of the ciphertexts {γi,bi}i∈[N ] (encrypting 1) and cor-
responding {bi}i∈[N ].

E can reconstruct the corresponding mapping ω. Then E iteratively assigns
the value of ω(i) as follows. Let ω(1) = 1. Then for i = 2, . . . , N , let

ω(i) =

{
ω(i− 1) if bi = 0 ,

i if bi = 1 .

Meanwhile, E can effectively compute the random coins {r′′i }i∈[N ]. Firstly, E sets
r′′1 ← ν1,b1 . Then E iteratively assigns the value of r′′i as follows. For i = 2, . . . , N ,

r′′i =

{
r′′i−1 + νi,bi mod q if bi = 0 ,

νi,bi if bi = 1 .

Now, E can derive all the random coins for the extended permutation via
computing

ri = r̂i + r′′π′′(i) + r′ω(π′′(i)) mod q

for i ∈ [N ]. Since E has obtained π′, π′′, and ω, E can reconstruct the extended
permutation π as

π(i) = π′′−1 ◦ ω−1 ◦ π′−1
(i) .

Therefore, the extractor successfully derives the extended permutation π and
the list R = [r1, . . . , rN ], and the soundness of the protocol is then proved. ⊓⊔
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4 Sub-Protocols

As we have mentioned in Section 2, there exist efficient (non-interactive) pro-
tocols with sub-linear communication cost that can be used to instantiate the
zero-knowledge protocol for shuffle (ΠShuffle

zk ). In this paper, we use the protocol
in [3] as ΠShuffle

zk .
Now we provide the sub-protocol ΠDH

zk inside our main protocol. We note
that this zero-knowledge protocol ΠDH

zk is for the relation RDH:

RDH = {(G, q, g, h, {(γ(0)
i , γ

(1)
i )}i∈[ℓ] | ∃{νi,bi}i∈[ℓ],where bi ∈ {0, 1} s.t.

∀i (γ(0)
i,bi

= gνi,bi ∧ γ
(1)
i,bi

= hνi,bi )} .

In the following, we describe the protocol ΠDH
zk for the relation RDH between a

prover P and a verifier V utilizing the idea introduced in [7] and [8]. This pro-
tocol is honest-verifier zero-knowledge and can be compiled by the Fiat–Shamir
heuristic [9] to be non-interactive and secure against malicious verifiers as we
have mentioned in Section 2.

Public Inputs: A group G = ⟨g⟩ of order q. Another generator h for G. A set

of elements {(γ(0)
i,b , γ

(1)
i,b )}i∈[ℓ],b∈{0,1}, where (γ

(0)
i,b , γ

(1)
i,b ) ∈ G2.

Witness: A list [ν1,b1 , . . . , νℓ,bℓ ], where νi,bi ∈ Zq and bi ∈ {0, 1}.

Statement: Given ciphertexts {(γ(0)
i,b , γ

(1)
i,b )}i∈[ℓ],b∈{0,1}, there exist {νi,bi}i∈[ℓ],

where νi,bi ∈ Zq and bi ∈ {0, 1}, such that γ
(0)
i,bi

= gνi,bi and γ
(1)
i,bi

= hνi,bi for all
i ∈ [ℓ].

Protocol Description

1. For i ∈ [ℓ]:

(a) P picks ei,1−bi ←$Zq and zi,1−bi ←$Zq.
(b) P computes

a
(0)
i,1−bi

← gzi,1−bi (γ
(0)
i,1−bi

)−ei,1−bi

and

a
(1)
i,1−bi

← hzi,1−bi (γ
(1)
i,1−bi

)−ei,1−bi

to simulate a valid transcript.

(c) P picks xi,bi ←$Zq. Then P computes a
(0)
i,bi

= gxi,bi and a
(1)
i,bi

= hxi,bi .

P sends {(a(0)i,b , a
(1)
i,b )}i∈[ℓ],b∈{0,1} to V.

2. V chooses e, θ←$Zq and sends them to P.
3. For i ∈ [ℓ]:

(a) P computes ei,bi ← e− ei,1−bi mod q.
(b) P computes zi,bi ← xi,bi + νi,biei,bi mod q.

(c) P computes z0 ←
∑ℓ

i=1 zi,0θ
i mod q and z1 ←

∑ℓ
i=1 zi,1θ

i mod q.

P sends {ei,b}i∈[ℓ],b∈{0,1}, z0, and z1 to V.

11



4. V verifies the following equations:

ei,0 + ei,1 ≡ e mod q

for i ∈ [ℓ], and

gzb =

ℓ∏
i=1

(a
(0)
i,b (γ

(0)
i,b )

ei,b)θ
i

and

hzb =

ℓ∏
i=1

(a
(1)
i,b (γ

(1)
i,b )

ei,b)θ
i

for b ∈ {0, 1}. If all equations hold, V outputs accept. Otherwise, V outputs
reject.

Theorem 2. The protocol ΠDH
zk is an honest-verifier zero-knowledge proof of

knowledge for the relation RDH.

Proof. For the completeness of the protocol, we can verify that:

gzi,bi = gxi,bi
+νi,bi

ei,bi

= gxi,bi gνi,bi
ei,bi

= a
(0)
i,bi

(γ
(0)
i,bi

)ei,bi

and

hzi,bi = hxi,bi
+νi,bi

ei,bi

= hxi,bihνi,bi
ei,bi

= a
(1)
i,bi

(γ
(1)
i,bi

)ei,bi .

Meanwhile, for the verification related to 1− bi in Step 4, values zi,1−bi , ei,1−bi ,

a
(0)
i,1−bi

, and a
(1)
i,1−bi

generated in Step 1 are specified to satisfy the equation for
the verification. Therefore, we have

gzb = g
∑ℓ

i=1 zi,bθ
i

=

ℓ∏
i=1

(gzi,b)θ
i

=

ℓ∏
i=1

(a
(0)
i,b (γ

(0)
i,b )

ei,b)θ
i

12



and

hzb = h
∑ℓ

i=1 zi,bθ
i

=

ℓ∏
i=1

(hzi,b)θ
i

=

ℓ∏
i=1

(a
(1)
i,b (γ

(1)
i,b )

ei,b)θ
i

for b ∈ {0, 1}. Now, it is easy to see that the protocol is complete.
To show that the protocol achieves the honest-verifier zero-knowledge prop-

erty, we construct a simulator S to simulate the view of the verifier V. The
simulator S first picks the challenges e, θ←$Zq. Then S selects ei,0←$Z and
computes ei,1 ← e− ei,0 mod q. S generates zi,b←$Z and computes

a
(0)
i,b ← gzi,b(γ

(0)
i,b )

−ei,b

and
a
(1)
i,b ← gzi,b(γ

(1)
i,b )

−ei,b

for i ∈ [ℓ] and b ∈ {0, 1}. S also computes z0 ←
∑ℓ

i=1 zi,0θ
i and z1 ←

∑ℓ
i=1 zi,1θ

i.
We note that the distribution of

({(a(0)i,b , a
(1)
i,b )}i∈[ℓ],b∈{0,1}, e, θ, {ei,b}i∈[ℓ],b∈{0,1}, z0, z1)

in this simulation is perfectly indistinguishable from that of a real execution. This
is due to the fact that given random e, θ ∈ Zq, elements in {zi,b}i∈[ℓ],b∈{0,1} are
uniformly random both in a real execution and in the simulation. Meanwhile,
the distributions of each pair (ei,0, ei,1) satisfying ei,0 + ei,1 ≡ e mod q in a
real execution and in the simulation are identical. Conditioned on these values,

z0, z1, and elements in {(a(0)i,b , a
(1)
i,b )}i∈[ℓ],b∈{0,1} are uniquely determined by the

verification equations. Thus, the distribution of simulated proofs is identical to
that of real proofs.

For soundness, we construct an extractor E that internally runs P∗ and ex-
ecutes the protocol with P∗. If the transcript is accepting, E has to extract a
witness. Therefore, E rewinds P∗ to the challenge phase (Step 2) and runs it
again with different challenges to obtain ℓ pair of accepting transcripts with the

same {(a(0)i,b , a
(1)
i,b )}i∈[ℓ],b∈{0,1}, such that each pair is with different {θ[j]}j∈[ℓ], and

both transcripts in each pair are with challenges e and ē( ̸= e), respectively. Note
that the rewinding scheme follows the strategy used in [6]. Let these pairs be of
the form

({(a(0)i,b , a
(1)
i,b )}i∈[ℓ],b∈{0,1}, e, θ[j], {e

[j]
i,b}i∈[ℓ],b∈{0,1}, {z

[j]
b }b∈{0,1})

and
({(a(0)i,b , a

(1)
i,b )}i∈[ℓ],b∈{0,1}, ē, θ[j], {ē

[j]
i,b}i∈[ℓ],b∈{0,1}, {z̄

[j]
b }b∈{0,1})
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for j ∈ [ℓ]. Note that the extractor E will obtain 2ℓ transcripts, and it runs in

expected polynomial time. Since e ̸= ē, for each j ∈ [ℓ], we must have e
[j]
i,0 ̸= ē

[j]
i,0

or e
[j]
i,1 ̸= ē

[j]
i,1. Let bi be the value that e

[j]
i,bi
̸= ē

[j]
i,bi

for i ∈ [ℓ]. If we have both

e
[j]
i,0 ̸= ē

[j]
i,0 and e

[j]
i,1 ̸= ē

[j]
i,1, bi could be equal to either 0 or 1. According to the

accepting transcripts, we have

gz
[j]
b =

ℓ∏
i=1

(a
(0)
i,b (γ

(0)
i,b )

e
[j]
i,b)θ

i
[j] , hz

[j]
b =

ℓ∏
i=1

(a
(1)
i,b (γ

(1)
i,b )

e
[j]
i,b)θ

i
[j] ,

for j ∈ [ℓ] and b ∈ {0, 1}. Therefore, there should be some {z[j]i,b}i∈[ℓ], such that

a
(0)
i,b (γ

(0)
i,b )

e
[j]
i,b = gz

[j]
i,b for i ∈ [ℓ] , and z

[j]
b =

ℓ∑
i=1

z
[j]
i,bθ

i
[j] .

For the system of equations z
[j]
b =

∑ℓ
i=1 z

[j]
i,bθ

i
[j] for j ∈ [ℓ], we can efficiently solve

the unique solution {z[j]i,b}i∈[ℓ]. This is due to the fact that the corresponding
Vandermonde matrix of θ is of full rank. It is straightforward to see that this

unique solution {z[j]i,b}i∈[ℓ] should also satisfy a
(1)
i,b (γ

(1)
i,b )

e
[j]
i,b = hz

[j]
i,b . Hence, we

obtain {z[j]i,b}i∈[ℓ] for b ∈ {0, 1}. Similarly, we know that

gz̄
[j]
b =

ℓ∏
i=1

(a
(0)
i,b (γ

(0)
i,b )

ē
[j]
i,b)θ

i
[j] , hz̄

[j]
b =

ℓ∏
i=1

(a
(1)
i,b (γ

(1)
i,b )

ē
[j]
i,b)θ

i
[j]

for j ∈ [ℓ]. We can use the same approach to computing {z̄[j]i,b}i∈[ℓ] for b ∈ {0, 1},
such that

a
(0)
i,b (γ

(0)
i,b )

ē
[j]
i,b = gz̄

[j]
i,b , a

(1)
i,b (γ

(1)
i,b )

ē
[j]
i,b = hz̄

[j]
i,b , and z̄

[j]
b =

ℓ∑
i=1

z̄
[j]
i,bθ

i
[j] .

Given a pair of equations a
(0)
i,bi

(γ
(0)
i,bi

)
e
[j]
i,bi = g

z
[j]
i,bi and a

(0)
i,bi

(γ
(0)
i,bi

)
ē
[j]
i,bi = g

z̄
[j]
i,bi , there

should be some xi,bi and νi,bi , such that

a
(0)
i,bi

= gxi,bi , γ
(0)
i,bi

= gνi,bi ,

and
xi,bi + νi,biei,bi = zi,bi , xi,bi + νi,bi ēi,bi = z̄i,bi .

According to the assignment of bi, we know ei,bi ̸= ēi,bi . Thus, the extractor E
can easily compute xi,bi and νi,bi from the last two equations, and finally obtain
{xi,bi}i∈[ℓ] and {νi,bi}i∈[ℓ] from pairs of equations for all i ∈ [ℓ]. It is easy to
verify that these extracted elements also satisfy

a
(1)
i,bi

= hxi,bi , γ
(1)
i,bi

= hνi,bi .

Hence, the extractor E successfully extracts {νi,bi}i∈[ℓ], where bi ∈ {0, 1} and

νi,bi ∈ Zq, such that γ
(0)
i,bi

= gνi,bi and γ
(1)
i,bi

= hνi,bi for all i ∈ [ℓ]. The soundness
of the protocol follows. ⊓⊔
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5 Analysis

In this section, we analyze the performance of our protocol. In Table 1, we present
the communication cost for one execution of ΠEncEP

zk with parameters M , N and
N ′ = max(M,N). We give the communication cost of the two executions of the
sub-protocol ΠShuffle

zk inside ΠEncEP
zk , respectively. The row of “remaining” is for

the communication cost of ΠEncEP
zk excluding the cost of sub-protocols ΠShuffle

zk

and ΠDH
zk . We note that ∥G∥ > ∥Zq∥.

Table 1: Communication cost of each part in our protocol ΠEncEP
zk with parameter M ,

N and N ′ = max(M,N).

Protocol From P to V From V to P

1st ΠShuffle
zk [3] (11

√
N ′ + 5)∥G∥+ (5

√
N ′ + 9)∥Zq∥ 8∥Zq∥

2nd ΠShuffle
zk [3] (11

√
N + 5)∥G∥+ (5

√
N + 9)∥Zq∥ 8∥Zq∥

ΠDH
zk 4N∥G∥+ (2N + 2)∥Zq∥ 2∥Zq∥

Remaining (2N ′ + 2N)∥G∥ 0

In Table 2, we then present the comparison of communication cost between
our protocol and the previous protocol [25] (in the honest-verifier zero-knowledge
setting). Here our comparison follows the fact that the parameters satisfyN > M
in most applications of ΠEncEP

zk . Therefore, we simply let N ′ = max(M,N) = N
in the comparison. We remark that the protocol in [25] is not public-coin, and
interaction is needed for the protocol execution. Alternatively, in our protocol,
all messages sent from the verifier are uniformly random, i.e., the protocol is
public-coin. Therefore, we can simply leverage the Fiat-Shamir heuristic to make
our protocol non-interactive. Now the communication cost of our protocol only
involves the bits sent from the prover P to the verifier V. From Table 2, we
can see that the (non-interactive) communication cost of our protocol is around
8N∥G∥, while the total communication cost of the (interactive) protocol in [25]
is around 34N∥G∥ bits. Therefore, the communication cost of our protocol is
only around 24% of that of the protocol in [25].

Table 2: Communication cost comparison between the original protocol [25] and the
protocol ΠEncEP

zk is this paper with parameters M and N .

Protocol From P to V From V to P

[25] ∼ (32N∥G∥+ 12N∥Zq∥) ∼ (2N∥G∥+ 10N∥Zq∥)
This paper ∼ ((8N + 22

√
N)∥G∥+ (2N + 10

√
N)∥Zq∥) 18∥Zq∥

Note that in our protocol, we use the protocol in [3] as the zero-knowledge
protocol for shuffle twice, while the protocol in [25] adopts the zero-knowledge
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Table 3: Comparison of computation cost between the original protocol [25] and the
protocol ΠEncEP

zk in this paper with parameters M and N except zero-knowledge proto-
cols for shuffle.

Protocols Time P Expos Time V Expos

[25] ∼ 37N ∼ 32N
This paper ∼ 10N ∼ 4N

protocol for shuffle introduced in [10] twice (for ElGamal ciphertext list of the
same length N). We denote the protocols in [3] and [10] by BG and FS, respec-
tively. It is shown [3] that BG significantly outperforms FS from both communi-
cation and computation aspects. According to the analysis in [3], BG’s argument
size is only 1/94 that of FS’s, and BG has 3.4× faster running time. We count
the total number of exponentiations in G performed by P and V for the original
protocol [25] and our protocol, except those performed by the zero-knowledge
protocols for shuffle, in Table 3. We can see that without considering the zero-
knowledge protocols for shuffle, the computation cost of our protocol is about
27% of that of the protocol in [25] for provers and 12.5% of that for verifiers.
Therefore, our protocol should be much faster than the original protocol in [25].
In addition, we would like to note that the communication cost from FS in [10]
is around (10N∥G∥ + 4N∥Zq∥) bits. This means that the communication cost
of our whole protocol outperforms that of the protocol in [10] even when the
communication cost of FS in [10] is not considered.
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