
Batch point compression in the context of
advanced pairing-based protocols

Dmitrii Koshelev[0000−0002−4796−8989]

dimitri.koshelev@gmail.com

Parallel Computation Laboratory, École Normale Supérieure de Lyon, France
http://www.ens-lyon.fr/en

Abstract. This paper continues previous ones about compression of
points on elliptic curves Eb : y

2 = x3+ b (with j-invariant 0) over a finite
field Fq of characteristic p > 3. It is shown in detail how any two (resp.,
three) points from Eb(Fq) can be quickly compressed to two (resp., three)
elements of Fq (apart from a few auxiliary bits) in such a way that the
corresponding decompression stage requires to extract only one cubic
(resp., sextic) root in Fq. As a result, for many fields Fq occurring in
practice, the new compression-decompression methods are more efficient
than the classical one with the two (resp., three) x or y coordinates of
the points, which extracts two (resp., three) roots in Fq. As a by-product,
it is also explained how to sample uniformly at random two (resp., three)
“independent” Fq-points on Eb essentially at the cost of only one cubic
(resp., sextic) root in Fq. Finally, the cases of four and more points from
Eb(Fq) are commented on as well.

Keywords: batch point compression · conic bundles · cubic and sextic
roots · elliptic curves of j-invariant 0 · generalized Kummer varieties ·
generating “independent” points · highly 2-adic fields · rationality prob-
lem.

1 Introduction

Nowadays, pairing-based cryptography [12] can be certainly considered as an
independent fruitful area of public-key cryptography, which is interesting from
both mathematical and practical points of view. There are countless pairing-
based protocols, many of which have found applications in the real world. As an
example, it is worth noting protocols based on composite-order groups such as
Boneh–Goh–Nissim’s (BGN) somewhat homomorphic encryption [6] or Boneh–
Sahai–Waters’s fully collusion resistant traitor tracing [7]. It is also impossible
not to mention succinct non-interactive zero-knowledge (NIZK) proofs among
which one of the most popular is Groth16 [16]. And their recursive compositions
are constructed via chains of elliptic curves as first suggested in [3].

Unfortunately, composite-order subgroups of Eb(Fq) must be tremendous
to be protected against sub-exponential factorization algorithms. By virtue of
Hasse’s inequality (see, e.g., [12, Theorem 2.9]), the order #Eb(Fq) = q+O(

√
q),

http://www.ens-lyon.fr/en

2 D. Koshelev

hence pairing computation on Eb is very expensive as confirmed in [18]. Fortu-
nately, with the help of so-called Freeman’s transformation [15] (cf. [17, Sections
9-10]), we can almost always rewrite a protocol in the composite-order setting
to the prime-order one operating with point vectors from En

b (Fq) for a smaller
q and some n ∈ N. In this case, an instance of the subgroup decision problem
is a (prime-)order subgroup of En

b (Fq). For the majority of protocols, it is suffi-
cient to take n = 2, but there are some protocols (such as Katz–Sahai–Waters’s
predicate encryption [15, Section 7]) needing n = 3.

As said, e.g., in [11, Section 2.2], for the sake of efficiency of recursive proofs,
one needs to leverage pairing-friendly elliptic curves defined over highly 2-adic
fields Fq, that is, the number q− 1 should be divisible by a non-small power 2m,
where m ∈ N. This allows to apply the fast Fourier transform (FFT) in order
to speed up the polynomial arithmetic over Fq. To be definite, we will suppose
that high 2-adicity takes place if m ⩾ 3, but in practice usually, 20 < m < 60.
Our choice follows from the fact that for q ≡ 1 (mod 8), it is problematic
to express a square root in Fq via one exponentiation (as is known, e.g., from
[12, Section 5.1.7]). Of course, we can always utilize (Cipolla–Lehmer–)Müller’s
algorithm [33] having the same algebraic complexity O(log(q)) regardless of m.
Curiously, this is opposite to other square root algorithms whose complexity
depends on m. Nonetheless, Müller’s algorithm is still slightly less performant
than an exponentiation operation in Fq.

Recall that curves Eb are ordinary (a.k.a. non-supersingular) if and only if
the characteristic p ≡ 1 (mod 3) or, equivalently, a primitive cubic root ω := 3

√
1

lies in Fp. Since only curves Eb possess an order 6 automorphism (of the form
[−ω](x, y) := (ωx,−y)), according to [12, Section 3.2.5], such pairing-friendly
ordinary curves are preferred in pairing-based cryptography. To the author’s
knowledge, at the moment, the most popular curves are BLS12-381 [38, Section
4.2.1] for a general use and BLS12-377 [11, Table 2] for one layer proof composi-
tion, where the numbers after the hyphen equal ⌈log2(q)⌉. Moreover, the field Fq
of the latter curve (in contrast to the former one) is highly 2-adic with m = 46.
Among other things, the pages [20,21] specify 2-cycles of curves of j-invariant 0
(over highly 2-adic fields) among which only one is pairing-friendly.

In compliance with [19, Examples IV.1.3.5-6], elliptic curves are not rational,
i.e., they are not birationally isomorphic to the affine line A1. Therefore, from
the geometric point of view, the most compact representation of them is on the
affine plane A2

(x,y), for example in the Weierstrass form. Consequently, any point

from En
b (Fq) ⊂ F2n

q is obviously represented with the help of 2n⌈log2(q)⌉ bits. In
particular, for n = 2 (resp., n = 3) and log2(q) ≈ 380, we obtain ≈ 1520 (resp.,
≈ 2280) bits, which is quite a lot. For instance, two Fq-points constitute a half of
the proof in Groth16 [16, Table 1]. In comparison, with the same 128-bit security
level, classical (i.e., non-pairing-friendly) elliptic curves are defined over 256-bit
fields Fq. And many widespread cryptosystems on such curves (e.g., ECDH or
ECDSA) do not require compressing several points at once, so it is sufficient to
manipulate only 512 bits.

Batch point compression in the context of advanced pairing-based protocols 3

At the same time, by virtue of Hasse’s inequality, Fq-points on Eb can be
compressed to about half with regard to information theory. There is the clas-
sical compression-decompression method representing a point as its x (resp., y)
coordinate in addition to one (resp., two) bits to uniquely recover the initial y
(resp., x) coordinate via extracting in Fq the square (resp., cubic) root. In com-
parison with standard arithmetical operations in Fq, the latter one is very costly,
because even for q ̸≡ 1 (mod 8) (resp., q ̸≡ 1 (mod 27)), it consists in one expo-
nentiation in Fq according to Lemma 3 (resp., 2). As a result, after compressing
Fq-point vectors of length n = 2 (resp., n = 3), we obtain ≈ 760 (resp., ≈ 1140)
bits at the price of n exponentiations in the decompression stage.

1.1 Brief description of the new compression method

Apart from τ6 := [−ω], there are on Eb the automorphisms

τ2 := τ36 : (x, y) 7→ (x,−y), τ3 := τ46 : (x, y) 7→ (ωx, y)

of orders 2 and 3, respectively. For any n ∈ N and m ∈ {2, 3, 6}, consider the
diagonal subgroup

Gn,m := ⟨(τm, . . . , τm)⟩ ≃ Z/m

of the automorphism group on En
b . Notice that it is Frobenius invariant even if

ω ̸∈ Fq.
Further, introduce the Fq-quotient GKn,m := En

b /Gn,m, which is called gen-
eralized Kummer variety [39, Section 7], because for m = 2, this is a (usual)
Kummer variety [39, Example 8.1]. Also, we need the notation of the quotient
Fq-cover φn,m : En

b → GKn,m, which, as usual [19, Theorem I.4.4], gives the
function field extension Fq(GKn,m) ↪→ Fq(En

b). Whenever m = 2 or ω ∈ Fq, by
virtue of Artin’s theorem (see, e.g., [32, Theorem VI.1.8]), φn,m is a Galois cover
whose Galois group equals Gn,m. Therefore, φn,m is a Kummer cover due to
[32, Theorem VI.6.2]. All of the above is illustrated with the famous examples
φ1,2(x, y) = x and φ1,3(x, y) = y.

We see that GK1,m are obviously rational curves. More generally, there is the
analogous notion of (geometrically) rational variety as defined in [19, Example
II.8.20.1]. Rationality of the surfaces GK2,3, GK2,6 is a classical fact. According
to [34, Section 2], the threefold GK3,6 is also rational and there are [9, Questions
1.3, 1.4] about rationality of GK4,6, GK5,6. In turn, the varieties GKn,m are
never rational for n ⩾ m in accordance with [39, Example 8.10], [34, Remark 2.9].
In fact, we are interested in Fq-rationality of GKn,m. In a cryptographic context
this concept [37, Definition 6.1] first arose in so-called torus-based cryptography
for compressing Fq-points of algebraic tori. By the way, since pairing values can
be interpreted as such points, this compression technique is known to be useful
in pairing-based cryptography.

For the Kummer covers φn,m, computing an inverse image φ−1
n,m(P) of a

point P ∈ φn,m

(
En

b (Fq)
)
can be implemented by means of extracting in Fq

some root of degree m. Suppose that GKn,m is an Fq-rational variety and there

4 D. Koshelev

are explicit formulas of a birational Fq-isomorphism ψn,m : GKn,m
∼99K An and

its inverse ψ−1
n,m : An ∼99K GKn,m. As is customary in algebraic geometry, the

arrow 99K (resp., ∼99K) means a (bi)rational map rather than an (iso)morphism,
that is, the map may be undefined at some points. Treating them separately,
we thus get a new compression-decompression method for all Fq-points on En

b .
Indeed, the compression (resp., decompression) stage consists in evaluating the
map χn,m := ψn,m ◦φn,m at a general point Q ∈ En

b (Fq) (resp., finding χ−1
n,m(R),

where R := χn,m(Q)).
For the surface GK2,3 (resp., GK2,6), rationality over Fq is explicitly estab-

lished in Section 2 (resp., [25, Sections 2-3]), although these results cannot be
considered very important for pure mathematics because of their simplicity. Be-
sides, it turns out that Fq-formulas of ψ±1

3,6, derived in [34, Section 2] for b = −1,
are still valid for any b ∈ F∗

q . Thereby, the threefoldGK3,6 is always Fq-rational as
well. However, if the field Fq is not highly 2-adic, to compress points from E2

b (Fq)
(resp., E3

b (Fq)) we will apply in Section 4 slightly another approach based on Fq-
rationality of GK1,3 (resp., GK2,3). Finally, since the varieties GKn,3 are not
rational for n > 2, we can only hope for breakthroughs concerning Fq-rationality
of GK4,6, GK5,6. The potential compression methods based on these quotient
varieties are clearly more efficient, because more Fq-points on Eb (namely 4 or
5) can be compressed at once.

1.2 Relevance of the new compression method

The task of compressing simultaneously several points on an elliptic Fq-curve
is not new. One of its solutions already arose in Fan et al.’article [14] for any
number N ∈ N of points (and not necessarily for j-invariant 0) under the name
multiple point compression (similarly to double and triple ones in [24]). The
methods of these papers compress to N + 1 elements of Fq (not to mention
supplementary bits), i.e., the representation is not optimal. Meanwhile, their
decompression stages do not need to find any roots in Fq, but only one inverse
element. In comparison with root extraction, inverting in Fq enjoys Euclidean-
type implementations [5,36] costing O(1) field operations.

It is now time to discuss the asymptotic setting as N → ∞. Assume that one
of the (optimal) compression methods, based on GKn,m with n ⩽ 5, is employed.
To compress the majority of points we can apply the method separately k :=
N div n times. In turn, the packet of the last N mod n points is individually
handled. Unfortunately, in the corresponding decompression stage it is inevitable
to extract k (or k+1 if n ∤ N) radicals (

√
·, 3
√
·, or 6

√
·), since there is no technique

like Montgomery’s trick for multiple inversions. Thus, the overall running time
amounts to O(k log(q)) or, alternatively, O(N log(q)) operations in Fq at least
when Fq is not a highly 3-adic field.

Whenever N is large, Fan et al.’s solution becomes an order of magnitude
slower than the GKn,m-based methods. This tendency can already be seen in
the cases N ∈ {4, 5} processed in [14, Section 3]. While [14, Section 4] does
not contain an asymptotic complexity estimate in N of the decompression al-
gorithm, it seemingly needs exponentially many, i.e., O(2N) operations in Fq.

Batch point compression in the context of advanced pairing-based protocols 5

In today’s real-world cryptography, N can reach huge values as justified in the
below examples. That is why, the compression-decompression algorithm under
consideration has never been leveraged in practice as far as the author knows.

Of course, introducing an extra parameter n ⩽ N , it is possible to likewise
apply Fan et al.’s method k := N div n times to store/transmit k(n + 1) plus
N mod n (plus 1 if n ∤ N) field elements. Consequently, this approach returns
k (or k + 1 if n ∤ N) more elements than N , the optimal quantity from the
information theory point of view. The extreme case n = 1, i.e., k = N means that
the points are in their initial uncompressed form. On the other hand, the given
block-wise technique permits to diminish the algebraic complexity to O(2nk).
Despite this, it still loses to the technique via the generalized Kummer varieties
in terms of the ratio of the compactness and the decompression speed.

It is worth noting recent Botrel–El Housni’s work [8] devoted to accelerat-
ing multi-scalar multiplication (MSM) with huge numbers (such as 108) of basic
points Pi ∈ Eb(Fq). In addition to them, there are a lot of other points derived
from the basic ones in order to speed up MSM. As a result, N is in fact much
greater than 108. It is said in [8, Section 5.2] that “However, large MSM instances
already use most available memory. For example, when n = 108 our implemen-
tation needs 58GB to store enough BLS12-377 curve points to produce a Groth16
proof.”. By the way, precomputing auxiliary points permitted to Botrel and El
Housni to win one of the sections of ZPRIZE competition [1]. The moral of the
story is that keeping a tremendous set of points is inevitable if the goal is to
achieve record performance.

MSM lies at the heart of a few vector commitment schemes two of which are
particularly popular, namely the Pedersen commitment [35, Section 3] and the
pairing-based Kate–Zaverucha–Goldberg (or just KZG) one [23]. These schemes
have many differences, but for us the most fundamental is the fact that the
points Pi in the Pedersen scheme (unlike KZG) are generated without a trusted
setup, as they are “independent” of each other. This means that Pi (at least
some of them) can simply be regenerated each time to save storage or improve
bandwidth. Secure and quick methods of obtaining such points Pi will be briefly
discussed in Section 5.

Meanwhile, the KZG scheme has a series of other advantages, due to which it
was decided to embed it (rather than the Pedersen scheme) in the new version of
the Ethereum protocol. In this connection, a long-term public ceremony [13] was
launched once and forever. Its objective is generating (on the curve BLS12-381)
up to 215 basic points of the form Pi = siP0, where s ∈ N is a secret unknown
to anyone. Unfortunately, there is no other choice but to (compactly) store or
(efficiently) transmit such trusted points Pi.

2 Derivation of formulas

By analogy with [26, Theorem 9], we have

Lemma 1. There is (up to a birational Fq-isomorphism) the affine model

GK2,3 = (y21 − b)t3 − (y20 − b) ⊂ A3
(t,y0,y1)

6 D. Koshelev

for which the corresponding quotient map has the form

φ2,3 : E
2
b 99K GK2,3 (x0, y0, x1, y1) 7→

(x0
x1
, y0, y1

)
.

Proof. Clearly, Fq(GK2,3) = Fq(E2
b)

G2,3 , that is, rational functions on GK2,3 are
G2,3-invariant ones on E

2
b . Also, consider the field

F := Fq(t, y0, y1) ⊂ Fq(GK2,3), where t :=
x0
x1
.

Note that F (x1) = Fq(E2
b), because x0 = tx1. Since x

3
1 = y21 − b, the extension

degree [Fq(E2
b) : F] ⩽ 3. At the same time, [Fq(E2

b) : Fq(GK2,3)] = 3 according
to Artin’s theorem. Thus, F = Fq(GK2,3). Finally, by looking at the equalities

t3 =
x30
x31

=
y20 − b

y21 − b
,

we obtain the aforementioned equation for GK2,3. There are no other depen-
dencies between the coordinates t, y0, y1, because GK2,3 is a surface in A3. It
remains to apply [19, Corollary I.4.5]. □

Theorem 1. The generalized Kummer surface GK2,3 is Fq-rational.

Proof. Let’s borrow the approach used for proving [26, Theorem 12]. It is based
on the theory of conic bundles (see, e.g., [26, Section 1.4]), but the reader can
verify the formulas below (e.g., in Magma [30]) without knowledge of this theory.
There is the natural conic bundle structure

π : GK2,3 → A1
t (t, y0, y1) 7→ t.

In other words, GK2,3 can be seen as an Fq(t)-conic. In a diagonal form,

GK2,3 = −y20 + t3y21 + b(1− t3).

Therefore, the degenerate (i.e., reducible or, equivalently, singular) fibers of π
lie over t ∈ {0,∞} ∪ {ωi}2i=0, where ∞ := (1 : 0) ∈ P1. More precisely, π−1(t) =
L+
t ∪ L−

t for these t, where

L±
0 :=

{
t = 0,

y0 = ±
√
b,

L±
∞ :=

{
t = ∞,

y1 = ±
√
b,

L±
ωi :=

{
t = ωi,

y1 = ±y0.

First, after the transformation

τ :=

{
z0 := y0,

z1 := ty1,
τ−1 =

{
y0 := z0,

y1 := z1/t

we obtain the cubic surface

GK ′
2,3 := τ(GK2,3) = −z20 + tz21 + b(1− t3) ⊂ A3

(t,z0,z1)
.

Batch point compression in the context of advanced pairing-based protocols 7

We then blow down [19, Section V.3] one of the components τ(L±
1) by means of

the transformation

θ :=

y0 :=

z0 − z1
1− t

,

y1 :=
z0 − tz1
1− t

,

θ−1 =

{
z0 := −ty0 + y1,

z1 := −y0 + y1,

coming to

S := θ(GK ′
2,3) = ty20 − y21 + b(t2 + t+ 1) ⊂ A3

(t,y0,y1)
.

Further, blowing down simultaneously some pair of components over t ∈ {ω, ω2}
has the form

η :=

z0 :=

(t+ 1)y0 + y1
t2 + t+ 1

,

z1 :=
ty0 + (t+ 1)y1
t2 + t+ 1

,

η−1 =

{
y0 := (t+ 1)z0 − z1,

y1 := −tz0 + (t+ 1)z1,

which gives the simpler surface

T := η(S) = tz20 − z21 + b ⊂ A3
(t,z0,z1)

.

Note that the maps τ , θ, η respect the conic bundle π, that is, they can be seen
as Fq(t)-isomorphisms of conics. That is why, we avoid the tautology t := t in
their description. Finally, the projection pr : T ∼99K A2

(z0,z1)
is a desired map,

because t = (z21 − b)/z20 . □

For the compositions

ψ2,3 := pr ◦ η ◦ θ ◦ τ, χ2,3 := ψ2,3 ◦ φ2,3,

Magma [30] says that

χ2,3 : E
2
b 99K A2

(z0,z1)
χ2,3 =

z0 :=

x1(2x
2
0y1 − x0x1(y0 − y1)− 2y0x

2
1)

y20 − y21
,

z1 :=
x30y1 + 2x0x1(x0y1 − y0x1)− y0x

3
1

y20 − y21
,

ψ−1
2,3 : A

2
(z0,z1)

∼99K GK2,3 ψ−1
2,3 =

t :=
z21 − b

z20
,

y0 :=
z30z1 − 2z0(z0 − z1)(z

2
1 − b)− (z21 − b)2

z30
,

y1 := −z
2
0(z0 − 2z1) + (2z0 − z1)(z

2
1 − b)

z21 − b
.

8 D. Koshelev

Let’s consider the cases when the denominators equal zero. Obviously, t ∈
{0,∞} ⇒ x0x1 = 0, and

y20 − y21 = 0 ⇔ ∃k ∈ Z/6: (x1, y1) = [−ω]k(x0, y0). (1)

In turn, it can easily be checked that z0 = 0 (i.e., z1 = ±
√
b under the condition

t ̸= 0) if and only if (t, y0, y1) ∈ Im(ϱ±) for the sections of π given by

ϱ± : A1
t 99K GK2,3 ϱ± :=

y0 := ±

√
b(2t+ 1),

y1 :=
±
√
b(t+ 2)

t
.

It is readily seen that

t =
y0 ∓

√
b

±2
√
b

=
±2

√
b

y1 ∓
√
b

and we eventually get the conics

C±1 := Im(ϱ′±1) = (y0 ∓
√
b)(y1 ∓

√
b)− 4b ⊂ A2

(y0,y1)
,

where ϱ′±1 := pr ◦ ϱ±.

3 New compression method for two points

We need the auxiliary sets

V ′ :=
{
(x, y) ∈ Eb | xy = 0

}
∪
{
O
}

⊂ Eb[2] ∪ Eb[3],

V := Eb×V ′ ∪ V ′×Eb,

where O := (0 : 1 : 0). Formally, for two points Pi = (xi, yi) from Eb(Fq) \ V ′,
the new compression map has the form

com2,3 : E
2
b (Fq) \ V ↪→ F2

q ×[0, 5]×[0, 2]

com2,3(P0, P1) :=

(x0, y0, k, 0) if ∃k ∈ Z/6: P1 = [−ω]k(P0),

(t, x1, k, 1) if ∃k ∈ Z/2: (y0, y1) ∈ C(−1)k ,

(z0, z1, n, 2) otherwise.

Here, (z0, z1) = χ2,3(P0, P1) and n ∈ [0, 2] is the position number of the
element x1 ∈ F∗

q in the set
{
ωix1

}2

i=0
∩ F∗

q with respect to some order in F∗
q .

For example, in the case of a prime q, this can be the usual numerical one. It
is worth noting that in the definition of com2,3 the condition (1) is successively
checked by iterating over elements of Z/6. The same strategy is applied for the
second condition ∃k ∈ Z/2: (y0, y1) ∈ C(−1)k . Further, the set [0, 5]×[0, 2] clearly
requires 5 bits for representing its elements. Finally, since in discrete logarithm
cryptography points of small orders do not occur, we omit the definition of the

Batch point compression in the context of advanced pairing-based protocols 9

compression map on V (Fq) for the sake of simplicity, although it can be easily
defined if desired.

The corresponding decompression map is given as follows:

com−1
2,3 : Im(com2,3)

∼−→ E2
b (Fq) \ V

com−1
2,3(z0, z1,m, ℓ) =

(z0, z1, x1, y1) if ℓ = 0 and (x1, y1) = [−ω]m(z0, z1),

(z0z1, y0, z1, y1) if ℓ = 1 and (y0, y1) = ϱ′(−1)m(z0),

(tx1, y0, x1, y1) if ℓ = 2 and (t, y0, y1) = ψ−1
2,3(z0, z1),

where for ℓ = 2, the initial x1 = 3
√
g1 (for g1 := y21 − b) can be determined with

the help of m = n.
According to the next lemma, for q ̸≡ 1 (mod 27), the cubic root 3

√
g1 can be

extracted at the cost of one exponentiation in Fq (in particular, without inverting
the denominator of g1).

Lemma 2. Given a fraction g = u/v ∈ (F∗
q)

3 such that u, v ∈ F∗
q , we obtain:

3
√
g =

g(2q−1)/3 = u·(u2v)(q−2)/3 if q ≡ 2 (mod 3),

g(8q−5)/9 = u3 ·(u8v)(q−4)/9 if q ≡ 4 (mod 9),

g(q+2)/9 = uv5 ·(uv8)(q−7)/9 if q ≡ 7 (mod 9),

ζ ·g(2q+7)/27 = ζuv8 ·(u2v25)(q−10)/27 if q ≡ 10 (mod 27),

ζ ·g(q+8)/27 = ζuv17 ·(uv26)(q−19)/27 if q ≡ 19 (mod 27)

for some ζ ∈ (F∗
q)

(q−1)/9.

Proof. Consider, e.g., the case q ≡ 7 (mod 9), which is relevant for the curve
BLS12-377. For e := (q + 2)/9 ∈ N, we have:

ge = ue ·vq−1−e = ue ·v(8q−11)/9 = uv5 ·(uv8)(q−7)/9,

(ge)3 = g(q+2)/3 = g(q−1)/3 ·g = g.

The cases q ≡ 4 (mod 9) and q ≡ 10 (mod 27) are similarly processed in [29,
Equalities (2), (3)]. The remaining cases q ≡ 2 (mod 3) and q ≡ 19 (mod 27) are
left to the reader. □

To complete the picture, let’s include the analogous result from [4, Section
5], [40, Section 4.2] for a square root.

Lemma 3. Given a fraction f = u/v ∈ (F∗
q)

2 such that u, v ∈ F∗
q , we obtain:

√
f =

f (q+1)/4 = uv(uv3)(q−3)/4 if q ≡ 3 (mod 4),

ζ ·f (q+3)/8 = ζuv3 ·(uv7)(q−5)/8 if q ≡ 5 (mod 8)

for some ζ ∈ (F∗
q)

(q−1)/4.

10 D. Koshelev

Since the projective or Jacobian coordinates [12, Sections 2.3.2 and 10.7.9] are
preferred in practice, the decompression stage does not require finding inverse
elements at all. By definition, in these coordinates the curve Eb possesses the
equations

Eb : Y
2Z = X3 + bZ3, Eb : Y

2 = X3 + bZ6,

respectively. And there are the birational isomorphisms

σ : Eb
∼99K Eb (X : Y : Z) 7→

(
X

Z
,
Y

Z

)
, (X : Y : Z) 7→

(
X

Z2
,
Y

Z3

)
,

respectively. By the way, in both cases,

σ−1 : Eb
∼99K Eb (x, y) 7→ (x : y : 1).

If the compression stage starts from the projective or Jacobian coordinates,
then even in the classical method it is necessary to compute one inverse in Fq.
Indeed, given two points (Xi : Yi : Zi) ∈ Eb(Fq) with Zi ̸= 0, one needs the
value v := (Z0Z1)

−1 in order to get Z−1
0 = vZ1 and Z−1

1 = vZ0. This famous
trick, originally attributed to Montgomery, is clearly generalized to any number
of inversions.

In the compression stage of the new method, instead of the two inversions v,
(y20 − y21)

−1, only one is also enough, because

χ2,3 ◦ σ×2 =
(num0

den
,
num1

den

)
: Eb

2
99K A2

(z0,z1)

for some polynomials numi, den ∈ Fq[Xi, Yi, Zi]
1
i=0 trivially obtained from the

formulas of χ2,3. To determine the position number n one needs to know Z−1
1 ,

hence we should in fact invert Z1 ·den. It is worth emphasizing that all of the
above is equally valid for the degenerate cases ℓ ∈ {0, 1}.

To sum up, a reference Magma implementation of com±1
2,3 is represented in [30]

for BLS12-377 in projective coordinates. It takes into account all the mentioned
optimization tricks. The program code can be readily modified to treat other
elliptic curves of j-invariant 0 over non-highly 3-adic fields Fq.

4 Folklore compression method for two points and its
variation for three ones

First, we put fi := x3i + b and gi := y2i − b. Since the numbers 2, 3 are relatively
prime, the roots y0 =

√
f0 and x1 = 3

√
g1 can be extracted simultaneously, that

is, at the cost of a sixth root in Fq. Indeed, it is sufficient to compute α := 6
√
h =√

f0 3
√
g1 for h := f30 g

2
1 , because 3

√
g1 = f0g1/α

2 and
√
f0 = α/ 3

√
g1. Moreover,

by analogy with
√
·, 3
√
· (see Lemmas 2, 3), the value α can be expressed via one

exponentiation in Fq whenever q ̸≡ 1 (mod 8), q ̸≡ 1 (mod 27). Note that

q ≡ 3 (mod 4), q ≡ 2 (mod 3) ⇔ q ≡ 11 (mod 12),

q ≡ 3 (mod 4), q ≡ 4 (mod 9) ⇔ q ≡ 31 (mod 36),

q ≡ 3 (mod 4), q ≡ 7 (mod 9) ⇔ q ≡ 7 (mod 36).

Batch point compression in the context of advanced pairing-based protocols 11

Lemma 4. Given a fraction h = u/v ∈ (F∗
q)

6 such that u, v ∈ F∗
q , we obtain:

6
√
h =

h(q+1)/12 = uv9 ·(uv11)(q−11)/12 if q ≡ 11 (mod 12),

h(q+5)/36 = uv29 ·(uv35)(q−31)/36 if q ≡ 31 (mod 36),

h(5q+1)/36 = uv5 ·(u5v31)(q−7)/36 if q ≡ 7 (mod 36).

The case q ≡ 11 (mod 12) is discussed in [27, Section 2.1]. The remaining cases
are likewise verified. To save the space we skip other q ̸≡ 1(mod 8), q ̸≡ 1(mod 27)
in the lemma, because they bring nothing new and they are not vitally important
in the current article.

Thus, there is the compression map

E2
b (Fq) \ V ↪→ F2

q ×[0, 5] (P0, P1) 7→ (x0, y1, n),

where n ∈ [0, 5] is the position number of the element y0x1 ∈ F∗
q in the set{

(−1)iωj ·y0x1
}1,2

i=0,j=0
∩ F∗

q with respect to some order in F∗
q . As above, n is

used in the decompression stage for recovering the original y0, x1. Notice that
at the heart of this method is Fq-rationality of

E2
b /G = GK1,2×GK1,3 ≃ A2

(x0,y1)
, where G := G1,2×G1,3 ≃ Z/6.

We will call the method folklore, because it does not require an algebraic
geometry technique, so someone perhaps already knows it. The significant draw-
back of the folklore method consists in the fact that (in contrast to com2,3) it
does not work efficiently over highly 2-adic fields Fq, that is, Lemma 3 cannot
be leveraged. The same drawback exists for the other method [25, Sections 2-
3] based on Fq-rationality of GK2,6. Nevertheless, since the folklore one has a
slightly simpler definition, we conclude that it is more preferred for use when
possible.

Similarly, one can apply the folklore methodology to the new method with
z0, z1 in order to compress three points Pi = (xi, yi) from Eb(Fq)\V ′. As earlier,
consider the set

V := E2
b×V ′ ∪ Eb×V ′×Eb ∪ V ′×E2

b .

It is about the compression map

E3
b (Fq) \ V ↪→ F3

q ×[0, 5]×[0, 2]×[0, 1] (P0, P1, P2) 7→ (z0, z1, x2, n, ℓ, s),

where (z0, z1,m, ℓ) = com2,3(P0, P1) and, in the non-degenerate case ℓ = 2,
the number n ∈ [0, 5] is the position of the element x1y2 ∈ F∗

q . In turn, for
ℓ ∈ {0, 1}, we put n := m and the additional sign bit s is utilized to recover y2
(regardless of P0, P1). Since for these ℓ the latter points are obtained without root
computations, the overall complexity does not go beyond one exponentiation in
Fq.

Thus, we completely justified Tables 1, 2, which contain a complexity compar-
ison (all the operations are carried out in Fq) of the compression-decompression

12 D. Koshelev

methods for two and three points, respectively. As is customary, the addition,
subtraction, and multiplication operations in Fq are omitted, because they are
much cheaper.

Taking this opportunity, the author emphasizes that arguments of the given
paper, related to avoiding the inversion operation, are equally valid for the pre-
vious compression-decompression methods. In other words, the number of in-
versions in [26, Theorem 13], [25, Tables 1, 2] can be actually reduced to only
one in the compression stage (at the price of several multiplications). So, inter
alia, one can resort to those methods to compress the second half of the proof
in Groth16.

Galois group compression decompression

classical method with x0, x1 G2
1,2

one inversion

two
√
·

classical method with y0, y1 G2
1,3 two 3

√
·

folklore method with x0, y1 G1,2×G1,3 one 6
√
·

new method with z0, z1 G2,3 one 3
√
·

methods from [14, Sections 2.1 and 2.2] for free

Table 1.Worst-case complexity for compressing Eb
2
(Fq) (with respect to the projective

or Jacobian coordinates). The last method compresses to ≈ 3⌈log2(q)⌉ bits and the
other ones compress to ≈ 2⌈log2(q)⌉ bits.

Galois group compression decompression

classical method with x0, x1, x2 G3
1,2

one inversion

three
√
·

classical method with y0, y1, y2 G3
1,3 three 3

√
·

folklore-classical method with x0, x1, y2 G2
1,2×G1,3 one 6

√
· and one

√
·

folklore-classical method with x0, y1, y2 G1,2×G2
1,3 one 6

√
· and one 3

√
·

new method with z0, z1, x2 G2,3×G1,2 one 6
√
·

method from [24, Section 3.2] for free

Table 2.Worst-case complexity for compressing Eb
3
(Fq) (with respect to the projective

or Jacobian coordinates). The last method compresses to ≈ 4⌈log2(q)⌉ bits and the
other ones compress to ≈ 3⌈log2(q)⌉ bits.

Batch point compression in the context of advanced pairing-based protocols 13

5 Generating uniformly at random “independent” points

From the introduction we know that the Pedersen commitment (and some other
schemes) lacks a set of basic “independent” points Pi ∈ Eb(Fq). “Independence”
means that a non-trivial linear relation between them is unknown to anyone.
As explained below, the decompression methods of the previous sections are
naturally interpreted as methods of generating the desired points Pi.

First of all, suppose that q ≡ 2 (mod 3). Under this condition, curves Eb are
supersingular and every element of Fq has the unique cubic root in Fq. Although
φn,3 are not Galois covers anymore, we still can find the inverse image under
φn,3 via extracting a cubic root in Fq. In particular,

φ−1
1,3 : Fq → Eb(Fq), φ−1

2,3 : GK2,3(Fq) → E2
b (Fq)

are true maps, that is, they are correctly defined for each input argument. The
former is widely known as Boneh–Franklin’s encoding [12, Section 8.3.2]. The
latter gives rise to the new encoding χ−1

2,3 : F2
q → E2

b (Fq), because points at which
ψ−1
2,3 is not defined, as usual, can be independently processed. Thus, χ−1

2,3 allows

to generate two “independent” Fq-points on Eb twice as efficient as φ−1
1,3 applied

two times.
At the moment, supersingular curves are not preferable in discrete logarithm

cryptography because of their small embedding degrees (⩽ 3 in the characteristic
p > 3 according to [12, Section 4.3]). Thereby, we are obliged to deal with
q ≡ 1 (mod 3). In this case, φ−1

1,3, φ
−1
2,3 are no longer well-defined maps along

with the arbitrary φ−1
n,m, where n ⩽ 5 and m ∈ {2, 3, 6} as before. Nonetheless,

this does not prevent from constructing the corresponding generation methods.
As an example, the conventional x-coordinate method is based on φ−1

1,2. Its exact
description can be easily found in the literature (see, e.g., [31, Algorithm 1]).
It is necessary to iterate vectors v ∈ Fn

q until χ−1
n,m(v) lies in En

b (Fq). As during
the decompression, (maximum three) supplementary bits can serve for choosing
a concrete preimage from χ−1

n,m(v). Moreover, the resulting point vectors are
distributed uniformly at random in En

b (Fq) (up to a negligible error) if so are v
and the bits. This is an immediate corollary from birationality of the map ψ−1

n,m.

In the language of function fields, Fq(En
b) ≃ Fq(An)(m

√
f) for a certain polyno-

mial f ∈ Fq[An]. In this notation, v ∈ Fn
q should be sampled while

(f(v)
q

)
m

̸= 1,

where
(·
q

)
m

is the m-th power residue symbol in Fq. By definition, this sym-

bol is the result of the exponentiation to (q − 1)/m ∈ N, but for our m, it
enjoys Euclidean-type implementations [22] working in time O(1). Meanwhile,
m samples are enough on average to meet an m-th residue of the form f(v).
This intuitive statement fits into [28, Lemma 1] for n = 1. It is not difficult to
extend that lemma to the other values n by exploiting the fact that the number
of Fq-points on the hypersurface um = f(v) in An+1 is approximately equal to
#En

b (Fq) = qn + O(qn−1/2). Therefore, computing one radical m
√
· ∈ Fq is the

unique bottleneck of the generation method under consideration.
The paper [28] develops another approach of generating the n points Pi

through the Mordell–Weil latticesMWm of the elliptic surfaces y2 = x3+tm+c,

14 D. Koshelev

where c ∈ F∗
q . The given approach has its pros and cons. On the one hand, it

is generalized (as shown in [31]) to some extent to elliptic Fq-curves of other
j-invariants. Besides, theMWm-based methods can in theory return (essentially
at the price of 6

√
·) up to 34 ≫ 5 “independent” Fq-points on Eb as stressed in

[28, Section 3]. On the other hand, their resulting distributions on En
b (Fq) are

far from uniform, because the input argument is taken from Fq instead of Fn
q .

In conclusion, Table 3 summarizes the two represented generation methods
(cf. [28, Table 2]). By analogy with Lemmas 2, 3, and 4, it is often possible to
batch 4

√
·, 5
√
· with inverting in Fq, which is not superfluous in the MW4, MW5-

based methods, respectively. As always, the projective or Jacobian coordinates
should be used if we want to completely avoid the inverse operation. The x (resp.,
y) coordinate method through GK1,2 (resp., GK1,3) is omitted in the table for
compactness, because it is equivalent to (resp., worse than) the method through
MW2 (resp., GK2,3). Finally, the MW3-based one is also useless again because
of the first row of the table.

method based on source n m is uniform?

GK2,3
this

2 3

yesGK1,2×GK2,3 3
6

GK5,6 theoretically 5

MWm [28] m− 1 ⩽ 5 only if m = 2

MW360 theoretically 34 6 no

Table 3. Methods of generating n “independent” Fq-points on ordinary elliptic Fq-
curves Eb. It is assumed everywhere that m | q− 1. The average execution time for all
of them amounts to m

(·
q

)
m

+ m
√
·.

References

1. ZPRIZE competition (2022), https://www.zprize.io
2. Aranha, D.F., Pagnin, E., Rodŕıguez-Henŕıquez, F.: LOVE a pairing. In: Longa,

P., Ràfols, C. (eds.) Progress in Cryptology – LATINCRYPT 2021. Lecture Notes
in Computer Science, vol. 12912, pp. 320–340. Springer, Cham (2021)

3. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology
– CRYPTO 2014. Lecture Notes in Computer Science, vol. 8617, pp. 276–294.
Springer, Berlin, Heidelberg (2014)

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012)

5. Bernstein, D.J., Yang, B.Y.: Fast constant-time gcd computation and modular
inversion. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(3), 340–398 (2019)

https://www.zprize.io

Batch point compression in the context of advanced pairing-based protocols 15

6. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) Theory of Cryptography. TCC 2005. Lecture Notes in Computer
Science, vol. 3378, pp. 325–341. Springer, Berlin, Heidelberg (2005)

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) Advances in Cryptology
– EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 573–592.
Springer, Berlin, Heidelberg (2006)

8. Botrel, G., El Housni, Y.: Faster Montgomery multiplication and multi-scalar-
multiplication for SNARKs. IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES) 2023(3), 504–521 (2023)

9. Catanese, F., Oguiso, K., Verra, A.: On the unirationality of higher dimensional
Ueno-type manifolds. Revue Roumaine de Mathématiques Pures et Appliquées
60(3), 337–353 (2015)

10. Chatterjee, S., Hankerson, D., Menezes, A.: On the efficiency and security of
pairing-based protocols in the type 1 and type 4 settings. In: Hasan, M.A., Helle-
seth, T. (eds.) Arithmetic of Finite Fields. WAIFI 2010. Lecture Notes in Computer
Science, vol. 6087, pp. 114–134. Springer, Berlin, Heidelberg (2010)

11. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay, S.
(eds.) Cryptology and Network Security. CANS 2020. Lecture Notes in Computer
Science, vol. 12579, pp. 259–279. Springer, Cham (2020)

12. El Mrabet, N., Joye, M. (eds.): Guide to pairing-based cryptography. Cryptography
and Network Security Series, Chapman and Hall/CRC, New York (2017)

13. Ethereum Foundation: ethereum/kzg-ceremony (2022), https://github.com/

ethereum/kzg-ceremony

14. Fan, X., Otemissov, A., Sica, F., Sidorenko, A.: Multiple point compression on
elliptic curves. Designs, Codes and Cryptography 83(3), 565–588 (2017)

15. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) Advances in Cryptology –
EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 44–61.
Springer, Berlin, Heidelberg (2010)

16. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. Lecture Notes
in Computer Science, vol. 9665, pp. 305–326. Springer, Berlin, Heidelberg (2016)

17. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N. (ed.) Advances in Cryptology – EUROCRYPT 2008. Lecture Notes in
Computer Science, vol. 4965, pp. 415–432. Springer, Berlin, Heidelberg (2008)

18. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) Applied Cryptography and Network Security. ACNS 2013. Lecture Notes in
Computer Science, vol. 7954, pp. 357–372. Springer, Berlin, Heidelberg (2013)

19. Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, vol. 52.
Springer, New York, 8 edn. (1997)

20. Hopwood, D.: The pasta curves for Halo 2 and beyond (2020), https://

electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond

21. Hopwood, D.: Pluto/Eris supporting evidence (2021), https://github.com/

daira/pluto-eris

22. Joye, M., Lapiha, O., Nguyen, K., Naccache, D.: The eleventh power residue sym-
bol. Journal of Mathematical Cryptology 15(1), 111–122 (2021)

https://github.com/ethereum/kzg-ceremony
https://github.com/ethereum/kzg-ceremony
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://github.com/daira/pluto-eris
https://github.com/daira/pluto-eris

16 D. Koshelev

23. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) Advances in Cryptology – ASI-
ACRYPT 2010. Lecture Notes in Computer Science, vol. 6477, pp. 177–194.
Springer, Berlin, Heidelberg (2010)

24. Khabbazian, M., Gulliver, T.A., Bhargava, V.K.: Double point compression with
applications to speeding up random point multiplication. IEEE Transactions on
Computers 56(3), 305–313 (2007)

25. Koshelev, D.: Faster point compression for elliptic curves of j-invariant 0. Mathe-
matical Aspects of Cryptography 12(4), 115–123 (2021)

26. Koshelev, D.: New point compression method for elliptic Fq2 -curves of j-invariant
0. Finite Fields and Their Applications 69, Article 101774 (2021)

27. Koshelev, D.: Some remarks on how to hash faster onto elliptic curves (2021),
https://eprint.iacr.org/2021/1082

28. Koshelev, D.: Generation of “independent” points on elliptic curves by means of
Mordell–Weil lattices (2022), https://eprint.iacr.org/2022/794

29. Koshelev, D.: Indifferentiable hashing to ordinary elliptic Fq-curves of j = 0 with
the cost of one exponentiation in Fq. Designs, Codes and Cryptography 90(3),
801–812 (2022)

30. Koshelev, D.: Magma code (2022), https://github.com/dishport/

Batch-point-compression-in-the-context-of-advanced-pairing-based-protocols
31. Koshelev, D.: Generation of two “independent” points on an elliptic curve of j-

invariant ̸= 0, 1728 (2023), https://eprint.iacr.org/2023/785
32. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211. Springer, New York,

3 edn. (2002)
33. Müller, S.: On the computation of square roots in finite fields. Designs, Codes and

Cryptography 31(3), 301–312 (2004)
34. Oguiso, K., Truong, T.T.: Explicit examples of rational and Calabi–Yau three-

folds with primitive automorphisms of positive entropy. Journal of Mathematical
Sciences, the University of Tokyo 22, 361–385 (2015)

35. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology – CRYPTO 1991. Lecture
Notes in Computer Science, vol. 576, pp. 129–140. Springer, Berlin, Heidelberg
(1992)

36. Pornin, T.: Optimized binary GCD for modular inversion (2020), https://eprint.
iacr.org/2020/972

37. Rubin, K., Silverberg, A.: Compression in finite fields and torus-based cryptogra-
phy. SIAM Journal on Computing 37(5), 1401–1428 (2008)

38. Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.S.: Pairing-
friendly curves (2022), https://datatracker.ietf.org/doc/

draft-irtf-cfrg-pairing-friendly-curves
39. Ueno, K.: Classification of algebraic varieties, I. Compositio Mathematica 27(3),

277–342 (1973)
40. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-

381 elliptic curve. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019(4), 154–179 (2019)

Appendix A. Compressing Eb(Fq2)×Eb2(Fq)
Throughout the current supplementary section, we will assume that q ≡ 1 (mod 3)
or, equivalently, ω ∈ Fq. Unlike the main part of the paper, here the oppo-
site situation would be drastically different as it becomes clear below. Given

https://eprint.iacr.org/2021/1082
https://eprint.iacr.org/2022/794
https://github.com/dishport/Batch-point-compression-in-the-context-of-advanced-pairing-based-protocols
https://github.com/dishport/Batch-point-compression-in-the-context-of-advanced-pairing-based-protocols
https://eprint.iacr.org/2023/785
https://eprint.iacr.org/2020/972
https://eprint.iacr.org/2020/972
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves

Batch point compression in the context of advanced pairing-based protocols 17

γ ∈ F∗
q \ (F∗

q)
2, let b = b0+b1

√
γ and b0, b1, b2 ∈ Fq such that bb2 ̸= 0. Our goal is

to simultaneously compress points (x, y) = (x0 + x1
√
γ, y0 + y1

√
γ) and (x2, y2)

from the sets Eb(Fq2), Eb2(Fq), respectively (here xj , yj ∈ Fq). This problem is
relevant for pairing delegation [2] and type 4 pairings [10, Section 3] whenever
the embedding degree of the curve Eb2 is equal to 12. In this popular case, Eb is
a sextic twist of Eb2 over the field Fq2 . See [12, Section 3.2.5] to understand the
significance of twists in pairing-based cryptography.

For compressing Eb(Fq2), it is suggested to apply the method from [26]. The
given method extracts a cubic root in Fq in the decompression stage. There-
fore, the concatenation of its result z0, z1 with x2 gives rise to the compression
method for Eb(Fq2)×Eb2(Fq) with the cost of a sextic root in Fq, by analogy with
compressing three Fq-points in Section 4.

Table 4 exhibits a complexity comparison (all the operations are carried out
in Fq) of the compression-decompression methods for points in the projective or
Jacobian coordinates. As is customary, the addition, subtraction, and multipli-
cation operations in Fq are omitted, because they are much cheaper. We use the
fact (e.g., from [12, Section 5.2.1]) that an inverse element (resp., square root)
in Fq2 can be expressed via an inverse element (resp., two square roots) in Fq.
However, to the author’s knowledge, a cubic root in Fq2 is not computed through
a few radicals in Fq. As a result, in comparison with Table 2, the new table does
not contain the very slow methods with the coordinates y0, y1, x2 or y0, y1, y2.

The method of [26] is similar to the one of Sections 2, 3. It is based on
Fq-rationality of the surface

GKb := α(t)(y20 + γy21 − b0)− β(t)(2y0y1 − b1) ⊂ A3
(t,y0,y1)

,

where α(t) := 3t2 + γ and β(t) := t(t2 + 3γ). The latter is nothing but the
generalized Kummer surface Rb/[ω]2 (up to a birational Fq-isomorphism). Here,

Rb =

{
y20 + γy21 = ρ0 := x30 + 3γx0x

2
1 + b0,

2y0y1 = ρ1 := γx31 + 3x20x1 + b1
⊂ A4

(x0,x1,y0,y1)

is the Weil restriction (see, e.g., [37, Section 4]) of Eb, equipped with the Fq-
automorphism

[ω]2 : Rb
∼−→ Rb (x0, x1, y0, y1) 7→ (ωx0, ωx1, y0, y1)

of order 3. Notice that

t =
x0
x1
, x1 = 3

√
2y0y1 − b1

α(t)
= 3

√
y20 + γy21 − b0

β(t)
.

Although [26] does not deal with the case q ≡ 1 (mod 4) (including the
BLS12-377 curve), it is not difficult to generalize the results to the given case if
desired. We are not going to do this, because our purpose is opposite, namely
to specify the Fq-parametrization of GKb as clearly as possible on the example

18 D. Koshelev

compression decompression

classical method with x0, x1, x2

one inversion

three
√
·

folklore-classical method with x0, x1, y2 one 6
√
· and one

√
·

new method with z0, z1, x2 one 6
√
·

Table 4. Worst-case complexity for compressing Eb(Fq2)×Eb2(Fq) (with respect to the
projective or Jacobian coordinates). All the methods compress to ≈ 3⌈log2(q)⌉ bits.

of the BLS12-381 curve (b0 = b1 = 4 and γ = −1). That makes sense, since the
description in [26, Section 3.1] is not sufficiently explicit.

First,
√
6 =

√
−1·

√
2·
√
−3 ∈ Fq, because

√
−3 = 2ω + 1 ∈ Fq, but

√
2 ̸∈ Fq.

Indeed, 42 · 2 is the norm of b = 4(1 +
√
−1) with respect to the extension

Fq2/Fq and
√
b ̸∈ Fq2 by virtue of [26, Remark 2]. Second, there is the birational

Fq-isomorphism

τ : GKb
∼99K A2

(z0,z1)
(t, y0, y1) 7→

(numz0

denz
,
numz1

denz

)
,

where

numz0 := f0(t)y0 + f1(t)y1, numz1 := −
√
6·α(t)(t2 − 4t+ 1),

denz := g0(t)y0 + g1(t)y1,

and

f0(t) := 6
(
(7
√
6− 13)t3 − 13t2 + (3

√
6− 1)t− 1

)
,

f1(t) := 3
√
6·α(t)

(
(
√
6− 3)t2 +

√
6·t− 1

)
,

g0(t) := 3
(
(
√
6 + 2)t4 + 2t3 − 2(4

√
6− 5)t2 + 10t−

√
6
)
,

g1(t) := 6α(t)
(
(
√
6− 1)t− 1

)
.

It turns out that

τ−1 : A2
(z0,z1)

∼99K GKb (z0, z1) 7→
(numt

dent
,
numy0

deny
,
numy1

deny

)
,

where

numt := z20 +12z21 −1, dent := −2(z0+6z21), deny := −
√
6 ·α(t)(t2+1),

numy0
:= α(t)

(
F0(t)Z0 + F1(t)Z1

)
, numy1

:= G0(t)Z0 +G1(t)Z1,

Z0 :=
z0 ·dent + numt

z1 ·dent
, Z1 :=

1

z1
and

F0(t) := 2
(
(
√
6− 1)t− 1

)
, F1(t) := (

√
6− 4)t2 − 4t+

√
6,

G0(t) := −(
√
6 + 2)t4 − 2t3 + 2(4

√
6− 5)t2 − 10t+

√
6,

G1(t) := (
√
6 + 2)t5 + 2t4 + 2(3

√
6− 8)t3 − 16t2 + (5

√
6− 2)t− 2.

Batch point compression in the context of advanced pairing-based protocols 19

All the written formulas are checked in Magma [30]. As usual, to compress
any points from Eb(Fq2) it remains to process the degenerate cases when the
denominators equal zero. In order not to complicate the text this is left as an
elementary exercise.

Appendix B. Compressing Eb(Fq2) sub-optimally in such a
way that decompressing is for free

Let’s stick to the notation of the previous section. This one contains formulas
obtained in the same way as in [24, Section 3.1] for compressing E2

b (Fq) to ≈
3⌈log2(q)⌉ bits. The new formulas are very simple and important, but the author
did not find them anywhere else. So, the appendix is a good place to write out
them. Probably, the similar approach from [24, Section 3.2] in the 3-dimensional
case may be also adapted for compressing Eb(Fq2)×Eb2(Fq) to ≈ 4⌈log2(q)⌉ bits.

Given a non-zero point P = (x, y) ∈ Eb(Fq2), consider the Fq-elements

Y := y0 + y1, Y1 :=
2(ρ0 − Y 2) + (γ + 1)ρ1

2(γ − 1)Y
.

Obviously, γ ̸= 1. By looking at the defining equations of Rb, it is readily checked
(see also [30]) that y1 = Y1 whenever Y ̸= 0. Therefore, we get the compression
map

com: Eb(Fq2) \ {O} ↪→ F3
q ×{0, 1}

com(P) :=

(x0, x1, y1, 0) if Y = 0,

(x0, x1, Y, 1) otherwise.

The corresponding decompression map has the form

com−1 : Im(com) ∼−→ Eb(Fq2) \ {O}

com−1(x0, x1, Y
′,bit) =

(x0, x1,−Y ′, Y ′) if bit = 0,

(x0, x1, Y
′ − Y1, Y1) if bit = 1.

Table 5 exhibits a complexity comparison (all the operations are carried out
in Fq) of the compression-decompression methods for Fq2 -points on Eb. It is worth
noting that all the remarks given for Table 4 still hold for the new one.

20 D. Koshelev

compression decompression

classical method with x0, x1

one inversion

two
√
·

method from [26] one 3
√
·

method from [25, Section 4] with
x0

x1
,
y0
y1

one 6
√
·

new method with x0, x1, Y for free

Table 5.Worst-case complexity for compressing Eb(Fq2) (with respect to the projective
or Jacobian coordinates). The last method compresses to ≈ 3⌈log2(q)⌉ bits and the
other ones compress to ≈ 2⌈log2(q)⌉ bits.

	Batch point compression in the context of advanced pairing-based protocols

