
A State-Separating Proof
for Yao’s Garbling Scheme

Chris Brzuska
Aalto University, Finland

chris.brzuska@aalto.fi

Sabine Oechsner
University of Edinburgh, UK

s.oechsner@ed.ac.uk

Abstract—Secure multiparty computation enables mutually
distrusting parties to compute a public function of their secret
inputs. One of the main approaches for designing MPC protocols
are garbled circuits whose core component is usually referred to
as a garbling scheme. In this work, we revisit the security of
Yao’s garbling scheme and provide a modular security proof
which composes the security of multiple layer garblings to prove
security of the full circuit garbling. We perform our security proof
in the style of state-separating proofs (ASIACRYPT 2018).

I. INTRODUCTION

Secure multiparty computation (MPC) allows mutually dis-
trusting parties P1, . . . , Pn to evaluate a public function f on
their secret inputs x1, . . . , xn and learn nothing but the result
y = f(x1, .., xn). In his seminal work [Yao86], Yao proposed
a solution for the two-party case: Assume that f is represented
as a Boolean circuit C. P1 encodes or garbles the circuit C
into C̃ and their own input x1 into x̃1, and sends both, C̃ and
x̃1, to P2. The two parties then engage in a protocol to garble
P2’s input x2 into x̃2. P2 evaluates the garbled circuit C̃ on the
garbled inputs x̃1 and x̃2, decodes the result, and sends it to P1.
The garbling of a circuit uses an encryption scheme, and the
protocol is secure if the encryption scheme is indistinguishable
under chosen plaintext attacks (IND-CPA) and the parties are
semi-honest, i.e. follow the protocol description.

Despite Yao’s garbled circuits becoming one of the main
MPC design paradigms today, it took 20 years after its
inception before the first security proof for Yao’s original con-
struction was published by Lindell and Pinkas [LP09]. Bellare,
Hoang and Rogaway (BHR) [BHR12b] later abstracted Yao’s
garbled circuit construction to a general notion of garbling
schemes. A garbling scheme allows one party to garble a
circuit C and secret input x such that another party can
evaluate the garbled circuit and learn the result y = C(x) but
nothing (else) about the input. BHR moreover proved security
of the garbling scheme derived from Yao’s garbled circuits
construction, henceforth called Yao’s garbling scheme, in the
style of code-based game-playing [BR06].

Recently, Brzuska, Delignat-Lavaud, Fournet, Kohbrok and
Kohlweiss (BDFKK) [BDF+18] proposed state-separating
proofs (SSP), a generalization of code-based game-playing that
allows for more modularity in security proofs. SSPs propose to
structure the pseudocode of cryptographic games into stateful
code pieces (packages) that query each other via oracles.

A. Our contribution

In this work, we propose an easily verifiable version of the
security proof of Yao’s garbling scheme, including the sound-
ness of the reductions. Our work can be seen as the next step
towards understanding the security of Yao’s garbling scheme
which, inspired and empowered by SSPs, revisits existing
proofs and refines their structure where appropriate. Security
is proven with respect to BHR’s garbling scheme syntax and
security notion, expressed using SSPs. On a technical level,
our proof is guided by the following observations:

1) Modular security proof: In a nutshell, existing security
proofs of Yao’s garbling scheme consist of two steps: Garbling
scheme security is reduced to a proof-specific encryption
scheme security notion, which is in a next step reduced to
a standard assumption such as IND-CPA security.

In this work, we further break down the first step by
separating the reduction to encryption scheme security from
arguments about the structure of the circuit. For this purpose,
we identify a new intermediate security notion that sits right
in the middle between circuit garbling and encryption scheme
security: the security of garbling a gate. (For our own conve-
nience, we further assume that the circuit is layered and reason
at the level of layers, i.e. sets of gates, instead of individual
gates.)

2) Composable security notions: Following BHR, a gar-
bling scheme is called selectively secure if the garbling of C
and x can be simulated given only C and the circuit evaluation
y := C(x), but without knowledge of the secret input x. Just
like a circuit can be described as composition of multiple
circuit layers, we ask now if circuit security can be described
as the composition of layer security. In the case of selective
security, this is unclear. In fact just syntactically, not even
the garbling scheme simulators can be composed: Consider a
circuit C := C2 ◦C1 for two subcircuits C1 and C2 and input
x to C, and assume that C1 and C2 can be garbled securely
with simulators S1 and S2. If we want to construct a simulator
S for C that is given only C and y = C(x) from S1 and S2,
we run into the problem that S needs to provide inputs for S1.
However, simulator S1 for C1 expects y1 = C1(x) as input
which neither S nor S2 can provide.1

1One can, rather inelegantly, bypass this problem with a dummy value for
y1 and argue that the joint composition of the simulators does not actually
depend on the value of y1.

In the case of Yao’s garbling scheme, however, we can refine
the security notion and show that security under the modified
notion implies selective security. The simulator in this new
notion is only given C and a garbling of y rather than y itself.
Going back to C := C2 ◦ C1, simulator S2 now simulates
the garbling of input y1 to circuit C2, and conveniently, can
provide S1 with the required garbling of y1. Not only can
simulators now be composed with each other, but the security
notion can be self-composed, meaning composing the security
notions for garbling multiple individual circuit layers Ci yields
a security notion for garbling circuit C.

3) Graph-based reductions: Finally, we write Yao’s gar-
bling scheme, our redefined syntax and security notion and
layer versions thereof in the modular SSP style, that splits
pseudo-code into multiple code packages which call one
another. As a result, we define our reductions directly as a
subset or rather subgraph of previously defined packages and
use mere associativity of algorithm composition to prove the
soundness of the reduction. Thus, our proof foregoes the need
to explicitly define reductions and prove their soundness.

B. Outline

Section II introduces garbling schemes. State-separating
proofs (SSPs) are introduced in Section III on the example
of encryption scheme security, and Section IV formulates
garbling schemes in terms of state-separated packages. In
Section V, Yao’s garbling scheme is introduced, and we state
security and outline the security proof which is then presented
in Sections VI, VII and VIII. Finally, Section IX discusses
conceptual insights and compares with related work.

II. GARBLING SCHEMES

A. Garbling schemes

Bellare, Hoang and Rogaway (BHR) [BHR12b] introduce
the notion of a garbling scheme as an abstraction of the
primitive underlying the garbled circuits approach.

Definition 1 (Garbling scheme [BHR12b]). A (circuit)
garbling scheme consists of 5 probabilistic, polynomial-time
algorithms gs = (gb, en, de, ev , gev) for circuit garbling,
input encoding and output decoding, circuit evaluation and
garbled circuit evaluation, respectively.

The circuit garbling algorithm gb outputs a garbled circuit
C̃ as well as input encoding information e and output decoding
information dinf. A garbling scheme is input projective if the
circuit garbling gb generates input encoding information e
that consists of two tokens per input bit, and input encoding
en selects for each input bit the corresponding token. We
assume the circuit evaluation algorithm ev to be fixed and
write C(x) instead of ev(C, x), and sometimes omit ev from
the description of a garbling scheme. Φ(C) is defined as the
information the circuit garbling leaks about a circuit C (e.g.
the circuit topology for Yao’s garbling scheme). For simplicity,
throughout this article, Φ(C) will be equal to C.

PRVSIM0
gs,Φ,S

GARBLE(C, x)

(C̃, e, dinf)← gb(1λ, C)

x̃← en(e, x)

return (C̃, x̃, dinf)

PRVSIM1
gs,Φ,S

GARBLE(C, x)

y ← C(x)

(C̃, x̃, dinf)← S(1λ, y,Φ(C))

return (C̃, x̃, dinf)

Figure 1: Garbling scheme security games PRVSIMb
gs,Φ,S .

Definition 2 (Garbling scheme correctness [BHR12b]). Let
λ ∈ N. A garbling scheme gs = (gb, en, de, gev) is perfectly
correct if for all circuits C and inputs x,

Pr(C̃,e,dinf)←$gb(1λ,C)

[
C(x) = de(dinf, gev(C̃, en(e, x)))

]
= 1

Garbling scheme gs is statistically correct if the above equality
holds with overwhelming probability in λ.

BHR provide two equivalent security definitions for garbling
schemes, an indistinguishability-based and a simulation-based
definition. The latter follows the simulation paradigm: A real
execution of the garbling scheme on real circuit C and input x
is compared to a simulated (idealized) execution generated by
an algorithm—the simulator. The simulator only has access
to C and the result y = C(x), but not to the input x itself,
and thus, the ideal execution cannot leak more information
about x than the output value y. If both executions are
indistinguishable, then also the real execution does not leak
more information about x than y. Formally, we capture the two
executions via games PRVSIMb

gs,Φ,S for b ∈ {0, 1} (Figure 1)
and define security as indistinguishability between them.

Definition 3 (Garbling scheme security [BHR12b]). Let λ ∈
N. A garbling scheme gs = (gb, en, de, gev) is secure wrt.
leakage function Φ if for all PPT adversaries A, there exists
a PPT simulator S such that the distinguishing advantage∣∣Pr[1←$ A → PRVSIM0

gs,Φ,S
]
− Pr

[
1←$ A → PRVSIM1

gs,Φ,S
]∣∣

of A interacting with PRVSIM0
gs,Φ,S and PRVSIM1

gs,Φ,S is
negligible in λ.

The above security notion is referred to as selective security
because the adversary needs to choose both circuit C and
input x simultaneously. In turn, the stronger notion of adaptive
security [BHR12a] allows the adversary to obtain a circuit
garbling and only then adaptively choose the input x. Adaptive
security is notoriously hard to achieve, see, e.g. [JW16] and
references therein. This work focuses on the simulation-based
notion of selective security presented in Def. 3.

B. Conventions

We encode the security parameter λ in unary 1λ and omit
it whenever it is clear from context. We make the simplifying
assumption that each circuit is layered. A layered circuit is a
circuit whose gates can be partitioned into layers 1, . . . , d such
that each wire connects gates in adjacent layers. Circuits such
as AES are naturally layered, and transforming an arbitrary
circuit of size s into a layered one results in at most a

quadratic increase in size [Weg87]. All our results can be
modified to non-layered circuits by formulating appropriate
gate assumptions instead of layer assumptions. We focus in
layered circuits due to their convenient visual representation.
Namely, if dependencies between gates can be arbitrary, they
can neither be drawn nor described in concise algebraic terms.
Finding a suitable notation is an interesting open problem.

III. STATE-SEPARATING PROOFS
AND ENCRYPTION SCHEME SECURITY

Security games such as PRVSIM0
gs,Φ,S described in the

previous section are not known to come with a natural way
of composition such as Universal Composability [Can01],
[Mau12]. However, Brzuska, Delignat-Lavaud, Fournet, Ko-
hbrok, and Kohlweiss (BDFKK [BDF+18]) observe that by
splitting a game into multiple parts while carefully preserving
dependencies, one can indeed achieve compositionality and
modularity. This section provides a brief overview over the
key concepts of their proposal, state-separating proofs (SSPs),
on the example of encryption scheme security.

A. Games

To understand SSPs, we first need to consider the notion of
a game. Following Bellare and Rogaway [BR06], a game is a
set of oracles operating on shared state.

Definition 4 (Game). A game G consists of a set of oracles
which operate on a shared state.

IND-CPA(se)b

SMP()

assert k = ⊥
k ←$ {0, 1}λ

return k

ENC(m0,m1)

assert k ̸= ⊥
assert |m0| = |m1|
c←$ enc(k,mb)

return c

Figure 2: Games
IND-CPA(se)b.

To make this idea more concrete,
let se = (enc, dec) be a symmetric
encryption scheme (with uniform key
sampling as key generation), and con-
sider the standard notion for encryp-
tion scheme security, indistinguishabil-
ity under chosen plaintexts (IND-CPA).
In the IND-CPA game, an adversary
is given access to two oracles: A key
sampling oracle SMP that initializes
the key, and an encryption oracle ENC
that takes two messages as input and
returns an encryption of one of them,
cf. Fig. 2 for the definition of game
IND-CPA(se)b with b ∈ {0, 1}. Both
oracles are presented in pseudo-code notation. The notation
x ← y means that the value of variable y is stored in
variable x, and x ←$ S means that x is sampled uniformly
at random from S. Finally x ←$ algo(a) means that the
randomized algorithm algo is executed on argument a and the
result is stored in variable x. Depending on b, the encryption
oracle either returns an encryption of the left (b = 0) or the
right (b = 1) message. The two oracles SMP and ENC of
IND-CPA(se)b share state k, the encryption key. se is IND-
CPA secure if any efficient adversary who interact with the
oracles of the IND-CPA(se)b cannot determine b much better
than with guessing probability.

B. Packages

The base object of SSPs are packages, a generalization
of games which not only provide oracles, but can also call
the oracles of other packages. The oracles are described in
pseudocode. Importantly, a package’s state cannot be accessed
directly from the outside, but only through oracle calls.

Definition 5 (Package). A package M provides a set of oracles
[→ M] which operate on a shared state and make calls to a
set of oracles [M→], which we call the dependencies of M.

The term game refers then to the special case of a package
G which has no dependencies, that is [G→] = ∅. For
example, the games IND-CPA(se)b have [IND-CPA(se)b →]
= {SMP,ENC} and [→ IND-CPA(se)b] = ∅. The converse
of games are adversary packages which do not provide any
oracles and are thought of as the main procedure. An adversary
outputs a single bit upon termination.

Definition 6 (Adversary). A package A is an adversary if
[→ A] = ∅.

C. Composition

We can compose two packages M and N sequentially along
matching oracle names and dependencies into a new package
M → N. Package composition is associative since the states
of the individual packages are separated from one other.
We represent the composition of packages by call graphs.
Boxes represent packages and arrows labeled by oracle names
represent oracles. We define security using the distinguishing
advantage of an adversary composed with two games.

Definition 7 (Advantage). Let G0 and G1 be two games
and let A be an adversary such that [A →] = [→ G0] =
[→ G1]. Then the distinguishing advantage of A, denoted
Adv(A;G0,G1), is defined as

Pr
[
1←$ A → G0

]
− Pr

[
1←$ A → G1

]
.

In order to define security, we additionally need to define
polynomial runtime of a package.

Definition 8 (PPT runtime). Let M be a package which has
security parameter λ. If M is a game, then we say that M
is probabilistic polynomial-time (PPT), if each of its oracles
runs in time polynomial in λ, the number of queries which M
received and the length of the concatenation of the inputs of
these queries, encoded in binary. If M has dependencies, then
we say that M is PPT if for all PPT games N, M→ N is a PPT
game.

By convention, all packages in a package composition
depend on the same security parameter which we do not write
explicitly. With definitions of advantage and runtime at hand,
we can define IND-CPA security as follows.

Definition 9 (IND-CPA security). A symmetric
encryption scheme se = (enc, dec) is IND-CPA
secure if for all PPT adversaries A, the advantage
Adv(A;IND-CPA0(se),IND-CPA1(se)) is negligible.

Note that by definition of PPT runtime, A can only make a
polynomial number of queries to IND-CPAb(se), since else,
the composition A → IND-CPAb(se) would not be PPT.

SMP

ENC IND-CPA0A

Figure 3: Real IND-
CPA game execution.

Two games G0 and G1 are code
equivalent, denoted G0 code≡ G1, if
for all adversaries A, the advantage
Adv(A;G0,G1) is 0. Arguing about
code equivalence is useful when a
code transformation in a proof does not affect input-output
behaviour.

SMP
KEY

ENC GET
ENCRYPTb

Figure 4: Modular IND-CPA
games mIND-CPA(se)b.

Going back to our ex-
ample, we can compose
an IND-CPA adversary A,
[A→] = {SMP,ENC},
with the real IND-CPA
game IND-CPA(se)0. The
result A → IND-CPA(se)0 (cf. Fig. 3) describes the real
execution of the IND-CPA game. The adversary A can interact
KEY

SMP()

assert k = ⊥
k ←$ kgen

return ()

GET()

assert k ̸= ⊥
return k

ENCRYPTb

ENC(m0,m1)

k ← GET()

assert |m0| = |m1|
c←$ enc(k,mb)

return c

Figure 5: Oracles
of ENCRYPTb, b ∈
{0, 1}, and KEY.

with the game through calls to its oracles
and eventually terminates by outputting
a bit. We can also express the IND-
CPA games as a composition of two
packages, a KEY package for key gener-
ation/storage and an ENCRYPTb package
for encryption. We denote the resulting
new modular games as mIND-CPA(se)b

(cf. Fig. 4). The KEY package (cf. Fig. 5)
provides oracles SMP for key sampling
and GET to retrieve a stored key. The or-
acle ENC of packages ENCRYPTb takes
two messages m0 and m1, queries the
key stored in KEY and outputs an encryp-
tion of mb. The KEY and ENCRYPTb

packages only share state via oracle
calls: ENCRYPTb is stateless while KEY
has key k as state. We use assertions for
error handling

assert cond :=if ¬cond then

return error symbol

and assume that a system cannot be called anymore after
an assert was violated. However, the adversary will still be
allowed to produce an output.

A package M is not allowed to call its own oracles. Thus
package call graphs are directed acyclic graphs. This restric-
tion is in fact a functional style of oracles, i.e. after a caller
M calls a callee N, the package N might make further oracle
calls to other packages, but eventually returns control to M.
Notation. G(M) denotes a composed package G which is
parametrized by package M, i.e. all of G is fixed except for M.
We write G(algo) for a package (composition) which depends
on an algorithm algo.
Examples for code equivalence. By inlining the GET oracle
of KEY into the ENC oracle of ENCRYPTb and compar-

ing the resulting code, we can prove IND-CPA(se)0
code≡

mIND-CPA(se)0 and IND-CPA(se)1
code≡ mIND-CPA(se)1.

D. Reductions
We often bound the adversarial advantage between two

games G0
big , G1

big by the advantage of a related adversary
between two smaller games G0

sml, G
1
sml which capture security

of a primitive or a computational hardness assumption.

Lemma 1 (Perfect reduction lemma). Let G0
big , G1

big and
G0
sml, G

1
sml be two game pairs with [→ G0

big] = [→ G1
big] and

[→ G0
sml] = [→ G1

sml]. If we can define a reduction R with
[→ R] = [→ G0

big] and [R →] = [→ G0
sml] such that

G0
big

code≡ R → G0
sml and G1

big

code≡ R → G1
sml, (1)

then for all adversaries A,

Adv(A;G0
big,G

1
big) = Adv(B;G0

sml,G
1
sml) (2)

where B := A → R. We call R a perfect reduction.

Proof. Using associativity of package composition, we obtain:

Adv(A;G0
big,G

1
big)

= Pr
[
1←$ A → G0

big

]
− Pr

[
1←$ A → G1

big

]
= Pr

[
1←$ A → (R → G0

sml)
]
− Pr

[
1←$ A → (R → G1

sml)
]

= Pr
[
1←$ (A → R)→ G0

sml

]
− Pr

[
1←$ (A → R)→ G1

sml

]
= Adv(A → R;G0

sml,G
1
sml) = Adv(B;G0

sml,G
1
sml)

KEYS
ENC

GETBIT

GETKEYSin

ENCb

SETBIT, GETAout

Figure 6: Games 2CPA(se)b.

The SSP style is par-
ticularly useful for finding
and expressing perfect re-
ductions. As an example,
consider the modified en-
cryption scheme security notion 2CPA(se)b with two keys in
Figure 6. The game consists of packages KEYS and ENCb

shown in Fig. 7, where sets and maps are denoted by capital
letters: S, T (x). In this IND-CPA variant with two encryption
keys, an adversary chooses one of the keys to be corrupt,
while security of encryptions under the honest key is still
guaranteed. Package KEYS stores two keys Z(0) and Z(1).
KEYS provides oracles SETBIT for choosing which key to
corrupt and GETBIT for retrieving this information, GETAout

for retrieving the adversary key and sampling both keys if they
do not exist yet and GETKEYSin that returns both keys if they
exist. Package ENCb provides an encryption oracle that en-
crypts one of two messages. Importantly, oracle ENC retrieves
both keys and computes which to use as encryption key. If the
key is corrupted, then message m0 will always be encrypted,
else mb is encrypted depending on the package parameter b.
ENCb retrieves the keys from KEYS via GETKEYSin and the
bit of the corrupt key via GETBIT. Looking ahead, KEYS will
be used in Section IV for the two keys associated with a circuit
wire in projective garbling schemes.

Using Lemma 1, we can now reduce an adversary A’s
distinguishing advantage for games 2CPA(se)b to the IND-
CPA security of the encryption scheme se .

Oracle of ENCb

ENC(d,m0,m1)

Z in ← GETKEYSin()

zin ← GETBIT()

assert |m0| = |m1|
if zin ̸= d then

c←$ enc(Z in(d),mb)

if zin = d then

c←$ enc(Z in(d),m0)

return c

Oracles of KEYS

SETBIT(z)

assert z = ⊥
z ← z

return ()

GETKEYSin()

assert z ̸= ⊥
assert aflag

∨ bflag

return Z

GETBIT()

assert z ̸= ⊥
return z

GETAout()

aflag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z(z)

Figure 7: Oracles of double key packages KEYS and encryp-
tion packages ENC0, ENC1. Further oracles of KEYS will be
introduced in Fig. 18. The flag bflag can be ignored for the
current section.

Lemma 2. Let se be a symmetric encryption scheme. For
reduction Rcpa := RED (cf. Fig. 8), it holds that for any PPT
adversary A,

Adv(A;2CPA0(se),2CPA1(se))

≤ Adv(A → Rcpa;IND-CPA
0(se),IND-CPA1(se)).

RED

SETBIT(z)

assert z = ⊥
z ← z

return ()

GETAout()

assert z ̸= ⊥
aflag← 1

if ka = ⊥ then

ka ←$ {0, 1}λ

SMP()

return ka

ENC(d,m0,m1)

assert ka ̸= ⊥
assert z ̸= ⊥
assert |m0| = |m1|
if z ̸= d then

c← ENC(m0,m1)

if z = d then

c←$ enc(ka,m0)

return c

Figure 8: Oracles of reduction package RED.

Proof. RED samples and stores the corrupt key ka and answers
all queries related to it, while queries regarding the honest key
are forwarded to the IND-CPA game. We prove

2CPAb(se)
code≡ RED→ IND-CPAb(se) for b ∈ {0, 1}. (3)

Lemma 2 now follows from Lemma 1 by observing that
with Gb

big := 2CPAb(se) and Gb
sml := IND-CPAb(se), (3)

corresponds to (1). It thus remains to prove (3). On a high-
level, the state of each game 2CPAb(se) consists of a bit z
and two key Z(0), Z(1), all of which are stored in KEYS. In
RED→ IND-CPAb(se) (shown in Fig. 9), on the other hand,
the same state is split between RED and IND-CPAb(se): RED
stores z and ka acting as Z(z), while IND-CPAb(se)’s state
is k (i.e. Z(1−z)). Moreover the stateless oracle ENC behaves
identically in both games since encryption under the corrupt

key always yields an encryption of m0. We defer the formal
inlining argument of (3) to Appendix A.

SETBIT

GETAout

ENC

IND-CPAbSMP

ENCRED

Figure 9: Games RED→ IND-CPAb(se).

E. Multi-instance assumptions

It is often convenient to consider multiple independent
instances of an assumption at the same time. In this case,
we add indices to package names and oracles to distinguish
the instances. The BDFKK multi-instance lemma shows that
single-instance security of a game implies multi-instance se-
curity of the same game. We here reproduce the lemma for
2CPAb(se) to obtain its multi-instance version 2CPAb

1..n(se).

Lemma 3. ([BDF+18, Appendix B, Lemma 38]) There exists
a PPT reduction Rse such that for all PPT A, we have that

Adv(A;2CPA0
1..n(se),2CPA

1
1..n(se))

≤ n · Adv(A → Rse;2CPA
0(se),2CPA1(se)),

where 2CPAb
1..n(se) are n parallel copies of 2CPAb(se),

disambiguated by index i.

Definition 10 (2CPA security). A symmetric encryption
scheme se is 2-key IND-CPA-secure or 2CPA-secure if for
all PPT adversaries A, the advantage

Adv(A,2CPA0
1..n(se),2CPA

1
1..n(se))

is negligible, where 2CPAb
1..n(se) are n parallel copies of

2CPAb(se), disambiguated by index i.

The following corollary combines the results of this section.

Corollary 1. Let R2cpa := Rse → Rcpa. For all PPT A, we
have that

Adv(A;2CPA0
1..n(se),2CPA

1
1..n(se))

≤ n · Adv(A → R2cpa;IND-CPA
0(se),IND-CPA1(se)).

IV. STATE-SEPARATED GARBLING SCHEMES

We now apply the SSP approach (Section III) to garbling
schemes and revisit their syntax, correctness and security.

A. Syntax and Correctness

Traditionally (including the SSP literature), cryptographic
constructions are viewed as a tuple of algorithms, or alter-
natively Turing machines. Security and correctness are then
described as games which invoke the different algorithms. In
turn, in this work, we define the syntax of a garbling scheme
as a tuple of packages (Definition 5). Recall from Def. 1
that BHR define a garbling scheme as tuple of algorithms
(gb, en, gev , de, ev), where gb garbles a circuit C, en garbles
an input x, gev evaluates a garbled circuit on a garbled input,
de provides the output of the garbled circuit using decoding
information obtained from the garbled evaluation (Def. 2) and
ev is a simple circuit evaluation algorithm.

GETBIT1..n

SETBIT1..n
EV

BITS1..n

BITS1..n

SETBIT1..n

EVAL

GETBIT1..n

(a) Circuit evaluation game CEV with packages EV and BITS.

EV

EVAL(C)

for j = 1..n do

z0,j ← GETBITj

for i = 1..d do

(ℓ, r,op)← C[i]

assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

zi,j ← op(zi-1,ℓ, zi-1,r)

for j = 1..d do

SETBITj(zd,j)

return ()

BITSj

SETBITj(z)

assert zj = ⊥
zj ← z

return ()

GETBITj

assert zj ̸= ⊥
return zj

(b) Code of packages EV and BITSj .

Figure 10: Graph and code of circuit evaluation package CEV.

1) Circuit evaluation: We start with an SSP version of
circuit evaluation, game CEV. The EVAL oracle of game
CEV takes a layered circuit of depth d and width n and
corresponding to algorithm ev . The game provides oracles
SETBIT for setting input bits, EVAL for evaluating the circuit,
and GETBIT to obtain the result. To evaluate a circuit C on
input x of length n, an adversary can query SETBIT n times
with the individual bits of x, then EVAL with input C, and
then can obtain the result by querying GETBIT n times.

Taking advantage of the fact that the composition of pack-
ages is again a package, we define CEV as composition of
three packages: two BITS packages that model the input bits
and output bits, respectively, and a circuit evaluation package
EV which performs the actual computation. BITS is a simple
package for storing bits (Fig. 10b). Package EV on the other
hand is stateless and provides an oracle that evaluates an input
circuit C on the bits stored in the top BITS package, and stores
the result in bottom BITS package.

Definition 11 (Circuit evaluation). Circuit evaluation CEV for
layered Boolean circuits of width n and depth d is defined in
Fig. 10 and has

[→ CEV] : SETBIT1..n, EVAL, GETBIT1..n and [CEV→] = ∅.

2) Garbling scheme syntax: Remember that BHR define
a garbling scheme as tuple of algorithms gb, en , de , gev ,
ev . We capture the syntax of a garbling scheme in SSP style
as a tuple of seven packages GB, EN, EKEYS, DE, DINF,
GEV and EV, corresponding to the original algorithms plus
shared state between them where convenient. The call graph

in Fig. 12 composes the packages such that the adversary can
use them meaningfully as follows: Garbling a circuit and input,
then evaluating the garbled circuit on the garbled input and
decoding the result.

EKEYSj

SETKEYSj(Z)

assert Zj = ⊥
Zj ← Z

return ()

GETKEYSj
assert Zj ̸= ⊥
return Zj

ENj

SETBITj(z)

assert zj = ⊥
zj ← z

return ().

GETAj

assert zj ̸= ⊥
Z ← GETKEYSin

j

return Z(zj)

Figure 11: Code of EKEYSj and ENj .

Each package
captures the algorithm
of the same name,
except for the two
packages we added to
capture shared state
between algorithms:
EKEYS which model
input encoding
information e as pairs
of keys and DINF
for output decoding
information d. We
consider only input
projective garbling
schemes, and thus, EN and EKEYS are fixed (cf. Fig. 11).
Hence a garbling scheme is defined solely by providing the
package tuple (GB,DE,DINF,GEV).

3) Correctness: A garbling scheme (GB,DE,DINF,GEV)
is correct if the game GCORR(GB,DE,DINF,GEV) (Fig. 12)
behaves as CEV. Due to decryption ambiguities, a negligible
statistical gap might exist between the two.

Definition 12 (Garbling Scheme). A packages tuple
gs = (GB,DE,DINF,GEV) is a garbling scheme if
the games GCORR(GB,DE,DINF,GEV) (Fig. 12) and
CEV (Fig. 10) are statistically indistinguishable, i.e.,
Adv(A;GCORR(GB,DE,DINF,GEV),CEV) is negligible for
any adversary A, and

[→ GB] : GBL [GB→] : SETKEYS1..n,SETDINF,

[→ DE] : SETA1..n,GETBIT [DE→] : GETDINF,

[→ DINF] : SETDINF,GETDINF [DINF→] : ∅,
[→ GEV] : EVAL [GEV→] : GETAout

1..n,SETA1..n,GBL.

EKEYS1..n

DINF

GETAout

SETA1..n

GBL

GETDINF

EVAL
SETKEYS

SETDINFt
GB

DE
GETBIT1..n

SETBIT1..n

GEV
1..n

EN
1..n GETKEYS1..n

Figure 12: Real garbling scheme correctness game
GCORR(GB,DE,DINF,GEV).

B. Security
We now encode the garbling scheme security games

PRVSIMb
gs,Φ,S from Section II-A using packages, with fixed

leakage Φ(C) = C. The package MOD-PRVSIMb (Fig. 13)
models the core of the game: It provides the expected interface
GARBLE to the adversary and calls the garbling scheme’s
oracles in the intended order.

MOD-PRVSIMb

GARBLE(C, x)

for j = 1..n do

SETBITj(xj)

if b = 1 then

EVAL(C)

C̃ ← GBL(C)

dinf← GETDINF

for j = 1..n do

x̃[j]← GETAout
j

return (C̃, x̃, dinf)

Figure 13: Code of
MOD-PRVSIMb.

Upon a query with input C and x
from the adversary, GARBLE stores x
in another package via SETBIT queries
and then obtains the circuit garbling,
input encoding and output decoding.
In the real game PRVSIM0(GB,DINF),
the garbling is performed by the gar-
bling scheme (Fig. 14a). The ideal game
PRVSIM1(SIM) is parametrized by a
simulator SIM that computes the gar-
bling instead, given access to the output
of circuit evaluation but not the input x
itself (Fig. 14b). Security then demands
the existence of an efficient simulator
SIM such that the real and ideal game
are indistinguishable for every efficient
adversary.

Definition 13 (Garbling scheme security). Let gs =
(GB,DE,DINF,GEV) be a garbling scheme. gs is secure if
there exists a PPT simulator SIM such that for all PPT
adversaries A, the advantage

Adv(A;PRVSIM0(GB,DINF),PRVSIM1(SIM))

is negligible. See Fig. 14 for the definitions of games
PRVSIM0(GB,DINF) and PRVSIM1(SIM).

V. YAO’S GARBLING SCHEME

After introducing a garbling scheme notion, we now turn
to Yao’s garbling scheme as concrete example. We present an
informal overview, state security and provide a proof overview.

A. Overview

Yao’s construction uses an IND-CPA secure symmetric
encryption scheme (kgen, enc, dec) where kgen selects uni-
formly random bitstrings as keys2.

1) Circuit garbling: To garble a circuit C of depth d
with n inputs and width d, Yao’s garbling scheme starts by
choosing two uniformly random bitstrings per gate storing
them as Zi,j(0) and Zi,j(1), respectively. Here, 0 and 1 is
a bit associated with the key, 0 ≤ i ≤ d describes the depth
of the gate and 0 ≤ j ≤ n describes the index of the gate
within a layer. W.l.o.g. and for our convenience, we assume
that circuits are layered and have constant width. Now, for a
gate gi,j with operation opi,j , denote by Zi−1,ℓ, Zi−1,r the
indices of the gates which compute the left and right input to
gi,j . Now, Yao’s garbling scheme computes four ciphertexts

2The encryption scheme is assumed to satisfy further properties to achieve
correctness, which we omit here due to our focus on garbling scheme security.
In a nutshell, an adversary cannot generate a valid ciphertext from the
ciphertext space under a random but unknown key, and the encryption scheme
returns a special error symbol ⊥ if decryption fails due to the use of an
incorrect decryption key. See [LP09, Definition 2] for details.

EKEYS1..n

DINF

SETKEYS

SETDINF
GB

GETDINF

SETBIT1..n

GETAout

GBLGARBLE
MOD-

PRVSIM0

EN
GETKEYS1..n

1..n

1..n

(a) Real security game PRVSIM0(GB,DINF).

BITS1..n

BITS1..n

GETBIT1..n

EVAL

SETBIT1..n

GETBIT1..n

SETBIT1..n

EV

SIM

GARBLE
GETDINF

GETAout

GBL

MOD-

PRVSIM1

1..n

(b) Ideal security game PRVSIM1(SIM).

Figure 14: Games PRVSIM0(GB,DINF) and PRVSIM1(SIM).

encrypting the output wire keys under the input wire keys
according to opi,j as follows:

c0 = encZi−1,r(0)(encZi−1,ℓ(0)(Zi,j(opi,j(0, 0)))),

c1 = encZi−1,r(1)(encZi−1,ℓ(0)(Zi,j(opi,j(0, 1)))),

c2 = encZi−1,r(0)(encZi−1,ℓ(1)(Zi,j(opi,j(1, 0)))),

c3 = encZi−1,r(1)(encZi−1,ℓ(1)(Zi,j(opi,j(1, 1)))).

The garbled gate g̃i,j consists of the ciphertexts c0, . . . , c3 ar-
ranged so that the computation order is hidden, and the garbled
circuit C̃ consists of the d ·n garbled gates (g̃i,j)1≤i≤d,1≤j≤n
and the output decoding information Zd,1,..,Zd,n.

2) Input encoding: For each bit xi of input x, Yao’s
garbling scheme returns the corresponding input wire key
on the ith input wire, i.e., the input encoding information is
Z0,1(x1),..,Z0,n(xn) for input x = x1||..||xn.

3) Circuit evaluation: Given garbled circuit C̃ and encoded
input x̃, the garbled circuit is evaluated as follows: For each
gate g̃i,j , let ki−1,ℓ and ki−1,r be the wire keys corresponding
to left and right input wire (either obtained from x̃ or a
previous gate evaluation). Then attempt to decrypt each of the
four gate ciphertexts with ki−1,ℓ and ki−1,r. If the circuit was
garbled correctly, exactly one will decrypt to the desired output
wire key ki,j without error, except with negligible probability.

4) Output decoding: For each key kd,j , 1 ≤ j ≤ n, return
yd,j such that Zd,j(yd,j) = kd,j .

5) Security: To prove security, we will attach different
semantics to the wire keys. Real garbling uses 0/1 semantics,
i.e. each key is mapped to a bit. Intuitively, garbling scheme
security holds because an adversary will only ever learn one
key per wire, referred to as the active. If we manage to switch
completely from 0/1 key semantics to active/inactive, we can
simulate garbling without knowledge of the input. The reason
why the adversary learns one key per wire is as follows. For
each input wire to a gate, the adversary only knows one of the
two wire keys. Thus for each gate garbling, they can decrypt
exactly one out of the four ciphertexts. I.e., given two active
keys for the input wires, the adversary (only) learns the active

key for the output wire of a circuit. To see this, let us consider
the xor operation as an example, and let us say that for the
left input wire, the 0-key is active (known to the adversary)
and for the right input wire, also the 0-key is active. The 4
ciphertexts can be illustrated as follows:

The adversary only knows the blue key and thus can only
recover the blue key. This observation generalizes to arbitrary
operations, since there are four ways3 to combine left ac-
tive/inactive and right active/inactive key so that the adversary
always only learns one ciphertext—there is only one ciphertext
which can be represented by two nested blue squares. The
adversary always learns the active output key, because if bℓ
and br are the active bits, then we encrypt Zj(op(bℓ, br) under
Z(bℓ) and Z(br)—which is the active key. Applying this
argument recursively yields the desired security statement.

B. Security

Following Section IV-A, the traditional version of Yao’s
garbling scheme can be defined as package tuple

gstdyao = (GBtdyao,DEtdyao,DINFtdyao,GEVtdyao).

Since the behaviour of garbled evaluation package GEVtdyao
and output decoding package DEtdyao are conceptually induced
by the behaviour of the garbling package GBtdyao, and since the
security definition only depends on GBtdyao and DINFtdyao, we
omit the description of the former. GBtdyao has a single oracle
GBL, and DINFtdyao is similar to EKEYS. Both are shown in
Fig. 15. To garble a circuit C, oracle GBL first performs some
checks on the inputs, then samples keys for all wires, parses
the circuit layer by layer, garbles each gate, and eventually
returns the garbled circuit C̃. We assume that sets are encoded
by ordering their elements in lexicographic ordering to hide the
order of ciphertexts comprising a garbled gate. The remainder
of this paper proves the security of the Yao’s garbling scheme
as defined in Section IV-B:

Theorem 1 (Security of Yao’s garbling scheme). Let A be
a PPT adversary, let d be a polynomial upper bound on the
depth of the circuit which A chooses, let n denote the width of
the circuit and let se denote the symmetric encryption scheme
used within gstdyao (Fig. 15). Then, there exists a PPT simulator
SIMtdyao and reduction R such that

Adv(A;PRVSIM0(GBtdyao,DINFtdyao),PRVSIM
1(SIMtdyao))

≤ dn · Adv(A → R;IND-CPA0(se),IND-CPA1(se)). (4)

Thus if se is IND-CPA secure, then gstdyao is secure.

3active/active, active/inactive, inactive/active, inactive/inactive

Oracle of GBtdyao

GBL(C)

assert C̃ = ⊥
assert depth(C) = d

for i = 0..d do

for j = 1..n do

Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
for (bℓ, br) ∈ {0, 1}2 do

bj ← op(bℓ, br)

kj ← Zi,j(bj)

cin ←$ enc(Zi,ℓ(bℓ), kj)

c←$ enc(Zi,r(br), cin)

g̃j ← g̃j ∪ c

C̃[i, j]← g̃j

for j = 1..n do

SETKEYSj(Z0,j)

SETDINF(Zd,1, . . . , Zd,n)

return C̃

Oracles of DINFtdyao,j

SETDINF(dinf)
dinf← dinf
return ()

GETDINF

return dinf

Oracles of SIMtdyao

GBL(C)

for j = 1..n do

S0,j(0)←$ {0, 1}λ

S0,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
Si,j(0)←$ {0, 1}λ

Si,j(1)←$ {0, 1}λ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

return C̃

GETDINF

for j = 1..n do

zd,j ← GETBITj

Zd,j(zd,j)← Sd,j(0)

Zd,j(1− zd,j)← Sd,j(1)

dinf[j]← Zd,j

return dinf

GETAj

return S0,j(0)

Figure 15: Code of GBtdyao (top left), DINFtdyao (lower left)
and SIMtdyao (right).

Looking ahead, the constructed simulator SIMtdyao (shown
for completeness in Fig. 15) samples wire keys in Si,j with
active/inactive semantics and thus independently of any real
input. To garble a gate, SIMtdyao encrypts the active output
wire key Si,j(0) under both active input wire keys Si-1,ℓ(0),
Si-1,r, and 0λ under all other input wire key combinations.

C. Proof outline

We use symmetric encryption security once for each gate in
the circuit (cf. Section V-A5). Afterwards, the proof connects
the gate garbling arguments and turns them into an argument
about circuit garbling, and relate them to the security state-
ment. The proof introduces an alternative representation of
Yao’s garbling scheme, annotated by index yao. Technically,
the proof proceeds as follows.

Oracle of MODGBi

GBLi(ℓ, r,op)

assert C̃ = ⊥
assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)←
(ℓ(j), r(j),op(j))

C̃j ← GBLG(ℓ, r, op, j)

C̃ ← C̃1..n

return C̃

Oracle of GATE
GBLG(ℓ, r, op, j)

C̃j ← ⊥
Zout

j ← GETKEYSout
j

for (bℓ, br) ∈ {0, 1}2 :

bj ← op(bℓ, br)

k0
j ← Zout

j (bj)

c0in ← ENCℓ(bℓ, k
0
j , 0

λ)

c1in ← ENCℓ(bℓ, 0
λ, 0λ)

c← ENCr(br, c
0
in, c

1
in)

C̃j ← C̃j ∪ {c}
return C̃j

Oracle of SIMgate

GBLG(ℓ, r, op, j)

g̃j ← ⊥
EVALj(ℓ, r, op)

Sout
j (0)← GETAout

j

S in
r (0)← GETAin

r

S in
r (1)← GETINAin

r

S in
ℓ (0)← GETAin

ℓ

S in
ℓ (1)← GETINAin

ℓ

for (dℓ, dr) ∈ {0, 1}2 :

kin
ℓ ← S in

ℓ (dℓ)

kin
r ← S in

r (dr)

if dℓ = dr = 0 :

kout
j ← Sout

j (0)

else kout
j ← 0λ

cin ←$ enc(kin
r , k

out
j)

c←$ enc(kin
ℓ , cin)

g̃j ← g̃j ∪ c

return g̃j

Figure 16: Code of MODGBi, GATE and SIMgate.

Encryption scheme security (Section III): We introduced a
2-key multi-instance version of IND-CPA security and
reduced it to single-instance IND-CPA (Corollary 1).

Layer garbling security (Section VI): We define security
of Yao’s layer garbling and and reduce it to our 2-key
multi-instance IND-CPA security notion (Lemma 4).

Circuit garbling security (Section VII): We show that the
layer security notion self-composes and, via a hy-
brid argument, implies security of the circuit garbling
(Lemma 5). We here use a modular security notion for
circuit garbling which allows the adversary to garble the
input before garbling the circuit (Fig. 21).

Standard garbling scheme security (Section VIII): We
show that composable circuit security for Yao’s garbling
scheme implies PRVSIM-security of GBtdyao.

VI. LAYER SECURITY

Consider a symmetric encryption scheme se with 2-key
IND-CPA security as defined in Section III. In this section,
we extend the encryption scheme to layer garbling for Yao’s
garbling scheme. We then define layer garbling security and
reduce it to 2-key IND-CPA security.

A. Yao’s layer garbling package GB0
yao,i

Remember that in order to garble a circuit layer, we need
to garble each gate, using encryption where the keys and
message for each ciphertext depend on the gate description.
The layer garbling package GB0

yao,i reflects this structure: Each

GB0
yao,i is composed of the packages MODGBi, GATE and

ENC0
1...n (cf. Fig. 16 and 17). GATE garbles a gate and makes

(simple) encryption queries to ENC0
1...n. MODGBi modularizes

the garbling of a layer and queries oracle GBLG of GATE for
each gate in the layer.

GETKEYSout
GATEGBLGMODGBiGBLi

GETKEYSin
ENC1..n ENC01..n

1..n

1..n

Figure 17: Layer garbling package GB0
yao,i

Definition 14 (Yao’s Layer Garbling). Let i ∈ N. We define
the circuit layer garbling package GB0

yao,i as

GB0
yao,i := MODGBi → GATE→ ENC0

1...n

where Fig. 16 defines MODGBi and GATE, Fig. 7 defines
ENC0

1...n and KEYS0
1...n, and Fig. 17 composes them.

B. Layer Garbling Security Definition

We define layer security as indistinguishability between two
games. The ideal game is parametrized by an (existentially
quantified) simulator GB1

yao,i and the real game uses layer
garbling package GB0

yao,i which specifies a layer garbling
scheme for layer i. To be able to define the ideal game, we
extend package KEYS (cf. Fig. 7) with further oracles and
provide a layer evaluation package LEV as shown in Fig. 18.

LEVj

EVALj(ℓ, r, op)

zℓ ← GETBITℓ

zr ← GETBITr

zj ← op(zi−1,ℓ, zi−1,r)

SETBITj(zj)

KEYS

GETKEYSout

bflag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z

GETAin

assert aflag

return Z(z)

GETINAin

assert aflag

return Z(1− z)

Figure 18: Oracles of LEV, and additional oracles of KEYS.

Definition 15 (Layer Security). Let i ∈ N. Layer garbling
package GB0

yao,i is secure if there exists a PPT layer simulator
GB1

yao,i such that for all PPT adversaries B,

Adv(B;LSEC0(GB0
yao,i),LSEC

1(GB1
yao,i))

is negligible, where Fig. 19a defines LSEC0(GB0
yao,i) and

Fig. 19b defines LSEC1(GB1
yao,i).

KEYS1..n

KEYS1..nGETKEYSout

GBLi

GETAout

SETBIT

GETKEYSin

GETKEYSin

1..n

1..n
1..n

1..n

1..n

GBi
0

(a) Real layer sec. game
LSEC0(GB0

yao,i).

GBLi

SETBIT

GETAout

KEYS1..n

GETKEYSin
KEYS1..n

SETBIT1..n

GETBIT1..n
EV

GETAin

GETINAin

EVAL

GETAout

GBi
1

1..n

1..n

1..n

1..n

1..n

1..n

(b) Ideal layer security game
LSEC1(GB1

yao,i).

Figure 19: Layer security games.

KEYS1..n

KEYS1..n
GETKEYSout

GATEGBLGMODGBiGBLi

GETAout

SETBIT

GETKEYSin

GETKEYSin
ENC1..n ENC0

1..n

1..n

1..n
1..n

1..n

1..n

(a) Real layer game LSEC0
i (GB

0
yao,i). We highlight GByao,i in orange.

KEYS1..n

KEYS1..n
GETKEYSout

GATEGBLGMODGBiGBLi

GETAout

SETBIT

GETKEYSin

GETBIT1..n

GETKEYSinENC1..n ENC1

1..n

1..n

1..n
1..n

1..n

1..n

(b) Hybrid layer game HYBi. We color reduction Rlayer,i in red.

KEYS1..n

KEYS1..n
GETKEYSout

GATEGBLGMODGBiGBLi

GETAout

SETBIT

GETKEYSin

GETBIT1..n

GETKEYSinENC1..n ENC1

1..n

1..n

1..n
1..n

1..n

1..n

(c) Hybrid layer game HYBi. We highlight subgame GGATE in pink.

KEYS1..n

KEYS1..nGETAout

SIMgateGBLi

GETAout

SETBIT

GETKEYSin

GETBIT
EVAL EV

SETBIT

GETAin

GETINAin

MODGBi GBLG

1..n

1..n
1..n

1..n

1..n

1..n

1..n

1..n

(d) Ideal layer game LSEC1
i (GB

1
yao,i). We color GGATEsim in purple.

KEYS1..n

KEYS1..nGETAout

SIMgateGBLi

GETAout

SETBIT

GETKEYSin

GETBIT
EVAL EV

SETBIT

GETAin

GETINAin

MODGBi GBLG

1..n

1..n
1..n

1..n

1..n

1..n

1..n

1..n

(e) Ideal layer game LSEC0
i (GB

1
yao,i). We mark sim. GB1

yao,i in blue.

Figure 20: Layer security games and hybrids for Lemma 4.

The games LSEC0(GB0
yao,i) and LSEC1(GB1

yao,i) can be
seen as layer version of the selective security games
PRVSIM0(GBtdyao,DINFtdyao) and PRVSIM1(SIMtdyao), mod-
ified for our composition goals:
• The adversary inputs a single circuit layer to the game,
• the adversary’s query to the game is split into SETBIT,
GBL, GETAout and GETDINF queries,

• input/output keys and bits are stored in KEYS packages,
• the simulator gets the input keys via GETINAin and
GETAin queries from the top KEYS package and the
active output key via GETAout from the lower KEYS
package rather than sampling them itself.

Interestingly, the layer garbling security game even allows the
adversary to query GETA before GBL and thus obtain the input
garbling before choosing the circuit. This feature as well as
the aforementioned splitting of queries will be useful for (self-
)composability to which we turn in Section VII.

C. Security Reduction to 2-key IND-CPA security

We now prove that security of GB0
yao,i reduces to 2-key IND-

CPA security of the underlying encryption scheme se .

Lemma 4 (Layer Security). Let i ∈ N. Let Rlayer,i be the
reduction defined in Figure 20b, GByao,i as defined in Fig. 17
and GB1

yao,i as defined in Fig. 20e and 16. Then for all PPT
adversaries A,

Adv(A;LSEC0(GByao,i),LSEC
1(GB1

yao,i))

=Adv(A → Ri
layer;2CPA

0
1..n(se),2CPA

1
1..n(se)).

Gate garbling simulator SIMgate (Fig. 16) works as follows:
Instead of garbling a gate based on the 0/1 semantics of
wire keys like the real GB0

yao,i, it uses their inactive/active
semantics. The simulator first retrieves all relevant wire keys
except for the inactive output wire key. One ciphertext, the one
containing the active output key, is computed honestly using
the left and right active input keys. The remaining cipher-
texts are generated by encrypting the all-zero key. Simulator
GB1

yao,i := MODGBi → SIMgate extends this to layer garbling.

Proof of Lemma 4. Let A be an adversary. We wish to apply
the perfect reduction lemma (Lemma 1). For this purpose, we
prove two claims:

Claim 1 (Real Code Equivalence). ∀1 ≤ i ≤ d, it holds that

LSEC0(GB0
yao,i)

code≡ Ri
layer → 2CPA0

1..n(se),

where Ri
layer is defined in Figure 20b.

Claim 1 follows by definition of GB0
yao,i and observing that

Fig. 20a and Fig. 20b indeed present the same package
composition, merely with different highlighting.

Claim 2 (Ideal Code Equivalence). ∀1 ≤ i ≤ d, it holds that

LSEC1(GB1
yao,i)

code≡ Ri
layer → 2CPA1

1..n(se),

where Ri
layer is defined in Figure 20b.

Claim 2 will be proved in a moment. Applying the perfect
reduction lemma with Claims 1 and 2 concludes our proof.

Claim 2 is the technical heart of the proof in which the
semantics of keys used to garble a gate is switched: From 0/1
to active/inactive semantics, the latter being independent of
the input to the layer and hence a simulation.

Proof of Claim 2. We need to show code equivalence of
Ri

layer → IND-CPA1
1..n(se) and LSEC1(GB1

yao,i). In a first
step, we define real and ideal gate garbling subgames GGATE
and GGATEsim (Fig. 20c and Fig. 20d). If we can show that

GGATE
code≡ GGATEsim, (5)

then the layer garbling games in Fig. 20b and Fig. 20e are
functionally equivalent and we obtain Claim 2. The proof
of Equation 5 is an inlining argument that switches which
wire key semantics used to garble the layer from 0/1 to
active/inactive semantics, see Appendix B for details. In a
nutshell, the argument first inlines all packages, then changes
the garbling of a gate from encrypting under all combinations
of input wire keys using 0/1 semantics to the equivalent
computation using active/inactive semantics, and then factors
out the relevant packages again.

GBL1

SETBIT

GETAout

GETKEYSin

GByao

1..n

1..n

1..n

KEYS1..n

KEYS1..n
GETKEYSin

1..n

GBL2

GBLd
GETKEYSout

1..n

...

(a)

GBL1

SETBIT

GETAout

GETKEYSout

GETKEYSin

GByao, 1
0

1..n

1..n

1..n

1..n

KEYS1..n

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n
GETKEYSin

1..n

GBL2
GETKEYSout

GETKEYSin

GByao, 2
0

1..n

1..n

GBLd
GETKEYSout

GETKEYSin

GByao, d
0

1..n

1..n

...

(b)

GETA1..n, SETBIT1..n

EVAL
GETAout

GByao, 1

EVAL

GETAin

GETINAin

GByao, 2

EVALGByao, d

GETBIT

SETBIT

SETBIT

GETBIT

GETBIT

...

SETBIT

GETKEYSin

EV

EV

EV

GETAout

GETAin

GETINAin

GBL1

GBL2

GBLd

1

1

1

GETAout

GETAin

GETINAin

KEYS1..n

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

out

(c)

Figure 21: Fig. 21a-21b display game SEC0(GByao) and package GByao (orange) in different representations. Fig. 21c defines
SEC1(SIMyao) where SIMyao is the parallel composition of the GB1

yao,i packages (blue).

VII. CIRCUIT SECURITY

A. Yao’s circuit garbling package GByao

Circuit garbling extends layer garbling by composing layer
garbling packages and share state through KEYS:

Definition 16 (Yao’s Layer Garbling). Let d ∈ N. We define
the circuit garbling package GB0

yao as the composition of layer
garbling packages GB0

yao,1, . . . ,GB
0
yao,d with KEYS packages as

shown in Fig. 21a-21b.

B. Circuit garbling security
Analogous to layer garbling security, we define circuit

garbling security as indistinguishability of two games: Real
game SEC0(GByao) in Fig. 21a-21b can be seen as composition
of multiple real layer security games LSEC0(GByao,i) that
overlap in their KEYS packages. Similarly, the composition
of multiple ideal layer security games LSEC1(SIMyao,i) in
Fig. 21c defines the ideal game SEC1(SIMyao).

Lemma 5 (Circuit Security). Let d be a polynomial upper
bound on the depth of the circuit which A chooses. Then, for
each 1 ≤ i ≤ d, there exists a PPT reduction Ri

circ such that
for all PPT adversaries A,

Adv(A;SEC0(GByao),SEC
1(SIMyao))

≤
d∑

i=1

Adv(A → Ri
circ;LSEC

0(GB0
yao,i),LSEC

1(SIMyao,i)),

for SEC0(GByao) and SEC1(SIMyao) in Fig. 21a and 21c.

Proof of Lemma 5. We reduce circuit garbling security to
layer garbling security via a hybrid argument over the d layers
of the circuit. The game-hopping argument starts with hybrid
0, which is SEC0(GByao), and gradually makes modifications
until reaching hybrid d, which is SEC1(SIMyao). The first step
rewrites SEC0(GByao) and SEC1(SIMyao) as

SEC0(GByao)
code≡ R1

circ → LSEC0(GB0
yao,1) (6)

SEC1(SIMyao)
code≡ Rd

circ → LSEC1(GB1
yao,d), (7)

where Fig. 22b and Fig. 22e define R1
circ and Rd

circ, respec-
tively. Both equivalences hold by associativity of package
composition (cf. Fig. 22b and Fig. 22e). The definition of R1

circ
andRd

circ can be generalized to obtainRi
circ for all i ∈ {1, .., d}

as in Fig. 22c. Given Ri
circ, we can now define the hybrid

games between the 0-th hybrid R1
circ → LSEC0(GB0

yao,1)
and the d-th hybrid Rd

circ → LSEC1(GB1
yao,d). Namely, for

i ∈ {1, .., d-1}, we define the i-th hybrid in the following two
equivalent ways:

Ri
circ → LSEC1(GB1

yao,i)
code≡ Ri+1

circ → LSEC0(GB0
yao,i+1) (8)

Fig. 22c and 22d show that the two games are indeed equiv-
alent. With Equations 6, 7 at hand, we can prove Lemma 5:

Adv(A;SEC0(GByao),SEC
1(SIMyao))

= Pr
[
1←$ A → SEC0(GByao)

]
− Pr

[
1←$ A → SEC1(SIMyao)

]
(6),(7)
= Pr

[
1←$ A → R1

circ → LSEC0(GB0
yao,1)

]
− Pr

[
1←$ A → Rd

circ → LSEC1(GB1
yao,d)

]
Applying a telescopic sum and (8) then yields

Pr
[
1←$ A → R1

circ → LSEC0(GB0
yao,1)

]
+
(d−1∑
i=1

−Pr
[
1←$ A → Ri

circ → LSEC1(GB1
yao,i)

]
+ Pr

[
1←$ A → Ri+1

circ → LSEC0(GB0
yao,i+1)

])
− Pr

[
1←$ A → Rd

circ → LSEC1(GB1
yao,d)

]
=

d∑
i=1

Pr
[
1←$ A → Ri

circ → LSEC0(GB0
yao,i)

]
−

d∑
i=1

Pr
[
1←$ A → Ri

circ → LSEC1(GB1
yao,i)

]
=

d∑
i=1

Adv(A → Ri
circ;LSEC

0(GB0
yao,i),LSEC

1(SIMyao,i)).

Combining Lemma 5 (Circuit security), Lemma 4 (Layer
security) and Corollary 1 (2CPA), we obtain the following
useful corollary.

KEYS1..n

KEYS1..n

SETBIT

GETAout

GBL1

KEYS1..n

GBL2

GBLd

...

GETKEYSin

GETKEYSout

GETKEYSout

GETKEYSin

KEYS1..n
GETKEYSin

...

KEYS1..n
GETKEYSout

GETKEYSin

GByao, 1

GByao, 2

GByao, d

0

0

0

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

(a) Game SEC0(GByao), cf. Fig. 21b.

KEYS1..n

KEYS1..n

SETBIT

GETAout

GBL1

KEYS1..n

GBL2

GBLd

...
GETKEYSin

GETKEYSout

GETKEYSout

GETKEYSin

KEYS1..n
GETKEYSin

...

KEYS1..n
GETKEYSout

GETKEYSin

GByao, 1

GByao, 2

GByao, d

0

0

0

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

(b) Game R1
circ → LSEC0(GByao,1), reduction R1

circ in grey.

GETA1..n, SETBIT1..n

GBLi-1

GBLi+1

EVGByao, i EVAL
GETBIT

SETBIT

GETAin

GETINAin

1

EVAL
GETAout

GByao, 1

EVALGByao, i-1

GETBIT

SETBIT

GETBIT

...

SETBIT

EV

EV

GETAin

GETINAin

GBL1

GBLi

1

1

GETAout

GETAin

GETINAin

GBLi+2

GBLd

GETKEYSout

GETKEYSin

GETKEYSin

...

GETKEYSout

GETKEYSin

GByao, i+2

GByao, d

0

0

GETKEYSout

GETKEYSin

GByao, i+1
0

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n

KEYS1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

KEYS1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

(c) Game Ri
circ → LSEC1(GByao,i), reduction Ri

circ in grey.

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n

KEYS1..n

GETA1..n, SETBIT1..n

GBLi+1

EVGByao, i EVAL
GETBIT

SETBIT

GETAin

GETINAin

1

EVAL
GETAout

GByao, 1

EVALGByao, i-1

GETBIT

SETBIT

GETBIT

...

SETBIT

EV

EV

GETAin

GETINAin

GBL1

GBLi

1

1

GETAout

GETAin

GETINAin

GBLi+2

GBLd

GETKEYSout

GETKEYSin

GETKEYSin

...

GETKEYSout

GETKEYSin

GByao, i+2

GByao, d

0

0

GETKEYSout

GETKEYSin

GByao, i+1
0

GBLi-1

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

KEYS1..n

(d) Game Ri+1
circ → LSEC0(GByao,i+1), reduction Ri+1

circ in grey.

GETA1..n, SETBIT1..n

EVAL
GETAout

GByao, 1

EVAL

GETAin

GETINAin

GByao, 2

EVALGByao, d

GETBIT

SETBIT

SETBIT

GETBIT

GETBIT

...

SETBIT

GETKEYSin

EV

EV

EV

GETAout

GETAin

GETINAin

GBL1

GBL2

GBLd

1

1

1

GETAout

GETAin

GETINAin

KEYS1..n

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

(e) Game Rd
circ → LSEC1(GByao,d), reduction Rd

circ in grey.

GETA1..n, SETBIT1..n

EVAL
GETAout

GByao, 1

EVAL

GETAin

GETINAin

GByao, 2

EVALGByao, d

GETBIT

SETBIT

SETBIT

GETBIT

GETBIT

...

SETBIT

GETKEYSin

EV

EV

EV

GETAout

GETAin

GETINAin

GBL1

GBL2

GBLd

1

1

1

GETAout

GETAin

GETINAin

KEYS1..n

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

out

(f) Game SEC1(SIMyao,d), cf. Fig. 21c.

Figure 22: Reductions for the hybrid argument for Lemma 5.

Corollary 2. Let Rhyb be the reduction that samples i ←$

{1, .., d} and then executes Ri
circ → Rlayer,i → R2cpa. Then,

for all PPT adversaries A

Adv(A;SEC0(GByao),SEC
1(SIMyao))

≤ n · d · Adv(A → Rhyb;IND-CPA
0(se),IND-CPA1(se))

Proof. Let A be an adversary. Denote Ri
hyb := Ri

circ →
Rlayer,i → R2cpa and note that the probability that Rhyb =
Ri

hyb is 1
d , and hence,

Adv(A;SEC0(GByao),SEC
1(SIMyao))

Lem. 5
≤

d∑
i=1

Adv(A → Ri
circ;LSEC

0(GByao,i),LSEC
1(SIMyao,i))

Lem. 4
≤

d∑
i=1

Adv(A → Ri
circ → Rlayer,i;2CPA

b
1..n(se))

Cor. 1
≤ n ·

d∑
i=1

Adv(A → Ri
hyb;IND-CPA

b(se))

= n · d ·
d∑

i=1

1

d
Adv(A → Ri

hyb;IND-CPA
b(se))

= n · d
d∑

i=1

Adv(A → Rhyb;IND-CPA
b(se))

VIII. ALIGNMENT WITH PRVSIMb

Oracle of MOD

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

SETBITj(xj)

x̃[j]← GETAout
j

for i = 1..d do

(ℓ, r,op)← C[i]

C̃[i]← GBLi(ℓ, r,op)

for j = 1..n do

dinf[j]← GETKEYSin
j

return (C̃, x̃, dinf)

Figure 23: Code of MOD.

To conclude our proof of The-
orem 1, it remains to reduce se-
lective security of Yao’s garbling
scheme to its circuit garbling se-
curity that we established in the
previous section. Towards this
goal, we define a reduction pack-
age MOD in Fig. 23 that provides
a GARBLE oracle and queries
the oracles of the circuit secu-
rity games, and apply the perfect
reduction lemma (Lemma 1) one
last time.

Proof of Theorem 1. Consider
simulator SIMtdyao which we
have already seen in Fig. 15. To
be able to apply Lemma 1 with reduction MOD, we need to
show the following two claims:

Claim 3 (Real game equivalence).

PRVSIM0(GBtdyao,DINFtdyao)
code≡ MOD→ SEC0(GByao)

Fig. 24 shows the two games. The claim follows directly after
inlining all packages, see Appendix C for details.

Claim 4 (Ideal game equivalence).

PRVSIM1(SIMtdyao)
code≡ MOD→ SEC1(SIMyao)

EKEYS1..n

DINFtdyao

SETKEYS

SETDINF
GBtdyao

GETDINF

SETBIT1..n

GETAout

GBLGARBLE
MOD-

PRVSIM0

EN
GETKEYS1..n

1..n

1..n

(a) Real selective security game PRVSIM0(GBtdyao,DINFtdyao).

KEYS1..n

KEYS1..n

GETKEYSin

GETKEYSout
GByao

GETKEYSin

SETBIT

GETAout

GBL1..d

GARBLE
MOD

1..n

1..n

1..n

1..n

1..n

(b) MOD→ SEC0(GByao), the game SEC0(GByao) is marked in grey.

Figure 24: Real security games PRVSIM0(GBtdyao,DINFtdyao)
and MOD→ SEC0(GByao).

The two games are shown in Fig. 25. The claim follows
directly after inlining all packages. For details, see Ap-
pendix D.

Applying Lemma 1 with Claims 3 and 4 as well as
Corollary 2 guarantees now the existence of PPT reductions
B := A → MOD and R such that

Adv(A;PRVSIM0(GBtdyao,DINFtdyao),PRVSIM
1(SIMtdyao))

(3),(4)
= Adv(B;SEC0(GByao),SEC

1(SIMyao))

≤ d · n · Adv(B → R;IND-CPA0(se),IND-CPA1(se))

which concludes our proof.

BITS1..n

BITS1..n

GETBIT1..n

EVAL

SETBIT1..n

GETBIT1..n

SETBIT1..n

EV

SIM

GARBLE
GETDINF

GETAout

GBL

MOD-

PRVSIM1

1..n

(a) Ideal selective security game PRVSIM1(SIMtdyao).

GARBLE MOD

GETA1..n, SETBIT1..n

EVAL
GETAout

GByao, 1

EVAL

GETAin

GETINAin

GByao, 2

EVALGByao, d

GETBIT

SETBIT

SETBIT

GETBIT

GETBIT

...

SETBIT

GETKEYSin

EV

EV

EV

GETAout

GETAin

GETINAin

GBL1

GBL2

GBLd

1

1

1

GETAout

GETAin

GETINAin

KEYS1..n

KEYS1..n

KEYS1..n

...

KEYS1..n

KEYS1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

out

(b) MOD→ SEC1(SIMyao), game SEC1(SIMyao) is marked in grey.

Figure 25: Ideal security games PRVSIM1(SIMtdyao) and
MOD→ SEC1(SIMyao)

IX. DISCUSSION

We now revisit our new security proof for Yao’s garbling
scheme to discuss our insights and compare our proof to
existings proofs in more detail.

A. Definitions and proof style

We reduce BHR security of Yao’s garbling scheme to IND-
CPA security of the underlying encryption scheme. The main
focus of this work is the alternative representation of Yao’s
garbling scheme in the style of state-separating proofs (SSPs)
as well as an alternative representation of the security of Yao’s
garbling scheme, also in the style of SSPs. In SSP style, both
the scheme and the security notion are described as packages
that call each other and otherwise have strictly separated state.

1) Syntactic and local reasoning: Our proof relies almost
entirely on graph-based reductions (e.g., Fig. 22). Whenever
such syntactic reasoning was not possible, we proved code
equivalence for suitable subgames, and applied the perfect
reduction lemma (Lemma 1) to lift the equivalence result
to the more complex games. Composing these subgames
with all reduction layers, e.g. MOD → Rhyb → 2CPAb(se),
would then yield the typical proof presentation as sequence of
direct game hops between PRVSIM0(GBtdyao,DINFtdyao) and
PRVSIM1(SIMtdyao) of a more ”traditional” proof. Our proof
reduces the number of code equivalence steps to a minimum:
alignment of 2-key CPA with standard IND-CPA (Lemma 2)
and of circuit garbling security with BHR’s selective security
(Claims 3 and 4), and the wire key semantic switch (Claim 2)
when reasoning about the security of layer garbling.

2) Treating wire keys as their own unit: Wire keys are a
central concept in Yao’s garbling scheme, and each key is
used at least twice: Once as message when garbling a gate,
and (at least) once by the layer which uses them as encryption
keys. The garbling scheme moreover has the property of being
output projective, i.e. output decoding is the exact inverse of
input decoding. As a result, we can treat input encoding and
output decoding information as well as intermediate wire keys
uniformly. The SSP focus on state rather than algorithms thus
led us to place special emphasis on the modeling of keys: We
use a separate KEYS package which samples and stores keys
together with additional information. This uniformity provides
the flexibility to interpret such a package as representing input
encoding, the generation of output decoding information, or
intermediate wire keys during our proof, and hence allows the
self-composability of our layer security notion (used in the
proof of our hybrid argument, cf. Lemma 5). Interestingly, we
do not remove this additional information from KEYS again
until the relation with standard garbling scheme security, and
instead simply restrict the simulator’s access to it.

Implementations typically sample all wire keys in the be-
ginning, analogous to GBtdyao (Fig. 15), and before garbling
the actual circuit. Our game SEC0(GByao) could also adopt
that style by having a special INITSAMPLE query, but there
is no benefit to the proof in having such a query, and since
our focus is on the proof, our model of Yao’s garbling scheme
samples keys only at the point when they are needed.

3) Layer garbling security notion: As mentioned above,
modeling wire keys as KEYS package is useful to define a
security notion for layer garbling (and thus implicitly gate
garbling) in Section VI. Defining this notion allows us to
perform the main reduction argument to IND-CPA security
locally, at the level of a single circuit layer. Returning to the
discussion in Section I, the self-composability of layer garbling
security then means security of garbling circuit layers C1 and
C2 separately implies security of garbling the combined circuit
consisting of C1 and C2.

4) Circuit garbling security notion: By self-composition,
our layer garbling security notion induces a (Yao-specific)
circuit garbling security notion (cf. Section VII). We find this
security notion of independent interest since it expresses the
strong particular security properties of Yao’s garbling scheme:
It says that a garbling scheme is secure if for any circuit C
and input x, garbling can be simulated given only C and an
encoding of the output C(x) rather than C(x) itself.

On the technical level, the circuit garbling
security notion defined by game pair (SEC0(GByao),
SEC1(SIMyao)) differs from the selective security notion
(PRVSIM0(GBtdyao,DINFtdyao), PRVSIM1(SIMtdyao)) in
further conceptually interesting ways. For the real game, the
changes are as follows:

Merging input encoding & input key packages into KEYS
to unify the treatment of all wire keys and allow the
composition of real and ideal layer garbling security
games, which enables the hybrid argument in Section VII.

Factoring out key sampling into KEYS since all wire keys
throughout the garbling scheme are treated uniformly.

Splitting garbling interface The selective security game in-
terface is split into separate oracles for choosing an input,
obtaining an input encoding, garbling individual circuit
layers, and obtaining output decoding information.

Sampling input wire keys before output wire keys A dif-
ferent query order is enforced by MOD to ensure the
correct information flow needed for self-composition of
layer garbling: Inputs are garbled before the circuit, and
output decoding information is only available after that.

The two ideal games differ further as follows:

Merging inputs and input wire keys Circuit evaluation is
performed directly on the information stored in KEYS,
without separate BITS packages.

Simulation based on output encoding Since the garbling
interface is split, we can easily provide simulator SIMyao
with access to the active output keys instead of active
output bits.

B. Comparison with existing proofs

Our proof is the first proof of Yao’s garbling scheme to
use the state-separating proofs technique. In addition, we rely
on different intermediate assumptions that are expressed as
local security notions with local simulators, both of which we
discuss below.

1) Encryption security and hybrid strategy: All security
proofs follow a pattern: Garbling scheme security is first
reduced to an intermediate security notion capturing some
aspect of gate garbling and encryption security, which is in turn
reduced to a standard assumption such as IND-CPA security.
Where the proofs differ conceptually is in the intermediate
assumptions which in turn impact the details of their hybrids.

The first security proof of Yao’s garbling scheme by Lindell
and Pinkas [LP09] proposes to abstract the garbling of a
gate as double encryption security. An adversary inputs two
message tuples and is provided with double encryptions,
computed like when garbling a gate, as well as encryption
oracles corresponding to the inactive input wire keys of the
gate. The adversary is asked to distinguish encryptions of
left from encryptions of right messages. The hybrid argument
ranges then over all gates in the circuit.

BHR [BHR12b] shift the focus from the encryptions as-
sociated with garbling a gate to (double) encryptions using
a specific wire key. In their dual-key cipher assumption, an
adversary is given access to an encryption oracle for a dual-
key cipher that encrypts under two keys, the challenge key and
another key that is chosen by the adversary. The adversary
is asked to distinguish real encryptions from encryptions of
random strings. The hybrid argument ranges then over all
wires in the circuit.

In our proof, we wanted to capture the best of both worlds:
Focusing on gate and layer security on the one hand allows to
stay close to the inherent modularity that real circuit garbling
has. Moreover, a core argument in the proof is the semantic
switch from 0/1 keys to active/inactive keys (Claim 2). The
latter is an argument about the specific way encryption is used
and not about the encryption scheme itself. On the other hand,
we want to be able to relate the security of encryption under
(inactive) wire keys to IND-CPA security. The result is a two-
step approach: First we introduce a layer security notion that
garbles a circuit layer and show security of garbling a circuit
via a sequence of hybrids ranging over all layers in the circuit
(Lemma 5). The use of a layer assumption can be seen as close
in spirit to Lindell and Pinkas. Layer security is then further
reduced to an encryption assumption with two keys (2-key
CPA). In this assumption, each encryption is only under one
of the keys, thus capturing the contribution of one wire to the
double encryption when garbling a gate, which is reminiscent
of the intention of BHR’s dual-key cipher. The application of
the BDFKK multi-instance lemma to obtain Corollary 1 then
implicitly contains another sequence of hybrids iterating over
all keys in the circuit layer, even though there are no explicit
gates or circuit wires at this point.

2) Local security and local simulation: We construct our
circuit garbling security notion as composition of layer gar-
bling security games, and hence a circuit simulator can be
a composition of local layer simulators. Ananth and Lom-
bardi [AL18] recently defined a local simulation property for
garbling schemes. This property can be seen as a subcircuit
(e.g. layer) garbling security notion that maintains some of
the state for garbling the rest of the circuit, e.g. wire keys

for the whole circuit. As a consequence, their local simu-
lators can be composed to obtain a circuit simulator which
they do to construct adaptively secure garbling schemes and
garbling schemes for Turing machines. Ananth and Lombardi
outline why Yao’s garbling scheme, when restricted to layered
circuits, has the local simulation property. The argument is
derived from the work of Hemenway et al. [HJO+16] on
adaptive security of a modification of Yao’s garbling scheme,
which ultimately follows the proof outline of Lindell and
Pinkas [LP09]. In particular, Ananth and Lombardi do not
derive a security proof of Yao’s garbling scheme from the
local simulation property. Their result can thus be interpreted
as extracting a layer security property from the Lindell and
Pinkas proof, though it differs from ours in that it cannot be
composed directly to yield circuit garbling security.

C. State-separating proofs

1) Impact on our proof: Following SSP ideas impacted our
proof style and as a result also the proof size. One of the
salient benefits of SSPs is the ability to reason syntactically
about game equivalences via graph-based reductions, cf. the
perfect reduction lemma (Lemma 1). To use this feature,
we developed a new modular description of Yao’s garbling
scheme that expresses the construction as a graph of package
dependencies. The packages and their interplay are carefully
chosen to simplify the presentation of all subsequent argu-
ments. We strove to state every argument on the smallest
subgame (and hence subgraph) possible and reconnect with
the large game through the perfect reduction lemma. This is
the most visible in our approach to reducing selective security
to our intermediate encryption scheme security notion 2-key
IND-CPA. While existing proofs perform the equivalent proof
step as one big reduction, we break it down into multiple
parts: It suffices to reduce layer garbling security to encryption
security (Lemma 4), then circuit garbling security to layer
garbling security (Lemma 5), until we can finally reduce
selective security to circuit garbling security to obtain Thm. 1.
The concept of packages was particularly beneficial to express
the state sharing between gates in the form of wire keys which
ultimately made it possible to split the reduction to encryption
scheme security. The split reduces the complexity of each step
as well as the size of the game to reason about at a time, which
hopefully makes it easier to verify the individual steps.

2) Adapting SSP: We adapted several existing SSP strate-
gies for our setting. When composing a package with itself
in parallel, BDFKK add indices to its name and oracles.
To lighten notation, we omit the index when package and
oracles are uniquely identified by the call graph. KEY pack-
ages that store key material are another standard concept
in SSP, introduced by BDFKK for sharing state between
different protocols/primitives, e.g., a KEM and a DEM or
a key exchange protocol and a secure channel. We adapt
the concepts for keys shared between different layers of the
garbling scheme by adding bit semantic or active/inactive
semantic of the keys to our KEYS packages. Finally, our
work is the first to use simulators in an SSP context. We find

games parameterized by simulators convenient to work with
as they do not require to transform the real game precisely
into the ideal game. Rather, the ideal game contains a spot for
the simulator and it suffices to construct a simulator which
can fill it out, typically as whichever code emerges after
a sufficient number of game transformations. In follow-up
work, Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok and
Kohlweiss [BDE+21] also used simulation-based security for
their definition of the TLS 1.3 key schedule, a core component
of the TLS 1.3 handshake protocol.

D. Formal verification

Security of Yao’s garbling scheme has been formally veri-
fied: Li and Micciancio [LM18] provide a symbolic analysis
with computational soundness, a result that is incompara-
ble with our game hopping-style proof. Almeida, Barbosa,
Barthe, Dupressoir, Grégoire, Laporte, and Pereira [ABB+17]
mechanized the BHR proof for Yao’s garbling scheme in
EasyCrypt [BGHZ11], a proof assistant for code-based game-
playing proofs. Our structured code-based proof can be seen
as another target for mechanization. We remark that recent
works on mechanizing SSP-style proofs (SSProve [AHR+21],
Dupressoir, Kohbrok and Oechsner [DKO21]) as well as
discussions with the authors of [ABB+17] give us hope
that our proof can indeed be mechanized. However, for-
mal verification–whether in existing general-purpose or SSP-
specific tools like SSProve–is a goal that is orthogonal to the
scope of this work, and we leave this question as future work.

Acknowledgments

We are grateful to Pihla Karanko, Markulf Kohlweiss,
Kirthivaasan Puniamurthy, Luisa Zeppelin, and the participants
of the Advanced Topics in Cryptography course 2021 at Aalto
University for useful suggestions on the presentation. We thank
François Dupressoir for insightful discussions about the Easy-
Crypt security proof of Yao’s garbled circuits in [ABB+17].
Finally, we thank the reviewers of CSF 2022 for their thorough
comments and helpful suggestions that significantly improved
the article. All remaining shortcomings of this article are, of
course, our responsibility.

Sabine Oechsner was supported by the European Research
Council (ERC) under the European Unions’s Horizon 2020
research and innovation programme under grant agreement
No 669255 (MPCPRO), the Concordium Blockhain Research
Center, Aarhus University, Denmark, and the Danish Inde-
pendent Research Council under Grant-ID DFF-8021-00366B
(BETHE). This work was supported by the Blockchain Tech-
nology Laboratory at the University of Edinburgh and funded
by Input Output Global and the Academy of Finland.

REFERENCES

[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François
Dupressoir, Benjamin Grégoire, Vincent Laporte, and Vitor
Pereira. A fast and verified software stack for secure function
evaluation. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1989–
2006. ACM Press, October / November 2017.

[AHR+21] Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, An-
toine Van Muylder, Théo Winterhalter, Catalin Hritcu, Kenji
Maillard, and Bas Spitters. Ssprove: A foundational framework
for modular cryptographic proofs in coq. In 34th IEEE Computer
Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia,
June 21-25, 2021, pages 1–15. IEEE, 2021.

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling
schemes from functional encryption through a local simulation
paradigm. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, Part II, volume 11240 of LNCS, pages 455–472.
Springer, Heidelberg, November 2018.

[BDE+21] Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger,
Cédric Fournet, Konrad Kohbrok, and Markulf Kohlweiss. Key-
schedule security for the TLS 1.3 standard. Cryptology ePrint
Archive, Report 2021/467, 2021. https://eprint.iacr.org/2021/467.

[BDF+18] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad
Kohbrok, and Markulf Kohlweiss. State separation for code-
based game-playing proofs. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of
LNCS, pages 222–249. Springer, Heidelberg, December 2018.

[BGHZ11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago
Zanella Béguelin. Computer-aided security proofs for the work-
ing cryptographer. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 71–90. Springer, Heidelberg, Au-
gust 2011.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adap-
tively secure garbling with applications to one-time programs
and secure outsourcing. In Xiaoyun Wang and Kazue Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–
153. Springer, Heidelberg, December 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foun-
dations of garbled circuits. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796. ACM
Press, October 2012.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple
encryption and a framework for code-based game-playing proofs.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd FOCS, pages 136–145.
IEEE Computer Society Press, October 2001.

[DKO21] François Dupressoir, Konrad Kohbrok, and Sabine Oechsner.
Bringing state-separating proofs to easycrypt - A security proof
for cryptobox. IACR Cryptol. ePrint Arch., page 326, 2021.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra
Scafuro, and Daniel Wichs. Adaptively secure garbled circuits
from one-way functions. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 149–178. Springer, Heidelberg, August 2016.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s
garbled circuits. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 433–458.
Springer, Heidelberg, October / November 2016.

[LM18] Baiyu Li and Daniele Micciancio. Symbolic security of garbled
circuits. In Steve Chong and Stephanie Delaune, editors, CSF
2018Computer Security Foundations Symposium, pages 147–161.
IEEE Computer Society Press, 2018.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of
Yao’s protocol for two-party computation. Journal of Cryptology,
22(2):161–188, April 2009.

[Mau12] Ueli Maurer. Constructive cryptography - A new paradigm for
security definitions and proofs. In Sebastian Mödersheim and
Catuscia Palamidessi, editors, Theory of Security and Applica-
tions - Joint Workshop, TOSCA 2011, Saarbrücken, Germany,
March 31 - April 1, 2011, Revised Selected Papers, volume 6993
of Lecture Notes in Computer Science, pages 33–56. Springer,
2012.

[Weg87] Ingo Wegener. The complexity of Boolean functions. BG Teubner,
1987.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets
(extended abstract). In 27th FOCS, pages 162–167. IEEE
Computer Society Press, October 1986.

https://eprint.iacr.org/2021/467

APPENDIX

A. Standard IND-CPA security implies 2-CPA security

Proof of Lemma 2, continued. The proof proceeds via an in-
lining argument, shown in Fig. 26. Starting from game
2CPAb(se) (b ∈ {0, 1}) in the leftmost column, we grad-
ually transform the code until we reach game RED →
IND-CPAb(se) in the rightmost column. Inlining the oracles
of KEYS yields the second column from the first column. To
get to the third column, the two versions of the ENC oracle
are combined. Isolating the uncorrupted key Z(1 − z) and
renaming it to k yields the forth column. Finally, factor out
IND-CPAb(se) to obtain game RED→ IND-CPAb(se) in the
last column.

B. Proof of Claim 2

Proof of Claim 2, continued. It remains to prove Equation 5:
GGATE

code≡ GGATEsim. The equivalence follows from an
inlining argument shown in Fig. 27. The second column is
obtained from the first by inlining ENC1

1..n and rearranging
code, and similarly for the third column and inlining KEYS.
The next step is where the wire key semantic is switched: To
garble a gate, oracle GBLG in the third column loops over all
combinations of bit pairs (bℓ, br). To get to the forth column,
we apply the bijection (bℓ, br) 7→ (bℓ⊕zin

ℓ , br⊕zin
r) that maps

bit values to active/inactive status to their corresponding, as
indicated by zin

ℓ and zin
r . Further rearranging the code yields

the fifth column, and factoring out EV and KEYS yields the
last column.

C. Proof of Claim 3

Proof of Claim 3. The claim follows from an inlining ar-
gument shown in Fig. 28. Starting from G1

real :=
MPRV SIM0(GBtdyao,DINFtdyao), we first inline packages
EN1..n and GBtdyao to obtain G2

real. Further inlining EKEYS1..n

and DINFtdyao yields game G3
real. To obtain G4

real, we move the
assertions about circuit size and split the wire key sampling.
Input wire key sampling remains while all other wire keys are
sampled on demand inside the encryption loop. Factoring out
KEYS and GATE packages and further MODGBi yields games
G5

real and G6
real := MOD→ SEC0(GByao).

D. Proof of Claim 4

Proof of Claim 4. The claim follows from an inlining argu-
ment that is shown in Fig. 29 and 30. Starting from game
G1

ideal := PRVSIM1(SIMtdyao) in the first column, we first
inline packages CEV, BITS, GBtdyao and DINFtdyao to obtain
G2

ideal. Game G3
ideal is the result of moving the input garbling

code into the loop where the input wire keys are sampled.
Combining the two loops ranging of j yields game G4

ideal.
Game G5

ideal introduces Zi,j in addition of Si,j as well as
a more complicated way of computing Si,j to highlight the
computation of Si,j(0) and Si,j(1) as active and inactive wire
keys. Finally, we factor out KEYS (game G5

ideal), LEV (game
G6

ideal) and GByao (game G7
ideal) to obtain G8

ideal := MOD →
SEC1(SIMyao).

Oracle of ENCb

ENC(d,m0,m1)

Z in ← GETKEYSin()

zin ← GETBIT()

assert |m0| = |m1|
if zin ̸= d then

c←$ enc(Z in(d),mb)

if zin = d then

c←$ enc(Z in(d),m0)

return c

Oracles of KEYS

SETBIT(z)

assert z = ⊥
z ← z

return ()

GETAout()

assert z ̸= ⊥
aflag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z(z)

GETBIT()

assert z ̸= ⊥
return z

GETKEYSin()

assert aflag

∨ bflag

return Z

2CPAb(se)

ENC(d,m0,m1)

assert aflag

assert z ̸= ⊥
assert |m0| = |m1|
if z ̸= d then

c←$ enc(Z(d),mb)

if z = d then

c←$ enc(Z(d),m0)

return c

SETBIT(z)

assert z = ⊥
z ← z

return ()

GETAout()

assert z ̸= ⊥
aflag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z(z)

2CPAb(se)

ENC(d,m0,m1)

assert aflag

assert |m0| = |m1|
if z ̸= d then

c←$ enc(Z(d),mb)

if z = d then

c←$ enc(Z(d),m0)

return c

SETBIT(z)

assert z = ⊥
z ← z

return ()

GETAout()

assert z ̸= ⊥
aflag← 1

if Z = ⊥ then

Z(0)←$ {0, 1}λ

Z(1)←$ {0, 1}λ

return Z()

2CPAb(se)

ENC(d,m0,m1)

assert aflag

assert |m0| = |m1|
if z ̸= d then

assert k ̸= ⊥
c←$ enc(k,mb)

if z = d then

c←$ enc(Z(z),m0)

return c

SETBIT(z)

assert z = ⊥
z ← z

return ()

GETAout()

assert z ̸= ⊥
aflag← 1

if Z = ⊥ then

Z(z)←$ {0, 1}λ

assert k = ⊥
k ←$ {0, 1}λ

return Z(z)

RED

ENC(d,m0,m1)

assert aflag

assert |m0| = |m1|
if z ̸= d then

c← ENC(m0,m1)

if z = d then

c←$ enc(ka,m0)

return c

SETBIT(z)

assert z = ⊥
z ← z

return ()

GETAout()

assert z ̸= ⊥
aflag← 1

if Z = ⊥ then

ka ←$ {0, 1}λ

SMP()

return Z(z)

Oracles of IND-CPA(se)b

SMP()

assert k = ⊥
k ←$ {0, 1}λ

return k

ENC(m0,m1)

assert k ̸= ⊥
assert |m0| = |m1|
c←$ enc(k,mb)

return c

Figure 26: Proof of Lemma 2: 2CPAb(se)
code≡ RED→ IND-CPAb(se)

Oracles of GGATE

SETBITi(z)

return SETBITi(z)

GETAout
i

return GETAout
i

GBLG(ℓ, r, op, j)

g̃j ← ⊥

Zout
j ← GETKEYSout

j

for (bℓ, br) ∈ {0, 1}2 :

bj ← op(bℓ, br)

kj ← Zout
j (bj)

c0in ← ENCℓ(bℓ, kj , 0
λ)

c1in ← ENCℓ(bℓ, 0
λ, 0λ)

c←$ ENCr(br, c
1
in, c

1
in)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

return GETKEYSin
j

Oracles of GGATE

SETBITi(z)

return ()

GETAout
i

return GETAout
i

GBLG(ℓ, r, op, j)

g̃j ← ⊥
zin
ℓ ← GETBIT(ℓ)

zin
r ← GETBIT(r)

Zout
j ← GETKEYSout

j

Z in
ℓ ← GETKEYSin

ℓ

Z in
r ← GETKEYSin

r

for (bℓ, br) ∈ {0, 1}2 :

bj ← op(bℓ, br)

kout
j ← Zout

j (bj)

kin
ℓ ← Z in

ℓ (bℓ)

if zin
ℓ = bℓ :

c0in ←$ enc(kin
ℓ , k

out
j)

if zin
ℓ ̸= bℓ :

c0in ←$ enc(kin
ℓ , 0

λ)

c1in ←$ enc(kℓ, 0
λ)

kin
r ← Z in

r (br)

if zin
r = br :

c←$ enc(kin
r , c

0
in)

if zin
r ̸= br :

c←$ enc(kin
r , c

1
in)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

return GETKEYSin
j

Oracles of GGATE

SETBITi(z)

assert zin
i = ⊥

zin
i ← z

return ()

GETAout
i

assert zin
i ̸= ⊥

aflag
in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (z

in
i)

GBLG(ℓ, r, op, j)

g̃j ← ⊥
assert zin

ℓ ̸= ⊥
assert zin

r ̸= ⊥

bflag
out
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

assert aflag
in
ℓ = 1

∨ bflagin
ℓ = 1

assert aflag
in
r = 1

∨ bflagin
r = 1

for (bℓ, br) ∈ {0, 1}2 :

kin
ℓ ← Z in

ℓ (bℓ)

kin
r ← Z in

r (br)

if bℓ = zin
ℓ ∧ br = zin

r :

bj ← op(bℓ, br)

kout
j ← Zout

j (bj)

else kout
j ← 0λ

cin ←$ enc(kin
ℓ , k

out
j)

c←$ enc(kin
r , cin)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

assert aflag
out
j = 1

∨ bflag
out
j = 1

assert Zout
j ̸= ⊥

return Zout
j

Oracles of GGATE

SETBITi(z)

assert zin
i = ⊥

zin
i ← z

return ()

GETAout
i

assert zin
i ̸= ⊥

aflag
in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (z

in
i)

GBLG(ℓ, r, op, j)

g̃j ← ⊥
assert zin

ℓ ̸= ⊥
assert zin

r ̸= ⊥

aflagout
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

assert aflag
in
r = 1

assert aflag
in
ℓ = 1

for (bℓ ⊕ zin
ℓ , br ⊕ zin

r)

∈ {0, 1}2 :

kin
ℓ ← Z in

ℓ (bℓ)

kin
r ← Z in

r (br)

if bℓ ⊕ zin
ℓ = br ⊕ zin

r = 0 :

bj ← op(bℓ, br)

kout
j ← Zout

j (bj)

else kout
j ← 0λ

cin ←$ enc(kin
ℓ , k

out
j)

c←$ enc(kin
r , cin)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

assert aflag
out
j = 1

∨ bflag
out
j = 1

assert Zout
j ̸= ⊥

return Zout
j

Oracles of GGATEsim

SETBITi(z)

assert zin
i = ⊥

zin
i ← z

return ()

GETAout
i

assert zin
i ̸= ⊥

aflag
in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (z

in
i)

GBLG(ℓ, r, op, j)

g̃j ← ⊥
assert zin

ℓ ̸= ⊥
assert zin

r ̸= ⊥
zout
j ← op(zin

ℓ , z
in
r)

assert zout
j ̸= ⊥

aflag
out
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

Sout
j (0)← Zout

j (zin
j)

assert aflag
in
r = 1

S in
r (0)← Z in

r (z
in
r)

assert aflag
in
r = 1

S in
r (1)← Z in

r (1⊕ zin
r)

assert aflag
in
ℓ = 1

S in
ℓ (0)← Z in

ℓ (z
in
ℓ)

assert aflag
in
ℓ = 1

S in
ℓ (1)← Z in

ℓ (1⊕ zin
ℓ)

for (dℓ, dr) ∈ {0, 1}2 :

kin
ℓ ← S in

ℓ (dℓ)

kin
r ← S in

r (dr)

if dℓ = dr = 0 :

kout
j ← Sout

j (0)

else kout
j ← 0λ

cin ←$ enc(kin
r , k

out
j)

c←$ enc(kin
ℓ , cin)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

assert aflag
out
j = 1

∨ bflag
out
j = 1

assert Zout
j ̸= ⊥

return Zout
j

Oracles of GGATEsim

SETBITi(z)

return SETBITi(z)

GETAout
i

return GETAout
i

GBLG(ℓ, r, op, j)

g̃j ← ⊥
EVALj(ℓ, r, op)

Sout
j (0)← GETAout

j

S in
r (0)← GETAin

r

S in
r (1)← GETINAin

r

S in
ℓ (0)← GETAin

ℓ

S in
ℓ (1)← GETINAin

ℓ

for (dℓ, dr) ∈ {0, 1}2 :

kin
ℓ ← S in

ℓ (dℓ)

kin
r ← S in

r (dr)

if dℓ = dr = 0 :

kout
j ← Sout

j (0)

else kout
j ← 0λ

cin ←$ enc(kin
r , k

out
j)

c←$ enc(kin
ℓ , cin)

g̃j ← g̃j ∪ c

return g̃j

GETKEYSin
j

return GETKEYSin
j

Figure 27: Inlining for code-equivalence of GGATE and GGATEsim in proof of Claim 2.

G1
real

GARBLE(C, x)

for j = 1..n do

SETBITj(xj)

C̃ ← GBL(C)

dinf← GETDINF

for j = 1..n do

x̃[j]← GETAout
j

return (C̃, x̃, dinf)

G2
real

GARBLE(C, x)

for j = 1..n do

SETBITj(xj)

assert C̃ = ⊥
assert depth(C) = d

for i = 0..d do

for j = 1..n do

Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
for (bℓ, br) ∈ {0, 1}2 do

bj ← op(bℓ, br)

kj ← Zi,j(bj)

cin ←$ enc(Zi−1,ℓ(bℓ), kj)

c←$ enc(Zi−1,r(br), cin)

g̃j ← g̃j ∪ c

C̃[i, j]← g̃j

for j = 1..n do

SETKEYSj(Z0,j)

SETDINF(Zd,1, . . . , Zd,n)

dinf← GETDINF

for j = 1..n do

x̃[j]← GETAout
j

return (C̃, x̃, dinf)

G3
real

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

assert zj = ⊥
zj ← xj

for i = 0..d do

for j = 1..n do

Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
for (bℓ, br) ∈ {0, 1}2 do

bj ← op(bℓ, br)

kj ← Zi,j(bj)

cin ←$ enc(Zi−1,ℓ(bℓ), kj)

c←$ enc(Zi−1,r(br), cin)

g̃j ← g̃j ∪ c

C̃[i, j]← g̃j

dinf← (Zd,1, . . . , Zd,n)

for j = 1..n do

assert zj ̸= ⊥
x̃[j]← Z0,j(zj)

return (C̃, x̃, dinf)

G4
real

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

Z0,j(0)←$ {0, 1}λ

Z0,j(1)←$ {0, 1}λ

x̃[j]← Z0,j(z0,j)

for i = 1..d do

(ℓ, r,op)← C[i]

assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

C̃j ← ⊥
Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

for (bℓ, br) ∈ {0, 1}2 :

bj ← op(bℓ, br)

k0
j ← Zi,j(bj)

c0in ←$enc(Zi−1,ℓ(bℓ), k
0
j)

c1in ←$enc(Zi−1,ℓ(bℓ), 0
λ)

c←$enc(Zi−1,r(br), c
0
in)

C̃j ← C̃j ∪ {c}
C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← Zd,j

return (C̃, x̃, dinf)

G5
real

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

SETBITj(xj)

x̃[j]← GETAout
j

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)←
(ℓ(j), r(j),op(j))

C̃j ← GBLG(ℓ, r, op, j)

C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← GETKEYSin
j

return (C̃, x̃, dinf)

G6
real

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

SETBITj(xj)

x̃[j]← GETAout
j

for i = 1..d do

(ℓ, r,op)← C[i]

C̃[i]← GBLi(ℓ, r,op)

for j = 1..n do

dinf[j]← GETKEYSin
j

return (C̃, x̃, dinf)

Figure 28: Proof of Claim 3.

G1
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

SETBITj(xj)

EVALj(C)

C̃ ← GBL(C)

dinf← GETDINF

for j = 1..n do

x̃[j]← GETAout
j

return (C̃, x̃, dinf)

G2
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

for i = 1..d do

(ℓ, r,op)← C[i]

assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

zi,j ← op(zi−1,ℓ, zi−1,r)

for j = 1..n do

S0,j(0)←$ {0, 1}λ

S0,j(1)←$ {0, 1}λ

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
Si,j(0)←$ {0, 1}λ

Si,j(1)←$ {0, 1}λ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

Zd,j(zd,j)← Sd,j(0)

Zd,j(1− zd,j)← Sd,j(1)

dinf[j]← Zd,j

for j = 1..n do

x̃[j]← S0,j(0)

return (C̃, x̃, dinf)

G3
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

for i = 1..d do

(ℓ, r,op)← C[i]

assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

zi,j ← op(zi−1,ℓ, zi−1,r)

for j = 1..n do

S0,j(0)←$ {0, 1}λ

S0,j(1)←$ {0, 1}λ

x̃[j]← S0,j(0)

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
Si,j(0)←$ {0, 1}λ

Si,j(1)←$ {0, 1}λ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

Zd,j(zd,j)← Sd,j(0)

Zd,j(1− zd,j)← Sd,j(1)

dinf[j]← Zd,j

return (C̃, x̃, dinf)

Figure 29: Proof of Claim 4.

G4
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

aflag0,j ← 1

S0,j(0)←$ {0, 1}λ

S0,j(1)←$ {0, 1}λ

x̃[j]← S0,j(0)

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥

zi,j ← op(zi−1,ℓ, zi−1,r)

Si,j(0)←$ {0, 1}λ

Si,j(1)←$ {0, 1}λ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

Zd,j(zd,j)← Sd,j(0)

Zd,j(1− zd,j)← Sd,j(1)

dinf[j]← Zd,j

return (C̃, x̃, dinf)

G5
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

assert z0,j = ⊥
z0,j ← xj

aflag0,j ← 1

Z0,j(0)←$ {0, 1}λ

Z0,j(1)←$ {0, 1}λ

x̃[j]← Z(z0,j)

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥

zi,j ← op(zi−1,ℓ, zi−1,r)

Zi,j(0)←$ {0, 1}λ

Zi,j(1)←$ {0, 1}λ

Si,j(0)← Zi,j(zi,j)

Si−1,r(0)← Zi−1,r(zi−1,r)

Si−1,r(1)← Zi−1,r(1− zi−1,r)

Si−1,ℓ(0)← Zi−1,r(zi−1,ℓ)

Si−1,ℓ(1)← Zi−1,r(1− zi−1,ℓ)

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Si,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← Zd,j

return (C̃, x̃, dinf)

G6
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

SETBIT0,j(xj)

x̃[j]← GETAout
0,j

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
zi−1,ℓ ← GETBITi−1,ℓ

zi−1,r ← GETBITi−1,r

zi,j ← op(zi−1,ℓ, zi−1,r)

SETBITi,j(zi,j)

Si,j(0)← GETAout
i,j

Si−1,r(0)← GETAin
i−1,r

Si−1,r(1)← GETINAin
i−1,r

Si−1,ℓ(0)← GETAin
i−1,ℓ

Si−1,ℓ(1)← GETINAin
i−1,ℓ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← Si−1,ℓ(dℓ)

ki−1,r ← Si−1,r(dr)

if dℓ = dr = 0 :

kout
i,j ← Si,j(0)

else kout
i,j ← 0λ

cin ←$ enc(ki−1,r, ki,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← GETKEYSin
d,j

return (C̃, x̃, dinf)

G7
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

SETBIT0,j(xj)

x̃[j]← GETAout
0,j

for i = 1..d do

(ℓ, r,op)← C[i]

assert C̃[i] = ⊥
assert ℓ, r,op ̸= ⊥
assert |ℓ|, |r|, |op| = n

for j = 1..n do

(ℓ, r, op)← (ℓ(j), r(j),op(j))

g̃j ← ⊥
EVALi,j(ℓ, r, op)

Sout
i,j(0)← GETAout

i,j

S in
i−1,r(0)← GETAin

i−1,r

S in
i−1,r(1)← GETINAin

i−1,r

S in
i−1,ℓ(0)← GETAin

i−1,ℓ

S in
i−1,ℓ(1)← GETINAin

i−1,ℓ

for (dℓ, dr) ∈ {0, 1}2 :

ki−1,ℓ ← S in
i−1,ℓ(dℓ)

ki−1,r ← S in
i−1,r(dr)

if dℓ = dr = 0 :

ki,j ← Sout
i,j(0)

else ki,j ← 0λ

cin ←$ enc(ki−1,r, ki−1,j)

c←$ enc(ki−1,ℓ, cin)

g̃j ← g̃j ∪ c

C̃j ← g̃j

C̃[i]← C̃1..n

for j = 1..n do

dinf[j]← GETKEYSin
d,j

return (C̃, x̃, dinf)

G8
ideal

GARBLE(C, x)

assert C̃ = ⊥
assert depth(C) = d

for j = 1..n do

SETBITj(xj)

x̃[j]← GETAout
j

for i = 1..d do

(ℓ, r,op)← C[i]

C̃[i]← GBLi(ℓ, r,op)

for j = 1..n do

dinf[j]← GETKEYSin
j

return (C̃, x̃, dinf)

Figure 30: Proof of Claim 4, continued.

	Introduction
	Our contribution
	Modular security proof
	Composable security notions
	Graph-based reductions

	Outline

	Garbling Schemes
	Garbling schemes
	Conventions

	State-Separating Proofs and Encryption Scheme Security
	Games
	Packages
	Composition
	Reductions
	Multi-instance assumptions

	State-Separated Garbling Schemes
	Syntax and Correctness
	Circuit evaluation
	Garbling scheme syntax
	Correctness

	Security

	Yao's Garbling Scheme
	Overview
	Circuit garbling
	Input encoding
	Circuit evaluation
	Output decoding
	Security

	Security
	Proof outline

	Layer Security
	Yao's layer garbling package GB0yao,i
	Layer Garbling Security Definition
	Security Reduction to 2-key IND-CPA security

	Circuit Security
	Yao's circuit garbling package GByao
	Circuit garbling security

	Alignment with PRVSIMb
	Discussion
	Definitions and proof style
	Syntactic and local reasoning
	Treating wire keys as their own unit
	Layer garbling security notion
	Circuit garbling security notion

	Comparison with existing proofs
	Encryption security and hybrid strategy
	Local security and local simulation

	State-separating proofs
	Impact on our proof
	Adapting SSP

	Formal verification

	References
	Appendix
	Standard IND-CPA security implies 2-CPA security
	Proof of Claim 2
	Proof of Claim 3
	Proof of Claim 4

