
BLOCK CIPHER DEFINED BY MATRIX
PRESENTATION OF QUASIGROUPS

1st Smile Markovski
Faculty of Computer Science & Eng.
Ss. Cyril and Methodius University

Skopje, R. N. Macedonia
smile.markovski@finki.ukim.mk

2nd Vesna Dimitrova
Faculty of Computer Science & Eng.
Ss. Cyril and Methodius University

Skopje, R. N. Macedonia
vesna.dimitrova@finki.ukim.mk

3rd Z. Trajcheska, M. Kostadinoski, D. Buhov
Faculty of Computer Science & Eng.
Ss. Cyril and Methodius University

Skopje, R. N. Macedonia

Abstract—Designing new cryptosystems and their cryptanalysis
is the basic cycle of advancement in the field of cryptography. In
this paper we introduce a block cipher based on the quasigroup
transformations, which are defined by the matrix presentation of
the quasigroup operations. This type of quasigroup presentation
is suitable for constructing a block cipher since it doesn’t require
too much memory space to store all the necessary data, so it can
be used even for lightweight cryptographic purposes.

For now, we are considering only the quasigroups of order 4.
Constructions with quasigroups of higer order and examination
of the strengths and weaknesses of this design will be considered
in next papers.

Index Terms—block cipher, quasigroup, matrix form of quasi-
group

I. INTRODUCTION

A block cipher is a symmetric key algorithm. The encryption
(and accordingly decryption) is done by splitting the plaintext
message into blocks - sequential groups of bits with fixed
length and applying an invariant transformation on each block.
Here, we will introduce a block cipher, BCMPQ (Block Cipher
by Matrix Presentation of Quasigroups), that is based mostly
on quasigroup transformations presented in a matrix form. A
groupoid (Q, ∗), where ∗ is a binary operation, is called a
quasigroup if:

(∀ a, b ∈ Q)(∃! x, y ∈ Q)(x ∗ a = b ∧ a ∗ y = b) (1)

The design of BCMPQ is based on the matrix presentation
of the quasigroup operations [4]. Since the quasigroups we are
considering are of order 4, their elements can be represented
by two bits. In the sequel, for x, y ∈ Q we use the notation
x = [x1, x2], y = [y1, y2] where x1, x2, y1, y2 ∈ {0, 1}.

Now, the quasigroup operation can be presented in matrix
form as

x ∗ y = mT +AxT +ByT + CAxT · CByT (2)

where A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
are nonsingular

Boolean matrices and m = [m1,m2] is a Boolean vector. There
are 4 choices for the matrix C (see [4]), and here we take the

fixed matrix C =

[
1 1

1 1

]
. The operation ”·” denotes the dot

product, i.e., it is the sum of the products of the corresponding
components of the vectors CAxT and CByT .

The encryption/decryption functions of the cipher are built
by using e- and d- transformations [2]. Namely, given
a1a2 . . . an, ai ∈ Q, and a fixed element l ∈ Q, called the
leader, we define:
el(a1a2 . . . an) = (b1b2 . . . bn)

⇔ b1 = l ∗ a1, bi = bi−1 ∗ ai, i ≥ 2.
dl(a1a2 . . . an) = (c1c2 . . . cn)

⇔ c1 = l ∗ a1, ci = ai−1 ∗ ai, i ≥ 2.
We note that el and dl are permutations of the set Qn

since the equalities dl(el(a1a2 . . . an)) = a1a2 . . . an =
el(dl(a1a2 . . . an)) are true for each ai ∈ Q.

II. DESIGN OF THE BLOCK CIPHER

In this section we will state the design of the three basic
algorithms characteristic for every block cipher - the round key
generation, the encryption and the decryption algorithm.

There are altogether 144 quasigroups of form (2). We choose
randomly 128 of them, they are public, and we store them in
memory as follows:

seq num m1,m2, a11, a12, a21, a22, b11, b12, b21, b22 (3)

where seq num is a seven bit number while
m1,m2, a11, a12, a21, a22, b11, b12, b21, b22 are the bits
appearing in the matrix form (2) of the quasigroup operation.

The encryption and decryption algorithms include the use
of 16 quasigroups. They are denoted by Q1, Q2, ..., Q8 and
T1, T2, ..., T8 and they are used in different steps. These matrices
are determined by using the round key, which is generated out
of the secret key and consists of 128 bits.

The key length of 128 bits is distributed in the following way:
• 16 bits for the leaders l1, l2, ..., l8 (two bits per each leader)
• 56 bits for the quasigroups Q1, Q2, ..., Q8 (7 bits per each

quasigroup)
• 56 bits for the quasigroups T1, T2, ..., T8 (7 bits per each

quasigroup)
The 7 bits designated for each quasigroup are actually the bi-

nary representation of the sequence number of the quasigroup
(see (3)).

A. Round Key Generation

At first, let us denote by K the secret symmetric key of 128
bits. In order to generate a round (working) key k out of the
secret key, we first determine a fixed quasigroup Q and a fixed
leader l = 0 = [0, 0]. This quasigroup should be determined to
be non-fractal (see [1] for non-fractal quasigroups) such that



x ∗ x ̸= x for x ∈ Q. The round key is obtained by e-
transformation. The procedure for generation a round key is
described in Algorithm on Fig. 1.

Figure 1: Algorithm for Key Generation

B. Encryption Algorithm

We are considering a block cipher with block length 64 bits.
So, the plaintext message should be split into blocks of 64 bits.
Afterwards, the encryption algorithm stated in Algorithm ??
should be applied on each block. (If the message length is
not devided by 64, a suitable padding will be applied). The
encryption algorithm consists of two steps. In the first step we
use the matrices Q1, Q2, ..., Q8 and in the second the matrices
T1, T2, ..., T8.

Briefly, in the first step we split the 64 bit block into 8 smaller
blocks (mini-blocks) of 8 bits. We apply e-transformation on
each of these mini-blocks with a different leader and a different
quasigroup. Actually, we use the leader li and the quasigroup
Qi for the i-th mini-blocks. The resulting string is used as input
in the next step.

In the second step, we apply e-transformations on each
resulting string, repeating 8 times with alternately changing
direction. In the i-th transformation we use the quasigroup Ti

and the leader li. The detailed and formalized algorithm is
presented in Algorithm on Fig. 2.

C. Decryption Algorithm

The purpose of the decryption algorithm is to reverse the
result of the encryption algorithm and thus to obtain the
plaintext message given the ciphertext.

For decryption purposes we use the following property of
quasigroups. Given a quasigroup (Q, ∗) a new quasigroup
(Q, \), so called parastrophe, is defined by

x\z = y ⇔ x ∗ y = z.

Then the identity x\(x ∗ y) = y holds true, and it is used
for decryption purposes. Since we are working with matrix
presentation of quasigroups, it is shown in [4] that, when

Figure 2: Algorithm for Encryption

(Q, ∗) is of the form (2), then (Q, \) has the following matrix
presentation:

x\z = B−1mT +B−1(I + C)AxT +B−1(CmT · CAxT )

+B−1zT +B−1(CAxT · CzT ) (4)

So, what we actually need to do to decrypt is to start
from the ciphertext and reverse the e-transformation, using the
quasigroups T8, T7, ..., T1 sequentially at first, and then reverse
the e-transformations of the mini-blocks (from the encryption
algorithm) using the quasigroups Q8, Q7, ..., Q1. This can be
done using the inverse operation we mentioned shortly before.
The detailed algorithm is presented in Algorithm on Fig. 3.

III. ESTIMATION OF THE MEMORY SPACE NEEDED AND
COMPUTING POWER

Since the quasigroups data needs to be stored somewhere
in the memory storage of the device where the algorithm will
be implemented, it is important to estimate how much space
is needed, particularly if we want to use this cipher in some
smaller, lightweight devices where the resources, especially the
memory space, are limited.
So, we need three parameters to define the quasigroup operation
expressed by matrix operations. That are the vector m and the
matrices A and B. To store m,A and B we need two bits for
m, four bits for A and four bits for B. That is, 10 bits per
each quasigroup. We are using 128 quasigroups, so that makes
a total of 1280 bits, or 160 bytes, or 0.16 KB.

Having a look at the computational requirements of this block
cipher, we need to determine the number of basic operations that
are needed for encryption of one byte of the original message
into respective byte of the encrypted message. Namely, here is



Figure 3: Algorithm for Decryption

a small overview of the number of additions and multiplications
needed for encrypting two bits:

• for computing AxT we need 2 additions and 4 multiplica-
tions;

• for computing ByT we need 2 additions and 4 multiplica-
tions;

• for computing CAxT we need 4 additions and 8 multipli-
cations;

• for computing CByT we need 4 additions and 8 multipli-
cations;

• for computing CAxT · CByT we need 2 multiplications;
• in summery, for computing mT +AxT +ByT +CAxT ·

CByT we need 18 additions and 26 multiplications.
That means that for encrypting 8 bits (1 byte) we need to use

4*15=60 additions and 4*26=104 multiplications.

IV. CONCLUSION AND FUTURE WORK

In this paper we introduced a block cipher which utilizes a
matrix presentation of quasigroups. The aim of this paper is to
show how small quasigroups, in this case of order 4, can be used
a block cipher to be defined. As we have estimated, this cipher
doesn’t require too much space or computational power, so it is
suitable for lightweight cryptographic applications and can be
implemented and used for small devices. Also, the presented
design is for transformation of message blocks of length 64
bits, and it is quite evident how the design can be made for
message blocks of length 8l, for any integer l ≥ 8. (In fact, we
can take l to be any positive integer, but for small l security
will be vulnerable.)

In this paper only the main design is defined. We did not
discussed several aspect important for a block cipher. Thus, we
have to estimate the number of operations needed for encryption
and decryption of one bite of information, and to compare it

with other lightweight block cipher. Also, security of the cipher
have to be considered too. The brute force attack is gained
by the fact that we choose secret 16 quasigroups out of 128,
so there are 266 choices. Also, 8 two bit leaders have to be
chosen, and there are 216 choices for the leaders. So, there are
282 possible choices for the quasigroups and the leaders.

A more thorough cryptanalysis of the cipher will be made in
future in order to examine its security and reliability.

V. ACKNOWLEDGEMENTS

This research is partially supported by The Faculty for
Computer Science and Engineering.

REFERENCES

[1] Dimitrova, V: Quasigroup Processed Strings, their Boolean Representations
and Application in Cryptography and Coding Theory. PhD Thesis (2010)
Ss. Cyril and Methodius University, Skopje, Macedonia

[2] Markovski S., Gligoroski D., Bakeva V., Quasigroup String Processing:
Part 1, Contributions, Section of Mathematical and Technical Sciences,,
Macedonian Academy of Sciences and Arts, XX 1-2, 1999, pp. 13-28

[3] Mileva, A. (2010). Cryptographic Primitives with Quasigroup Transforma-
tions.

[4] Siljanoska, M., Mihova, M.,Markovski, S.: Matrix Presentation of Quasi-
groups of order 4, The 10th Conference for Informatics and Information
Technology (CIIT 2013), Bitola, 2013

[5] Shcherbacov, V.A. (2009) Quasigroups in Cryptology. In Computer Science
Journal of Moldova Volume 17, Number 2(50), Pages 193-228.


