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Abstract. Recent works showed how Mutual Information Neural Estimation (MINE)
could be applied to side-channel analysis in order to evaluate the amount of leakage
of an electronic device. One of the main advantages of MINE over classical estimation
techniques is to enable the computation between high dimensional traces and a
secret, which is relevant for leakage assessment. However, optimally exploiting this
information in an attack context in order to retrieve a secret remains a non-trivial
task especially when a profiling phase of the target is not allowed.
Within this context, the purpose of this paper is to address this problem based on a
simple idea: there are multiple leakage sources in side-channel traces and optimal
attacks should necessarily exploit most/all of them. To this aim, a new mathematical
framework, designed to bridge classical Mutual Information Analysis (MIA) and the
multidimensional aspect of neural-based estimators, is proposed. One of the goals is
to provide rigorous proofs consolidating the mathematical basis behind MIA, thus
alleviating inconsistencies found in the state of the art.
This framework allows to derive a new attack called Neural Estimated Mutual Infor-
mation Analysis (NEMIA). To the best of our knowledge, it is the first unsupervised
attack able to benefit from both the power of deep learning techniques and the
valuable theoretical properties of MI. From simulations and experiments conducted
in this paper, it seems that NEMIA performs better than classical and more recent
deep learning based unsupervised side-channel attacks, especially in low-information
contexts.

Keywords: Side-channel analysis, Mutual information, Deep learning, Multidimen-
sionality, MINE

1 Introduction

1.1 Context
Side-Channel Analysis (SCA) could be defined as the process of gaining information on
a secret hold by a system through leakage that comes from its practical implementation.
In the most famous examples, an adversary exploits physical leakages of an electronic
device such as its power consumption [KJJ99] or Electromagnetic (EM) emanations [QS01]
to recover a cryptographic key. Many other side-channels have been pointed out in the
literature such as timing attacks [Koc96], cache monitoring [Per05] or even network packets
length analysis [SSH+14]. In any case, the problem can be reduced to the following form:
an adversary is able to learn realizations of a leakage variable L, often called a trace, and
aims at using it to infer information about another related secret variable S.
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From an information theory point of view, the maximum amount of information one
could extract from a side-channel trace is bounded by the Mutual Information I(S, L).
This quantity is, indeed, central in the side-channel domain. The goals of the different
actors could be summarized as follows:

• Designers aim at implementing countermeasures to decrease as much as possible
I(S, L), under computational and efficiency constraints.

• Evaluators aim at estimating I(S, L) as closely as possible to assess leakages in a
worst-case scenario.

• Attackers aim at developing strategies to partially or fully exploit I(S, L) in order
to recover a secret.

The main problem with this paradigm is that I(S, L) is famously hard to estimate
from drawn samples when the variables live in a high dimensional space, which is generally
the case of L (i.e. power traces often consist of thousands of time samples). Classical MI
estimators suffer from the so called "curse of dimensionality" and require an exponential
(w.r.t. the dimension) amount of data to produce reliable results. This explains why,
despite its valuable theoretical properties, I(S, L) is not directly used for side-channel
analysis. Instead, one often compute maxi I(S, L[i]) where L[i] stands for the i-th sample
of the trace, but this may not represent the true available information when multiple
samples leak or when there exist some dependencies between these samples.

However, in a recent work [CLM20], authors took advantage of a new deep learning
technique called Mutual Information Neural Estimation (MINE) [BBR+18] to develop
a side-channel tool able to reliably estimate the MI between the secret and full traces,
drastically reducing the impact of high dimensionality on the estimation reliability. This
tool allows one to get an absolute leakage quantification from raw traces which is helpful
for designers or evaluators to perform leakage assessment. However, knowing the amount
of potentially usable information is not the same as actually exploiting it to retrieve a
secret, and authors left open questions regarding this tool from the attacker’s point of
view. Is an adversary also able to use the inherent multidimensional properties of MINE to
exploit at the same time all the potential leakage sources ? And if so, what is the optimal
way to do it ? This paper aims at answering these questions.

Side-channel attacks are mainly divided into two categories: supervised SCA, where
the adversary can first perform a characterization of the target, and unsupervised SCA
in which this profiling step is not possible. For profiled SCA, one is theoretically able to
exploit all the information I(S, L) by perfectly learning the target’s leakage model during
the characterization phase. Deep learning attacks have been shown to effectively extract all
the available information when using the negative log likelihood as loss function [MDP19].
Therefore the problem is closed, at least in theory, for profiled SCA.

However, this is not the case for unsupervised attacks, where the true leakage model
of the target is unknown to the adversary. In this situation, only a fraction of I(S, L),
which value depends on the correctness of one’s a priori on the leakage model, can
be exploited. For example, the Correlation Power Analysis (CPA) [BCO04] is efficient
for linear dependencies between the leakage and a certain function of the intermediate
variable (often being the Hamming weight function). The Linear Regression Analysis
(LRA) [DPRS12] also assumes a linear dependency but can handle different weights for
each bit of the intermediate variable.
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Mutual Information Analysis (MIA), however, has been introduced as a generic strategy
able to capture any kind of dependencies. Papers addressing the theoretical background
behind MIA [GBTP08,PR09,VCS09,BGP+11] all present MIA as SCA distinguisher able
to recover the correct key without any knowledge on the target nor on its leakage model.
However, this leakage model free strategy only works to target non-bijective intermediate
variables which makes it well suited for the DES (as the DES S-boxes are not bijectives)
but less suited for more recent algorithms such as the AES. This explains why MIA has
not often been used in practice.

A second version of the MIA allowing to target any intermediate variables (and is
therefore applicable in many more contexts) has also been developed. These two versions
are not separated in the literature but we decided to do so in this paper to clarify the
relationship between MIA and leakage model a priori. Indeed, this second version is not
leakage model free i.e. it requires an a priori on the leakage model to work. However, one
of the main advantages of this attack is that it is not limited to linear leakage model and
more generally, does not require any assumption on the leakage distribution (as long as
the adversary’s a priori is sufficiently correct). However, this gain in genericity comes at
the cost of efficiency: CPA has almost always been proved to work better than MIA in
classical attack scenarios since leakage models are often linear. Therefore MIA is more
seen as a great tool in theory that does not offer much in practice.

However, one of the main advantages of MIA is that it generalizes well to higher
dimension variables and offers a way to potentially use a bigger part of the information
contained in a side-channel trace. This has not really been used in the literature (except to
extend MIA for masked implementation [PR09,BGP+11]) due to MI estimators limitations.
But recent breakthroughs regarding neural estimation encourages to revisit classical MIA
in order to make it highly multidimensional, to get closer to an optimal attack regarding
the amount of information being used from the traces.

Even if neural estimation techniques can be applied in the leakage model free version
of the MIA, we are more interested in the second version of MIA since it does not impose
restrictions on the targeted algorithm. However, we argue that the mathematical framework
behind this version (developed in [GBTP08,PR09,VCS09,BGP+11]) is not complete or
even wrong at some points and rely too much on intuition instead of proofs. As a result, it
is difficult to derive the best way to use the new MI estimators, especially in the context
of high dimensional variables, where intuition quickly falls short. That is why rebuilding
a mathematical framework along with rigorous proofs on how to conduct an optimal
multidimensional MIA is one of the contributions of this paper.

1.2 Contributions
1. Clarifying the State Of The Art (SOTA) around the MIA.

We explicitly split MIA into two different versions (this is not explicitly done in the
SOTA), to help understanding the need or not of an a priori on the leakage model
(2.2). We then highlight inconsistencies with the second version mainly related to the
fact that MIA relies on a distinguisher computing a score for each key hypotheses,
but the wrong hypotheses scores are not taken into account in the analysis (2.3).
This leads us to define a new generic version of MIA which objective is related to a
maximization problem that includes the impact of the wrong hypotheses scores (2.4).

2. Providing rigorous proofs to analytically solve the mathematical problems emerging
from our new version of MIA.
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One of the main contributions of this paper, given by theorem 1 (2.5), is to solve
the optimization problem defined in (2.4). Then, theorem 2 provides an extension of
the analysis in the context of masking (3). Both theorems are designed to take into
account the potential multidimensionality of the leakage and therefore are suited to
support the use of the new neural MI estimators.

3. Presenting a new unsupervised multidimensional attack: the Neural Estimated
Mutual Information Analysis (NEMIA).
Mathematical results are then combined with recent breakthroughs regarding neural MI
estimation in high dimension. This allows to derive, to the best of our knowledge, the
first unsupervised side-channel attack able to benefit from both deep learning techniques
(highly multidimensional, no pre-processing of the data...) and the valuable theoretical
properties of MI (4).

4. Providing Simulations and experiments to support the analysis.
Simulations are provided both to empirically validate the mathematical analysis as
well as to gain intuition about their meaning and about which situations are best
suited for the use of NEMIA (5). Eventually, practical experiments on the ASCAD
database (both on raw traces and on artificially noised traces) are conducted and
show that this new attack seems to outperform classical SCA strategies in terms of
number of traces needed and noise resiliency (6).

2 Mutual Information Analysis
2.1 Background
Notations. Random variables are represented as upper-case letters such as X. They take
their values in the corresponding set X depicted with a calligraphic letter. Lower case
letters such as x stand for elements of X . Probability density function associated to the
variable X is denoted by PX (replaced by P when there is no ambiguity).

Information theory. The entropy H(X) [Sha48] of a random variable is a fundamental
quantity in information theory which indicates how much information one would gain, in
average, by learning a particular realization x of X. It is defined as the expectation of the
self-information log2(1/pX). In a discrete context:

H(X) =
∑
x∈X

PX(x) · log2( 1
PX(x) ) (1)

In a side-channel environment where L represents the acquired data, one is not interested in
the absolute information provided by X but rather in the amount of information revealed
about a second variable such as a secret S. This is exactly what is measured by the mutual
information I(S, L). It is defined as:

I(S, L) = H(S)−H(S | L) = H(L)−H(L | S) (2)
where H(A | B) stands for the conditional entropy of A knowing B:

H(A | B) =
∑
b∈B

PB(b) · H(A | B = b) (3)

Another useful way to characterise I(S, L) is to express it as the Kullback-Leibler (KL)
divergence between the joint distribution and the product of the marginals:

I(S, L) = DKL(PS,L || PS ⊗ pL)

=
∑
s∈S

∑
l∈L

P (s, l) · log
( P (s, l)

P (s) · P (l)
) (4)
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Unsupervised attacks. Suppose an adversary wants to recover the secret key used
by the physical implementation of a cryptographic algorithm. He has access to a set of
measurements (traces) (Li)1≤i≤n labeled with the plaintext Pi used for the encryption.
The general idea of an unsupervised side-channel attack is to make a series of hypotheses
ki, on a sub-part of the key and to use a distinguisher D(k) allowing to rank the different
candidates. Distinguishers use statistical dependencies between traces and an intermediate
variable Zk∗ = g(P, k∗) that depends on the plaintext and the correct key k∗ through a
deterministic function g : P ×K → Z related to the underlying algorithm. For simplicity,
g(P, k) is denoted gk(P ) in the rest of the paper.

Common distinguishers such as Pearson’s coefficient or coefficient of determination
in a linear regression exploit some a priori on the leakage model. A common intuition
about mutual information used as a distinguisher [GBTP08] is that it has been introduced
precisely to reduce the need to have an a priori. It is often found in the literature
(e.g. [BGP+11]) that it aims at generality, leading to successful attacks without requiring
specific knowledge or assumptions on the target. While this is true in some sense, this
assertion is mitigated hereafter.

2.2 State of the art
This section presents the state of the art of MIA [GBTP08,PR09,VCS09,BGP+11] and is
organized to discuss and clarify the importance of the adversary’s leakage model a priori.

MIA uses a distinguisher D which takes the following form1:

D(k) = I
(
f(Zk), L

)
(5)

with f being a function transforming the guessed intermediate variables Zk. This function
is one of the main concerns of this paper. It is often called the "model" of the adversary.
The requirement of a model may seem contradictory with the claims of genericity of the
MIA. Actually, this model can be replaced by the identity function making the MIA
independent of any a priori on the leakage model. This version of the MIA is presented
hereafter.

MIA version 1. (Leakage model free) In its most basic form, MIA uses
I(Zk = gk(P ), L) as a distinguisher, making hypotheses on k. With φ : Z → Rn repre-
senting the leakage model of the target, L can be written as L = φ(Zk∗) + N , with N
being a random variable independent of Zk for all k, and representing the noise. With
these notations, the distinguisher becomes:

D(k) = I
(
Zk, φ(Zk∗) + N

)
(6)

Proposition 1. This distinguisher is maximized for the correct key hypothesis k∗.

Proof. Using equation 2, for any k ∈ K:

D(k∗)−D(k) = H(L)−H(L | Zk∗)−
[
H(L)−H(L | Zk)

]
= H

(
φ(Zk∗) + N | Zk

)
−H

(
φ(Zk∗) + N | Zk∗

) (7)

Since adding knowledge can only decrease entropy:

D(k∗)−D(k) ≥ H
(
φ(Zk∗) + N | Zk, Zk∗

)
−H

(
φ(Zk∗) + N | Zk∗

)
(8)

1Due to MI estimator limitations, D(k) is often replaced in practice by maxi I(f(Zk), L[i]), where L[i]
represents the i-th sample of the trace. This does not affect the theory described in this section so we
decided to keep it as described in eq. 5 for the sake of simplicity. More details are provided in section 4.2.



6 iacrtans class documentation

Now using the independence of N and the fact that φ(Zk∗) is entirely determined by Zk∗ :

D(k∗)−D(k) ≥ H(N)−H(N)
≥ 0

(9)

which concludes the proof.

This strategy does not require any assumption on the leakage model of the target.
However, it only works if the correct key hypothesis is distinguishable from the other ones,
or, in other words, if D(k) < D(k∗),∀k ≠ k∗, which is not guaranteed by proposition 1.
An important property of the MI is that it is preserved by injective transformations of the
input variables. So if different key hypotheses yield Zk variables differing from each other
only by a permutation (for example if the gk functions are bijective), I(Zk, L) would be
constant for all k and the distinguisher could not discriminate key candidates. Therefore,
gk has to be non-injective. For example, one could target the output of the first round
DES S-box.

While this form of MIA is effectively leakage model free, it comes with a huge constraint
since in many interesting cases gk is bijective. In the AES case, this means that one cannot
target the output of the first S-box since Sbox[k∗ ⊕ P ] is bijective with P . In [PR09]
and [RGV14a], authors suggest to target the bitwise addition between two S-box outputs
during the MixColumns operation. This requires making hypotheses on 16 bits of the
key (leading to 216 MI computations). Moreover, it is only feasible if this operation
leaks enough information which may not be the case in practice. Indeed, for hardware
implementations, this step is usually fully combinatorial and does not use any register.
This explains why most of the MIA experiments in the literature have been performed on
the DES.

MIA version 2. (Leakage model dependent) It is still possible to target Zk∗ =
gk∗(P ) for bijective gk functions. The idea is to apply a non-injective function f to Zk and
use I(f(Zk), L) as distinguisher. The application of f create a partition of Z so f will be
called the "partition function" in the rest of this paper. Since no data transformation can
create information (this is the so called data processing inequality [BR12]), the application
of f can only decrease the initial information: ∀f, ∀k, I(f(Zk), L) ≤ I(Zk, L). The goal is
then to find a function that decreases more I(Zk, L) than I(Zk∗ , L) and therefore, enhance
the discriminating power of the analysis.

For example, assuming that bits leak independently, [GBTP08] proposes to drop one
bit of Z. This is equivalent to redefine the intermediate variable as a restrictive number of
bits of gk∗(P ), and apply MIA version 1 with no partition function. Another idea is to
use a guessed version φ̄ of the leakage model φ. Indeed, I

(
φ(Zk), φ(Zk∗) + N

)
is clearly

maximized for k = k∗. Therefore, if φ̄ is not too far from φ, I
(
φ̄(Zk), φ(Zk∗) + N

)
may

still be maximized for k = k∗. It is shown in [VCS09] that error in the approximation of φ
may be less penalizing than for other attacks.

In addition, MIA is more flexible in the sense that it is not limited to exploit linear
dependencies and gives an option to mount a successful attack with any leakage model.
However, it should be emphasized that, for this version, the adversary must have a good
enough a priori on the leakage, otherwise, the attack is unsuccessful. A suitable choice for
the partition function necessarily uses assumptions on φ.

While we think this point needed to be clarified, we do not see this as a criticism of
MIA. As stated in [WOS14], hopes of finding a leakage model free strategy able to target
a bijective intermediate variable are vain, even outside the context of MIA. We present
hereafter a synthetic proof of the main result of [WOS14].
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Proposition 2. Let gk be a bijective map for all k. For any strategy S which takes as
input a set of traces L⃗ =

(
φ(gk∗(Pi))

)
1≤i≤n

and outputs a ranking of the different key
hypotheses, there exists a leakage model φ̃ that would rank k∗ in the last position such that
the attack completely fails.

Proof. First, apply S on traces obtained through any leakage model φ0 and denote by
k̄ the last key returned by S. Now, for all P , define φ̃0(gk∗(P )) = φ0(gk̃(P )), which
completely defines φ̃0 as gk̄ is bijective. Applying S on traces obtained through φ̃0 would
now rank k∗ in the last position.

This proposition shows that there does not exist any generic distinguisher, that would
both:

1) Exploit statistical dependencies between traces and an intermediate variable bijec-
tively related to the plaintext.

2) Work whatever the leakage model of the target.

Since MIA version 2, with a fixed partition function, verifies 1), it necessarily fails for
some leakage models or, in other words, has to use an assumption on the leakage model to
succeed. Even though it requires an analysis on what partition function should be used,
the rest of this paper is more focused on MIA version 2 since it is more generic in the
sense that it can be applied in many more situations.

2.3 About the distinguishability
As stated in [WO11], even if D(k) is maximized for k = k∗, it is not enough to guarantee
a successful attack in practice, when noise comes into play. What is really important is
the difference between D(k∗) and the others, or in other words, the distinguishability of
the correct hypothesis through the distinguisher D. The idea found in the literature is
that for a wrong key hypothesis:

«false predictions will form a partition corresponding to a random sampling of [L]
and therefore simply give scaled images of the global side-channel probability density
function. Hence, the estimated mutual information will be equal (or close) to zero in this
case.» [BGP+11].

We do not agree with this fact since the wrong hypotheses scores totally depend on
the partition function f and on gk. As explained in the previous section, if the gk’s are
bijective, all the scores would be equal if f is also bijective. This fact is well noted in all
the papers about MIA but we would like to emphasize that even for non-bijective f the
wrong hypotheses score depends on the "degree of bijectiveness" of f . Intuitively, the more
compact f is (in the sense of more collisions through f) the smaller the wrong hypotheses
scores would be. But the same is true for the correct score which means that there is a
trade-off between how much one wants to decrease I

(
f(Zk), L

)
for the wrong k and keep

I
(
f(Zk∗), L

)
high, to enhance the distinguishability.

2.4 Towards an optimal partition function f

In the SOTA, the partition function is not seen as a parameter on which a maximization
research could be done. Therefore, no research on finding the optimal function f has
been conducted. It is generally fixed to one or two constant choices, except in [PR09]
where authors proposed that f could be a generic function. However, it is stated that the
adversary:

«does not need a good linear approximation of φ but only a function [f ] such that the
mutual information I

(
f(Zk∗), φ(Zk∗)

)
is non-negligible » [PR09].
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Again, this condition is necessary but not sufficient. Even if bijective functions are
excluded one can create the following f0 function such that:

f0(x) =
{

0, if x ∈ {0, 1}
x, else

(10)

Being almost the identity function, f0 is such that I
(
f0(Zk∗), φ(Zk∗)

)
is high but would

have a very low discriminating power. This shows that the wrong hypotheses scores can
not be left out of the analysis. One typically wants to find the f function maximizing
the distinguishability of the correct hypothesis. Several criterion has been studied in the
literature [WO11, RGV14b]. In this paper we chose to use the nearest rival criterion2.
Therefore, let us define the optimal set of functions Fopt as:

Fopt = arg max
f : Z→Rn

{
I

(
f(Zk∗), L

)
−max

k ̸=k∗

[
I

(
f(Zk), L

)]}
(11)

Fopt is a set since the maximum is reached by an infinite amount of functions. Indeed,
if fopt ∈ Fopt, for any bijection b, b ◦ fopt is also in Fopt since bijections do not affect MI.
Note that f is not restricted to be one-dimensional. Its domain is set to be Rn where n
can be any positive integer.

2.5 Analytical resolution
Being consistent with proposition 2, Fopt depends on L and therefore on the leakage model.
Since knowledge on φ is required anyway, this section assumes a full knowledge on φ in
order to conduct an analytical analysis to find the optimal f function. Traces are also
supposed to be acquired in an ideal set-up, without noise, so that, at least for a significant
sub-part of the trace, L = φ(Zk∗). Bounds taking into account imperfect knowledge on φ
as well as noise will be given in section 2.7.

A natural choice for the partition function would be to take f = φ because it maximizes
the left term in (11): I

(
f(Zk∗), φ(Zk∗)

)
. But it may be possible to find a function

that would maximize the global objective without maximizing the left term of (11) (we
emphasize that f and φ can be multi-dimensional which make the intuition harder to
have). Th. 1 actually proves that it is not possible and that whatever the leakage model,
φ ∈ Fopt. The main demonstration requires the use of a helper which is introduced in the
form of a lemma hereafter.

Lemma 1. Let f : Z → Rn be any function. For any leakage model φ: Z → Rn there
exists a decomposition of f into f = f2 ◦ f1, with f1 : Z → N, f2 : N→ Rn, satisfying the
two following properties:

1) ∃ f3 : Im f1 → Rn such that f3 ◦ f1 = φ

2) ∀z ∈ Z, f2|
f1

(
φ−1({φ(z)})

) is bijective of reciprocal f−1
2 |f2◦f1

(
φ−1({φ(z)})

)
Proof. The proof is given in appendix A.

Theorem 1. Let P follow a uniform distribution. Let Zk represent the hypothetical
intermediate variables such that Zk = gk(P ) with bijective gk’s. Let φ: Z → Rn be the
leakage model of the target so that L = φ(Zk∗). Then, φ ∈ Fopt.

2Note that other criterion such as the distance with the mean of the wrong hypotheses could also have
been used without modifying the analysis as discussed in remark 1.
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Proof. Let Sf = I
(
f(Zk∗), L

)
− maxk ̸=k∗

[
I

(
f(Zk), L

)]
represent the distinguishability

score for a given function f such that:

Fopt = arg max
f : Z→Rn

{Sf}

Since all the Zk follow a uniform distribution (P follows a uniform distribution and
the gk functions are bijective), the entropy H(f(Zk)) is equal for all k. Then using
I(A, B) = H(A)−H(A | B):

Sf = −H
(
f(Zk∗) | L

)
+ min

k ̸=k∗

[
H

(
f(Zk) | L

)]
(12)

Symmetrically, using I(A, B) = H(B)−H(B | A):

Sf = −H
(
L | f(Zk∗)

)
+ min

k ̸=k∗

[
H

(
L | f(Zk)

)]
(13)

Let f : Z → Rn be any function. Applying lemma 1, there exist f1 and f2 satisfying the
two properties given in lemma 1, such that f = f2 ◦ f1. The goal is to show that Sf ≤ Sφ.
The proof is divided into two phases: first show that Sf ≤ Sf1 using (12), then show that
Sf1 ≤ Sφ using (13). Let us start with (12):

Sf = −H
(
f2 ◦ f1(Zk∗) | L

)
+ min

k ̸=k∗

[
H

(
f2 ◦ f1(Zk) | L

)]
≤ −H

(
f2 ◦ f1(Zk∗) | L

)
+ min

k ̸=k∗

[
H

(
f1(Zk) | L

)] (14)

since applying f2 in the second term can only decrease entropy (see lemma 2). The goal is
now to remove f2 in the first term:

−H
(
f2 ◦ f1(Zk∗) | L

)
=

∑
l∈L

f̄2∈Im f2

P (l) · P (f̄2 | l) · log(P (f̄2 | l)) (15)

P (f̄2 | l) = P
(
f2 ◦ f1(Zk∗) = f̄2 | φ(Zk∗) = l

)
= P

(
f1(Zk∗) ∈ f−1

2 (f̄2) | φ(Zk∗) = l
) (16)

Knowing that φ(Zk∗) = l implies that Zk∗ ∈ φ−1({l}) and also that f1(Zk∗) ∈ f1(φ−1({l})).
Let Al denotes f1(φ−1({l})) to avoid heavy notations. Then:

φ(Zk∗) = l =⇒ f1(Zk∗) ∈ Al

=⇒ f1(Zk∗) ∈ f−1
2 (f2(Al))

(17)

which means that:

P (f̄2 | l) =
{

P
(
f1(Zk∗) ∈ f−1

2 |f2(Al)(f̄2) | l
)

if f̄2 ∈ f2(Al)
0 else (18)

Lemma 1 states that f2|Al
is bijective of reciprocal f−1

2 |f2(Al), so if f̄2 ∈ f2(Al):

P (f̄2 | l) = P
(
f1(Zk∗) = f−1

2 |f2(Al)(f̄2) | l
)

(19)

Let us plug this result back into (15):

−H
(
f2 ◦ f1(Zk∗) | L

)
=

∑
l∈L

∑
f̄2∈f2(Al)

P (l) · P
(
f1(Zk∗) = f−1

2 |f2(Al)(f̄2) | l
)
·

log
(

P
(
f1(Zk∗) = f−1

2 |f2(Al)(f̄2) | l
)) (20)
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Now, one can apply the following change of variable in the second sum: f̄1 = f−1
2 |f2(Al)(f̄2):

−H
(
f2 ◦ f1(Zk∗) | L

)
=

∑
l∈L

∑
f̄1∈Al

P (l) · P
(
f1(Zk∗) = f̄1) | l

)
·

log
(

P
(
f1(Zk∗) = f̄1) | l

)) (21)

Finally, since P
(
f1(Zk∗) = f̄1) | l

)
= 0 when f̄1 ∈ Im f1 \ Al, one can artificially add some

terms equal to 0 in the second sum:

−H
(
f2 ◦ f1(Zk∗) | L

)
=

∑
l∈L

∑
f̄1∈Im f1

P (l) · P (f̄1 | l) · log
(
P (f̄1 | l)

)
= −H

(
f1(Zk∗) | L

) (22)

Applying this result to (14) gives:

Sf ≤ −H
(
f1(Zk∗) | L

)
+ min

k ̸=k∗

[
H

(
f1(Zk) | L

)]
Sf ≤ Sf1

(23)

which concludes the first step of the demonstration.

Now the goal is to show that Sf1 ≤ Sφ. Lemma 1 guarantees that there exists f3 such
that f3 ◦ f1 = φ. Let us use this in (13):

Sf1 = −H
(
L | f1(Zk∗)

)
+ min

k ̸=k∗

[
H

(
L | f1(Zk)

)]
≤ −H

(
L | f1(Zk∗)

)
+ min

k ̸=k∗

[
H

(
L | f3 ◦ f1︸ ︷︷ ︸

φ

(Zk)
)] (24)

since applying f3 to the known variable can only increase the global entropy (see lemma 3).
Now using L = φ(Zk∗):

−H
(
L | f1(Zk∗)

)
≤ 0

−H
(
L | f1(Zk∗)

)
≤ −H

(
φ(Zk∗)|φ(Zk∗)

)
= 0

(25)

Therefore:

Sf1 ≤ −H
(
L | φ(Zk∗)

)
+ min

k ̸=k∗

[
H

(
L | φ(Zk)

)]
Sf1 ≤ Sφ

(26)

Finally, using both part of the demonstration:

Sf ≤ Sf1 ≤ Sφ (27)

which ensures that φ is better or equal to any other functions and so that φ ∈ Fopt.

Remark 1. Demonstration of Th. 1 would have worked exactly the same if one had first
fixed a particular hypothesis k, and tried to maximize Sf,k = I

(
f(Zk∗), L

)
− I

(
f(Zk), L

)
.

Therefore, for each k, φ maximizes the distance between the score of k∗ and k which is an
even stronger version of the theorem. One could not be sure that such a function would
exist a priori, that is why Fopt has not been defined with this criterion. However, this
shows a posteriori that Th 1 is still valid even if one decides to redefine Fopt, for example
using the distance with the mean (instead of the maximum) of the wrong hypotheses
scores.
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Interpretation. This theorem tells that to conduct an optimal MIA, one has to
transform the targeted variable Zk by applying the leakage model φ (or any bijection of φ)
and use I(φ(Zk), L) as a distinguisher. Note the multidimensional aspect of this theorem
since both φ(Zk) and L can live in high dimensional space. This is a key point in this
paper that will be discussed in detail in section 4.2 which bridges this theorem with newest
multidimensional MI estimators in order to derive a new attack. Note that this theorem
also implies that if the leakage model is itself bijective, MIA is not a valid strategy since
the distinguishability score would be bounded by 0.

2.6 Selecting leakage model a priori
In a real-life experiment, one might not perfectly know the leakage model φ but only
an estimation φ̄. This is especially true when working in an unsupervised context. This
section provides a procedure to evaluate the correctness of φ̄, helping to choose from
multiple guesses φ̄1, . . . , φ̄n. This test relies on the following observation:

Proposition 3. Let L = φ(Zk∗)+N , with N an independent random variable representing
the noise. Then: φ ∈ arg maxf [I

(
f(Zk∗), L

)
]

Proof. On one hand:

I
(
f(Zk∗), L

)
= H(L)−H

(
L | f(Zk∗)

)
≤ H(L)−H

(
φ(Zk∗) + N | f(Zk∗), φ(Zk∗)

)
≤ H(L)−H(N)

(28)

and on the other hand:

I
(
φ(Zk∗), L

)
= H(L)−H

(
L | φ(Zk∗)

)
= H(L)−H

(
φ(Zk∗) + N | φ(Zk∗)

)
= H(L)−H(N)

(29)

Then:
I

(
φ(Zk∗), L

)
≥ I

(
f(Zk∗), L

)
(30)

which concludes the proof.

The identity function obviously also maximizes: I
(
f(Zk∗), L

)
so combining this with

proposition 3:
I

(
Zk∗ , L

)
= I

(
φ(Zk∗), L

)
(31)

or,
I

(
Zk∗ , L

)
= max

k
[I

(
φ(Zk), L

)
] (32)

Then, if k∗ is known (for example in an evaluation setup) one can use equation 31 and
estimate I

(
Zk∗ , L

)
and I

(
φ̄(Zk∗), L

)
and compare them. If φ̄ is a good approximation

of the true underlying leakage model, one should have I
(
Zk∗ , L

)
≈ I

(
φ̄(Zk∗), L

)
. If k∗ is

unknown, the adversary can still use equation 32 estimating I
(
φ̄(Zk), L

)
for all k, and

comparing the maximum with I
(
Zk0 , L

)
(k0 can be chosen randomly since all the Zk

variables are just permutation of each other which does not affect MI). Note that this test
is only a rejection test since passing the test does not guarantee a good estimation of φ:
for example, the identity function always passes the test.
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2.7 Leakage model uncertainty and noise
Let assume that the adversary has chosen a given estimation φ̄ of φ. Let also assume that
the ideal data L = φ(Zk∗), used in theorem 1, are now noisy so that the acquired data
takes the following form: L̄ = φ(Zk∗) + N , with N an independent random variable. This
section aims at complementing theorem 1 by lower bounding the distinguishably score S̄φ̄

that one would get in practice in such a context:

S̄φ̄ = I
(
φ̄(Zk∗), L̄

)
−max

k ̸=k∗

[
I

(
φ̄(Zk), L̄

)]
(33)

Our goal is to compare S̄φ̄ with the optimal score Sφ (from theorem 1) that one would get
with the perfect knowledge of φ and un-noised data such that:

Sφ = I
(
φ(Zk∗), L

)
−max

k ̸=k∗

[
I

(
φ(Zk), L

)]
(34)

Proposition 4. S̄φ̄ is lower-bounded by the following inequality:

S̄φ̄ ≥ Sφ −H(N)−H
(
φ(Zk∗) | φ̄(Zk∗)

)
−max

k ̸=k∗

[
H

(
φ̄(Zk) | φ(Zk)

)]
(35)

Proof. Using the same argument as in (13) one has:

S̄φ̄ = −H
(
φ(Zk∗) + N | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) + N | φ̄(Zk)

)]
(36)

Since removing noise on the right term can only decrease entropy:

S̄φ̄ ≥ −H
(
φ(Zk∗) + N | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) | φ̄(Zk)

)]
(37)

Now since H(A + B) ≤ H(A) + H(B) and using the independence of N :

S̄φ̄ ≥ −H(N)−H
(
φ(Zk∗) | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) | φ̄(Zk)

)]
(38)

Using H(A | B) ≥ H(A | C)−H(B | C) which can be shown through information Venn
diagram:

S̄φ̄ ≥ −H(N)−H
(
φ(Zk∗) | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) | φ(Zk)

)
−H

(
φ̄(Zk) | φ(Zk)

)]
≥ −H(N)−H

(
φ(Zk∗) | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) | φ(Zk)

)]
−max

k ̸=k∗

[
H

(
φ̄(Zk) | φ(Zk)

)]
(39)

Now let Sφ appear in the equation:

min
k ̸=k∗

[
H

(
φ(Zk∗) | φ(Zk)

)]
= min

k ̸=k∗

[
H

(
φ(Zk∗) | φ(Zk)

)]
−

0︷ ︸︸ ︷
H

(
φ(Zk∗) | φ(Zk∗)

)
= Sφ

(40)

So:
S̄φ̄ ≥ Sφ −H(N)−H

(
φ(Zk∗) | φ̄(Zk∗)

)
−max

k ̸=k∗

[
H

(
φ̄(Zk) | φ(Zk)

)]
(41)

which concludes the proof.
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This proposition describes the impact of the noise and leakage model approximation in
a quantitative way. Its qualitative interpretation is fairly intuitive. It clearly shows that
one has two strategies to get closer to the optimal score: reducing the noise entropy or
improving his guess on φ̄. When H(N) tends towards 0 and φ̄ gets closer to φ , S̄φ̄ tends
towards the optimal score Sφ. It also captures the fact that bijective errors do not impact
the outcome of the attack since if there exists a bijection between φ̄(Zk) and φ(Zk), both
terms H

(
φ(Zk∗) | φ̄(Zk∗)

)
and maxk ̸=k∗ [H

(
φ̄(Zk) | φ(Zk)

)
] would be equal to 0.

It should be noted that the given bound may not be tight especially in the context
of high noise where the right term could become negative. In such a context, finding
inequalities, able to control or give useful insights on S̄φ̄ is an interesting problem for
further works.

3 MIA against masked implementations
Masking is one of the most widely used countermeasures to protect implementations of
block ciphers against side-channel analysis [CJRR99]. The idea is to split each sensitive
intermediate value Z, into d shares (Zi)1≤i≤d. The d− 1 shares Z2, ..., Zd are randomly
chosen and the last one, Z1 is processed such that::

Z1 = Z ∗ Z2 ∗ · · · ∗ Zd (42)

for a group operation ∗. Assuming the masks are uniformly distributed, the knowledge
of d − 1 shares does not tell anything about Z. However, partial knowledge on the d
shares can be exploited to retrieve information on Z. That is why, to defeat masking, one
should use a distinguisher able to combine the leakage of at least d samples of the traces
(assuming masks do not leak at the same time). Higher-order correlation attacks [Mes00]
exploit a combining function, C : Rd → R , which transforms a multidimensional leakage
into a single value such that the output of C correlates with Z. The optimal combining
function is unknown but, the centered product between the shares [PRB09] is a popular
choice.

3.1 MIA, a natural choice against masking
Although higher-order CPA attacks lead to successful key recoveries, they are not optimal
from an information-theoretic point of view. Indeed, by the data processing inequal-
ity [BR12], the application of the combining function leads to an information loss. Opposed
to Pearson’s correlation, mutual information can deal with dependencies of multidimen-
sional variables. Therefore, no combining function is required which makes MIA a very
natural strategy against masked implementations. An extension of MIA in the context
of masking has been proposed in [PR09] and [BGP+11]. The idea is very similar to the
non-masked case. Concepts of MIA versions 1 and 2 still apply and one can use I(f(Zk), L)
as a distinguisher.

3.2 About the partition function in the presence of masking
Using I(f(Zk), L) as distinguisher still raises the question of the optimal f function. Th. 1
cannot be applied straightforwardly since, for masked implementation, the leakage cannot
be expressed as a deterministic function φ(Zk∗) modulo some noise. Instead, with Zi

representing the shares, one now has:

L =
∑

i

φi(Zi) (43)
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for some functions φi : Z → Rn. Note that, as for the unmasked case, a noise-free version
of the leakage is first considered to simplify the analysis. Noise will be added in section 3.3.
Most of the time, the φi supports can be supposed disjoint (i.e. leakages of the shares do
not overlap). In that case, the leakage vector could be summarized as:

L = [φ1(Z1), . . . , φd(Zd)] (44)

with φi taking its values in a subspace of Rn. Even with this simplification, we could not
solve analytically the problem of finding an optimal partition function, or, in other words,
a function f ∈ Fopt as defined in (11). However, we still give some useful insights in the
common case of Boolean masking on a device leaking the Hamming weight (or Hamming
distance with a known value) of the shares.

For this specific case, [BGP+11] tried to use the Hamming weight as well as the identity
function for f (they were attacking the output of a DES S-box, therefore a non-injective
intermediate variable). The Hamming weight produced better results. Their justification
is that the Hamming weight is closer to the underlying leakage model of the circuit. We
do not find this justification straightforward especially in a multivariate context since even
in the ideal case where the leakage could be expressed as:

L = [HW(Zk∗ ⊕M), HW(M)] (45)

HW(Zk∗) is not directly related to any physical leakage. More generally, there is no proof
that if all shares leak with the same leakage model φ, taking f = φ is the optimal (or even
a good) option. However, in the specific case of a Hamming weight leakage model, [PRB09]
has shown that their exists a linear correlation between HW(Zk∗) and the covariance:
cov

(
HW(Zk∗ ⊕M), HW(M)

)
which is a clue that there exists a non-negligible mutual

information between HW(Zk∗) and L. However, we go further in this paper by showing in
Theorem 2 that there is actually no loss of information when applying the Hamming weight
function to the Zk∗ variable. This result can then be used to give a formal justification for
using f = HW, as done hereafter.

Let us introduce FLeft as the left part of equation 11:

FLeft = arg max
f : Z→Rn

{
I

(
f(Zk∗), L

)}
(46)

This set does not consider the wrong hypotheses. Therefore it is not hard to find a
function f ∈ FLeft: the identity or any bijective function works. The problem is that
with a bijective map, I

(
f(Zk∗), L

)
= I

(
f(Zk), L

)
for any k. However, a non-injective

function f such that f ∈ FLeft would naturally decrease I
(
f(Zk), L

)
and create some

distinguishability. Such a function is not a priori likely to exist. But the following theorem
shows that, while being highly non-injective, HW ∈ FLeft.

Theorem 2. Let L represent the leakage of a masked variable Zk∗ with a mask M . Let
both shares follow any bijection b1 and b2 of a Hamming weight leakage model so that:

L =
[
b1

(
HW(Zk∗ ⊕M)

)
, b2

(
HW(M)

)]
(47)

Then, HW ∈ FLeft or in other words: I
(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
.

The following proof may be generalizable to higher-order (see section 5.3 for an empirical
validation), but for simplicity, only first-order masking is considered here.
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Proof. Since bijective transformations do not impact mutual information, one can consider
without loss of generality that:

L =
[
HW(Zk∗ ⊕M), HW(M)

]
(48)

Now let us evaluate I
(
f(Zk∗), L

)
using equation 4:

I
(
f(Zk∗), L

)
=

∑
f̄∈f(Z)

∑
l∈L

P (f̄ , l) · log

(
P (f̄ , l)

P (f̄) · P (l)

)
(49)

One can split the first sum by summing on z instead of f̄ :

I
(
f(Zk∗), L

)
=

∑
z∈Z

∑
l∈L

P (z, l) · log

(
P (l | f(z))

P (l)

)
=

∑
z∈Z

∑
l∈L

P (z) · P (l | z) · log

(
P (l | f(z))

P (l)

) (50)

Since the identity function is bijective and maximizes this quantity, it would be enough to
show that P (l | HW(z)) = P (l | z) for any given z and a given l = [HW(z ⊕m), HW(m)]
for a fixed m. Let us start by the latter term:

P (l | z) = P (HW(m)) · P (HW(z ⊕m) | z, HW(m)) (51)

To compute the right term one can evaluate the cardinal of the set M of all the masks m′

satisfying the following conditions:

1) HW(m′) = HW(m)

2) HW(z ⊕m′) = HW(z ⊕m)

and divide by the number of byte with a Hamming Weight of HW(m) which is
( 8

HW(m)
)
.

To evaluate this cardinal, we first show an invariance property. For any m′ ∈M, let nm′

denotes the number of bits set to 1 in m′ such that there is also a bit set to 1 at the same
position (0 to 7) in z. Then:

HW(z ⊕m′) = HW(m′) + HW(z)− 2 · nm′ ⇐⇒

nm′ = HW(m′) + HW(z)−HW(z ⊕m′)
2

(52)

Now since m′ satisfies the above two conditions:

nm′ = HW(m) + HW(z)−HW(z ⊕m)
2 (53)

which does not depend on m′ anymore. As nm′ has to be a positive integer, the above
equation shows that:

HW(m) + HW(z)−HW(z ⊕m) /∈ 2N =⇒ M = ∅ (54)

This allows us to define a generic n as:

n =
{

HW(m)+HW(z)−HW(z⊕m)
2 , if HW(m) + HW(z)−HW(z ⊕m) ∈ 2N

−1, otherwise
(55)

so that ∀m′ ∈M, nm′ = n.
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Reciprocally, one can see that each byte m′ such that HW(m′) = HW(m) and nm′ = n
is in M. So to form a valid m′ ∈ M one has to choose first the position of the n ’1s’
superposing with the ’1s’ in z, which lead to

(HW(z)
n

)
possibilities. Then, choose the

positions of the remaining ’1s’, which lead to
( 8−HW(z)

HW(m)−n

)
possibilities. Therefore, with the

convention
(

l
k

)
= 0 when k is strictly negative:

P (HW(z ⊕m) | z and HW(m)) =
(

HW(z)
n

)
·
(

8−HW(z)
HW(m)− n

)
· 1( 8

HW(m)
) (56)

Injecting this into (51) gives:

P (l | z) =
( 8

HW(m)
)

28 ·
(

HW(z)
n

)
·
(

8−HW(z)
HW(m)− n

)
· 1( 8

HW(m)
)

= 1
28 ·

(
HW(z)

n

)
·
(

8−HW(z)
HW(m)− n

) (57)

Now let us evaluate P (l | HW(z)):

P (l | HW(z)) = P (HW(m)) ·
A︷ ︸︸ ︷

P (HW(z ⊕m) | HW(z) and HW(m)) (58)

And,
A =

∑
z′ s.t.

HW(z′)=HW(z)

P (z′ | HW(z)) · P (HW(z′ ⊕m) | z′ and HW(m)) (59)

Now using result from (56):

A =
∑

z′ s.t.
HW(z′)=HW(z)

1( 8
HW(z)

) · (HW(z′)
n

)
·
(

8−HW(z′)
HW(m)− n

)
· 1( 8

HW(m)
)

=
(

HW(z)
n

)
·
(

8−HW(z)
HW(m)− n

)
· 1( 8

HW(m)
) (60)

since all the terms are constant in the sum and there are exactly
( 8

HW(z)
)

of them. Now
plugging this into (58) gives:

P (l | HW(z)) = 1
28 ·

(
HW(z)

n

)
·
(

8−HW(z)
HW(m)− n

)
= P (l | z) (61)

Thus,
I

(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
(62)

which ensures that HW ∈ Fleft and concludes the proof.

Interpretation. This theorem shows that when the shares leak in Hamming weight,
it is sound to use f = HW in practice because it creates some distinguishability by
decreasing the information only for the wrong hypotheses. Since the Hamming distance
with a computable value can be rewritten as a Hamming weight, it also works in that
case. However, Th. 2 is not generalizable to any leakage model φ (for example on 3 bits
words, φ = 2b1 + b2 + b3 gives a counter-example). Knowing if there exists a generic
strategy against masking (depending on φ but working for any φ) or if one will always be
condemned to work on a case-by-case basis is an interesting question and may be handled
in future works.
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Remark 2. Note that since I
(
Zk∗ , L

)
= I

(
HW(Zk∗), L

)
= maxk[I

(
HW(Zk), L

)
], the

procedure described in section 2.6 can also be applied on a masked implementation, to test
the validity of the Hamming weight leakage model hypothesis. If the Hamming weight
is too far from the true model, a practical alternative is to use only specific bits of the
unmasked variable as partition function. An example of this is given in section 6.

Considering the distinguishability score:

Sf = I
(
f(Zk∗), L

)
−max

k ̸=k∗

[
I

(
f(Zk), L

)]
(63)

HW has not been shown to be optimal. However, a partial result can be given introducing
the concept of "wider" function.

Definition 1. A function f is said wider than g if there exists another function h such
that: h ◦ f = g.

Corollary 1. Let L be defined as in (47). Then, for any function h̄ wider than HW,
SHW ≥ Sh̄.

Proof. The proof is given in appendix B.

Even though we do not conjecture so, a function doing with a better distinguishability
than the HW may exist. But a straightforward consequence of Th. 2, given by corollary 1,
is that HW has a better or equal distinguishability score than any other wider function.

3.3 Noise and multidimensionality
The advantage of MINE is to be able to exploit the information contained in multiple
samples at the same time. In a Hamming weight leakage scenario, the Hamming weight of
a variable is probably not going to leak perfectly on a single sample. Instead, multiple
samples may leak a noisy version of it. To ensure that it is sound to use MINE and its
multidimensional capabilities to mount an attack in the case of masking, one would need a
multidimensional version of Th.2. This is exactly the purpose of corollary 2, in which the
noise is directly included.

In the context of masking the actual useful part of the leakage could be expressed as:

L =
[
b1

(
HW(Zk∗ ⊕M)

)
+ N1, . . . , bm1

(
HW(Zk∗ ⊕M)

)
+ Nm1 ,

b′
1
(
HW(M)

)
+ N ′

1, . . . , b′
m2

(
HW(M)

)
+ N ′

m2

] (64)

with bi and b′
j being bijective maps, and Ni and N ′

j being discrete noise variables in-
dependent of the shares. The following corollary shows that Th 2 is still valid in that
case.

Corollary 2. Let L be defined as in (64). Then, one still has HW ∈ FLeft as defined
in (46).

Proof. As for Th. 2, one can drop, without loss of generality, the bijections in L as they
do not affect the MI. Let N be the noise vector [N1, . . . , Nm1 , N̄1, . . . , N̄m2 ] and L̄ the
noise-free version of the leakage so that L = L̄ + N . As for Th. 2, it is enough to show
that P (l | HW(z)) = P (l | z) for any given l and z. Decomposing on all the possible values
of the noise one has:

P (l | z) =
∑
n∈N

P (n) · P (L = l | z and n)

=
∑
n∈N

P (n) · P (L̄ = l − n | z)
(65)
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Since L̄ is noise free, it consists of the repetition of the same two variables: HW(Zk∗ ⊕M)
(m1 times) and HW(M) (m2 times). So for the probability P (L̄ = l−n | z) to be non-zero,
the vector l − n should be constant on its first m1 coordinates, and constant on its m2
last one. Let Nc be the subset of N verifying the precedent property. If n /∈ Nc, then:

P (L̄ = l − n | z) = P (L̄ = l − n | HW(z)) = 0 (66)

Else, if n ∈ Nc, then, with an = (l − n)[1], bn = (l − n)[m1 + m2] and L̃ = [HW(Zk∗ ⊕
M), HW(M)]:

P (L̄ = l − n | z) = P (L̃ = [an, bn] | z) (67)

So (65) can be rewritten as:

P (l | z) =
∑

n∈Nc

P (n) · P (L̃ = [an, bn] | z) (68)

Since, Th. 2 tells that P (L̃ = [an, bn] | z) = P (L̃ = [an, bn] | HW(z)):

P (l | z) =
∑

n∈Nc

P (n) · P (L̃ = [an, bn] | HW(z))

P (l | z) =
∑

n∈Nc

P (n) · P (L̄ = l − n | HW(z))

P (l | z) = P (l | HW(z))

(69)

which concludes the proof.

This corollary shows that it is sound to use I(HW(Zk), L) as distinguisher even when
considering a noisy multidimensional leakage vector. Th. 2 still applies and MINE may
benefit from the different leakage sources resulting in an attack (presented in the next
section) exploiting more of the available information.

4 Neural Estimated Mutual Information Analysis (NEMIA)
This section aims at formally describing the new attack proposed in this paper. Note that
throughout this work, a tool able to compute I(Z, L) with high dimensional variables has
been assumed to exist. This research has been driven by recent progress regarding neural
estimation techniques. However, this work is not absolutely related to MINE. It would stay
sound with any MI estimator able to work in high dimension. In particular, any progress
in the field, which is likely to happen since it is a very active domain, would instantly
impact the attack efficiency. In this work, the most basic version of MINE is used. It
should be seen as a proof of concept with almost no hyper-parameters tuning and without
considering recent optimizations nor improvements in the technique (non-exhaustively:
[CL20,LSN+19,CABH+19]). A study focused on deep learning optimizations would be
interesting but is out of the scope of this paper. Basic principles of MINE are recalled
hereafter.

4.1 Mutual Information Neural Estimation
Technical details about the utilization of MINE in a side-channel context can be found
in [CLM20]. However, a high-level picture is still given in this section. The general idea
is to express I(Z, L) as the Kullback-Leibler divergence between the joint distribution
and the product of the marginals: I(Z, L) = DKL(pZ,L || pZ ⊗ pL). Then, to exploit the
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Donkser-Varadhan variational formulation of the KL-divergence that states that if p and q
are two densities defined over a compact set Ω ∈ Rd:

DKL(p || q) = sup
T : Ω→R

[Ep[T ]− log(Eq[eT ])] (70)

This allows to express MI as a supremum. Then, the following loss function can be defined:

L(θ) = EpZ,L
[Tθ]− log(EpZ⊗pL)[eTθ ]) (71)

and deep learning techniques can be applied to maximize this loss over all the functions
Tθ parametrized by a neural network with parameters θ ∈ Θ. The objective function
should converge towards the supremum so that its final value constitutes the MI estimation.
Formally:

Definition 2. (MINE) Let A = {(z1, l1), . . . , (zn, ln)} and B = {(∼
z1,

∼
l 1), . . . , (∼

zn,
∼
l n)}

be two sets of n empirical samples respectively from pZ,L and pZ ⊗ pL. Let F = {Tθ}θ∈Θ
be the set of functions parametrized by a neural network. MINE is defined as follows:

̂I(S, X)n = sup
T ∈F

EA[T ]− log(EB[eT ]) (72)

where EX [·] stands for the expectation empirically estimated over the set X .

In practice one only has samples from the joint distribution: A = {(z1, l1), . . . (zn, ln)} of
the labeled traces. Samples from the product of the marginals can be artificially generated
by shuffling the variable L using a random permutation ρ: B = {(z1, lρ(1)), . . . , (zn, lρ(n))}.

Validation loss function. One of the main problems of MINE pointed out in [CLM20]
is the overfitting. Indeed, the loss function may overestimate the true MI. Therefore, one
can introduce a validation loss function to detect overfitting and to produce a more reliable
estimation. The idea is to split A and B into training datasets At and Bt and validation
datasets Av and Bv. Then, only the training datasets are used for back-propagation so that
the loss function evaluated on the validation datasets cannot overestimate the MI. That is
why only validation loss functions are considered/plotted in this paper. For robustness,
the MI estimation is not set to be the supremum of the validation loss, but instead, the
supremum of a moving average along the epochs with a window size of w which depends
on the variability between epochs (w = 10 in this paper).

Architecture. The network’s input layer consists of a concatenation of both Z and
L variables. Authors in [CLM20] have shown that the representation of Z is important
and that one should use the One-Hot Encoding (OHE) or a binary encoding of Z (unless
otherwise specified we used the OHE in this paper). The output layer is a single neuron as
the function T output has to be a real value. Other layers are not specified and should be
adapted to the underlying problem (e.g. convolutional layers to counter jitter or traces
misalignment).

For our experiments, we used a Convolutional Neural Network (CNN) where a batch
normalization layer is added after the first layer and dropout layers are inserted after
each hidden layer in order to mitigate overfitting. The activation function is set to the
Exponential Linear Unit (ELU) and the batch size to 1000. The precise architecture is
depicted in Appendix D. The validation dataset represents 20 percent of the full dataset.

4.2 Multidimensional paradigm
MINE is by essence a tool that estimates MI in a multidimensional way, enabling to
compute the MI between f(Zk) and significant part of the traces. This was not possible
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with classical MI estimators which do not scale with high dimensional variables. Until
now, MIA was only performed with the following distinguisher:

Dold(k) = max
i
I(f(Zk), L[i]) (73)

where L[i] represents the i-th sample of the trace. This way, trace dimension is kept low,
allowing methods such as the histogram or the kernel density estimation [PR09] to produce
reliable results. However, this comes at the cost of sacrificing some, and maybe a large
part, of the available information. MINE allows to directly use:

Dnew(k) = I(f(Zk), L) (74)

as a distinguisher. This comes with two main advantages:

• Intermediate variables often leak at multiple instants in the trace. MINE allows to
exploit all these leakage sources at the same time.

• Other intermediate variables, statistically dependent from the first one, can also
leak information. For example, there could be some useful information about an
AES key, before and after the application of the first S-box. In this context, MINE
could exploit leakage from both intermediate variables at the same time, without
any assumption related to the kind of link between these variables.

Theorem 1 states that the optimal distinguisher is I(φ(Zk), L) with φ being the leakage
model. It is important to note that φ(Zk) itself can be multidimensional. Therefore,
an optimal MI attack should exploit this multidimensionality of the leakage model to
increase the distinguishability of the correct hypothesis. However, it is frequent that
multiple samples leak with the same underlying model: for example, a noisy version of the
Hamming weight of Sbox[k∗ ⊕ P ] can leak multiple times in the trace. In such a context,
the deterministic parts of the leakage of all these samples are all bijectively related. As
adding bijection of the same variables multiple times would not change the MI, one can
keep only one version of each different sub-leakage model. For example, if the target
leaks (maybe multiple times) the Hamming weight of the first S-box of an AES and the
Hamming distance between the S-box and k ⊕ P , Zk could be defined as k ⊕ P and one
could replace φ(Zk) by the two-dimensional vector:[

HW
(
Sbox[Zk]

)
, HW

(
Sbox[Zk]⊕ Zk

)]
(75)

Remark 3. In practice, one may deliberately drop some intermediates variables for not
being enough discriminating for wrong key candidates making them less tolerant regarding
errors in the estimation of φ. For example, it is theoretically possible to use leakage on
a xor: HW(k ⊕ P ) (assuming a Hamming weight a priori) but it is preferable to use
intermediate variables where each bit depends on multiple bits of k such as the output
of an S-box. Indeed, these variables are more discriminating since single bit errors on k
are diffused to the whole variable which prevents from rewarding wrong hypotheses with
several correct bits.

Scalability with masking order. In the context of masking, another advantage
of multidimensionality emerges. In a classical d-order attack one often does not know
the exact leakage time of each share, and therefore, has to compute the value of the
distinguisher for each possible tuple (i1, . . . , id) and select the maximum. In the case of
MIA the old distinguisher takes the following form:

Dold(k) = max
i1,...,id

{I(f(Zk), L[i1, . . . , id])} (76)



Valence Cristiani, Maxime Lecomte and Philippe Maurine 21

For long traces, this can become a huge constraint since the total number of tuples grows
exponentially with the masking order. Our version of the MIA which uses I(f(Zk), L) as
distinguisher, does not suffer from this since it does not require any kind of recombination
between time samples. Note that it does not mean that masking is useless: it still decreases
exponentially the information contains in side-channel traces [PR13] and an attack may
require exponentially more traces to succeed.

For a fixed number of traces, the number of network trainings to mount a NEMIA is
constant with respect to the masking order. However, each training may require more
epochs to succeed when dealing with higher order masking schemes, in order to escape
from the so called plateau effect described in [MCLS22]. The computational complexity
required by gradient descent-based algorithms to escape from such a plateau (and start
being better than random models) is an open problem but figure 9-b of [MCLS22] suggests
that the number of epochs compared to the masking order is sub-exponential.

4.3 Attack description
A step-by-step description of the NEMIA is given hereafter. It takes as input a set of
traces and outputs a ranking of the key hypotheses.

1. Define an a priori φ̄ on the leakage model. It can be multidimensional if multiple
intermediate variables related to the key leak information. Also, a single intermediate
variable can have different leakage models at different times. The test described in
section 2.6 can be used to detect wrong a priori. Even if MIA is tolerant regarding
estimation errors on φ, better a priori lead to more efficient attacks.

2. Compute, for all k, the hypothesis vectors: Hk = φ̄(Zk).

3. Compute I(Hk, L), for all k, with MINE. This implies to run a neural network
trainings for each key hypothesis. Each estimation is the supremum of a moving
average along the epochs of the validation loss function.

4. Rank the key hypotheses.

For masked implementation, the only step that changes is the construction of Hk. If
the shares have a Hamming weight leakage model, Th.2 proves that it is sound to use the
Hamming weight of the corresponding unmasked intermediate variable in Hk (one may
do this for multiple intermediate variables). For a generic leakage model of the shares,
the best strategy to adopt remains an open question. It appears that, in some cases, it is
efficient to keep a restrictive number of bits of the unmasked variable as partition function,
for example in a situation where some bits of the shares leak much more information than
the others (an example of this is given in section 6).

5 Simulation experiments
In order to gain confidence in the mathematical results presented in this paper, as well as
to gain intuition about their implications, this section presents experiments on synthetic
data.

5.1 The importance of the a priori
The main message of Th.1 is that, to maximize the distinguishability of the correct
hypothesis, one should use the leakage model φ to create the hypothesis vectors Hk. In a
classical side-channel scenario, with no other specific information, one may often guess
a Hamming weight leakage of the intermediate variables. This is justified by electronic



22 iacrtans class documentation

arguments. However, it has been shown that bits may have different leakage behaviours,
such as leakage weighting or even sign inversions [CLH19]. To illustrate Th.1, 10k synthetic
traces leaking a slightly modified version φ0 of the Hamming weight have been generated.
They consist of a single sample leaking the Hamming weight of Zk∗ = Sbox(k∗ ⊕ P ) but
with a flipped sign for bit 0 so that:

φ0(z) = −z0 +
7∑

i=1
zi (77)

with zi representing the i-th bit of z. Some Gaussian noise has been added to the traces
so that L = φ0(Z) +N (0, 1). Fig.1 shows the results of a NEMIA with k∗ = 0, both with
HW and φ0 as partition function. As predicted by Th.1, the distinguishability score:

Sf = I
(
f(Zk∗), L

)
−max

k ̸=k∗

[
I

(
f(Zk), L

)]
(78)

is higher for f = φ0 than for f = HW. Obviously, an attacker may not know φ0 and an
attack with the Hamming weight still succeeds in that case. However, this shows that,
if by any means, an adversary knows the particularity of bit 0 of such a target, he can
perform more efficient attacks.
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Figure 1: I
(
f(Zk), L

)
in terms of k, with k∗ = 0

Semi-supervised attacks. This opens the idea of semi-supervised attacks. One
of the main problems of profiling attacks is the portability [EG12]. Indeed, during the
characterization phase, the adversary learns a perfect representation of the leakage model
which may overfit on the particular target which is profiled. It has been shown that
portability to other targets is not trivial. Therefore NEMIA could be turned into a
semi-supervised attack where the purpose of the characterization phase is only to learn
general leakage characteristics, such as the sign or weighting of each bit, and use them
as an improved a priori for a NEMIA. Since NEMIA is agnostic towards bijective errors
in the leakage model estimation, it has a better chance of being portable on many other
targets similar to the one used for profiling.

5.2 The potential of multidimensionality
One of the main advantages of NEMIA is its potential to exploit at the same time, multiple
leakage sources. It is possible that multiple intermediate variables leak information on the
key and each particular variable may leak multiple times in the traces. This section aims
at showing how NEMIA could exploit all these leakage sources as well as to compare it
with other state of the art attacks.
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Traces Generation. To this aim, a dataset of 100k synthetic traces have again
been generated. These traces represent the leakage of an AES that both leaks Ak∗ =
HW(Sbox[k∗⊕P ]) and Bk∗ = HW(Sbox[k∗⊕P ]⊕ (k∗⊕P )). One could imagine that the
bus leaks the Hamming weight of the S-box data and that the update of the state register
leaks the Hamming distance with its precedent value (e.g. [MEP+08]).

One of the strength of using deep learning in an unsupervised attack is the absence
of need for preprocessing techniques. To highlight this fact we also added 90 % of
uninformative samples as well as some misalignment in the traces following the shifting
deformation procedure introduced in [CDP17] which simulates a random delay effect of
maximal amplitude T by shifting each trace by a random number uniformally drawn
between 0 and T . The procedure for the trace generation is depicted in Algorithm 1.

Algorithm 1 Generate Traces
Output: L, a (100k, 1010) array
Output: P , a (100k) array

1: P ← Draw 100k plaintexts uniformly from J0, 255K
2: A← HW(Sbox[P ⊕ k∗])
3: B ← HW(Sbox[k∗ ⊕ P ]⊕ (k∗ ⊕ P ))
4: S ← Draw 1010 samples from a Gaussian N (0, 102) ▷ Generate a baseline shape
5: L← Repeat S 100k times to form a (100k, 1010) array
6: for 1 ≤ i ≤ 100k do
7: for 1 ≤ j ≤ 50 do ▷ Add leakage one every 10 samples
8: L[i, 10 ∗ j]← L[i, 10 ∗ j] + A[i]
9: L[i, 10 ∗ j + 500]← L[i, 10 ∗ j + 500] + B[i]

10: end for
11: end for
12: R← Draw an array (100k, 1010) of random number from a Gaussian N (0, 202)
13: L← L + R ▷ Add some noise
14: for 1 ≤ i ≤ 100k do
15: sh← Draw a random integer uniformly from J0, 10K
16: L[i]← Roll(L[i], sh) ▷ Apply the jitter (Roll shift the array by sh)
17: end for
18: return L, P
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Compared strategies. We used the generated dataset to compute and compare
guessing entropies for the following attack strategies:

1. A classical CPA [BCO04] with a Hamming weight model. The score for each
hypothesis is defined as the maximum score along the sample axis.

2. A classical univariate MIA with a Hamming weight model computing the MI with
the histogram method described in [BGP+11] with 9 bins. Again, the score for each
hypothesis is defined as the maximum score along the sample axis.

3. NEMIAP artial, only considering the Hamming weight leakage (Ak) to construct the
hypothesis vectors Hk = Ak:

4. NEMIAF ull, considering both leakages (Ak and Bk) to construct the hypothesis
vectors Hk = [Ak, Bk].

5. The Differential Deep Learning Analysis (DDLA) introduced in [Tim19]. It is
sound to compare NEMIA to DDLA since both methods use deep learning with an
unsupervised approach. It builds 256 classifiers, one for each key hypothesis, and
uses a metric (we used the accuracy as suggested in [Tim19]) as a distinguisher. Note
that a partition function also has to be applied to the intermediate variables but
its optimal choice has not been discussed in [Tim19]. We use the Hamming weight
function in this experiment.

6. A classical deep learning supervised attack [MPP16], denoted DL-supervised, where
a network is train to classify amoung the 256 classes. The total number of traces is
divided into 80% for training and 20% for the actual attack. The architechture of
the network is depicted in Appendix D.

7. The same deep learning attack but in a non-limited setup regarding the number of
traces during profiling. In practice we have trained the network using another dataset
of 100k traces generated with Algorithm 1. This attack is denoted DL-supervised∞.
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Figure 2: Guessing entropies for the considered attacks

Figure 2 shows the evolution of the average rank of k∗ for each attack. Each point
represents the average over 100 attacks computed with traces randomly drawn from the
100k traces dataset. It appears that for low numbers of traces, CPA performs the best
amoung the unsupervised attacks but this is not very meaningful since attacks with such
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guessing entropies (greater than 20 on a single key byte) are not really exploitable for a
full key recovery. Deep learning attacks behave more like if they had a threshold: after a
certain number of traces, one can observe a quick drop in their guessing entropies.

As predicted by the theory, NEMIAF ull converges faster towards a ranking of 0 than
NEMIAP artial, and both converge faster than CPA. NEMIAP artial outperforms DDLA
and also the supervised DL attack with a restricted number of traces for profiling. This
may seem counter-intuitive but in this case we argue that the learning problem is simpler
for NEMIA since it has to deal with 9 different classes instead of 256 for the DL model.
This may result into succesfull profiling with less traces. In this case, the application of
the partition function is only beneficial and does not induce information loss since the true
leakage model is known.

To the best of our knowledge, classical MI-based attacks always performed worse
than CPA in the literature, when considering the Hamming weight model, which is again
confirmed by our results. This experiment shows that in a low-information scenario (noisy
traces with jitter), NEMIA may be worth considering among the other unsupervised
attacks.

5.3 Empirical validation of theorem 2

Th.2 may seem very counterintuitive since it basically says that: when shares of a Boolean
masking leak in a Hamming weight model, one has:

I
(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
(79)

which is surprising since HW is highly non-injective and should at first glance, decrease the
information. Corollary 2 says that this is even true when multiple samples leak a noised
version of the Hamming weight of the shares. To verify this claim, 100k synthetic traces
have been generated considering the following leakage:

L =
[
HW(Zk∗ ⊕M) + N1, . . . , HW(Zk∗ ⊕M) + N10,

HW(M) + N11, . . . , HW(M) + N20
] (80)

with Zk∗ = Sbox(k∗ ⊕ P ), Ni = N (0, 1) and M being uniformly distributed in Z/256Z.

Fig. 3a shows the evolution of the loss function for both the HW and the identity
function for the correct key hypothesis. As predicted, both converge towards the same value
which confirms experimentally that the application of the HW does not alter information.
The HW function is even doing a little better which can be explained with practical
machine learning considerations. Indeed, the information being constant, it is easier for
the network to learn with a 9-classes variable than with a 256 classes variable (note that
in this experiment, id(Zk∗) has been encoded in binary rather than in OHE, because it
produced slightly better results). Also, since overfitting was not really a problem in this
experiment, the dropout parameter has been set to p = 0.1.

Fig. 3b shows the result of the same experiment performed on a second-order masking,
with three shares and 10 leakage samples for each. Noise has been a bit decreased (σ = 0.5
instead of 1) to keep comparable level of information. The result sustains that Th.2 may
be generalized to higher-order and that MINE is able to extract information even with a
second-order masking.
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Figure 3: Comparison of I
(
Zk∗ , L

)
and I

(
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)
on masked synthetic traces

6 A practical case: attack on ASCAD

This section provides a real case experiment on the public dataset of ASCAD [BPS+18].
We only considered the training dataset composed of 50k traces composed of 700 samples
focusing on the processing of the third byte (the first two are not masked) of the masked
state Sbox(k∗[3]⊕ P [3])⊕ r[3], with r being the mask variable and with a fixed key k∗[3].

Since it is a masked implementation, the test described in remark 2 has first been
conducted. Results are presented in Fig. 4a. I

(
Zk∗ , L

)
is more than four times greater

than I
(
HW(Zk∗), L

)
which indicates that the underlying leakage of the shares is far from

a pure Hamming weight model. In parallel to this, authors in [Tim19] applied the DDLA
strategy which also requires a partition function and they reported that, for the ASCAD
database, only keeping the value of the Least Significant Bit (LSB) produced better results
than the Hamming weight without giving further explanations.

In a real attack scenario, an adversary mounting a NEMIA could obviously try to use
every single bit of the unmasked variable as partition function. But in order to gain some
intuition, and since the masks values are given in the database, we first performed a linear
regression on both shares, assuming bits leak independently so that the actual leakage of
share s is:

∑7
i=0 αisi + β. Figs. 4b and 4c show the evolution of the αi coefficients, on

a leakage window for both shares. Since the implementation is protected by a Boolean
masking, a mono-bit leakage is exploitable only if it is present on the same bit of both
shares. Out of the 8 bits, bit 0 (LSB) is clearly the one that leaks the most information
since its coefficients are among the greatest ones in both shares. Thus, we computed with
MINE I(Zk∗ [0], L) where Zk∗ [0] represents the LSB of Sbox(k∗[3] ⊕ P [3]). It returned
0.09 bit, which is two times more than the information left with the Hamming weight (see
Fig. 4a). This indicates that the LSB may be a good partition function since it is highly
non-injective and still keep a decent amount of information for the correct hypothesis.
We also tried with other bits but the information, while being non-zero, was significantly
lower.
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(c) Sbox(k∗[3] ⊕ P [3]) ⊕ r[3]

Figure 4: Analysis of the ASCAD leakage model:
a) Test from remark 2 - b) & c) Coeficients of a linear regression

on the given variable

Even though attacks with the Hamming weight were successful, we decided to use the
LSB as partition function for the rest of our analysis. The attacks presented in this section
uses the whole 700 samples as input. We compared the following attacks:

1. A classical second-order CPA [PRB09] with a Hamming weight model. For each key
hypothesis, the CPA is performed on each possible combination of two samples, the
maximum being retained as the score.

2. A second-order MIA with a LSB model computing the MI with the histogram method
described in [BGP+11] with 9 bins. Again, for each key hypothesis, the MIA is
performed on each possible combination of two samples, the maximum being retained
as the score.

3. NEMIA with LSB as a partition function. The architechture of the network is
depicted in Appendix D.

4. The Differential Deep Learning Analysis (DDLA) using the accuracy as distinguisher
and with LSB as partition function. The architechture of the network is depicted in
Appendix D.

5. A deep learning supervised attack [MPP16], denoted DL-supervised, where a network
is train to classify among the 256 classes (we do not apply any partition functions
because it is not required in a supervised context). The total number of traces is
divided into 80% for training and 20% for the actual attack. The architechture of
the network is depicted in Appendix D.

Results. In order to evaluate the potential of NEMIA to exploit leakage even in very
low information context, the dataset has been artificially degraded adding Gaussian noise
N (0, σ2) to each sample. All the attacks have been performed with σ going from 0 to 20,
using the whole 50k traces. For each level of noise, the attacks have been repeated 10
times (with different random sampling of the noise) in order to compute the average rank
of the correct hypothesis. Results are presented in Figure 5. They confirm that NEMIA is
able to succeed in situations where the considered state of the art attacks would not.

As for the experiment in Subsection 5.2, the DL-Supervised attack performs worse
than the unsupervised attack which is non-intuitive. However, an adversary performing
a supervised attack would likely have an unlimited amount of traces for profiling which
will give rise to the best attack in terms of attack traces. We lack traces to compute the
equivalent of DL-Supervised∞ for such noise level. It appears that the application of the
partition function (the LSB which only has two classes) makes the training easier for the
networks which explain why a DL model, with a restricted number of traces for profiling,
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underperforms compared to the supervised attacks. Obvioulsy the partition function could
be applied even in the supervised case (i.e. building a two classes classifier) but one would
then loose the interest of being in a supervised context where no assumption has to be
done on the leakage model.
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Figure 5: Guessing entropies for the considered attacks on ASCAD with added noise

6.1 Complexity
One of the limitations of non-profiled deep learning based attack is that they require to
train a neural network for each key hypotheses. That is why 256 trainings were necessary
to run NEMIA and DDLA. Both attacks had almost the same time complexity since we
used essentially the same network architecture (Appendix D) and stopped training after
50 epochs in both cases, for all values of added noise. To give an order of magnitude,
running the full NEMIA (or DDLA) on the ASCAD dataset (50k traces, 700 samples)
required approximately 2 hours and a half on a personal computer with 128 GB or RAM,
a Tesla V100 GPU, and 2 Intel Xeon gold 5218R 2.1GHz with 20 cores each. In lower
information context, requiring to train networks with much more traces, the complexity of
such attacks may become a serious limitations. However, in such cases, the recombination
of samples required by more conventional higher-order attacks may also be overwhelming.
If the leakage area of the shares can be reduced to small part of the traces there may be a
trade-off between the required number of traces and the time complexity of using NEMIA
compared to a classical higher-order attack. Such a trade-off would depend on the the
nature of the leakage and especially on its multivariate aspect.

7 Conclusion and perspectives
This paper first proposes a clarification of the state of the art around the MIA. It
provides rigorous proofs whose goal is to derive the optimal MI-based attack working with
high-dimensional traces. Combined with recent breakthroughs on neural MI estimation
techniques, this allows to mount a new attack: the NEMIA, which benefits from both the
strength of deep learning and information theory. Being able to exploit at the same time
multiple leakage sources, it pushes the amount of effectively used information (depending
on the strength of the attacker a priori) closer to the actual existing information between
traces and secret. Simulations and real case experiments are presented to support the
mathematical theory developed in this paper. They also show that NEMIA outperforms
classical uni/bi-variate side-channel attacks and that this strategy may be worth to consider
in low-information/high-noise situations, where all (or a large part of) the available
information contained in traces need to be used to mount a successful attack.
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Several lines of research emerge from this paper. The mathematical analysis could
be further extended, especially in the context of masking, in order to develop strategies
for generic leakage model of the shares or for other masking schemes such as arithmetic
masking. On the practical side, integrating the latest optimization on neural estimation
techniques, as well as deep learning research on optimal networks architecture and hyper-
parameters would allow to mount more efficient attacks, taking as input larger portion of
the traces, leading to better/easier attacks.
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A Proof of lemma 1
Lemma 1. Let f : Z → Rn be any function. For any leakage model φ: Z → Rn there
exists a decomposition of f into f = f2 ◦ f1, with f1 : Z → N, f2 : N→ Rn, satisfying the
two following properties:

1) ∃ f3 : Im f1 → Rn such that f3 ◦ f1 = φ

2) ∀z ∈ Z, f2|
f1

(
φ−1({φ(z)})

) is bijective of reciprocal f−1
2 |f2◦f1

(
φ−1({φ(z)})

)
Proof. Let us create a partition of Z = ⊔n

i=1Pi where two elements z1, z2 ∈ Z are in the
same Pi if and only if:

• φ(z1) = φ(z2)

• f(z1) = f(z2)

Then, one may define f1 as f1(z) = i,∀z ∈ Pi. Since f1 only collides for z that already
collides through φ, there exists f3 such that f3 ◦ f1 = φ. As f is constant on Pi, let
us denote by vi its output on elements of Pi. Then f2 can be defined as f2(i) = vi so
that f2 ◦ f1 = f . Now let us prove 2). Let z ∈ Z and a, b ∈ f1(φ−1({φ(z)})) such
that f2(a) = f2(b). There exists za and zb such that a = f1(za) and b = f1(zb) with
φ(za) = φ(zb) = φ(z). So:

• φ(za) = φ(zb)

• f2(f1(za)) = f2(f1(zb)) ⇐⇒ f(za) = f(zb)

which means that za and zb are in the same Pi and thus collides through f1. So a = b
which proves that f2|f1(φ−1({φ(z)})) is injective. Then, considering its set of destination
being its image, one can say that this function is bijective with reciprocal function:
f−1

2 |f2◦f1(φ−1({φ(z)})).

B Proof of corollary 1
Definition 1. A function f is said wider- than g if there exists another function h such
that: h ◦ f = g.

Corollary 1. Let L be defined as in (47). Then, for any function h̄ wider than HW,
SHW ≥ Sh̄.

Proof. There exists h such that h ◦ h̄ = HW. So:

SHW = I
(
HW(Zk∗), L

)
−max

k ̸=k∗

[
I

(
HW(Zk), L

)]
= I

(
h ◦ h̄(Zk∗), L

)
−max

k ̸=k∗

[
I

(
h ◦ h̄(Zk), L

)] (81)

Since removing h in the second term can only increase the information:

SHW ≥ I
(
h ◦ h̄(Zk∗), L

)
−max

k ̸=k∗

[
I

(
h̄(Zk), L

)]
(82)

By Th.2, HW maximizes over g the quantity: I
(
g(Zk∗), L

)
, so removing h in the first

term cannot increase the information:

SHW ≥ I
(
h̄(Zk∗), L

)
−max

k ̸=k∗

[
I

(
h̄(Zk), L

)]
SHW ≥ Sh̄

(83)
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C Complementary material on the entropy
Lemma 2. Let A and B be a two discrete random variables. Let f : A → Rn be any
function. Then:

H
(
f(A) | B

)
≤ H(A | B) (84)

Proof. The data processing inequality [BR12] ensures that applying f to any variables can
not increase its mutual information with another variable so:

I
(
f(A), f(A) | B

)
≤ I(A, A | B)

H
(
f(A) | B

)
≤ H(A | B)

(85)

Lemma 3. Let A and B be a two discrete random variables. Let f : A → Rn be any
function. Then:

H
(
A | f(B)

)
≥ H(A | B) (86)

Proof. Again, using the data processing inequality [BR12]:

I
(
A, f(B)

)
≤ I(A, B)

H(A)−H
(
A | f(B)

)
≤ H(A)−H(A | B)

H
(
A | f(B)

)
≥ H(A | B)

(87)

D Network architectures
Figure 6 and Figure 7 show the network architectures used for the experiments performed
respectfully with MINE and classifiers (supervised and DDLA). For fairness, we tried
to keep the two architectures as close as possible. The optimizer used in both cases is
Adam [KB14] with default parameters. The loss function used for the classifiers is the
categorical cross-entropy. Note that when using convolutional layers with MINE, the
convolutional layers should only be applied to the trace variable and not to f(Zk) which
would not make sense.
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Figure 6: Network architecture for MINE
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