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Abstract. One of the most celebrated and useful cryptanalytic algo-
rithms is Hellman’s time/memory tradeoff (and its Rainbow Table vari-
ant), which can be used to invert random-looking functions on N possi-
ble values with time and space complexities satisfying TM2 = N2. As a
search problem, one can always transform it into the quantum setting by
using Grover’s algorithm, but this algorithm does not benefit from the
possible availability of auxiliary advice obtained during a free prepro-
cessing stage. However, at FOCS’20 it was rigorously shown that a small
amount of quantum auxiliary advice (which can be stored in a quantum
memory of size M ≤ O(

√
N)) cannot possibly yield an attack which is

better than Grover’s algorithm.

In this paper we develop new quantum versions of Hellman’s cryptana-
lytic attack which use large memories in the standard QACM (Quantum
Accessible Classical Memory) model of computation. In particular, we
improve Hellman’s tradeoff curve to T 4/3M2 = N2. When we generalize
the cryptanalytic problem to a time/memory/data tradeoff attack (in
which one has to invert f for at least one of D given values), we get
the generalized curve T 4/3M2D2 = N2. A typical point on this curve is
D = N0.2, M = N0.6, and T = N0.3, whose time is strictly lower than
both Grover’s algorithm and the classical Hellman algorithm (both of
which require T = N0.4 for these D and M parameters).
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1 Introduction

The problem of efficiently inverting a random looking and easy to compute func-
tion f is a fundamental problem with numerous applications. In particular, it
represents the purest form of cryptanalysis, where f(x) is defined as the cipher-
text obtained by encrypting some fixed plaintext p under key x, and f has no
known weaknesses. In this context it is natural to consider the variant in which
the inversion process can be assisted by advice which is stored in a memory of
size M and whose precomputation could take an arbitrarily long time, provided
that such a one-time effort of analyzing the cryptosystem would make it easier
to find any particular key from its associated ciphertext with a lower online time
complexity T .

Due to its importance, this problem had received considerable attention.
When the function f : {1, 2, . . . , N} → {1, 2, . . . , N} is a permutation, Hell-
man [15] had shown that given M memory, one can invert f using time T = N/M
(thus satisfying the time/memory tradeoff curve MT = N). Later, Yao [23]
proved that this attack was optimal up to logarithmic factors.

When f is a random function rather than a random permutation, the situ-
ation is more complicated. In 1979 Hellman [15] had published his well known
cryptanalytic attack which used time T and memory M satisfying TM2 =
O(N2), after preprocessing the cryptosystem in time O(N). In 2003, Oechslin
offered a different approach for this attack, obtaining the same tradeoff curve
(TM2 = O(N2)), but claiming improved complexity in real-life scenarios. In
2006, Barkan et al. [4] showed that these attacks are indeed optimal in the clas-
sical setting (up to logarithmic factors and within a certain natural model of
computation which treats f as a black box).

The problem of lower bounding the complexities of such time/memory trade-
off attacks in the quantum setting was first tackled in 2015 by Nayebi et al. [20],
who considered only the case of random permutations. Their paper took into con-
sideration the power offered by quantum algorithms, and particularly Grover’s
algorithm [14], to offer a lower bound of the form MT 2 = Ω(N), i.e., any quan-
tum algorithm using M memory needs time T ≥

√
N/M to succeed with a

constant probability to invert the permutation f .
This lower bound was extended to the case of random functions by Hhan

et al. [16] and Chung et al. [11] to show a similar lower bound of the form
MT 2 = Ω(N). These results show that to invert a function using precomputed
quantum advice, we must have T ≥

√
N/M . Finally, Chung et al. [10] proved

that no quantum algorithm with quantum advice and memory less than
√
N can

do better than a simple application of Grover’s algorithm to this search problem
(the actual bound is MT + T 2 = Ω(N)).

In this paper we consider the question of upper bounds. While we cannot
fully match this lower bound, we show how to obtain from either the Hellman
or the Rainbow attack variants new quantum time/memory tradeoff attacks on
the function inversion problem whose time and memory complexities satisfy the
relationship T 4/3M2 = N2. Note that this tradeoff attack offers strictly better
online time complexity than Grover’s algorithm for any M > N2/3. Finally,
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we consider the more general time/memory/data tradeoff attacks, in which we
are given D possible values and have to invert f on at least one of them, and
describe a new quantum attack whose complexities satisfy T 4/3M2D2 = N2.
The novelty of our results can be demonstrated by the following quote from [16]
which appeared at Asiacrypt 2019:

“Basically, the best known attacks we are aware of are to just apply
quantum attacks without auxiliary inputs (i.e., Grover’s algorithm...)
or best known classical attacks that make use of auxiliary inputs (i.e.,
Hellman’s attack...). Though quantum attacks possibly exist that utilize
classical auxiliary inputs that achieve better bounds than classical ones,
we are not aware of such an algorithm for these primitives.”

It is interesting to note that in the classical setting, there is no advantage to
time/memory(/data) tradeoff attacks over exhaustive search before the memory
is sufficiently large (at least

√
N/D). Similarly, in the quantum setting, our

algorithms need memory of at least (N/D)2/3 in order to offer an attack which
is faster than Grover.

A summary of all the known and new results can be found in Table 1.

Algorithm Time-Memory-Data Curve Restrictions

Classical Hellman [7,15] N2 = T ·M2 ·D2 T ≥ D2

Classical Rainbow [4,21] N2 = T ·M2 ·D2 T ≥ D2

Grover (Sect. 3.3) N2 = T 4 ·D2 , M = D None

Quantum Hellman (Sect. 4) N2 = T 4/3 ·M2 ·D2 T ≥ D1.5

Quantum Rainbow (Sect. 5) N2 = T 4/3 ·M2 ·D2 T ≥ D1.5

Table 1: Comparison of Time-Memory(-Data) Tradeoff Attacks (ignoring poly-
logarithmic factors and arbitrarily small additive constants in the exponents).

Our proposed algorithms are an adaptation of the Hellman and Rainbow
tables to the quantum settings. Both methods rely on repeated invocations of
random functions and contain multiple evaluations of chains of different lengths.
Both these requirements are delicate in the context of quantum computing. First,
quantum computing needs to be reversible, which requires us to (somewhat)
increase the internal state to account for the reversibility. The second issue forces
us to apply at times the identity function to ensure that the entire superposition
is handled “the same” (as the superposition is evaluated in a SIMD-like process).

These two issues were encountered before and handled in Banegas and Bern-
stein [2]. Their work tries to address the cost of quantum parallel collision search
when multiple CPUs are available (taking into consideration the communication
costs). Hence, they describe a method (based on the Bennett-Tompa method) to
offer invertible computation of chains of different lengths (which use some calls
to the identity function to equalize the computational length). While the tool
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used inside our work and in Banegas and Bernstein is the same, these works are
very different. In addition to putting a lot of effort in optimizing communication
costs (which our problem does not care about since we use a single quantum pro-
cessor), Banegas and Bernstein look for online collisions between chains. Those
chains are computed on different CPUs, and then stored. Our work on the other
hand, takes classically computed Hellman and Rainbow tables, and show how to
use the power of quantum computing to improve the running times of the online
phase of these algorithms.

1.1 Our Quantum Memory Model

Quantum algorithms can be categorized into one of three main models, depend-
ing on the amount and type of memory they use (we adopt the names and
conventions of [19]):

– Low-qubits: algorithms that require a small amount (e.g., O(n)) of quantum
bits. Any amount of classical memory can be available to the algorithm,
but the algorithm has only classical access to it. Results such as Grover’s
algorithm [14] or those of [13] fall into this category.

– QACM (quantum-accessible classical memory): in addition to a small amount
of true qubits, the algorithm can use an array of qRAM gates which can
store only classical bits, but allow access to it using superposition queries
and returning a superposition of results. For example, the collision finding
algorithm of [9] uses this model.

– QAQM (quantum-accessible quantum memory): such algorithms can use as
many qubits as needed. All the data is thus accessed, stored, and processed
in quantum memory. Obviously, this is the strongest possible model. An ex-
ample of such an algorithm is the unique collision finding algorithm proposed
in [1].

Our work operates in the QACM model. It is a common model in cryptan-
alytic attacks, which is obviously closer to realization than the QAQM model
(see, e.g., the discussion in [18]). Given the nature of the large tables needed for
time-memory(-data) tradeoff attacks, we could not find a low-qubits variant of
the algorithm (even when using exponentially large classical memory). We leave
this problem open for future works.

1.2 Organization of this paper

This paper is organized as follows: In Section 2 we recall the classical time/memory
(/data) tradeoff attacks on cryptographic schemes. In Section 3 we recall the col-
lision finding attack of Brassard et al. and discuss how it can be used to solve
multiple-data inversion problem using Grover’s algorithm. In Section 4 we de-
velop the quantum variant of Hellman’s attack, and in Section 5 we develop the
quantum variant of the Rainbow attack. In Section 6, we compare our attacks
with Grover’s algorithm. Finally, Section 7 concludes this paper.
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2 Classical Time-Memory-Data Tradeoff Attacks

The problem of inverting a (pseudo-random) function

f : {1, 2, . . . , N} → {1, 2, . . . , N}

has two trivial solutions: exhaustive search (in time O(N) and O(1) memory)
and a table attack (in memory O(N) and time O(1), given a preprocessing of
O(N) time).1

A way to bridge between these complexity extremes was presented by Hell-
man in [15]. While the precomputation is still O(N), the online time complexity
T and the memory complexity M can vary along the curve TM2 = N2, as long
as M ≥

√
N . Hellman’s attack is based on precomputing many tables, and then

searching them efficiently during the online phase. Later, Oechslin presented a
different method for constructing the tables [21], called Rainbow Tables, along
with a slightly modified way of searching them during the online phase.

We recall Hellman’s attack in Section 2.1 and the Rainbow tables in Sec-
tion 2.2. Finally, we recall the case of multiple data variants of the two attacks
in Section 2.3. Readers who are familiar with these techniques can safely skip
these three subsections.

2.1 Hellman’s Attack

The main tool in Hellman’s attack is the use of chains, defined by the iterative
application of f(·) (i.e., x, f(x), f(f(x)), . . .). In the original work of Hellman,
the chains, computed during the preprocessing, are of a predetermined length
t (whose value will be discussed later). The key idea here is that the adversary
can store the starting point and the end point (i.e., (x, f t(x))), and then recover
the full chain, if needed, by iteratively applying f(·) to x.

A well known improvement to the algorithm, due to Rivest, called distin-
guished points, stops the chain once the computed value is a special point. This
special point needs to have an easy to characterize property, e.g., with log2(t)
least significant bits equal to 0. It is easy to see that on average the length of
the chain is t, and thus for the sake of analysis we assume that indeed this is the
case.

The use of distinguished points saves the need to access the tables after
each evaluation of f(·). Hence, instead of t evaluations and t database accesses
per chain, the online phase needs t evaluations and a single database access.
Given that accessing large tables may be significantly slower than evaluating the
function f(·), for most practical cases, the use of distinguished points offers a
huge efficiency gain.

We note one technical point with distinguished points — the chains are
bounded in length. In other words, if we start from some value x, and com-

1 Throughout the paper we disregard logarithmic factors.
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Algorithm 1: The Preprocessing Algorithm for Hellman’s Time-
Memory Tradeoff Attack

for ` = 1 to t do
Initialize an empty hash table T`

for j = 1 to m do
do

Pick a starting point x`,j at random
Set tmp← x`,j

for i = 1 to 8t do
Set tmp← f`(tmp)
if tmp is a distinguished point then

Set y`,j = tmp
Store (x`,j , y`,j) in the hash table T` (indexed according to
y`,j)

Break from the loop

while tmp is not a distinguished point ;

Output all Ti’s as the Hellman tables.

pute a chain of some length (it is common to pick 8t as this length2) without
reaching a distinguished point, we call this a failure. If this happens during the
preprocessing time, a different starting point may be chosen for generating a new
chain. If this happens during the online phase of the attack, then the attack fails
for the given input (but in the case of multiple data points, another point can
be tried instead). While for classical algorithms this issue is a relatively small
technical detail, for quantum algorithms, it becomes an important one (as it
puts a limit on the depth of the circuit).

Preprocessing In the preprocessing phase, the adversary constructs several
tables. Each table is constructed by picking m starting points, x1, x2, . . . , xm.
From each starting point, xi, the adversary computes the chain xi → f(xi) →
f 2(xi) = f(f(xi))→ · · · → yi = f t(xi).

3 The pairs (xi, yi) are stored in a hash
table indexed by the value of yi.

To avoid collisions between the chains and the tables, Hellman’s attack uses
t flavors of the function f(·). Namely, let f`(x) = f(L`(x)) for some invertible
function L`. There is a table T` (1 ≤ ` ≤ t) for each such function f`(·). The
preprocessing phase is given in Algorithm 1.

It is easy to see that the preprocessing takes N = mt2 time, and uses M = mt
memory.

2 The probability of a chain of length 8t in a random function to not contain a distin-
guished point, when a random point is a distinguished point with probability 1/t, is
(1− 1/t)8t ≈ 1/e8. Obviously, picking a larger limit decreases this failure rate.

3 When using distinguished points, the value of yi is the first distinguished point
encountered in the iterative application of f(·).
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Algorithm 2: The Online Algorithm for Hellman’s Time-Memory
Tradeoff Attack (with Distinguihed Points)

for ` = 1 to t do
Set tmp← y
Set i← 0
do

Set tmp← f`(tmp)
Set i← i + 1

while i < 8t and tmp is not a distinguished point ;
if tmp is a distinguished point then

if tmp is an end point of T` then
Let yi = y be the end point
Fetch xi, the corresponding starting point, from T`

Set tmp← xi

Set tmp2← xi

Set tmp = f`(tmp)
while tmp 6= y and tmp not a distinguished point do

Set tmp2 = tmp
Set tmp = f`(tmp)

if f`(tmp2) = y then
Output L`(tmp2)

else
Move to the next ` value

The Online Phase In the online phase of the attack, the adversary is given
y = f(x) and she wishes to find x. This is done by building a chain from y
(under the t different flavors), and checking whether the chain results in an end
point yi stored in the table. Once such an end point is found, the stored starting
point xi is recovered from the table, and the adversary can compute from xi the
chain until reaching y. With constant probability, the chain indeed recovers y.
The steps (when using distinguished points) are described in Algorithm 2.

The running time of the attack algorithm is T = t2. We recall that the
amount of memory is M = mt, and that N = mt2. Hence, (up to logarithmic
factors) we have T ·M2 = N2. We alert the reader that when M <

√
N the

online running time of this algorithm is worse than exhaustive search.

2.2 Rainbow Tables

In 2003, Oechslin presented a different method to construct the tables [21]. In
this method, a single table (called a Rainbow table) is constructed. This time,
m starting points are chosen, and the constructed chains are of the form x →
f1(x)→ f2(f1(x))→ f3(f2(f1(x)))→ · · · → ft(. . . (f1(x))), where the functions
f`(·) are of the same type used in Hellman’s scheme (i.e., small variations of
f(·)) and t is the number of different functions as in Hellman’s attack. The
preprocessing step of generating the table in given in Algorithm 3. This technique
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Algorithm 3: Constructing the Rainbow Table

Pick m starting points x1, x2, . . . , xm.
for j = 1 to m do

Compute yj = ft(ft−1(· · · f2(f1(xj)) · · · ))
Store (xj , yj) in the table (indexed according to yj)

Algorithm 4: The Online Algorithm for Using the Rainbow Table

for ` = t downto 0 do
Compute y′ = ft(ft−1(· · · f`+2(f`+1(y)) · · · ))
if y′ is an end point stored in the table then

Fetch the starting point xj from the table
Set x′ = xj

for i = 1 to `− 1 do
Compute x′ = fi(x

′)

if f`(x
′) = y then

Output x′

reduces the effects of false alarms, and allows covering most of the search space
by a single table.

The online phase of the attack, described in Algorithm 4, is slightly different
than in Hellman’s attack. First, the adversary checks whether ft(y) appears as
an endpoint in the table. If not, she computes ft(ft−1(y)) and checks whether
this value appears in the table. If not, she computes ft(ft−1(ft−2(y))), and so
forth. Once an endpoint is encountered, the corresponding chain is computed
from the respective starting point.

The online running time of the rainbow table attack is about T = t2/2 calls
to f(·) (as well as t accesses to the database). The memory requirement of the
rainbow table is M = m. Since most of the states are covered by the single table,
we have N ≈ mt, and hence the obtained tradeoff curve is N2 = O(TM2).

An extended analysis and comparison of the two attacks is available in [4].

2.3 Time-Memory-Data Tradeoff Attacks

In some cases it may be possible to use multiple data points in time-memory
tradeoff attacks. The adversary is given a set of D points y1 = f(x1), y2 =
f(x2), . . . , yD = f(xD), such that f(xi) = yi, and is asked to find a pre-image
of one of the yi’s (see [7]).

The main advantage comes from the fact that the precomputation tries to
cover only N/D states, and thus, with constant probability, one of the yi’s is
covered (either by the Rainbow or by the Hellman tables). Then, the online
phase of the attack is repeated for any yi value.4

4 In some cases related to stream ciphers, this process is performed only for a single
yi [12].
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For Hellman’s attack, this is done by generating t/D tables, where the size
of each table is the same as in the original Hellman’s attack [7]. In the online
phase, for each of the D data points, the attacker tries t/D flavors, where each
such trial takes time t (on average). The resulting online time complexity is thus
t2 (as in Hellman’s original attack), but the memory complexity is reduced to
M = mt/D. Up to the requirement that t ≥ D (which stems from the fact that
there is at least one table5), the multiple-data variant of the attack obtains the
curve N2 = T ·M2 ·D2 (as long as T ≥ D2).

For Rainbow tables, one can use the straightforward approach of reducing
the number of functions by a factor of D, proposed in [6]. The resulting curve is
N2 = T ·M2 ·D, as long as T ≥ D. However, a more efficient algorithm, offering
the curve N2 = T ·M2 · D2 was proposed in [4]. We now briefly describe the
algorithm in its distinguished point version (which is equivalent to the regular
description). For more information about the algorithm and the tradeoffs we
refer the interested reader to [3].

To achieve the full potential of multiple data in the rainbow attack a basic unit
is of S flavors (the value of S is discussed later), i.e., fS(fS−1(· · · f2(f1(x)) · · · )).
The chains are built as t/S iterations of the basic unit, which consists of t
functions in total. Again, as we describe the distinguished point variant of the
algorithms, chains end when the output of a basic unit (i.e., of fS) has log2(t/S)
least significant bits equal to 0.

The pre-processing algorithm is a quite straightforward adaptation of the
rainbow tables one to use the basic unit idea. It is given in Algorithm 5. The
online algorithm is slightly different, and due to the use of distinguished points
may look similar to the online phase of Hellman’s algorithm. Specifically, given
a point y, we first apply fS(·) to it (similarly to the regular Rainbow attack).
If the result is not a distinguished point, a series of basic units is applied to
fS(·), until a distinguished point is reached. Once such a point is obtained, we
check in the stored table whether this distinguished point is an end point. If
so, we “jump” to the starting point. Otherwise, we take the same point y, and
repeat the process after first applying fS(fS−1(y)). If also this fails, the process
is repeated after applying fS(fS−1(fS−2(y))), and so forth. The algorithm is
described in Algorithm 6.

While the analysis of the pre-processing algorithm is relatively straightfor-
ward (m chains of expected length t such that mt = N/D are generated), the
analysis of the online algorithm is a bit more involved. We briefly reproduce
the analysis suggested in [3,4] as it is needed for understanding the complexity
of the quantum variants. Full details are given in [3]. In the online phase, each
data point is tested with S different starting positions. For each such starting
position, a sequence of functions (from fj , the first function, till fS) is applied,
and we check whether the result is a distinguished point. Then, a basic unit (of
S functions) is applied, and again we test whether we obtained a distinguished
point. If the distinguishing property of the point is that the log2(t/S) least sig-

5 Reducing the size of a Hellman table below m rows, for m = N/t2, offers a sub-
optimal attack.

9



Algorithm 5: The Preprocessing Algorithm for the Time-Memory-
Data Rainbow Attack

Initialize an empty rainbox table T .
for j = 1 to mt/D do

do
Pick a starting point xj at random
Set tmp← xj

for i = 1 to 8t/S do
Set tmp← fS(fS−1(· · · f2(f1(tmp)) · · · ))
if tmp is a distinguished point then

Set yj = tmp
Store (xj , yj) in the rainbow table T (indexed according to y`)
Break from the loop

while tmp is not a distinguished point ;

Output T as the Rainbow table

nificant bits are 0, then the chain is expected to end after t/S basic units, i.e.,
after t values were encountered for a given data point. Hence, the online time
complexity of the attack is T = D · t evaluations of fi’s, and D · t/S memory
accesses.6

The only factor which needs to be determined is the value of S. As shown
in [3], the optimal value of S is t/D. This follows from the matrix stopping rule
— each chain contains t values, and after m chains, there are mt covered points.
Each of the t values in the new chain can collide only with mt/S locations (as
the collision has to be with the same flavor). The result is a stopping rule of
N = mt · t/S. As the total cover is N/D = mt, we get mt2/S = Dmt. In other
words, S = t/D is the requirement for acheiving the time-memory-data tradeoff
variant of the Rainbow table.

3 Basic Quantum Algorithms

In this section we briefly describe some basic quantum algorithms upon which
we base our new algorithms.

3.1 Grover Match Algorithm

We reformulate Brassard et al.’s [9] original algorithm (Step 4 of the collision
finding algorithm, specifically) as the GroverMatch algorithm described in Al-
gorithm 7. This basic algorithm identifies whether after applying the function
F to a set of values D, one of the results appears in a table T , i.e., it finds a

6 We remind the reader that there are t/S basic units, each of length S (possibly
besides the first one). Thus, for each point the algorithm calls t/S times S functions
and performs t/S memory accesses. For the full analysis we refer the interested
reader to[3, p. 141–142].
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Algorithm 6: The Online Algorithm for Time-Memory-Data Rainbow
Attack
Input: y1, y2, . . . , yD data points.
for i=1 to D do

Set tmp = yi
for j = S downto 1 do

Compute tmp = fS(fS−1(· · · fj+1(fj(tmp)) · · · ))
if tmp is not a distinguished point then

for k = 1 to 8t/S − 1 do
Compute tmp = fS(fS−1(· · · f2(f1(tmp)) · · · ))
if tmp is a distinguished point then

Break

if tmp is an end point stored in the table then
Fetch the starting point x from the table
Set tmp2 = x
Compute tmp2 = fj−1(fj−2(· · · f2(f1(tmp2)) · · · ))
if fj(tmp2) = y then

Output tmp2

Compute tmp2 = fS(fS−1(· · · fj+2(fj+1(tmp2)) · · · ))
while tmp2 is not a distinguished point do

Compute tmp2 = fj−1(fj−2(· · · f2(f1(tmp2)) · · · ))
if fj(tmp2) = y then

Output tmp2

Compute tmp2 = fS(fS−1(· · · fj+2(fj+1(tmp2)) · · · ))

value d ∈ D s.t. F (d) ∈ T (if such a value exists). For our quantum algorithm,
we assume that the set of values D is held in a quantum superposition, and that
the classical table T is stored on a device which allows quantum access classical
memory (QACM). Both the description and the analysis follow the footsteps
of [9].

Let H(d) be the function that tells whether a value F (d) appears in a given
table T (of size M). In other words, H(d) = 1 if F (d) ∈ T , and H(d) = 0
otherwise. When D contains only one data-point d ∈ D for which H(d) = 1, the
number of iterations needed by Grover to find that d value is the square root of
the size of the search space |D|. If the function F has a running time T , then
the overall run-time complexity of the GroverMatch algorithm is T · |D|0.5.

It should be noted that when the number of points for which H(d) = 1 is 0,
then Grover is going to suggest in each iteration some random d ∈ D value (for
which H(d) = 0). Hence, one can easily detect whether there are no solutions
in the table with high probability after a few repetitions of Grover’s algorithm
that result in d values for which H(d) = 0.

In the applications we have in mind (Hellman and Rainbow tables), there is
a non-negligible probability that there will be a few “solutions” to the matching
problem, but not to the cryptographic problem we are trying to solve (namely,

11



Algorithm 7: GroverMatch(F, T,D) the Grover Match Algorithm

Input: A function F , a QACM sorted table T of size M free of internal
collisions, and a superposition of data-points d ∈ D of size D.
Compute d = Grover(H(D)) for

H(d) =

{
1 iff F (d) ∈ T
0 Otherwise

Output d.

finding the key that maps some given plaintexts to corresponding ciphertexts).
In the context of such attacks, these are called false alarms. Hence, in order
to find the right suggestion and get rid of the false alarms, we have to find all
matches using GroverMatch, and further analyze them.

Since we need to identify all the solutions to the problem, we quickly discuss
this case. When there are k > 1 possible solutions, one should expect each
invocation of Grover’s algorithm to produce one random d for which H(d) = 1
after

√
N/k iterations, as suggested in [8]. Hence, in order to find all k matches,

one can repeat Grover’s search about k log(k) times and collect all solutions.
As in our cases k is expected to be a small value,7 this results in (at most) a
logarithmic overhead in the total complexity, as we do not need to recover all k
solutions at once, and can test each solution when the GroverMatch offers it.

We note that in our applications of the algorithm, the superposition consists
of both different data points and different flavors of the function F , and the
function H(di) returns 1 if and only if Fi(d) = 1 for the corresponding flavor Fi
of F . It is apparent from the analysis in [9] that using such a superposition is
not different from using a superposition of data points of the same size.

3.2 Efficient Inversion of a Repeated Computation

While quantum computing seems to offer greater capabilities, there are still
a few technicalities that need to be addressed. One of them is the fact that
all computations needs to be invertible. As most cryptographic functions are
built to be “hard” to invert (especially in the context of the problems we study
here, i.e., of inverting a hard-to-invert function), this poses some complications.
Luckily, there is a standard solution to the problem, which is to increase the
quantum state, and use an a-ancilla reversible circuit transforming (x, y, 0) into
(x, y⊕ f(x), 0). If x is a b-bit input, and f(·) has a b-bit output, then the entire
state is (2b+a)-bit long (as the length of y has to be b bits, and the 0 is encoded
in a bits).

7 The expected number of false alarms depends on the exact parameters for the mem-
ory and the time (which are selected according to the target success rate). However,
as the analysis of [17] suggests, this number (for reasonable choices of parameters)
is logarithmic.
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In [2], Banegas and Bernstein study the question of inverting a function in
the quantum world given multiple processors and realistic assumptions on the
communication costs between them. Their approach is based on the parallel colli-
sion search algorithm of van Oorschot and Wiener [22], which relies on multiple
repeated calls to the same function (until some condition is met, e.g., until a
fixed point is encountered).

However, the repeated computation aggravates the above problem, as now,
one needs to increase the quantum state linearly with the computation depth.
This increases the internal state and the circuit size. Hence, a different approach
is needed. The solution used in [2] is to rely on the Bennett technique [5] which
builds an invertible circuit for fn (i.e., n iterations of f(·)) using a + b log2(n)
ancillas and gate depth of O(gn1+ε) where g is the circuit size of H, and ε can
be as small as desired.

The Bennett circuit can be described in a recursive way. To compute fn+m,
one can start from (x, y, 0, 0), compute (x, y, fm(x), 0), then compute (x, y ⊕
fn+m(x), fm(x), 0), which is then made into (x, y ⊕ fn+m(x), 0, 0). Obviously,
the computation of fm and fn themselves can be done in a recursive manner.
The analysis of this method for cryptographic applications is given in [2].

3.3 Straightforward implementations of Grover with D Targets

When proposing a new quantum algorithm, we want to compare it to the best
result based on currently known algorithms. The natural candidate for compar-
ison is the standard Grover search algorithm. However, as we show here, Grover
is not well suited for the multi-target scenarios. A better baseline result with
complexity of O(

√
N/D) can be obtained by using a straightforward extension

of the GroverMatch algorithm.
It is well known that running Grover on a search space of sizeN with D inputs

for which the function H(x) = 1 (whereas for the other N − D input values,
H(x) = 0) takes time O(

√
N/D) for finding one of the possible inputs. However,

in many cryptographic settings, we want to target multiple outputs, and we only
need to find the inverse of one of them (e.g., multi-target cryptographic hash
function inversion).

We assume that there are D different possible outputs yi ∈ Y, and that for
each yi there are O(1) inputs x such that F (x) = y. So we have ≈ D possi-
ble inputs meaning that we might expect the running time of a simple Grover
algorithm to be

√
N/D. However, as there are D different possible outputs, a

straightforward Grover may not be suitable. This is because the circuit of the
function H(x) now needs to encode all possible D outputs y ∈ Y:

H(x) =

{
1 F (x) = y1 ∨ F (x) = y2 ∨ . . . ∨ F (x) = yD
0 Otherwise

This means that the function’s circuit size is now O(|F |+ |D|). However, we can
always trivially reduce the running time of the Grover algorithm by a factor of√
D by increasing the circuit size by a factor of D. For example, we can partition
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the search space into D spaces of size N/D and run D parallel Grover algorithms
on each of them. So the gain offered by the multiple solutions is offset by the
increased circuit size.

However, the GroverMatch algorithm can be used almost in a straightfor-
ward way to obtain the same runtime gain. We can store all of the D possible
outputs in the sorted classical table T and initialize the search space D to a
superposition of the entire input domain. In this special case, the search space
size |D| is N . However, there are D possible valid solutions in the search space,
and we only need to find one of them. This means that the Grover algorithm
step inside the GroverMatch algorithm requires only

√
N/D time to find a valid

solution, achieving the expected speedup in the QACM model.
Note that here we store the list of target outputs in the classical table T ,

and no preprocessing is required. However, in the algorithms described in Sec-
tion 4 and 5, we will encode in D the list of target outputs and possible flavors
as a superposition and use the table T to store the values calculated in the
preprocessing phase.

4 Quantum Hellman Tables

Our quantum version for the Hellman Tables algorithm provides a significant
speed-up over the classical version. In the classical version, we need to sepa-
rately test each of the D data-points on each of the t/D flavors. However, in
the quantum version, we can use the GroverMatch algorithm to test the super-
position of the D · t/D = t possible combinations, at a run-time cost of only√
t.

4.1 Offline Preprocessing Phase

In our quantum algorithm, we prepare the hash tables for the different flavors us-
ing the same preprocessing algorithm used in the classical version and described
in Algorithm 1. We store the resulting table T = T0||T1||..||Tt/D in a QACM
that can be accessed by our GroverMatch algorithm.

4.2 Finding Distinguished Point

In the classical version, for each data-point d and each flavor `, we iterate over
the chain for up to 8t function invocations but break when we hit a distinguished
point. However, when using a quantum function implemented as a circuit, we
must use the same number of function invocations, regardless of the inputs. This
stems from the fact that the quantum gates are applied to the superposition,
and thus all “computation paths” inside the superposition must follow the same
calculation. We follow the solution of [2] to ensure that the length of the chain
is always fixed. The function FHellman described in Algorithm 8 indeed ensures
that this is the case in the following way:

1. The function is always iterated 8t times regardless of the inputs.
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Algorithm 8: FHellman(D,F lavors) The Quantum function used in
the Hellman online phase

Input: a superposition of data-points d ∈ D and a superposition of flavors
` ∈ F lavors.

Set d′ = d
for i = 1 to 8t do

tmp = f`(d
′)

if d′ is a distinguished point then
Set d′ = d′

else
Set d′ = tmp

Output d′

2. In each iteration, we always apply f` on the current value but store it in a
temporary variable. If the current value is a distinguished point, we keep it.
Otherwise, we replace it with the value stored in the temporary variable.

For detailed information about this chain, we refer the interested reader to [2].

For each data-point and flavor, if the resulting chain of length 8t contains a
distinguished point with high probability, the function will return that point (or
the end of the chain if no distinguished point is found). As the function receives
an input which is a superposition of initial data-points and flavors, it returns a
superposition of distinguished points with time complexity of O(t).

4.3 Online Phase

The online phase of our quantum Hellman Tables algorithm is described in Al-
gorithm 9. We know that with a constant non-negligible probability, we have at
least one combination of a data-point d and a flavor ` that is covered by table
T . That means the distinguished point reached by the chain started at d with
flavor ` is stored as an endpoint in T . We use the GroverMatch algorithm, with
the function FHellman and a superposition that consists of both the data-points
and the flavors, to find that data-point and flavor. FHellman converts the super-
position of data-points and flavors into a superposition of distinguished points,
and the GroverMatch algorithm amplifies the amplitude of the combination of
d and ` that T covers.

While the GroverMatch algorithm returns the covered data-point and fla-
vor, it does not return the start and end points of the covering chain or the
preimage. Our algorithm uses a classical computation to find the chain by sim-
ply iterating over the chain until we reach a distinguished point. We then find
the corresponding start and end points from table T`. To recover the preimage
for d, we iterate over the chain that begins in the starting point we found until
we reach d.
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Algorithm 9: The Quantum Hellman Tables Online Phase

Input: a superposition of data-points to invert d ∈ D, a superposition of
flavors ` ∈ F lavors, QACM sorted table T of size M free of internal collisions
of chain values (starti, endi).

// We use GroverMatch to find the data-point d that is covered by

table T and the specific flavor ` that covers the data-point.

(d, `) = GroverMatch(FHellman, T, (D,F lavor))
// From this point onwards we only use classical computations.

// We start by finding specific chain in T` that covers d and

retriving the corresponding starting point.

d′ = d
for j = 1 to 8t do

if d′ is a distinguished point then
find (starti, endi) ∈ T` s.t. d′ = endi
start′ = starti
Break

else
Set d′ = f`(d

′)

// Using the recovered starting point and flavor, we can find the

preimage of the data-point d.
for i = 1 to 8t do

if f`(start
′) = d then

Break

else
Set start′ = f`(start

′)

Output (start′, `)

4.4 Complexity of the algorithm

Similar to the classical version of the algorithm, for D data-points, we generate
t/D tables. Each table contains m chains of length t, such that omitting con-
stants, N/D = m · t2/D, and the overall memory requirement is M = m · t/D.

As inputs to the algorithm, we have a superposition of D data-points and t/D
flavors, so the resulting size of the search space for out GroverMatch algorithm
is D · t/D = t. As the time complexity of the FHellman function is O(t), the total
time complexity of the call to the GroverMatch algorithm is8 T = t ·

√
t = t1.5.

The final classical computation time complexity is O(t) and can be neglected.
We get the following constraints:

N/D = m · t2/D
M = m · t/D
T = t ·

√
t = t1.5

8 We remind the reader that we omit constant factors. Due to the issue that all chains
must be of a fixed length, the actual time is T = 8 · t1.5.
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Using these constraints we get the following time memory trade-off curve:

N/D = m · t2/D
N3/D3 = m3 · t6/D3 = t3 · (m · t/D)3 = T 2 ·M3

N3 = T 2 ·M3 ·D3

N2 = T 4/3 ·M2 ·D2

4.5 Restrictions

Note that as we need to have at least one table, we get the following constraint:

t/D > 1

t > D

t1.5 > D1.5

T > D1.5

5 Quantum Rainbow Tables

Our quantum version of the Rainbow Tables algorithm is based on similar princi-
ples as the quantum Hellman Tables algorithm and achieves a similar time com-
plexity improvement. Again, while the classical algorithm needs to test each of
the D data-points on each of the t/D flavors separately, using the GroverMatch
algorithm, we test the superposition of D · t/D = t combinations, at a run-time
cost of only

√
t.

5.1 Offline Preprocessing Phase

In the offline phase, we prepare the hash table using the same preprocessing
algorithm used in the classical version and described in Algorithm 5. We store
the resulting table T in a QACM that our GroverMatch algorithm can access.

5.2 Finding Distinguished Point

Similar to the FHellman described in Algorithm 8, we need to use a quantum
function that can be implemented in a circuit with a fixed number of function
invocations. As in the case of Hellman Table, we need to stop when hitting a
distinguished point. Moreover, in the Rainbow Table algorithm, the beginning
point of the chain is not fixed but is determined by the flavor. Again, following
the ideas of [2], we give a function that computes all the different chains in
the same number of steps. The resulting function is given in Algorithm 10, and
fulfills these requirements:

1. The function is always iterated 8t times regardless of the inputs.
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Algorithm 10: FRainbow(D,F lavors) The Quantum function used in
the Rainbow Table Online Phase
Input: a superposition of data-points d ∈ D and a superposition of flavors
` ∈ F lavors.

Set d′ = d
for i = 1 to S do

tmp = fi(d
′)

if i < ` then
Set d′ = d′

else
Set d′ = tmp

for i = 1 to 8t/S do
tmp = fS(fS−1(· · · f2(f1(d′)) · · · ))
if d′ is a distinguished point then

Set d′ = d′

else
Set d′ = tmp

Output d′

2. In the first S invocations, we apply fi on the current value but store it in
a temporary variable. If we didn’t reach the starting flavor `, we keep the
current value. Otherwise, we replace it with the value stored in the temporary
variable.9

3. After the first S invocation, we apply the S flavors on the current value using
S function invocations but store it in a temporary variable. If the current
value is a distinguished point, we keep it. Otherwise, we replace it with the
value stored in the temporary variable.

5.3 Online Phase

The online phase of our quantum Rainbow Tables algorithm is described in Al-
gorithm 11. We know that with a constant non-negligible probability we have
at least one data-point d that is covered by the table T . That means the distin-
guished point reached by the chain started at d starting with some flavor ` is
stored as an endpoint in T . We use the GroverMatch algorithm, with the func-
tion FRainbow and a superposition that consists of both the data-points and the
flavors, to find that data-point and flavor. FRainbow converts the superposition
of data-points and flavors into a superposition of distinguished points, and the
GroverMatch algorithm amplifies the amplitude of the combination of d and
staring flavor ` that T covers.

9 As described in Section 4.2, this can be implemented in a circuit using only logical
gates without a temporary variables.
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Algorithm 11: The Quantum Rainbow Table Online Phase

Input: a superposition of data-points to invert d ∈ D, a superposition of
flavors ` ∈ F lavors, QACM sorted table T of size M free of internal collisions
of chain values (starti, endi).

// We use GroverMatch to find the data-point d that is covered by

table T and the specific flavor ` offset of the data-point in

the covering chain.

(d, `) = GroverMatch(FRainbow, T, (D,F lavor))
// From this point onwards we only use classical computations.

// We start by finding specific chain in T that covers d and

retriving the corresponding starting point.

d′ = d
for i = ` to S do

d′ = fi(d
′)

for i = 1 to 8t/S do
if d′ is a distinguished point then

find (starti, endi) ∈ T s.t. d′ = endi
start′ = starti
Break

else
Set d′ = fS(fS−1(· · · f2(f1(d′)) · · · ))

// Using the recovered starting point and flavor, we can find the

preimage of the data-point d.
for i = 1 to ` do

start′ = fi(start
′)

for i = 1 to 8t/S do
for j = 1 to S do

tmp = fj(start
′) if tmp = d then

Break // Only occurs when j = `.

else
Set start′ = fS(fS−1(· · · f2(f1(start′)) · · · ))

Output (start′, `)

As before, while the GroverMatch algorithm returns the covered data-point
and flavor, it does not return the start and end points of the covering chain or the
preimage. Our algorithm uses a classical computation to find the chain by simply
iterating over the chain starting from flavor ` until we reach a distinguished point.
We then find the corresponding start and end points from table T . To recover
the preimage for d, we iterate over the chain that begins in the starting point
we found until we reach d.
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5.4 Complexity of the algorithm

Similar to the classical version of the algorithm, for D data-points, we generate
a single table. The table contains m chains of length t with S = t/D different
flavors. Omitting constants, we get that N/D = m · t, and the overall memory
requirement is M = m.

As inputs to the algorithm, we have a superposition of D data-points and t/D
flavors, so the resulting size of the search space for out GroverMatch algorithm
is D · t/D = t. As the time complexity of the FRainbow function is O(t), the total
time complexity of the call to the GroverMatch algorithm is T = O(t) ·

√
t =

O(t1.5). The final classical computation time complexity is O(t) and can be
neglected.

We get the following constraints:

N/D = m · t
M = m

T = t ·
√
t = t1.5

Using these constraints we get the following time memory trade-off curve:

N/D = m · t
N3/D3 = t3 ·m3 = T 2 ·M3

N3 = T 2 ·M3 ·D3

N2 = T 4/3 ·M2 ·D2

5.5 Restrictions

Note that as we need to have at least one flavor, resulting in the same constraint
described in Section 4.5:

t/D > 1

t > D

t1.5 > D1.5

T > D1.5

6 Comparison with Grover’s Algorithm

In classical settings, we have to make sure that the complexities of tradeoff
attacks are better than the generic exhaustive search. In the quantum setting,
we have to compare the complexities of the tradeoff attacks with the complexity
of generic Grover search instead.

Although our quantum algorithms are valid at any point where T > D3/2,
we are only interested in the range of parameters where we are faster than
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Grover. As Grover does not use any memory, we can start by finding the point
where the time complexity of both algorithm is the same. As was explained in
Section 3, Grover’s time/data tradeoff is N2 = T 4 ·D2. Our algorithm’s tradeoff
is N2 = T 4/3 ·M2 ·D2. Equating the time complexities we get:

N2 = T 4 ·D2

T = (N/D)0.5

N2 = T 4/3 ·M2 ·D2 = (N/D)2/3 ·M2 ·D2

M2 = (N/D)4/3

M = (N/D)2/3

As the time complexity improves when M increases, our algorithm’s time com-
plexity is better than Grover’s when M > (N/D)2/3. For comparison, in classical
settings M > (N/D)1/2 is required to have online time complexity faster than
exhaustive search.

We now calculate the respective data and time complexities at the point M =
(N/D)2/3, in which our algorithm’s time complexity matches that of Grover’s
algorithm. When taking the maximal number of data points, which results in
the minimal online complexity we obtain:

T = D3/2 = (N/D)1/2

D3/2 = (N/D)1/2

D2 = N1/2

D = N1/4

T = N3/8

M = (N/D)2/3 = N1/2

For comparison, in the classical setting, when M = (N/D)1/2 (which is the
transition point with respect to exhaustive search), D = N1/3 and T = N2/3.

7 Summary and Open Problems

In this paper we studied how to adapt the Hellman and Rainbow time-memory(-
data) tradeoff attacks to the quantum world. We developed quantum variants for
the online phase of these attacks which follow the improved curve T 4/3M2D2 =
N2 compared to the classical curve of TM2D2 = N2, using the standard model of
quantum-access classical-memory (QACM). As these algorithms have to compete
with a straightforward Grover search, the memory size in our algorithms must
be at least N2/3 (this bound is slightly larger than the previously known result
that no improvement is possible when the size of the quantum advice is less than
N1/2). Another corollary is that while for the classical attacks each doubling of
the memory reduces the time by a factor of 4, in our quantum setting the time
is reduced only by a factor of 2

√
2 ≈ 2.82.
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As common for time-memory(-data) tradeoffs, there is indeed one precompu-
tation step which takes time O(N). The tables our algorithms use are the same
as classical time-memory(-data) tradeoff attacks use. This allows simply storing
pre-existing tables in QACM and applying our algorithms immediately.

While these results improve both on the classical time-memory(-data) trade-
off attacks and on the Grover’s search algorithm, there is still a noticable gap
between them and the lower bounds proved in [10]. Hence, a natural question
to ask is whether one can reduce the gap, either by improving our attacks or by
improving the lower bounds. Another question is whether it is possible to use
quantum computing to offer faster table generation.
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