
CoTree: Push the Limits of Conquerable Space in

Collision-Optimized Side-Channel Attacks∗

Changhai Ou1, Debiao He1, Zhu Wang2, Kexin Qiao3, Shihui Zheng4, and

Siew-Kei Lam5

1 School of Cyber Science & Engineering, Wuhan University, Wuhan, China
ouchanghai@whu.edu.cn, hedebiao@whu.edu.cn

2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
wangzhu@iie.ac.cn

3 School of Cyberspace Science & Technology, Beijing Institute of Technology, Beijing, China
qiao.kexin@bit.edu.cn

4 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China
shihuizh@bupt.edu.cn

5 School of Computer Science & Engineering, Nanyang Technological University, Singapore
assklam@ntu.edu.sg

Abstract

By introducing collision information into side-channel distinguishers, the existing
collision-optimized attacks exploit collision detection algorithm to transform the origi-
nal candidate space under consideration into a significantly smaller collision chain space,
thus achieving more efficient key recovery. However, collision information is detected very
repeatedly since collision chains are created from the same sub-chains, i.e., with the same
candidates on their first several sub-keys. This aggravates when exploiting more collision
information. The existing collision detection algorithms try to alleviate this, but the prob-
lem is still very serious. In this paper, we propose a highly-efficient detection algorithm
named Collision Tree (CoTree) for collision-optimized attacks. CoTree exploits tree struc-
ture to store the chains creating from the same sub-chain on the same branch. It then
exploits a top-down tree building procedure and traverses each node only once when detect-
ing their collisions with a candidate of the sub-key currently under consideration. Finally,
it launches a bottom-up branch removal procedure to remove the chains unsatisfying the
collision conditions from the tree after traversing all candidates (within given threshold) of
this sub-key, thus avoiding the traversal of the branches satisfying the collision condition.
These strategies make our CoTree significantly alleviate the repetitive collision detection,
and our experiments verify that it significantly outperforms the existing works.

Contents

1 Introduction 2

1.1 Related Works . 3
1.2 Our Contributions . 4
1.3 Organization . 4

2 Preliminaries 4

2.1 Correlation Power Analysis . 4
2.2 Template Attack . 5
2.3 Correlation-Enhanced Collision Attack . 5

∗Corresponding author: Changhai Ou.

CoTree Changhai Ou et al.

3 Existing Detection Algorithms for Collision-Optimized Attacks 6

3.1 Collision Chain . 6
3.2 Test-of-Chain and Fault-Tolerant Chain . 6

3.3 Full-Collision Chain and Light-weight Collision Detection Algorithm 7

4 CoTree Algorithm 7

4.1 Tree Initialization . 8
4.2 Node Insertion . 8

4.3 Node Removal . 10
4.4 Collision Chain Extraction . 11
4.5 Complexity . 12

5 Optimization 13

5.1 Branch Removal . 13
5.2 Tree Merging . 14
5.3 Fault Tolerance . 14

6 Experimental Results 15

6.1 Experiments on DPA Contest v4.1 Dataset . 16
6.2 Experiments on an AT89S52 Micro-controller . 18

7 Conclusions 20

1 Introduction

Secret information will unintentionally leak through side-channels such as execution time [9],
power consumption [23], electromagnetic [7] and cache patterns [11] when cryptographic algo-
rithms are executed on devices. These side-channel information can be collected by adversaries
and they can launch the Side-Channel Attacks (SCAs) in two models: divide-and-conquer (e.g.,
Correlation Power Analysis (CPA) [4] and Template Attack (TA) [5]) and analytical (e.g., col-
lision attacks [13]). For the former, they divide the full-key into small blocks (e.g., sub-keys in
AES-128) and conquer them one by one. For the latter, they consider all sub-keys simultane-
ously, and by solving a system of equations. It exploits more leaky information and is more
efficient than divide-and-conquer attacks, but is also more complex.

It is worth mentioning that the key recovery in the above two models is limited by the
computing power of the adversaries. Benefitting from side-channel information, if we rank the
candidates of each sub-key from the most possible one to the least possible one, the correct one
is usually ranked the front. However, due to the limited side-channel information, it may not
be the best. In this case, key enumeration strategies [8, 10, 19], which enumerate the full-key
candidates from the most possible one to the least possible one, are exploited to optimize the
key recovery. However, they are still limited by the computing power of the attacker, and only
can be exploited in the scenarios that cryptographic implementations are “practically insecure”
(for which the leakage allows for key enumeration).

Recent years, several collision-optimized attacks introduced collision information into divide-
and-conquer attacks (e.g., [3, 16, 22]), thus establishing the relationship between sub-keys and
breaking their independence. Different from key enumeration schemes, they only consider a
part of the best candidates for each sub-key and collision value in two combined attacks (e.g.
CPA and Correlation-Enhanced Collision Attack (CECA) [3]). The candidates unsatisfying the
collision conditions are discarded, thus key recovery can still be feasibly applied on the remaining
collision space much smaller than the one provided by divide-and-conquer attack. In other

2

CoTree Changhai Ou et al.

words, they transform the original candidate space into a much smaller collision chain space.
Related works will be introduced in the next subsection before introducing our contributions.

1.1 Related Works

Collision-optimized attacks rank the candidates of each collision value and sub-key from the
most possible one to the least possible one for the analytic collision attack and the divide-and-
conquer attack to be optimized. Then, they set two thresholds for these two combined attacks
and only consider the candidates within them. The first work exploiting collision information to
optimize the key recovery of side-channel attacks was given in [3]. Since then, several collision-
optimized attacks have been proposed and their goals can be classified into three categories:
collision exploitation, fault tolerance and repetitive collision detection alleviation.

For collision exploitation, the first collision-optimized attack named Test-of-Chain (abbre-
viated to TOC for convenience here) was given in [3]. Take AES-128 for an example, TOC
exploits the collisions between each two adjacent sub-keys, thus 15 pairs of collisions are ex-
ploited and most collisions are wasted. This also happens in [17], which exploits nearly 40 pairs
of collisions without fault tolerance. To improve this, Full-Collision Chain (FCC) was given
in [15] to quickly exploit all collisions. It can provide us with the smallest collision space, thus
the remaining key recovery is the most efficient. However, any collision beyond the threshold
will lead to the failure of key recovery and this collision condition is very strict. We have to
face very huge (sometimes even unconquerable) collision threshold in this case.

For fault tolerance, the first collision-optimized attack with fault tolerance strategy named
Fault-Tolerant Chain (FTC) was given in [22]. Take AES-128 for an example, it exploits the
15 collisions between the first sub-key and the remaining 15 sub-keys and discards the other
105 pairs of collisions, just like TOC. The fault tolerance here means, if there is no collision
between a sub-key and the first sub-key, FTC enumerates its candidates beyond the threshold
from the most possible one to the least possible one until finds a collision. It is obvious that the
2nd ∼ 16th sub-keys are still independent of each other in this case, which will lead to very huge
collision space. The authors in [16] stated that the collision threshold could be significantly
reduced by performing fault tolerance on a small number of collisions (i.e., allowing them to be
beyond the threshold of collision attack), and provided a flexible fault tolerant strategy with
high performance verified by their experiments.

For repetitive collision detection alleviation, this only happens in the collision detections
where the collision information between the coming sub-key and several sub-keys in the chains
is utilized. For example, Full-Collision Chain (FCC) exploits the collision information between
the current sub-key and all sub-keys on the chain. Since some chains are often built from the
same sub-chain, i.e., the candidates of these sub-keys expect for the last one are the same, and
the collisions between them and the coming sub-key will be repeatedly detected in this case.
Another example is that only a pair of collision between the sub-key currently under considera-
tion and the chains is exploited in TOC and FTC, so no repetitive collision detection happens.
This disadvantage will significantly affect the detection performance and the Light-weight Colli-
sion Detection (LCD) algorithm given in [16] exploits a highly-efficient jump collision detection
mechanism to optimize this. Specifically, LCD considers the longest common sub-chain in the
current chain set and detects collisions between the candidates of the coming sub-key and it
only once (see Section 3.3 for details). In this case, it efficiently reduces repetitive collision
detection.

It is worth mentioning that our goal is not to improve the performance of single side-channel
distinguishers like the improved collision attack in [2] and the genetic algorithm-based sieve

3

CoTree Changhai Ou et al.

built from CPA in [6], rather than exploit collisions to optimize the key recovery. There are
also several algorithms like the improved CECA in [24] that try to remove a part of candidates
to recover the key easier. Although they are also interesting and important, they deviate from
the purpose of this paper. Therefore, we do not consider them here.

1.2 Our Contributions

This paper proposes a collision detection algorithm named Collision Tree (CoTree) for collision-
optimized attacks to more efficiently alleviate the repetitive collision detections. Our main
contributions are as follows:

1. CoTree exploits tree structure to store the long chains established from the same short
chain on the same branch, thus facilitating the traversal in nodes insertion and removal.

2. CoTree exploits a top-down tree building procedure to significantly alleviate the repetitive
collision detection, since the nodes on the tree need to be traversed only once for each
candidate (within threshold) of the sub-key currently under consideration. This advantage
becomes more significant under much larger thresholds.

3. CoTree launches a bottom-up branch removal procedure to remove the candidates un-
satisfying the collision conditions after considering all candidates (within the threshold)
of the coming sub-key, which avoids repetitive traversal of the branches satisfying the
collision condition and makes the complexity smaller than the number of nodes.

Our experiments verify that compared to the existing works, our CoTree significantly alleviates
the burden from repetitive collision detection, and achieves much better performance.

1.3 Organization

The rest of this paper is organized as follows: TA and CECA are introduced in Section 2. The
existing detection algorithms for collision-optimized attacks such as TOC, FTC, FCC and LCD,
are presented in Section 3. Our CoTree and its optimizations are detailed in Sections 4 and 5.
Experiments on DPA contest v4.1 dataset and an AT89S52 micro-controller are presented in
Section 6 to illustrate the superiority of our CoTree. Finally, we conclude this paper in Section 7.

2 Preliminaries

Let κ∗ = (κ∗
1, κ

∗
2, . . . , κ

∗
16) denote the key of AES-128 and xi =

(

xi
1, x

i
2, . . . , x

i
16

)

denote the

ith encrypted plaintext. Suppose that the attacker encrypts n plaintexts X =
(

x1, x2, . . . , xn
)

and collects n power traces T =
(

t1, t2, . . . , tn
)

. The classic CPA, TA and CECA are given in
Sections 2.1∼ 2.3.

2.1 Correlation Power Analysis

CPA [4] is a well-known model-dependent distinguisher, for which the attacker needs a hypoth-
esis model, e.g., Hamming weight model, to exploit side-channel leakage information. Here the
corresponding hypothesis power consumption of the intermediate values under a guessing sub-
key κj can be denoted as Iκj = Hw (Sbox (Xj ⊕ κj)). CPA calculates the correlation coefficient

4

CoTree Changhai Ou et al.

between it and the real power consumption T, and returns the sub-key candidate corresponding
to the maximum correlation coefficient ρ:

κ
′

j = argmax
κj

{ρ (Iκj ,T) |κj = 0, 1, . . . , 255} . (1)

Here “Sbox(·)” denotes S-box operation, “Hw(·)” denotes Hamming weight operation and “Xj”
denotes the jth bytes of the encrypted plaintexts.

2.2 Template Attack

The classic TA [5, 20] assumes that the attacker has the same device as the targeted one, and
it includes two phases: leakage profiling and exploitation. For a cryptographic device with
leakage following 9 different normal distributions for 9 Hamming weights of S-boxes outputs of
AES-128, the attacker calculates the mean:

mi
j =

1

n

n
∑

v=1

tvj (2)

and covariance matrix:

Ci
j =

1

n

n
∑

v=1

(

tv −mi
j

) (

tv −mi
j

)T
, (3)

to profile templates
(

mi
j,C

i
j

)

(1 ≤ i ≤ 9) for the jth S-box in the profiling stage. Here the
symbol “T” denotes matrix transposition. If the attacker collects a power trace t∗ from the
targeted device, the probability that it well matches the ith template

(

mi
j,C

i
j

)

is:

p
(

t∗
∣

∣mi
j,C

i
j

)

=
e−

(mi
j
−t∗)·(Ci

j)
−1

·(mi
j
−t∗)T

2

√

(2 · π)|m
i
j | det

(

Ci
j

)

. (4)

Here |·| is the size of a variable. To achieve better performance, TA is usually performed on
Points-Of-Interest (POIs) with obvious leakage (see [20] for details).

2.3 Correlation-Enhanced Collision Attack

An AES-128 linear collision [3] occurs if two S-boxes in the same AES encryption or different
encryptions receive the same byte value as their inputs:

Sbox(xi1
j1
⊕ κj1) = Sbox(xi2

j2
⊕ κj2). (5)

This can be optimized as:
δj1,j2 = κj1 ⊕ κj2 = xi1

j1
⊕ xi2

j2
. (6)

CECA [13] divides the samples of the j1-th and j2-th sub-keys into 256 classes respectively
according to their plaintext byte values, then computes the correlation coefficient:

ρ
{(

mβ
j1
,m

β⊕δj1,j2

j2

)

∣

∣β = 0, 1, 2, . . . , 255
}

(7)

between them under a guessing δj1,j2 .

5

CoTree Changhai Ou et al.

3 Existing Detection Algorithms for Collision-Optimized

Attacks

3.1 Collision Chain

A cryptographic system often exploits a very huge key candidate space to against exhaustion
(e.g., 2128 in AES-128), thus we cannot traverse all candidates in attacks. This happens in
key enumeration [10, 19], e.g., 240 key candidates may take about one day on a desktop com-
puter. This also happens in collision-optimized attacks. Let τκ and τd be the thresholds of
two combined attacks in collision-optimized attacks, which means we only consider the best
τκ candidates of each sub-key and the best τd candidates for each δ. For collision-optimized
attacks, the detection algorithms mean that we will try to recover the key from them. Actually,
if we detect m pairs of collisions, then a collision system with m linear equations is obtained:

κj1 ⊕ κj2 = δ(κj1
,κj2

),

κj3 ⊕ κj4 = δ(κj3
,κj4

),
...

κj2m−1
⊕ κj2m = δ(κj2m−1

,κj2m
).

(8)

It can be divided into several sub-systems with independent variables, and each of them contains
collision information of several sub-keys and a free variable. They are named as collision chain.

Collision chains break the independence of sub-keys and establish the relationship among
them, thus transferring the original candidate space within τκ into a significantly smaller col-
lision space. Due to the high efficiency of collision-optimized attacks, the key can be quickly
recovered from a very huge candidate space, which has been well illustrated in [15, 18, 22].
Therefore, both τκ and τd can be set to large values, and the space under τκ can be even much
larger than the space acceptable in key enumeration. This conclusion is also verified in our
experiments.

3.2 Test-of-Chain and Fault-Tolerant Chain

For convenience, we exploit κj1 ↔ κj2 to denote the collision between κj1 and κj2 , which means
these two sub-keys and their collision value δ(κj1

,κj2
) are within thresholds simultaneously. As

the first collision-optimized attack, Test-of-Chain (TOC) detects the collisions between any two
adjacent sub-keys κ1 ↔ κ2, κ2 ↔ κ3, · · · , κ14 ↔ κ15 and κ15 ↔ κ16 in turn. Finally, it obtains
chains containing information of all 16 sub-keys. TOC is a milestone, since it starts a new
direction of key recovery for side-channel attacks. Obviously, TOC exploits only 15 pairs of
collisions and discards the other 105 pairs of collisions. Moreover, TOC does not include any
fault tolerant strategy, and any collision values falling out of threshold τd will make it fail.

Different from TOC, another collision-optimized attack named Fault-Tolerant Chain (FTC)
in [22] tries to find the collisions κ1 ↔ κ2, κ1 ↔ κ3, . . ., κ1 ↔ κ15 and κ1 ↔ κ16 between
the first sub-key and the remaining 15 sub-keys. If there is no collision between κ1 and the
candidates within τκ of κj (2 ≤ j ≤ 16), FTC then enumerates κj (2 ≤ j ≤ 16) beyond threshold
from the most possible to the least possible until finds one. However, this only happens with a
very small probability when both τκ and τd are very large, such as the ones considered in this
paper. Similar to TOC, FTC also exploits only 15 pairs of collisions and wastes the other 105
pairs of collisions.

6

CoTree Changhai Ou et al.

3.3 Full-Collision Chain and Light-weight Collision Detection Algo-

rithm

Full-Collision Chain (FCC) in [15] aims to maximize the use of collision information. It detects
the collisions between the ith sub-key and all the first i− 1 sub-keys, and saves the chains with
all i ·(i− 1) /2 pairs of collisions. However, this collision condition is very strict and the authors
provided a fault tolerant strategy to allow a small part of collisions beyond the threshold τd.
Another shortage of FCC is that it does not contain any mechanism for its repetitive collision
detection, and too many collisions are repetitively detected. However, TOC and FTC only
exploit the collision between the sub-key currently under consideration and one of the sub-keys
on the chains, repetitive collision detection does not exist in this case.

Figure 1: Jump collision detection mechanism in LCD.

Benefits from its jump detection mechanism, LCD in [16] efficiently alleviates repetitive
collision detection in FCC. Suppose the current state of collision chain detection is as shown
in Figure 1 and LCD exploits an array “Flag” to record the number of chains established
from a collision chain. It can be seen that there are 2, 1 and 2 chains built from sub-chains
212 ↔ 153 ↔ 17, 212 ↔ 119 ↔ 41 and 212 ↔ 119 ↔ 215, respectively. The collisions built
from the same sub-chains need to be detected only once when considering the 5 candidates
of the newly coming sub-key κ5 within threshold τκ. LCD jumps over the detection of the
corresponding sub-chains according to the step length in array “Flag”. In other words, we only
need to detect the candidates on chains with circles on the left. Obviously, the more chains built
from a sub-chain, the longer the step, and the more effective the mechanism is. The authors
in [16] provided a highly-efficient fault tolerant strategy for LCD, and we will provide a short
introduction in Section 4.5 when exploiting it in our CoTree algorithm.

4 CoTree Algorithm

Existing solution LCD takes advantage of its jump collision detection strategy, it can effectively
alleviate the repetitive collision detection. However, limited by its data structure and algorithm
design, this problem is still very serious in LCD. In this section, we will give a new algorithm
named Collision Tree (CoTree) to more efficiently alleviate the repetitive collision detection.
Our CoTree is stored as an array, and each node takes a row. The five fields of each node on
this tree are as follows:

• Data: candidate of a sub-key within threshold τκ.

7

CoTree Changhai Ou et al.

• Parent: identifier (i.e., the row number) of its parent node.

• Level: level of this node on the tree. For example, the level of a candidate of the ith

sub-key is i.

• First Child: identifier (i.e., the row number) of the first child of this node (if exists).

• Degree: The number of branches of this node, i.e., the number of children of this node.

The operations related to our CoTree includes: initialization, node insertion and removal when
considering candidates of a coming sub-key, and chain reading after the consideration of the
16th sub-key. All these above operations in our CoTree will be introduced in detail in Section-
s 4.1∼ 4.4.

4.1 Tree Initialization

Our CoTree is based on tree structure, and we should first consider how to exploit a collision
tree to store collision information (i.e., collision chains). A simple scheme is to construct a tree
for each candidate of the first sub-key within the threshold τκ. Specifically, we first detect the
collisions between the first and second sub-keys. If one of the candidates of κ1 has a collision,
we take it as the root node to build a tree. In this case, there are at most τκ and at least 0 trees
in our CoTree algorithm. It is worth noting that we can detect whether there are new nodes
inserted into the tree after node removal. If not, it means that there is no candidate satisfying
the collision condition at the current level and this tree is removed. Tree initialization will be
efficient in this case.

4.2 Node Insertion

The creation of CoTree is a process of constantly detecting collisions and building taller trees.
We have introduced TOC and FTC in Section 3.2, which only exploit 15 pairs of collisions,
resulting in a waste of most of collision information. FCC, LCD, and our CoTree introduced in
this section will aim to maximize the use of collision information. Specifically, for our CoTree,
we detect the collisions between all nodes from leaf to root on the tree and the candidates of
the coming sub-key within τκ.

Let T denote a CoTree stored in an array, Ki denote the candidates of the sub-key κi

currently under consideration, ∆-s denote the collision values returned by CECA. Both sub-key
candidates and collision candidates are ranked in descending order according to their possibility
to be the correct sub-key and collision value. Thresholds τd and τκ are for the analytic CECA
and the divide-and-conquer attack to be optimized, which means we only consider the best
candidates within both of them as explained before. i is the index of the ith sub-key. The
corresponding node insertion operations of our CoTree are shown in Algorithm 1.

First, the positions to insert new nodes are the leaves of the tree, and we exploit an index
j to point the last one of them in our algorithm (Step 1 in Algorithm 1). For each candidate
in Ki of the sub-key κi currently under consideration, we initialize an array Coll to record the
number of collisions for all nodes in the tree (Step 3). Specifically, we set a collision flag for
each node, and compute the location of 256 collision values loc from its level and i (Step 5). We
further detect whether a collision happens, i.e., the collision value between Ki (ix) and T (kx, 1)
is within the threshold τd located by loc in ∆. If the collision occurs, the collision flag is set to
1 (Steps 6∼10).

8

CoTree Changhai Ou et al.

Algorithm 1: Node Insertion Operations.

Input: Collision tree T , candidates Ki of the sub-key κi currently under consideration,
collision values ∆-s, Thresholds τd and τκ, i.

Output: The updated collision tree T .
1 j ← size (T); index← j ;
2 for ix from 1 to τκ do
3 Initialize an array: Coll (1 . . . j)← 0;
4 for kx from 2 to j do
5 flag← 0; loc← Location (T (kx, 3) , i);
6 for mx from 1 to τd do
7 if Ki (ix)⊕ T (kx, 1) = ∆(mx,loc) then
8 flag ← 1;
9 end

10 end
11 if flag=1 then
12 Coll (kx)← Coll (T (kx, 2)) + 1 ;
13 else
14 Coll (kx)← Coll (T (kx, 2)) ;
15 end
16 if T (kx, 3) = i− 1 and Coll (kx) = i− 1 then
17 index← index+ 1;
18 T (index, 1 : 5)← (Ki (ix) , kx, i, 0, 0) ;
19 T (kx, 5)← T (kx, 5) + 1 ;
20 if T (kx, 5) = 1 then
21 T (kx, 4)← index ;
22 end

23 end

24 end

25 end

Secondly, node insertion in our CoTree is a top-down procedure, which ensures each node
on the tree only be traversed once when detecting the collision between them and a candidate
value waiting for insertion. This effectively reduces the repetitive collision detection. It is worth
noting that, to make full use of collision information, our CoTree passes the number of collisions
as a parameter from top to bottom. In other words, each node inherits the number of collisions
from its parent (Steps 11 ∼ 15).

Finally, whether the candidate value Ki (ix) could be a new leaf of a branch is decided by
the collision conditions (Steps 16 ∼ 18). Here we exploit the collision information passed from
root to current leaf as the collision condition. Coll (kx) = i− 1 means all i · (i− 1)/2 collisions
are exploited, since each node inherits the number of collisions from its parent at Steps 11 ∼ 15,
all collisions between a sub-key and its former sub-keys are considered in this case. If Ki (ix)
satisfies the collision condition, the number of branches of its parent node increases by 1 (Step
19). If the new node is the first child of its parent, the corresponding information is updated
(Steps 20 ∼ 22). The node insertion finishes after Algorithm 1.

9

CoTree Changhai Ou et al.

4.3 Node Removal

Suppose that the current state of a CoTree is as shown in Figure 2 and the corresponding array
is shown in Table 1. The identifiers in Table 1 are table indexes. Therefore, the array exploited
in our CoTree only contains five fields as explained at the beginning of Section 4.

212

9

153

17

119

21541

143

192

143 9 55

192 192 78

Figure 2: A CoTree containing candidates of the first 5 sub-keys.

Table 1: A CoTree containing collision information of the first 5 sub-keys.
Identifier Candidates Parent Level First child Degree

1 212 -1 1 2 2
2 153 1 2 4 1
3 119 1 2 5 2
4 17 2 3 7 2
5 41 3 3 9 1
6 215 3 3 10 2
7 9 4 4 12 1
8 143 4 4 0 0
9 143 5 4 0 0
10 9 6 4 13 1
11 55 6 4 14 2
12 192 7 5 0 0
13 192 10 5 0 0
14 192 11 5 0 0
15 78 11 5 0 0

Node insertion is a top-down procedure. However, for each leaf, if we traverse the tree
and remove the nodes unsatisfying collision conditions in this model, all non-leaf nodes from
it to root have to be traversed once. Obviously, this pulls our CoTree back to the worst case.
In this case, we launch a bottom-up procedure to optimize this. Specifically, we exploit τf
to record the last node on the penultimate layer. The bottom-up node removal means that
starting from the τf -th node, we traverse the collision tree T from the back to the front, and
the nodes without any branch are deleted. The corresponding node removal operations are
shown in Algorithm 2.

First, we record the identifier of the last node τf on the n − 1 level of CoTree T to i,
and start the bottom-top node removal. Before removing a node without any branches, we
exploit symbols j and kx to record its parent’s identifier and the number of nodes on the tree,

10

CoTree Changhai Ou et al.

Algorithm 2: Node Removal Operations.

Input: Collision tree T , the identifier of the last node τf in n− 1 level.
Output: The updated collision tree T .

1 i← τf ;
2 while i ≥ 2 do
3 if T (i, 5) = 0 then
4 j ← T (i, 2); kx← size (T);
5 T (j, 5)← T (j, 5)− 1 ;
6 if T (j, 4) = i and T (j, 5) = 0 then
7 T (j, 4)← −1 ;
8 else if T (j, 4) = i and T (j, 5) > 0 then
9 T (j, 4)← i ;

10 end
11 T (j + 1 : kx, 4)← T (j + 1 : kx, 4)− 1 ;
12 T (i, 1 : 5)← [] ;
13 j ← T (i, 4); k ← size (T);
14 if T (i, 5) > 0 then
15 T (j : kx, 2)← T (j : kx, 2)− 1;
16 end

17 end
18 i = i− 1 ;

19 end

and remove the branch information of the node from its parent (Steps 4∼5). If its parent has
branches and the node is the first child, its nearest brother becomes the new first child (Steps
8∼9). It is worth noting that, when we delete the ith node, its nearest brother (i.e., the (i+1)-th
node) becomes the new ith node, so we set the first child of its parent to i rather than i− 1.

Consequently, we perform the node removal operation. The first children of all non-leaf
nodes behind the parent of the removed node should be moved forward one position (Step 11).
For example, all the non-leaf nodes 214, 9, 9 and 55 behind the parent 41 of the 9th node 143
should be moved forward one position when it is removed (as shown in Figure 2). We update
the number of nodes on the tree to parameter kx after this deletion. If the new ith node has
more than one branch, the parents’ information of all subsequent nodes is updated accordingly.
For example, the 10th node 9 becomes the new 9th node after removing the 9th node 143, the
parents from its child 192 to the last node 78 need to be moved forward one position.

The above operations guarantee the correctness of the relationship among the remaining
nodes on our CoTree before and after removing nodes. Finally, the variable i always indicates
the node to be considered. It only needs to move forward one position no matter whether this
node is deleted or not. All nodes unsatisfying the collision conditions are removed after the
iteration. For example, all yellow nodes in Figure 2 that do not meet the collision conditions
are removed, and the remaining gray nodes constitute the updated collision tree in this case.

4.4 Collision Chain Extraction

All collision chain detection algorithms will eventually extract the collision chains as full-key
candidates for verification. For example, the plaintext can be encrypted by using these key
candidates according to certain rules (e.g., their ranked probabilities or number of collisions).

11

CoTree Changhai Ou et al.

If the corresponding ciphertext is generated in some encryption, we will consider the candidate
as the correct key. The existing collision detection algorithms continuously construct long chains
from short ones. The collision chains need to be extracted once after considering all candidates
within threshold τκ of the sub-key currently under consideration, and the new chains are saved
in the array. It is worth mentioning that the extraction of collision chains in our CoTree is only
performed once after finishing the node insertion of the 16th sub-key, so this will not bring too
much computation.

4.5 Complexity

The complexity of collision-optimized attacks changes dynamically, and we may achieve very
different complexity under the same thresholds τd and τκ in different attacks. Here we first
analyze the space complexity of CoTree in two extreme cases. The first extreme case is that
there is only one chain on CoTree. CoTree not only consumes more space but also consumes
more time compared to FCC and LCD in this case. However, this makes no sense because the
key is usually unrecoverable. Another extreme case is that our CoTree includes:

S (n, τκ) =
(1− τnκ)

1− τκ
(9)

nodes, which means it is a full τκ tree. Here ”n” is 15 for AES-128 since we create a tree for
each candidate of the first sub-key within the threshold τκ. There will be at most τnκ chains for
FCC and LCD, and the space consumed is 16 · τnκ in this case.

Suppose that each field is with the same size, the more required space of LCD and FCC
compared to CoTree is:

G (τκ) = 16 · τ15κ − 5 ·

(

1− τ16κ
)

1− τκ
(10)

in the second extreme case, since there are 5 fields for each node on our CoTree. Obviously,

G (τκ) =
16 · τ15κ (τκ − 1)− 5 ·

(

τ16κ − 1
)

τκ − 1
, (11)

and this gives a new function G
′

(τκ) as:

G
′

(τκ) = 11 · τ16κ − 16 · τ15κ . (12)

Obviously, “τκ ≥ 1.45” well guarantees that our CoTree consumes less space than FCC and
LCD if it is a full τκ tree. Although CoTree is not always a full tree satisfying the above
equations, this space advantage becomes more significant with the increase of τd and τκ.

It is noteworthy that the advantage we want to emphasize here is not space complexity, but
the time complexity. It is also more intuitive and easier to compare. First, when considering the
(i+ 1)-th sub-key, LCD only considers the case where several chains share the longest prefixes
(i.e., their first i− 1 sub-keys are with the same candidates). Our CoTree considers all possible
prefixes thus it can be more efficiently alleviate the repetitive collision detection during each
node insertion. Moreover, the bottom-up procedure guarantees that we should check all nodes
only once in node removal operations at the worst case, and this only happens after all nodes
are inserted. Therefore, most of the computation of our CoTree takes place in node insertion
operations since it traverses all nodes on the tree to check their collisions with each candidate
within τκ of the sub-key currently under consideration. Obviously, the larger the threshold,

12

CoTree Changhai Ou et al.

the less time consumption of CoTree compared to FCC and LCD, and this advantage will be
further verified in our experiments in Section 6.

5 Optimization

We consider the collisions between a candidate of the sub-key currently under consideration
and all the nodes on the tree, and then consider the next candidate in Algorithm 1, rather than
the collisions between nodes on a branch and all the candidates of this coming sub-key. This is
to maintain the ascending order of node identifiers on the tree, so as to facilitate the removal
of nodes unsatisfying the collision conditions given in Section 4.3. The nodes of our CoTree
will be traversed τκ times in this case just like FCC and LCD. Moreover, the latter removal
of the nodes unsatisfying the collision conditions will be performed only once as explained in
Section 4.5. It is obvious that these operations will significantly reduce the repetitive collision
detection compared to FCC and LCD and accelerate the candidate space transformation. We
will further optimize our CoTree in several ways to enhance its performance in Sections 5.1∼5.3
.

5.1 Branch Removal

The advantage of Algorithm 2 is that, to check whether all nodes on the tree satisfy the collision
conditions, it only needs to traverse them once. This effectively alleviates the repetitive collision
detection, especially for prefix sub-chains sharing the first several sub-keys candidates. Since it
is unnecessary to traverse the CoTree when removing nodes unsatisfying the collision conditions.
Specifically, if a node on the penultimate layer has one or several children (i.e. leaves) , this
well illustrates that all nodes from its child (or children) to the root well satisfy the collision
conditions. Therefore, we only need to judge the state of the penultimate nodes. If a node does
not have any leaf node as its child, this branch should be removed recursively from the bottom
to the root.

212

9

153

17

119

21541

143

192

143 9 55

192 192 78

Figure 3: Recursive deletion of branches unsatisfying collision conditions.

To illustrate the above node removal optimization, we give the corresponding diagram of
the tree traversal in Figure 3. Nodes 55 and 9 have children, which means that the nodes from
them to the root and children all well satisfy the collision conditions, so only their states need
to be detected. In other words, there is no need to traverse their corresponding branches from

13

CoTree Changhai Ou et al.

bottom to top (i.e., to the root node). Node 143 has no children. Before removing it, we need
to determine whether its parent node 41 has only one child. If so, this parent node should be
removed, too. The process proceeds recursively until node 119, since it has a child 215 and the
recursion stops. It is obvious that this mechanism is more efficient than Algorithm 2 and it can
avoid the traversal of some nodes, and this is especially for very large CoTree-s.

5.2 Tree Merging

We take the candidates of the first sub-key within the threshold τκ as the roots in Section 4.1,
thus the algorithm creates at most τκ trees. Actually, we can add an additional root to these
trees to make the candidates of the first sub-key fall to the second layer, since all operations
of these trees are the same. This will facilitate the processing of all sub-keys when they are
considered. It is worth noting that there is no real collision between the root and the candi-
dates of the first sub-key in this case, we can directly insert these candidates as the leaves in
initialization.

5.3 Fault Tolerance

Suppose that 120 pairs of collisions between 16 sub-keys in the first round of AES-128 returned
by CECA are shown in Figure 4. Specifically, the abscissa value “15 · i+(i−1) · (i−2)+(j− i)”
represents the collision information of the ith and jth sub-keys (i ≤ j), while the ordinate
represents the position of the collision value after ranking. For example, the abscissa of the
collision value between the first two sub-keys κ1 and κ2 is 1, and the ordinate is its ranking
position 26. It can be seen that the deepest collision value is 136, which means that, to recover
the key, we need to set τd to at least 136 for all 120 pairs of collision values if without any fault
tolerance. However, such a huge threshold is usually unacceptable when performing collision
chain detection.

0

20

40

60

80

100

120

140

R
a
n
k
s

0 20 40 60 80 100 120

Collision values -s

Figure 4: 120 collision values between 16 sub-keys of AES-128.

To solve the above problem, the collision detection algorithm should contain fault tolerance
mechanism, thus reducing the threshold τd. To illustrate this, we further give collision values
corresponding to Figure 4 but ranked beyond threshold 20 in Table 2. Here “[20, 40)” means
the collision value is ranked greater than or equal to 20, but less than 40. It vividly shows that

14

CoTree Changhai Ou et al.

6, 1, 1 and 1 collisions fall into the ranges: 20 ∼ 40, 40 ∼ 60, 60 ∼ 80, and ≥ 80, respectively.
If we can accurately identify the positions of δ(κ2,κ3), δ(κ3,κ12) and δ(κ4,κ12), τd can be reduced
from 136 to 40, thus significantly reducing the collision space. Although it is usually very
difficult for us to achieve such a goal, this has fully illustrated the significance of fault tolerance
mechanisms in collision-optimized attacks.

Table 2: An example of collision values ranked beyond threshold τd = 20.
Ranks Collisions

[20, 40) δ(κ1,κ2), δ(κ1,κ3), δ(κ1,κ12)

δ(κ2,κ5), δ(κ9,κ12), δ(κ10,κ12)

[40, 60) δ(κ2,κ3)

[60, 80) δ(κ4,κ12)

[80, 140) δ(κ3,κ12)

The goal of this paper is to propose CoTree to significantly alleviate the repetitive collision
detection, not to design a fault tolerance strategy specially for it. Therefore, we exploit the
existing fault tolerance mechanism with high efficiency proposed in [15, 18] in CoTree. Specif-
ically, we record the number of collisions of all the current chains in our CoTree, and extract
the chains with a number of collisions satisfying:

τc = Cmax −
i

ǫ
(13)

according to the capability of attacker. The symbol “Cmax” is the maximum number of collisions
considering all chains, i indicates the ith sub-key, and ǫ is fault tolerance coefficient. Since the
later a sub-key is considered, the more collisions it contains, and the more of them should be
fault tolerated.

The above fault-tolerant strategies in our CoTree are as follows: 1) On the basis of Algo-
rithm 1, an array is initialized to record the collision information among nodes on the tree and
all candidates within threshold τκ of the sub-key currently under consideration; 2) We add the
number of collisions as the 6th field of each node. The collision information of each node is
transferred to its children and accumulated; 3) The candidates satisfying the threshold given
in Equation 13 are extracted from the array and become new leaf nodes. It is possible that the
nodes on the penultimate layer still have no children, i.e., the collision conditions may still be
unsatisfied. Therefore, we still have to use the optimized Algorithm 2 introduced in Section 5.1
to remove these nodes.

6 Experimental Results

To illustrate the performance of CoTree, we first exploit CECA to optimize CPA, and perform
the first experiment on DPA Contest V4.1 dataset in Section 6.1. Then, we further extend
CECA to the profiled setting and exploit it to optimize TA, the corresponding experiment is
performed on an AT89S52 micro-controller in Section 6.2. All above experiments are performed
on MATLAB R2016b on a DELL desktop computer with 6 Intel(R) Core(TM) i5-9500 CPUs,
16 GB RAM and a Windows 10 operating system. The widely exploited evaluation metric,
Success Rate (SR) given in [21], is exploited to compare the performance of the existing collision-
optimized attacks and our CoTree. The fault tolerance coefficient ǫ in Equation 13 is set to 3. We
only perform 100 repetitions for each experiment since the evaluation is very time-consuming.

15

CoTree Changhai Ou et al.

6.1 Experiments on DPA Contest v4.1 Dataset

The widely used DPA Contest v4.1 open dataset [1] was targeted on the AES-256 algorithm
protected by Rotated S-boxes Masking (RSM) [14], and the algorithm was implemented on an
Atmel ATMega-163 smart card connected to the side-channel attack standard evaluation board
named SASEBO-W. Due to the defect of the exploited random numbers, the implementation
exists first-order leakage, i.e., can be directly attacked by first-order CPA and CECA (see [12]
for detail). Here we exploit CPA with Hamming weight model to exploit the leakage and further
exploit traditional CECA to optimize CPA. We extract the best POI for each S-box and random-
ly extract 1100 power traces to perform the remaining experiments, and the time consumption
of FCC, LCD and our CoTree is shown in Figure 5. Here the threshold τκ for CPA is set to 25,
thus we optimize and explore a very huge candidate space with 2516 ≈ 274.3017 candidates. FC-
C, LCD and our CoTree can transform very huge candidate space into a much smaller collision
space quickly, and this even holds under very large τd considered in Figure 5.

0 1000 2000 3000 4000 5000 6000 7000

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(a) FCC

d
=22

d
=30

d
=38

d
=46

d
=54

d
=62

0 100 200 300 400 500 600 700 800

Time (seconds)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

(b) LCD

0 25 50 75 100 125 150 175 200 225 250

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(c) CoTree

Figure 5: Time consumption under different thresholds τd.

FCC, LCD and CoTree here exploit the same fault tolerance strategy and consider the
same fault tolerance coefficient ǫ in our experiments (see Equation 13). Therefore, we will
achieve the same success rate in this case, and the only difference among these three schemes
is their strategies of repetitive collision detection alleviation, and Figure 5 vividly shows that
our CoTree achieves significantly higher performance compared to FCC and LCD. Compared
to FCC, LCD and CoTree, TOC and FTC can only work under very small thresholds τd and
τκ since they only exploit 15 pairs of collisions and too many collision chains will satisfy this
condition. Our experiments given in Figure 6 also verify that a small increase in the threshold
τd (τκ is set to 25 here) in TOC and FTC will make a much larger number of collision chains
satisfying the collision condition and greatly increase the burden of collision detection.

We also exploit key rank estimation tool to enhance our comparison and the original ranks of
the key in CPA is given in Figure 6(c). The remaining chains are ranked and successively verified
according to their number of collisions in TOC, FTC, FCC, LCD and CoTree as exploited in
the previous work [16]. It’s obvious that TOC achieves a much better key rank and this collision
optimization consumes very limited time. However, FTC is not suitable for the case that both
thresholds τκ and τd are very large. It runs slowly, and there will often be no chain meeting
the collision conditions when considering more sub-keys, the same conclusion will be drawn in
Section 6.2. Therefore, FTC is unpractical in our scenarios. Although we consider much larger
thresholds for FCC, LCD and CoTree, they can even spend less time on space transformation
and leave a smaller collision space compared to TOC and FTC (see Figure 7).

Above all, compared to TOC and FTC, the schemes FCC, LCD and CoTree exploit all
collisions between any two sub-keys, although some of them are fault tolerated, there are still

16

CoTree Changhai Ou et al.

-7.5 -5 0 5 10

Time (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(a) Time consumption of TOC

d
=10

d
=12

d
=14

d
=16

-5 0 5 10 15 20

Time (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(b) Time consumption of FTC

d
=6

d
=8

d
=10

d
=12

0 5 10 15 20 25 30 35 40

Key rank (bits)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(c) Key rank of TOC

original key rank

d
=10

d
=12

d
=14

d
=16

Figure 6: Time consumption of TOC and FTC, and key rank of TOC under different thresholds
τd.

0 2.5 5 7.5 10 12.5 15

Key rank (bits)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

d
=22

d
=30

d
=38

d
=46

d
=54

d
=62

Figure 7: Key rank of CoTree under different thresholds τd.

many fewer chains meeting the conditions. Therefore, they achieves a much smaller collision
space and make the latter key verification easier. For side-channel attacks, the widely used
success rate will be a very important evaluation metric. The success rates of TOC, FTC, FCC,
LCD and our CoTree are shown in Table 3, and it vividly shows that the success rate is zero
in TOC and FTC. Very different from them, the schemes FCC, LCD and our CoTree achieve
success rates even greater than 0.40. It’s noteworthy that FCC, LCD and CoTree do not bring
us a higher success rate in Table 3 if we enlarge the threshold τd, since the fault tolerance
coefficient given in Equation 13 is flexible and the collision chains satisfying the conditions are
also dynamic.

Our CoTree exploits a data structure very different from FCC and LCD, and it is a tree
rather than simply an array exploited in both of them. We can conclude from the success rate,
time consumption and the key rank that our CoTree’s success rate is much higher than TOC
and FTC’s, and it also consumes much less time and achieves much better key rank. In other
words, It achieves performance significantly better than the previous works FCC and LCD.

17

CoTree Changhai Ou et al.

Table 3: Success rates under different thresholds τd.
τd (τκ = 25) 22 30 38 46 54 62

FCC, LCD, CoTree 0.43 0.49 0.44 0.41 0.41 0.47

τd (τκ = 25) 10 12 14 16 − −

TOC 0.00 0.00 0.00 0.00 − −

τd (τκ = 25) 6 8 10 12 − −

FTC 0.00 0.00 0.00 0.00 − −

0 1000 2000 3000 4000 5000 6000

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(a) FCC

d
=15

d
=20

d
=25

d
=30

d
=35

d
=40

0 200 400 600 800 1000

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(b) LCD

0 20 40 60 80 100

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(c) CoTree

Figure 8: Time consumption under different thresholds τd.

6.2 Experiments on an AT89S52 Micro-controller

Our second experiment is performed on an AES-128 algorithm implemented on an AT89S52
micro-controller specially designed for SCA. The operating frequency of this chip is 12 MHz.
The sampling rate of our Picoscope 3000 is set to 125 MS/s. We acquire 50, 000 power traces
and perform CPA to extract the best POI for each S-box. We exploit collision information
to optimize TA, but CECA’s performance is far inferior to TA’s, and it’s a not good choice
to exploit CECA’s collision information to optimize TA in this case. Therefore, we extend
CECA to the profiled setting. Specifically, we use the second order of Minkowski Distance (i.e.,
Euclidean distance) in CECA, and define the distance function D as:

Dκ1,κ2
=

√

√

√

√

n
∑

i=1

2
∑

j=1

(

tij −m
Sbox(xi

j⊕κj)
j

)

(14)

as exploited in [15,16]. Here xi
j denotes the jth byte of the ith encrypted plaintext, tij denotes

the corresponding POI and m
Sbox(xi

j⊕κj)
j denotes the profiled mean power consumption corre-

sponding to intermediate value output by S-box receiving xi
j and κj as its inputs (see [15, 16]

for details). This profiled CECA will achieve performance close to TA, and their combination
will be more meaningful in this case as explained before.

The threshold setting in collision-optimized attacks is not invariable. There are many factors
affecting this (e.g., different target devices and power analysis methods), and different scenarios
will consume very different time when we transform candidates within the same given thresholds
into the collision space. If we set the same thresholds for FCC, LCD and CoTree as considered
in Section 6.1, they will spend much time and even not work. Similar to the very huge candidate
space with 2516 ≈ 274.3017 candidates we optimized and explored in Section 6.1, τκ here is also

18

CoTree Changhai Ou et al.

set to 25. We then randomly extract 260 power traces, consider τd from 15 to 40, and perform
the remaining experiments in each repetition. The time consumption of FCC, LCD and our
CoTree is shown in Figure 8, which vividly illustrates that LCD significantly alleviates the
repetitive collision detection, and our CoTree achieves much higher performance than LCD due
to its efficient collision chain storage structure and detection algorithm.

We also compare FCC, LCD and our CoTree with TOC and FTC in our experiments, and
the results are shown in Figure 9. Time consumption of TOC grows quickly, since it exploits only
15 pairs of collisions and too many chains satisfying this collision condition as we have explained
before. However, similar to the results given in Section 6.1, FTC is still not feasible. It is too
time-consuming under τκ = 25 and τd = 2. Therefore, we adjust these two thresholds to τκ = 7
and τd = 1, 2, 3. FTC generates a very large number of chains satisfying the collision condition,
but this situation does not last until the last sub-key since almost no full-key candidates remain
in most cases (e.g., 90% of repetitions). Therefore, we do not give its results in figures.

The original key ranks in TA are given in Figure 9(c), in company with the key ranks in
TOC. The key ranks in FCC, LCD and our CoTree are given in Figure 10. Key ranks in FCC,
LCD and CoTree under τd = 40 are even better than these in TOC under τd = 12. The success
rates of TOC, FTC, FCC, LCD and our CoTree under different thresholds τd are shown in
Table 4. TOC achieves a low success rate under the considered small thresholds and no success
is achieved in FTC. Different from the results given in Section 6.1, FCC, LCD and our CoTree
achieve higher success rates with the growth of τd.

-10 -5 0 5 10 15

Time (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(b) Time consumption of FTC

d
=1

d
=2

d
=3

-10 -5 0 5 10 15

Time (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(a) Time consumption of TOC

d
=6

d
=8

d
=10

d
=12

0 10 20 30 40 50

Key rank (bits)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(c) Key rank of TOC

original key rank

d
=6

d
=8

d
=10

d
=12

Figure 9: Time consumption of TOC and FTC, and key rank of TOC under different thresholds
τd.

Table 4: Success rates under different thresholds τd.
τd (τκ = 25) 15 20 25 30 35 40

FCC, LCD, CoTree 0.26 0.35 0.39 0.44 0.51 0.55

τd (τκ = 25) 6 8 10 12 − −

TOC 0.07 0.12 0.19 0.25 − −

τd (τκ = 7) 1 2 3 − − −

FTC 0.00 0.00 0.00 − − −

Above all, we can draw a conclusion that our CoTree achieves a much higher success rate
than TOC and FTC, and its time consumption is much less than the existing schemes. This
fully illustrates that our CoTree significantly outperforms these works.

19

CoTree Changhai Ou et al.

0 2 4 6 8 10 12 14

Key rank (bits)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

d
=15

d
=20

d
=25

d
=30

d
=35

d
=40

Figure 10: Key rank of CoTree under different thresholds τd.

7 Conclusions

To alleviate the repetitive collision detection of the existing collision-optimized attacks and fur-
ther push their limits of conquerable candidate space, we proposed a highly-efficient detection
algorithm named CoTree in this paper. CoTree exploits a top-down tree building procedure to
guarantee that each node on the tree only needs to be traversed once. CoTree then launches a
bottom-up branch removal procedure to remove the nodes unsatisfying the collision conditions
after traversing all candidates of the sub-key currently under consideration. These two strate-
gies significantly alleviate the repetitive collision detection. Our experiments verified that our
CoTree significantly outperforms the existing works.

Pushing the limits of the conquerable candidate space is very important for side-channel
attacks and evaluations, but we still have to face many difficulties. First, it’s very meaningful to
efficiently set an optimal threshold for collision attacks in theory. Furthermore, the complexity
of CoTree is difficult to evaluate theoretically, just like the existing collision-optimized attacks.
Here we leave them as open problems. Finally, although our CoTree achieves performance much
better than the existing works, some collision information is still repetitively detected, and we
will further alleviate this in our future works.

References

[1] Dpa contest v4.1. http://www.dpacontest.org/home/.

[2] Andrey Bogdanov. Multiple-Differential Side-Channel Collision Attacks on AES. In Cryptographic

Hardware and Embedded Systems - CHES 2008, 10th International Workshop, Washington, D.C.,

USA, August 10-13, 2008. Proceedings, pages 30–44, 2008.

[3] Andrey Bogdanov and Ilya Kizhvatov. Beyond the Limits of DPA: Combined Side-Channel Col-
lision Attacks. IEEE Trans. Computers, 61(8):1153–1164, 2012.

[4] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with a Leak-
age Model. In Cryptographic Hardware and Embedded Systems - CHES 2004: 6th International

Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, pages 16–29, 2004.

20

http://www.dpacontest.org/home/

CoTree Changhai Ou et al.

[5] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In Cryptographic Hardware

and Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,

August 13-15, 2002, Revised Papers, pages 13–28, 2002.

[6] Yaoling Ding, Liehuang Zhu, An Wang, Yuan Li, Yongjuan Wang, Siuming Yiu, and Keke Gai. A
Multiple Sieve Approach Based on Artificial Intelligent Techniques and Correlation Power Anal-
ysis. ACM Trans. Multim. Comput. Commun. Appl., 17(2):71, 2021.

[7] Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Tibouchi. Side-Channel Attacks
on BLISS Lattice-Based Signatures: Exploiting Branch Tracing against strongSwan and Electro-
magnetic Emanations in Microcontrollers. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November

03, 2017, pages 1857–1874, 2017.

[8] Vincent Grosso. Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys.
In Smart Card Research and Advanced Applications, 17th International Conference, CARDIS

2018, Montpellier, France, November 12-14, 2018, Revised Selected Papers., pages 80–94, 2018.

[9] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Oth-
er Systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, pages 104–113,
1996.

[10] Yang Li, Shuang Wang, Zhibin Wang, and Jian Wang. A Strict Key Enumeration Algorithm for
Dependent Score Lists of Side-Channel Attacks. In Smart Card Research and Advanced Appli-

cations - 16th International Conference, CARDIS 2017, Lugano, Switzerland, November 13-15,

2017, Revised Selected Papers, pages 51–69, 2017.

[11] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX Amplifies the
Power of Cache Attacks. In Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th

International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 69–90, 2017.

[12] Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting Hidden Leakages. In Ioana Boure-
anu, Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptography and Network Security

- 12th International Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceed-

ings, volume 8479 of Lecture Notes in Computer Science, pages 324–342. Springer, 2014.

[13] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In Cryptographic Hardware and Embedded Systems, CHES 2010, 12th Inter-

national Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, pages 125–139,
2010.

[14] Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. RSM: A Small and
Fast Countermeasure for AES, Secure against 1st and 2nd-Order Zero-Offset SCAs. In Wolfgang
Rosenstiel and Lothar Thiele, editors, 2012 Design, Automation & Test in Europe Conference &

Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012, pages 1173–1178. IEEE, 2012.

[15] Changhai Ou, Siew-Kei Lam, and Guiyuan Jiang. The Science of Guessing in Collision-Optimized
Divide-and-Conquer Attacks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 40(6):1039–
1051, 2021.

[16] Changhai Ou, Siew-Kei Lam, Chengju Zhou, Guiyuan Jiang, and Fan Zhang. A Lightweight De-
tection Algorithm For Collision-Optimized Divide-and-Conquer Attacks. IEEE Trans. Computers,
69(11):1694–1706, 2020.

[17] Changhai Ou, Zhu Wang, Degang Sun, and Xinping Zhou. Group Collision Attack. IEEE Trans.

Information Forensics and Security, 14(4):939–953, 2019.

[18] Changhai Ou, Chengju Zhou, Siew-Kei Lam, and Guiyuan Jiang. Multiple-Differential Mechanism
for Collision-Optimized Divide-and-Conquer Attacks. IEEE Trans. Inf. Forensics Secur., 16:418–
430, 2021.

[19] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple Key Enumeration (and
Rank Estimation) Using Histograms: An Integrated Approach. In Cryptographic Hardware and

21

CoTree Changhai Ou et al.

Embedded Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, Au-

gust 17-19, 2016, Proceedings, pages 61–81, 2016.

[20] Christian Rechberger and Elisabeth Oswald. Practical Template Attacks. In Information Security

Applications, 5th International Workshop, WISA 2004, Jeju Island, Korea, August 23-25, 2004,

Revised Selected Papers, pages 440–456, 2004.

[21] François-Xavier Standaert, Tal Malkin, and Moti Yung. A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In Advances in Cryptology - EUROCRYPT 2009, 28th

Annual International Conference on the Theory and Applications of Cryptographic Techniques,

Cologne, Germany, April 26-30, 2009. Proceedings, pages 443–461, 2009.

[22] Danhui Wang, An Wang, and Xuexin Zheng. Fault-Tolerant Linear Collision Attack: A Com-
bination with Correlation Power Analysis. In Information Security Practice and Experience -

10th International Conference, ISPEC 2014, Fuzhou, China, May 5-8, 2014. Proceedings, pages
232–246, 2014.

[23] Weijia Wang, Yu Yu, François-Xavier Standaert, Junrong Liu, Zheng Guo, and Dawu Gu. Ridge-
Based DPA: Improvement of Differential Power Analysis For Nanoscale Chips. IEEE Trans.

Information Forensics and Security, 13(5):1301–1316, 2018.

[24] Andreas Wiemers and Dominik Klein. Entropy Reduction for the Correlation-Enhanced Power
Analysis Collision Attack. In Advances in Information and Computer Security - 13th International

Workshop on Security, IWSEC 2018, Sendai, Japan, September 3-5, 2018, Proceedings, pages 51–
67, 2018.

22

	Introduction
	Related Works
	Our Contributions
	Organization

	Preliminaries
	Correlation Power Analysis
	Template Attack
	Correlation-Enhanced Collision Attack

	Existing Detection Algorithms for Collision-Optimized Attacks
	Collision Chain
	Test-of-Chain and Fault-Tolerant Chain
	Full-Collision Chain and Light-weight Collision Detection Algorithm

	CoTree Algorithm
	Tree Initialization
	Node Insertion
	Node Removal
	Collision Chain Extraction
	Complexity

	Optimization
	Branch Removal
	Tree Merging
	Fault Tolerance

	Experimental Results
	Experiments on DPA Contest v4.1 Dataset
	Experiments on an AT89S52 Micro-controller

	Conclusions

