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Abstract. This work revisits the security of classical signatures and ring signatures in a quantum
world. For (ordinary) signatures, we focus on the arguably preferable security notion of blind-unforgeability
recently proposed by Alagic et al. (Eurocrypt’20). We present two short signature schemes achieving
this notion: one is in the quantum random oracle model, assuming quantum hardness of SIS; and the
other is in the plain model, assuming quantum hardness of LWE with super-polynomial modulus. Prior
to this work, the only known blind-unforgeable schemes are Lamport’s one-time signature and the
Winternitz one-time signature, and both of them are in the quantum random oracle model.

For ring signatures, the recent work by Chatterjee et al. (Crypto’21) proposes a definition trying to
capture adversaries with quantum access to the signer. However, it is unclear if their definition, when
restricted to the classical world, is as strong as the standard security notion for ring signatures. They
also present a construction that only partially achieves (even) this seeming weak definition, in the sense
that the adversary can only conduct superposition attacks over the messages, but not the rings. We
propose a new definition that does not suffer from the above issue. Our definition is an analog to the
blind-unforgeability in the ring signature setting. Moreover, assuming the quantum hardness of LWE,
we construct a compiler converting any blind-unforgeable (ordinary) signatures to a ring signature
satisfying our definition.
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1 Introduction

Recent advances in quantum computing have uncovered several new threats to the existing body of
cryptographic work. As demonstrated several times in the literature (e.g., [Wat06, BDF+11, Zha12a,
ABG+]), building quantum-secure primitives requires more than taking existing constructions and
replacing the underlying assumptions with post-quantum ones. It usually requires new techniques
and analysis. Moreover, for specific primitives, even giving a meaningful security notion against
quantum adversaries is a non-trivial task (e.g., [BZ13a, BZ13b, Zha15, Unr16, AMRS20]). This
work focuses on post-quantum security of digital signature schemes, namely, classical signatures
schemes for which we want to protect against quantum adversaries.

Post-Quantum Unforgeable Signatures. To build post-quantum secure signature schemes, the
first step is to have a notion of unforgeability that protects against adversaries with quantum power.
Probably the most natural attempt is to take the standard existential unforgeability (EUF) game,
but require unforgeability against all quantum polynomial-time (QPT) adversaries (instead of all
probabilistic polynomial-time (PPT) adversaries). We emphasize that the communication between
the EUF challenger and the QPT adversary is still classical. Namely, the adversary is not allowed
to query the challenger’s circuit in a quantum manner. Herein, we refer to this notion as PQ-EUF.
Usually, PQ-EUF can be achieved by existing constructions in the classical setting via replacing
the underlying hardness assumptions with quantum-hard ones (e.g., hard problems on lattice or
isogeny-based assumptions).

The (Quantum) Random Oracle Model. In the classical setting, the random oracle model (ROM)
[BR93] has been accepted as a useful paradigm to obtain efficient signature schemes. When consid-
ering the above PQ-EUF notion in the ROM, two choices arise—one can either allow the adversary
classical access to the RO (as in the classical setting)4, or quantum access to the RO. The latter
was first formalized as the quantum random oracle model (QROM) by Boneh et al. [BDF+11],
who showed that new techniques are necessary to achieve unforgeability against QPT adversaries
in this model. Then, a large body of literature has since investigated the PQ-EUF in QROM
[ARU14, Unr17, KLS18, DFMS19, LZ19, DFM20, GHHM20].

One-More Unforgeability vs Bind Unforgeability. Starting from [Zha12a], people realize that the
definitional approach taken by the above PQ-EUF may not be sufficient to protect against quan-
tum adversaries. The reason is that quantum adversaries may try to attack the concerned proto-
col/primitive by executing it quantumly, even if the protocol/primitive by design is only meant
to be executed classically. As argued in existing literature (e.g., [DFNS13, GHS16]), such an at-
tack could possibly occur in a situation where the computer executing the classical protocol is a
quantum machine, and an adversary somehow manages to observe the communication before mea-
surement. Other examples include adversaries managing to trick a classical device (e.g., a smart
card reader) into showing full or partial quantum behavior by, for example, cooling it down and
shielding it from any external electromagnetic or thermal interference. Moreover, this concern may
also arise in the security reduction (even) w.r.t. classical security games but against QPT adver-
saries. For example, some constructions may allow the adversary to obtain an indistinguishability
obfuscation of, say, a PRF; the QPT adversary can then implement it as a quantum circuit to
conduct superposition attacks. Recently, this issue has received an increasing amount of attention

4 To avoid confusion, we henceforth denote this model as CROM (“C” for “classical”).
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[BZ13a, BZ13b, Zha15, Unr16, GHS16, SY17, HY18, HI19, CHS19, AMRS20, CETU20, CEV20,
ABDS, HI21, HS21, BM21].

To address the aforementioned security threats to digital signatures, it is reasonable to give the
QPT adversary A quantum access to the signing oracle in the EUF game. This raises an immediate
question—How should the game decide if A’s final forgery is valid? Recall that in the classical
setting (or the PQ-EUF above), the game records all the signing queries made by A; to decide if A
wins, it needs to make sure that A’s final forgery message-signature pair is different from the ones
A learned from the signing oracle. However, this approach does not fit into the quantum setting,
since it is unclear how to record A’s quantum queries without irreversibly disturbing them.

Boneh and Zhandry [BZ13b] proposed the notion of one-more unforgeability. This requires that
the adversary cannot produce sq + 1 valid message-signature pairs with only sq signing queries
(an approach previously taken to define blind signatures [PS96a]). When restricted to the classical
setting, this definition is equivalent to the standard unforgeability of ordinary signatures, by a simple
application of the pigeonhole principle. [BZ13b] shows how to convert any PQ-EUF signatures to
one-more unforgeable ones using a chameleon hash function [KR00]; it also proves that the PQ-EUF
signature scheme by Gentry, Peikert, and Vaikuntanathan [GPV08] (henceforth, GPV) is one-more
unforgeable in the QROM, assuming the PRF in that construction is quantum secure (i.e., being a
QPRF [Zha12a]).

However, as argued in [GYZ17, AMRS20], one-more unforgeability does not seem to capture
all that we can expect from quantum unforgeability. For example, an adversary may produce a
forgery for a message in a subset A of the message space, while making queries to the signing
oracle supported on a disjoint subset B. Also, an adversary may make multiple quantum signing
queries, but then must consume, say, all of the answers in order to make a single valid forgery.
This forgery might be for a message that is different from all the messages in all the superpositions
of previous queries. This clearly violates what we intuitively expect for unforgeability, but the
one-more unforgeability definition may never rule this out.

To address these problems, Alagic at el. [AMRS20] propose blind-unforgeability (BU). Roughly,
the blind-unforgeability game modifies the (quantum-accessible) signing oracle by asking it to
always return “⊥” for messages in a “blinded” subset of the message space. The adversary’s forgery
is considered valid only if it lies in the blinded subset. In this way, the adversary is forced to forge
a signature for a message she has not seen a signature before, consistent with our intuition for
unforgeability. [AMRS20] shows that blind-unforgeability, when restricted to the classical setting,
is also equivalent to PQ-EUF; Moreover, it does not suffer from the above problems for one-more
unforgeability5.

In terms of constructions, [AMRS20] show that Lamport’s one-time signature [Lam79] is BU
in the QROM, assuming the OWF is modeled as a (quantum-accessible) random oracle. Later,
[MMO21] show that the Winternitz one-time signature [Mer90] is BU in the QROM, assuming
the underlying hash function is modeled as a (quantum-accessible) random oracle. To the best of
our knowledge, these are the only schemes known to achieve BU. This gives rise to the following
question:

Question 1: Is it possible to build (multi-time) signature schemes achieving blind-unforgeability,
either in the QROM or the plain model?

5 Although [AMRS20] claimed that blind-unforgeability implies one-more unforgeability, their proof was flawed
[Com21]. The relation between these two notions is still an open problem.
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Post-Quantum Secure Ring Signatures. In a ring signature scheme [RST01, BKM06], a user
can sign a message with respect to a ring of public keys, with the knowledge of a signing key
corresponding to any public key in the ring. It should satisfy two properties:

1. Anonymity requires that no user can tell which user in the ring actually produced a given
signature;

2. Unforgeability requires that no user outside the specified ring can produce valid signatures on
behalf of this ring.

In contrast to its notional predecessor, group signatures [Cv91], no central coordination is required
for producing and verfying ring signatures. Due to these features, ring signatures (and their variants)
have found natural applications related to whistleblowing, authenticating leaked information, and
more recently to cryptocurrencies [TSS+18, Noe15], and thus have received extensive attention (see,
e.g., [CGH+21] and related work therein).

For ring signatures from latticed-based assumptions, there exist several constructions in the
CROM [ABB+13, LLNW16, TSS+18, BLO, WZZ18, EZS+19, BKP20, LNS21], but only two
schemes are known in the plain model [BK10, CGH+21]. The authors of [CGH+21] also initi-
ate the study of quantum security for ring signatures. They propose a definition where the QPT
adversary is allowed quantum access to the signing oracle in both the anonymity and unforgeability
game, where the latter is a straightforward adaption of the aforementioned one-more unforgebility
for ordinary signatures. As noted in their work, this approach suffers from two disadvantages:

1. Their unforgeability definition seems weak in the sense that, when restricted to the classical
setting, it is unclear if their unforgeability is equivalent to the standard one (see Sec. 2.3). This
is in contrast to ordinary signatures, for which one-more unforgeability is equivalent to the
standard existential unforgeability;

2. Their construction only partially achieves (even) this seemingly weak definition. In more detail,
their security proof only allows the adversary to conduct superposition attacks on the messages,
but not on the rings. As remarked by the authors, this is not a definitional issue, but rather a
limitation of their technique. Indeed, [CGH+21] left it as an open question to have a construction
protecting against superposition attacks on both the messages and the rings.

The outlined gap begs the following natural question:

Question 2: Can we have a proper unforgeability notion for ring signatures that does not
suffer from the above disadvantage? If so, can we have a construction achieving such a
notion?

Our Results. In this work, we resolve the aforementioned questions:

1. We show that the GPV signature, which relies on the quantum hardness of SIS (QSIS), can be
proven BU-secure in the QROM. Since our adversary has quantum access to the signing oracle,
we also need to replace the PRF in the original GPV scheme with a QPRF, which is also known
from QSIS. As will be discussed later in Sec. 2.1, our security proof is almost identical to the
proof in [BZ13b] for the one-more unforgeability of GPV, except how the desired contradiction
is derived in the last hybrid. Interestingly, our proof for BU turns out to be simpler than that
in [BZ13b] (for one-more unforgeability). We remark that the GPV scheme is short (i.e., the
signature size only depends on the security parameter, but not the message size).
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2. We also construct a BU-secure signature in the plain model, assuming quantum hardness of
Learning with Errors (QLWE) with super-polynomial modulus. Our construction is inspired by
the signature (and adaptive IBE) scheme by Boyen and Li [BL16]. This signature scheme is also
short.

3. We present a new definition of post-quantum security for ring signatures, by extending blind-
unforgeability from [AMRS20]. We show that this definition, when restricted to the classical
setting, is equivalent to the standard security requirements for ring signatures.

4. We build a ring signature satisfying the above definition. Our construction is a compiler that
converts any BU (ordinary) signature to a ring signature achieving the definition in Item 3,
assuming QLWE.

2 Technical Overview

2.1 BU Signatures in the QROM

We show that the GPV signature scheme from [GPV08] is BU-secure in the QROM. The GPV
signature scheme follows the hash-and-sign paradigm and relies crucially on the notion of preimage
sampleable functions (PSFs). As the name indicates, these functions can be efficiently inverted given
a secret inverting key in addition to being efficiently computable. Further, the joint distribution of
image-preimage pairs is statistically close, no matter whether the image or the preimage is sampled
first. PSFs also provide collision resistance, as well as pre-image min-entropy: given any image, the
set of possible preimages has ω(log λ) bits of min-entropy, meaning that a specific preimage can
only be predicted with negligible chance.

The GPV scheme uses a hash function H modeled as a random oracle. It first hashes the message
m using H to obtain a digest h. The signing key includes the PSF secret key, and the signature
is a preimage of h (the signing randomness is generated using a quantum secure PRF over the
message). To verify a signature, one simply computes its image under the PSF and compares it
with the digest.

Notice that in the proof of (post-quantum) blind-unforgeability, the adversary has quantum
access to both H and the signing algorithm. To show blind-unforgeability, we will move to a hybrid
experiment where the H and the signing algorithm Sign are constructed differently, but their joint
distribution is statistically close to that in the real execution. To do so, the hybrid will set the
signature for a message m to a random preimage from the domain of the PSF (note that this
procedure is “de-randomized” using the aforementioned PRF). To answer a H-oracle query on m,
the hybrid will first compute its signature (i.e., the PSF preimage corresponding to m), and then
return the PSF evaluation on this signature (aka preimage) as the output of H(m). Observe that, in
this hybrid, the (H,Sign) oracles are constructed by first sampling preimages for the PSF, and then
evaluating the PSF in the “forward” direction; in contrast, in the real game, the (H,Sign) oracles
can be interpreted as sampling a image for PSF first, and then evaluating the PSF in the “reverse”
direction using the inverting key. From the property of PSFs given above, these two approaches
induce statistically-close joint distributions of (H,Sign) on each (classical) query. A lemma from
[BZ13b] then shows that these are also indistinguishable to adversaries making polynomially-many
quantum queries.

So far, our proof is identical to that of [BZ13b], where GPV is shown to be one-more unforgeable.
This final part is where we differ. In the final hybrid, if the adversary produces a successful forgery
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for a message in the blind set, only two possibilities arise. Since the image of the signature under
the PSF must equal the digest, the signature must either (i) provide a second preimage for h to the
one computed by the challenger, creating a collision for the PSF, or (ii) equal the one the challenger
itself computes, compromising preimage min-entropy of the PSF. This latter claim requires special
attention in [BZ13b]. A reduction to the min-entropy condition is not immediate, since it is unclear
if the earlier quantum queries of A already allow A information about the preimages for the q + 1
forgeries it outputs. To handle this, [BZ13b] prove a lemma ([BZ13b, Lemma 2.6]) showing q
quantum queries will not allow A to predict q + 1 preimages, given the min-entropy condition.
In contrast, this last argument is superfluous in our case, since the blind unforgeability game
automatically prevents any information for queries in the blindset from reaching the adversary. We
can therefore directly appeal to the min-entropy condition for case (ii) above.

We present the formal construction and the corresponding proof in Sec. 4.

2.2 BU Signatures in the Plain Model

To construct a BU signature in the plain model, we make use of the signature template introduced in
[BL16], which in turn relies on key-homomorphic techniques as used in [BV14]. We will refer to the
[BV14] homomorphic evaluation procedure as Evalbv. The [BL16] scheme uses the ‘left-right trap-
door’ paradigm. Namely, the verification key contains a matrix A sampled with a ‘trapdoor’ basis
TA, and A0,C0,A1,C1, which can be interpreted as BV encodings of 0 and 1 respectively, as well as
similar encodings {Bi}i∈[|k|] of the bits of a key k for a bit-PRF (the use of this PRF is the key inno-
vation in [BL16]). The corresponding signing key contains TA. To sign, one computes BV encodings
CM1 , . . . ,CMt of a t-bit message M , then computes Aprf,m = Evalbv({Bi}i∈[|k|], {Cj}j∈[t],PRF).
Two signing matrices FM,b = [A | Ab−Aprf,m] (∀b ∈ {0, 1}) are then generated (crucially, the ad-
versary cannot tell these apart because of the PRF). A signature is a short non-zero vector σ ∈ Z2m

satisfying FM,b · σ = 0 for any one of the FM,b’s. As pointed out, TA allows the signer to produce
a short vector for either FM,b.

To show unforgeability, one constructs a reduction that

1. replaces the left matrix with an SIS challenge (thus losing TA), and

2. replaces the other matrices used to generate the right half with their ‘puncturable’ versions
(e.g., Ab now becomes ARb+ G, where Rb is an uniform low-norm matrix and G is the gadget
matrix), with the end result being that the matrix Aprf,m becomes AR′ + G and FM,b now
looks like [A | AR + (b− PRFk(M))G] (with R,R′ being suitable low-norm matrices).

The crucial point is this: having sacrificed TA, the reduction cannot sign like a normal signer.
However it still retains a trapdoor for the gadget matrix G, and for exactly one of the FM,b, a term
in G survives in the right half. This suffices to obtain a ‘right trapdoor’, and in turn, valid signatures
for any M . On the other hand, a forging adversary lacks the PRF key and so it cannot tell apart
FM,0 from FM,1. Thus the forgery must correspond to FM,PRFk(M) with probability around 1/2,
and the reduction can use this solution to obtain a short solution for the challenge A.

However, the blind-unforgeability setting differs in several meaningful ways. Here, we no longer
expect a forgery for any possible message, so the additional machinery to have two signing matrices
for every message becomes superfluous. Indeed, for us the challenge is to disallow signing queries
in the blindset (even if they are made as part of a query superposition) and to prevent forgeries
in the blindset. Accordingly, we interpret the function of the PRF in a different manner. We
simply have the bit-PRF act as the characteristic function for the blindset. Then we can extend
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the approach above to the blind-unforgeability setting very easily: we use a single signing matrix
Fm = [A | A′ − Aprf,m] (where A′ ‘encodes 1’). In the reduction, after making changes just as
before, we obtain that Fm =

[
A | AR−

(
1− PRFk(M)

)
G
]
. For messages where the PRF is not 1,

we can answer signing queries using the trapdoor for G; For messages where it is 1, we cannot, and
further we can use a forgery for such a message to break the underlying SIS challenge. In effect,
the reduction enforces the requisite blindset behavior naturally.

A caveat is that the bit-PRF based approach may not correctly model a blindset, which is a
random ε-weight set of messages. Indeed, we require a slight modification of a normal bit-PRF to
allow us the necessary latitude in approximating sets of any weight ε ∈ [0, 1]. Moreover, due to the
adversary’s quantum access to the signing oracle, this PRF must be quantum-access secure; and
to allow the BV homomorphic evaluation, the PRF must have NC1 implementation. Fortunately,
such a biased bit-PRF can be built by slightly modifying the PRF from [BPR12], assuming QLWE
with super-polynomial modulus.

2.3 Post-Quantum Secure Ring Signatures

Defining Post-Quantum Security. To reflect the quantum power of an QPT adversary A, one
needs to give A quantum access to the signing oracle in the security game. While this is rather
straightforward for anonymity, the challenge here is to find a proper notion for unforgeability
(thus, here we only focus on the latter). Let us first recall the classical unforgeability game for a
ring signature. In this game, A learns a ring R from the challenger, and then can make two types
of queries:

– by a corruption query (corrupt, i), A can corrupt a member in R to learn its secret key;

– by a signing query (sign, i,R∗,m), A can create a ring R∗, specify a member i that is contained
in both R and R∗, and ask the challenger to sign a message m w.r.t. R∗ using the signing keys
of member i.

Notice that R∗ may contain (potentially malicious) keys created by A; but as long as the member
i is in both R∗ and R, the challenger is able to sign m w.r.t. R∗. The challenger also maintains a
set C, which records all the members in R that are corrupted by A. To win the game, A needs to
output a forgery (R∗,m∗, Σ∗) satisfying the following 3 requirements:

1. R∗ ⊆ R \ C,

2. RS.Verify(R∗,m∗, Σ∗) = 1, and

3. A never made a signing query of the form (sign, ·,R∗,m∗).

To consider quantum attacks, we first require that corruption queries should remain classical.
In practice, corruption queries translate to the attack where a ring member is totally taken over by
A. Since ring signatures are a de-centralized primitive, corrupting a specific party should not affect
other parties in the system. This situation arguably does not change with A’s quantum power. One
could of course consider “corrupting a group of users in superposition”, but the motivation and
practical implications of such corruptions is unclear, and thus we defer it to future research. In this
work, we restrict ourselves to classical ring member corruptions.

We will allow A to conduct superposition attacks over the ring and message. That is, a QPT A
can send singing queries of the form (sign, i,

∑
R,m ψR,m |R,m〉), where the identity i is classical for

the same reason above. Given the argument above, one may wonder why we allow superpositions
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over R in the signing query. The reason is that unlike for corruption queries, each signing query
specifies a specific member i to run the signing algorithm for. No matter what R is, this member
will only sign using her own signing key (and this is the only signing key that she knows), and this
has nothing to do with other parties in the system6. Therefore, superposition attacks over R can
be validated just as superposition attacks over m, thus should be allowed.

The next step is to determine the winning condition for QPT adversaries in the above quantum
unforgeability game. The approach taken by [CGH+21] is to extend the one-more unforgeability
from [BZ13b] to the ring setting. Concretely, it is required that the adversary cannot produce
(sq+1) valid signatures by making only sq quantum sign queries. However, there is a caveat. Recall
that the R∗ in A’s forgery should be a subset of uncorrupted ring members (i.e., R\ C). A natural
generalization of the “one-more forgery” approach here is to require that, with sq quantum signing
queries, the adversary cannot produce sq + 1 forgery signatures, where all the rings contained are
subsets of R \ C. This requirement turns out to be so strict that, when restricted to the classical
setting, this one-more unforgeability seems to be weaker than the standard unforgeability for ring
signatures (more details in Sec. 6.1.2 and Appx. B).

Our idea is to extend the blind-unforgeability definition to our setting. Specifically, the chal-
lenger will create a blind set BRS

ε by including in each ring-message pair (R,m) with probability ε.
It will then blind the signing algorithm such that it always returns “⊥” for (R,m) ∈ BRS

ε . In con-
trast to one-more unforgeability, we will show that this definition, when restricted to the classical
setting, is indeed equivalent to the standard unforgeability notion for ring signatures.

Our Construction. Our starting point is the LWE-based construction by Chatterjee et al. [CGH+21].
We first recall their construction: the public key consists of a public key for a public-key encryption
scheme PKE and a verification key for a standard signature scheme Sig, as well as the first round
message of a (bespoke) ZAP argument. To sign a message, one first computes an ordinary signature
σ and then encrypts this along with a hash key hk for a specific hash function (i.e., somewhere
perfectly-binding hash). Two such encryptions (c1, c2) are produced, along with the second-round
message π of the ZAP proving that one of these encryptions is properly computed using a public
key that is part of the presented ring. The hash key is extraneous to our concerns here; suffice it to
say that it helps encode a “hash” of the ring into the signature and is a key feature in establishing
compactness of their scheme.

To show anonymity, one starts with a signature for i0, then switches the ciphertexts c1 and c2
in turn to be computed using the public key for i1 while changing the ZAP accordingly. Semantic
security ensures that ciphertexts with respect to different public keys are indistinguishable, and
WI of the ZAP allows us to switch whichever ciphertext is not being used to prove π, and also to
switch a proof for a ciphertext corresponding to i0 to one corresponding to i1.

Unforgeability in [CGH+21] follows from a reduction to the unforgeability of Sig. Even though
their construction uses a custom ZAP that only offers soundness for (effectively) NP ∩ coNP, they
develop techniques in this regard to show that even with this ZAP, one can ensure that if an
adversary produces a forgery with non-negligible probability, then it also encrypts a valid signature
for Sig in one of c1 or c2 with non-negligible probability. The reduction can extract this using a
corresponding decryption key (which it can obtain during key generation for the experiment) and
use this as a forgery for Sig.

6 Indeed, R may even contain “illegitimate” or “non-existent” members faked by A. Note that we do not require
R ⊆ R.
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The [CGH+21] construction can thus be seen as a compiler from ordinary to ring signatures as-
suming LWE. We use their template as a starting point, but there are significant differences between
security notions for standard (classical) ring signatures, and our (quantum) blind-unforgeability set-
ting. We discuss these and how to accomodate them next. The very first change that we require
here is to use a blind-unforgeable signature scheme in lieu of Sig, since we reduce unforgeability to
that of Sig.

Next, let us discuss post-quantum anonymity. Here, the adversary can make a challenge query
that contains a superposition over rings and messages. We would like to use the same approach as
above, but of course computational indistiguishability is compromised against superposition queries.
Two clear strengthenings are needed compared to the classical scheme: first, we need to use pairwise-
independent hashing to generate signing randomness (to apply quantum oracle similarity techniques
from [BZ13b]). Second, we want to ensure statistical similarity of the components c1, c2, π (in order
to use an aforementioned lemma from [BZ13b] which says that pointwise statistically close oracles
are indistiguishable even with quantum queries). In particular, the PKE needs to be statistically
close on different plaintexts, and the WI guarantee for the ZAP needs to be statistical. Fortunately,
we can use lossy encryption for the constraint on ciphertexts, and the ZAP from [CGH+21] is
already statistical WI.

Finally, we turn to blind-unforgeability. Here, the things that change are that firstly, we need to
switch to injective public keys (instead of lossy ones) to carry over the reduction from the classical
case. Further, we forego using SPB hashing, because our techniques require that we sign the message
along with the ring, i.e. Sig.Sign(sk,R‖m). Thus we end up compromising compactness and using
an SPB would serve no purpose. The reason that we need to sign the ring too has to do with how
we define the blindset and how the challenger must maintain it in the course of the unforgeability
game; this turns out to be more delicate than expected (see related discussion in Sec. 6.5). With
the modifications above, we can eventually reduce the blind-unforgeability to that of Sig.

3 Preliminaries

Notation. For a set X , let 2X denote the power set of X (i.e., the set of all subsets of X . Let
λ ∈ N denote the security parameter. A non-uniform QPT adversary is defined by {QCλ, ρλ}λ∈N,
where {QCλ}λ is a sequence of polynomial-size non-uniform quantum circuits, and {ρλ}λ is some
polynomial-size sequence of mixed quantum states. For any function F : {0, 1}n → {0, 1}m, “quan-
tum access” will mean that each oracle call to F grants an invocation of the (n+m)-qubit unitary

gate |x, t〉 7→ |x, t⊕F (x)〉; we stipulate that for any t ∈ {0, 1}∗, we have t⊕⊥ = ⊥. Symbols
c
≈,

s
≈

and
i.d.
== are used to denote computational, statistical, and perfect indistinguishability respectively.

Computational indistinguishability in this work is by default w.r.t. non-uniform QPT adversaries.
We provide more preliminaries on lattices and the [BV14] key-homomorphic evaluation method

in Appx. A.

3.1 Quantum Oracle Indistinguishability

We will need the following lemmata.

Lemma 1 ([Zha12b]). Let H be an oracle drawn from a 2q-wise independent distribution. Then,
the advantage of any quantum algorithm making at most q queries to H has in distinguishing H
from a truly random function is 0.
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Lemma 2 ([BZ13b]). Let X and Y be sets, and for each x ∈ X , let Dx and D′x be distributions
on Y such that |Dx − D′x| ≤ ε for some value ε that is independent of x. Let O : X → Y be a
function where, for each x, O(x) is drawn from Dx, and let O′(x) be a function where, for each x,
O′(x) is drawn from D′(x). Then any quantum algorithm making at most q queries to either O or
O′ cannot distinguish the two, except with probability at most

√
8C0q3ε.

3.2 Blind-Unforgeable Signatures

We recall in Def. 1 the definition for blind unforgeable signature schemes in [AMRS20]. The authors
there provide a formal definition for MACs. We extend it in the natural way to the signature setting.

Definition 1 (Blind-Unforgeable Signatures). For any security parameter λ ∈ N, let Mλ

denote the message space and Tλ denote the signature space. A blind-unforgeable signature scheme
Sig consists of the following PPT algorithms:

– Gen(1λ) outputs a verification and signing key pair (vk, sk).

– Sign(sk,m; r) takes as input a signing key sk, a message m ∈Mλ, and a randomness r (which
we avoid specifying unless pertinent). It outputs a signature σ ∈ Tλ.

– Verify(vk,m, σ) takes as input a verification key vk, a message m ∈Mλ and a signature σ ∈ Tλ.
It outputs a bit signifying accept (1) or reject (0).

These algorithms satisfy the following requirements:

1. Completeness: For any λ ∈ N, any (vk, sk) in the range of Gen(1λ), and any m ∈ Mλ, it
holds that

Pr
[
Verify

(
vk,m,Sign(sk,m)

)
= 1
]

= 1− negl(λ).

2. Blind-Unforgeability: For any non-uniform QPT adversary A, it holds w.r.t. Expr. 1 that

PQAdvλbu(A) := Pr
[
PQExpλbu(A) = 1

]
≤ negl(λ).

Experiment 1: Blind-Unforgeability Game PQExpλbu(A)

1. A sends a constant 0 ≤ ε ≤ 1 to the challenger;

2. The challenger generates (vk, sk)← Gen(1λ) and provides vk to A.

3. The challenger defines a blindset BSig
ε ⊆ Mλ as follows: every m ∈ Mλ is put in BSig

ε

independently with probability ε.

4. A is allowed to make poly(λ) quantum queries. For each query, the challenger samples a
(classical) random string r and performs the following mapping:∑

m,t

ψm,t|m, t〉 7→
∑
m,t

ψm,t|m, t⊕BSig
ε Sign(sk,m; r)〉,

where BSig
ε Sign(sk,m; r) =

{
⊥ if m ∈ BSig

ε

Sign(sk,m; r) otherwise
.

5. Finally, A outputs (m∗, σ∗); the challenger checks if:
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i. m∗ ∈ BSig
ε ; and

ii. Verify(vk,m∗, σ∗) = 1.

If so, the experiment outputs 1; otherwise, it outputs 0.

3. Shortness (Optional):The signature scheme is short if the signature size is at most a poly-
nomial on the security parameter and the logarithm of the message size.

Remark 1 (One randomness to rule them all7). The signing algorithm in our definition samples
signing randomness once per every query, as opposed to sampling signing randomness for every
classical message in the superposition. This was established as a reasonable definitional choice in
[BZ13b], where they observed that one could “de-randomize” the signing procedure by simply using
a quantum PRF to generate randomness for each possible message in superposition, and use this
for signing. We stick with this convention when defining post-quantum security for both ordinary
signatures (Def. 1) and ring signatures (Def. 5 and 6).

Remark 2. We let the adversary choose ε. This is equivalent to quantifying over all values of ε as
in the definition in [AMRS20].

3.3 Quantum-Access Secure Biased Bit-PRF

We will need a quantum-access secure PRF having a biased single-bit output. It should also be
implementable by NC1 circuits. Let us first present the definition.

Definition 2 (Biased Bit-QPRFs). A biased bit-QPRF on domain {0, 1}n(λ) consists of:

– Gen(1λ, ε): takes as input a constant ε ∈ [0, 1], outputs a key kε;

– PRFkε(x): takes as input x ∈ {0, 1}n(λ), outputs a bit b ∈ {0, 1},

such that for any ε ∈ [0, 1] and any QPT A having quantum access to its oracle,∣∣Pr
[
kε ← Gen(1λ, ε) : APRFkε (·) = 1

]
− Pr

[
F

$←− F
(
n(λ), ε

)
: AF (·) = 1

]∣∣ ≤ negl(λ),

where F
(
n(λ), ε

)
is the collection of all functions from {0, 1}n(λ) to {0, 1} that output 1 with prob-

ability ε.

It is known that the NC1 PRF from [BPR12] is quantum-access secure (i.e., a QPRF) [Zha12a].
It can be made biased by standard techniques (e.g., using the standard QPRF to “de-randomize” a
ε-biased coin-tossing circuit). Note that the [BPR12] PRF relies on the quantum hardness of LWE
with super-polynomial modulus. It is worthing noticing that such an LWE hardness assumption is
stronger than the SIS assumption with polynomial modulus (see Def. 15).

4 Blind-Unforgeable Signatures in the QROM

We show here that the signature scheme in [GPV08] is a blind-unforgeable signature in the quantum
random oracle model. This construction relies on the notion of preimage sampleable functions.

7 Inspired by J. R. R. Tolkien. Indeed, this is a “ring” signature paper.
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Definition 3 (Preimage Sampleable Functions [GPV08]). A preimage sampleable function
family PSF consists of the following PPT algorithms:

– Gen(1λ) samples a public/secret key pair (pk, sk).

For any (pk, sk) in the range of Gen(1λ):

– F(pk, ·) computes a function from set Xλ to set Yλ.

– Sample(1λ) samples an x from some (possibly non-uniform) distribution Xλ such that F(pk, x)
is distributed uniformly over Yλ.

– F−1(sk, y) takes as input any y ∈ Yλ and outputs a preimage x ∈ Xλ such that F(pk, x) = y,
and x is distributed statistically close to Sample(1λ) conditioned on F(pk, x) = y.

These algorithms satisfy the following properties:

1. Preimage Min-entropy: For each y ∈ Yλ, the conditional min-entropy of x ← Sample(1λ)
given F(pk, x) = y is at least ω(log n).

2. Collision Resistance: For any QPT algorithm A, the probability that A(1λ, pk) outputs dis-
tinct x, x′ ∈ Xλ such that F (pk, x) = F(pk, x′) is negligible in λ.

Pr

[
(pk, sk)← Gen(1λ);
(x, x′)← A(1λ, pk)

: x 6= x′ ∧ F(pk, x) = F(pk, x′)

]
= negl(λ).

[GPV08] constructs such PSFs based on the hardness of the SIS problem. They also give a
signature scheme using PSFs, a hash function modeled as a random oracle, and a pseudorandom
function. In the following, we first recall their signature scheme in Constr. 1, and then prove in
Thm. 1 that this construction satisfies Def. 1 in the QROM if the PRF is a QPRF.

Construction 1: The GPV Signature [GPV08]

Let PSF be a preimage sampleable function. Let PRF be a pseudorandom function, and H be a
hash function. The signature scheme Sig is defined as follows:

Gen(λ):

1. Generate (sk′, pk′)← PSF.Gen(λ);

2. Sample a PRF key k ← PRF.Gen(1λ);

3. Output sk = (sk′, k) and pk = pk′.

Sign(sk,m):

1. Compute r ← PRF(k,m) and h = H(m);

2. Compute σ = F−1(sk′, h; r);

3. Output σ.

Verify(pk,m, σ):

1. Compute h = H(m) and h′ = F(pk′, σ);

2. If h = h′ output 1; otherwise, output 0.
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Theorem 1. Assume that PSF be a preimage sampleable function, PRF is a quantum secure pseu-
dorandom function, and H realizes a random oracle. Then Constr. 1 is a short blind-unforgeable
signature in the quantum random oracle model.

Proof. Completeness and shortness of Constr. 1 are straightforward. In the following, we prove
blind-unforgeability.

The Joint Oracle. First notice that in the blind-unforgeability game in the ORAM, the adversaries
has quantum oracle access to two oracles: H and BεSign. As we will show later (in particular, in
hybrids H1 and H2 below), we need to change the way these two oracles are sampled, without being
noticed by the adversary. We will need to argue the indistinguishability of this switch by invoking
Lem. 2; but Lem. 2 is for adversaries that have access to a single oracle (O or O′). Therefore, we
start by slightly changing our oracle interface.

Instead of maintaining separate random and signing oracles (i.e., H and BεSign respectively),
we will maintain a single joint oracle O that can answer both types of queries ‘jointly’. In more
detail, we ask the adversary to include a flag bit c ∈ {0, 1} in each query. If c = 0, O will respond
as H; if c = 1, it will respond as BεSign. Formally, O implements the following mapping:∑

c,m,t

Ψc,m,t |c,m, t〉 7→
∑
c,m,t

Ψc,m,t |c,m, t⊕G(c,m)〉 ,

where G(c,m) =

{
H(m) c = 0

BεSign(m) c = 1
.

This transformation is without loss of generality—indeed, any adversary A′ that wins the
original blind-unforgeability game can be transformed into an adversary A that breaks blind-
unforgeability w.r.t. the joint oracle O. A need only forward queries from A′ to O and corresponding
responses back to A′ by setting a proper (classical) bit c . It is straightforward to see that A′ gets
identical responses whether interacting with A or in the QROM challenge. We therefore conclude
that A has the same success probability as A′, and this validates our single joint oracle interface.
For the rest of this proof, we presuppose an adversary A that directly interacts with the joint oracle.

We will use A to obtain a contradiction, by employing hybrid arguments. For ease of exposition
we will also use the following shorthand: denoting F(pk, ·) by f(·), and F−1(sk, ·) by f−1(·). Consider
the following hybrid experiments:

Hybrid H0: This is simply the normal blind-unforgeability challenge with the joint oracle. In
particular, for each m in the superpostion of the adversary’s quantum query ΣmΨm |m〉, the hash
h is computed (implicitly) as the random oracle output H(m), and the signature σm is computed
according to σm = f−1(h; r) where r = PRFk(m) (note that, in accordance with the challenge, the
signing algorithm will be invoked only if m /∈ Bε).

Hybrid H1: In this hybrid we change how r is generated. Instead of computing r = PRFk(m), we
set r = J(m) where J(·) is a random function over the range and domain of PRF.8

Out(H0)
c
≈ Out(H1): This follows directly from the quantum security of the PRF. Any adversary

that has distinguishable outputs in these two hybrids is easily converted into a QPT algorithm that

8 Note that the adversary’s query is quantum: ΣmΨm |m〉. To keep the notation succinct, it suffices to describe the
computation for each m in the superposition. We stick to this convention for later hybrids in this proof.
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can distinguish between the QPRF and a uniformly random function given quantum oracle access
to them in turn.

Hybrid H2: In this hybrid we change both components of the oracle. The sining oracle is now re-
defined as σm = Sig.Sign(m) := Sample

(
1λ; J(m)

)
. Further, the hash oracle query is now answered

by h = f(σm). That is, when the adversary asks for H(m), the hybrid first computes σm =
Sample

(
1λ; J(m)

)
, and then returns h = f(σm) to the adversary.

Out(H1)
s
≈ Out(H2): Recall that we view the random oracle H and the signing oracle together as

a joint oracle. The only thing that changes in H2 is the computation of parts of the joint oracle
response. We go through these carefully. For every m (in the superposition of A’s quantum query),
the response changes from

–
(
H(m), f−1

(
H(m); J(m)

))
, i.e., the joint oracle in H1, to

–
(
f
(
Sample(λ; J(m))

)
, Sample

(
λ; J(m)

))
, i.e, the joint oracle in H2.

Note that both H(m) and J(m) are uniformly random. Therefore, by the properties of Sample and
f−1 (Def. 3), the above two distributions are statistically close to each other. Denoting the joint
oracle in H1 by O1, and that in H2 by O2, we conclude that for any (classical) query point m, the
distributions of the responses returned by O1 and O2 conditioned on m are statistically close, say
less than distance ∆(λ) (which is negligible in λ). Now since A is a quantum machine making at
most polynomially (say q(λ)) many quantum queries. Then, we can use Lem. 2 to conclude that A
distinguishes between O1 and O2 with probability at most

√
8C0q3∆, which is negligible in λ.

Hybrid H3: Observe that the hybrid H2 is not efficiently implementable as it needs to sample
a random function J(·). In the classical setting, H2 can be made efficient by lazy-sampling J(·);
however, here we cannot resort to lazy-sampling as the adversary has quantum access to the oracle.
Thus, we take the following alternative approach to have an efficient hybrid. Assume q is the upper-
bound of the number of quantum queries made by the adversary. In hybrid H3, we sample a 2q-wise
independent hash function J ′(·), and replace the random function J(·) with J ′(·). Everything else
remains the same as in H2.

Out(H2)
i.d.
== Out(H3): This follows immediately from Lem. 1.

Reducing to the security of PSF. Now consider the eventual forgery output by A in H3,
(m∗, σ∗m). If this is valid, it follows from Def. 1 that m∗ ∈ Bε and Sig.Verify(vk,m∗, σ∗m) = 1, which
means H(m∗) = f(σ∗m).

Let σ′m := Sample(1λ; J ′(m∗)). Note that this is exactly Sig.Sign’s output on m∗ in H3. Due to
the way H3 implements the oracles, this presents only two possibilities:

1. Either we have σ′m = σ∗m, in which A is able to pick out the value σ′m among all possible
preimages of h = f(σ∗m). Observe that m∗ ∈ Bε, which means that A never saw that value
σ′m before as Sig.Sign returns > for messages in Bε. Therefore, by the preimage min-entropy
property (Item 1) of PSF, the set of allowed pre-images for h has conditional minentropy at least
ω(log λ), which means that A can only predict this value with at most negligible probability, so
this case has a negligible chance of occurrence.
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2. Else, we must have σ′m 6= σ∗m in which case A has obtained colliding preimages, i.e. σ′m 6= σ∗m
such that f(σ′m) = f(σ∗m). This contradicts the collision resistance of PSF (note that this is the
reason why we need H3 to be efficiently implementable), so this case can also only arise with
at most negligible probability.

We conclude that a successful forgery occurs only with negligible probability if the PSF satisfies
the aforementioned properties.

5 Blind-Unforgeable Signatures in the Plain Model

5.1 Notation and Building Blocks

We assume familiarity with standard lattice-based cryptographic notions and procedures. Here we
will recall certain techniques and properties to be directly used in our plain model construction.
We recall standard lattice-related concepts (e.g., parameters, hardness, trapdoors) in Appx. A.1.

For a vector u, we let ||u|| denote its `2 norm. For a matrix R ∈ Zk×m, we define two matrix
norms:

– ||R|| denotes the `2 norm of the largest column of R;

– ||R||2 denotes the operator norm of R, defined as ||R||2 = supx∈Rm+1 ||R · x||.

We denote the Gram-Schmidt ordered orthogonalization of a matrix A ∈ Zm×m by Ã. For a prime
q, a modular matrix A ∈ Zn×mq and vector u ∈ Znq , we define the m-dimensional (full rank) lattice

Λu
q (A) = {e ∈ Zm : Ae = u (mod q)}. In particular, Λ⊥q (A) denotes the lattice Λ0

q (A).

Lattice Sampling Algorithms. Our construction uses the ‘left-right trapdoors’ framework in-
troduced in [ABB10, Boy10], which uses two sampling algorithms SampleLeft and SampleRight.

SampleLeft: The algorithm SampleLeft works as follows:

– Inputs: A full-rank matrix A ∈ Zn×mq and a short basis TA of Λ⊥q (A), along with a matrix
B ∈ Zn×m1

q , a vector u ∈ Znq , and a Gaussian parameter s.

– Output: Let F = [A | B]. SampleLeft outputs a vector d ∈ Zm+m1 in Λu
q (F).

Theorem 2 (SampleLeft Closeness [ABB10, CHKP10]). Let q > 2, m > n and s > ||T̃A|| ·
ω
(√

log(m+m1)
)
. Then, the SampleLeft(A,B,TA,u, s) (as defined above) outputs d ∈ Zm+m1

distributed statistically close to DΛu
q (F),s.

SampleRight: The algorithm SampleRight works as follows:

– Inputs: Matrices A ∈ Zn×kq and R ∈ Zk×mq , a full-rank matrix B ∈ Zn×mq , a short basis TB of

Λ⊥q (B), a vector u ∈ Znq , and a Gaussian parameter s.

– Output: Let F = [A | AR + B]. It outputs a vector d ∈ Zm+m1 in the set Λu
q (F).

Theorem 3 (SampleRight Closeness [ABB10]). Let q > 2, m > n and s > ||T̃B|| · ||R||2 ·
ω(
√

logm). Then SampleRight(A,B,R,TB,u, s) (as defined above) outputs d ∈ Zm+k distributed
statistically close to DΛu

q (F),s.
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Random Sampling Related. The following is a simple corollary of [ABB10, Lemma 4] (see
Appx. A.2 for details).

Corollary 1. Suppose that m > (n + 1) log2 q + ω(log n) and that q > 2 is a prime. Let R be an
m × k matrix chosen uniformly from {−1, 1}m×k mod q where k = k(n) is polynomial in n. Let
A′ ∈ Zn×mq be sampled from a distribution statistically close to uniform over Zn×mq . Let R be an

m× k matrix chosen uniformly from {−1, 1}m×k mod q where k = k(n) is polynomial in n. Let B
be chosen uniformly in Zn×kq . Then for all vectors w ∈ Zmq , the distributions (A′,A′R,R>w) and

(A′,B,R>w) are statistically close.

Key-Homomorphic Evaluation. We briefly recall the matrix key-homomorphic evaluation al-
gorithm, as found in [GSW13, BGG+14, BV14] (see Appx. A.3 for details). This template evalu-
ates NAND circuits, gate by gate, in a homomorphic manner. For a NAND gate g(u, v;w) with
input wires u, v and output wire w, we have (inductively) matrices Au = ARu + xuG, and
Av = ARv + xvG where xu and xv are the input bits of u and v, and the evaluation algorithm
computes:

Aw = G−Au ·G−1(Av) = G− (ARu + xuG) ·G−1(ARv + xvG) = ARg + (1− xuxv)G,

where 1− xuxv := NAND(xu, xv), and Rg = −Ru ·G−1(Av)− xuRv has low norm if both Ru and
Rv have low norm.

Biased Bit-QPRF. We will need a single-bit-output QPRF that output 1 with a customizable
probability ε. Moreover, we need it to be implementable in NC1. Such a QPRF can be built using
the PRF constructed in [BPR12] assuming QLWE with super-polynomial modulus. See Sec. 3.3 for
more details and the formal definition.

5.2 Our Construction

Our signature scheme uses a biased bit QPRF PRF whose input space X corresponds to our
message space M, and the algorithms SampleLeft, SampleRight given as in Thm. 2 and Thm. 3
respectively, and TrapGen that can sample matrices in Zn×mq statistically close to uniform, along
with a corresponding ‘short’ or ‘trapdoor’ basis for the associated lattice. This is formally defined
in Lem. 8. The construction is as follows:

Construction 2: Blind-Unforgeable Signatures in the Plain Model

Paramters: Set message length t(λ) and row size n(λ) as free parameters (polynomial in λ). PRF
key size is set as k(λ), and the depth for CPRF is given by d(λ). We set m = n1+η for proper running
of TrapGen, and sigsizeλ = s

√
2m for the validity of SampleLeft output (to ensure completeness).

Set s = O(4dm3/2) · ω(
√

logm) to ensure statistical closeness of SampleLeft and SampleRight, and

correspondingly set β = O(16dm7/2) · ω(
√

logm) and q = O(16dm4) ·
(
ω(
√

logm)
)2

to have an
overall reduction to an appropriately hard instance of SIS. For further details about these choices,
see Sec. 5.3.

Gen(1λ):

1. Sample a matrix A along with a ‘trapdoor’ basis TA for Λ⊥q (A) using TrapGen.
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2. Sample a matrix A′, ‘PRF key’ matrices B1, . . . ,Bk, and ‘PRF input’ matrices C0,C1 uni-
formly from Zn×mq (k is the PRF key length).

3. Fix the Gaussian width parameter s as given in parameter selection.

4. Fix a Boolean circuit description CPRF of the algorithm PRF(·)(·).

5. Output vk = (A,A′, {Bi}ki=1, {C0,C1},PRF, s,CPRF) and sk = TA.

Sign(sk, vk,M): let (M1, . . . ,Mt) ∈ {0, 1}t be the bit-wise representation of M .

1. Run the [BV14] evaluation algorithm Evalbv to homomorphically evaluate the circuit CPRF

using the ‘encoded’ PRF key bits {Bi}i∈[k] and message bits {CMj}j∈[t]. This yields

Aprf,m := Evalbv(CPRF, {Bi}i∈[k], {CMj}j∈[t]) ∈ Zn×mq .

2. Set Fm := [A | A′ −Aprf,m].

3. Use SampleLeft to obtain dm with distribution statistically close to← DΛ⊥q (Fm),s (see Thm. 2).

4. Output σ = dm ∈ Z2m
q .

Verify(vk,M, σ):

1. Compute Aprf,m, Fm as before.

2. Check that σ ∈ Z2m
q , σ 6= 0, and ||σ|| ≤ sigsizeλ. If it fails, output 0.

3. If Fm · σ = 0 mod q, output 1, otherwise output 0.

5.3 Parameter Selection for Constr. 2

The security parameter λ is represented as before. We set message length t(λ) and row size n(λ)
as free parameters (polynomial in λ). PRF key size is set as k(λ), and the depth for CPRF is set to
be d(λ). We must set the parameters properly to ensure that the following conditions are satisfied:

1. We must have m = n1+η, with η being given by nη > O(log q). This is to ensure that TrapGen
can run properly, by Lem. 8.

2. We require that s > ||T̃G|| · ||R||2 · ω(
√

logm), where R = RA′ −RAPRF,M
(the latter will be

defined in the course of the proof), for the statistical similarity of SampleLeft and SampleRight,
as per Thm. 2 and 3.

3. Since signatures are vectors of length 2m over Zq sampled from (statistically close to) DΛ⊥q (Fm),s,

for most honestly generated signatures to be valid, it is necessary to set sigsizeλ ≥ s
√

2m, in
accordance with Lem. 9.

4. For hardness of the SIS instance, we require that the width parameter β satisfy β ≥ O(4d ·
m3/2 · s

√
2m).

5. Finally, for standard average-to-worst case hardness reductions to apply for SIS, we require that
q ≥ β · ω(

√
n log n).

Accordingly, we set the remaining parameters as follows:
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– We set m = n1+η, sigsizeλ = s
√

2m just as indicated.

– By the bounds on RAPRF,M
implied by Lem. 14, it suffices to set s = O(4dm3/2) · ω(

√
logm) to

satisfy constraint 2 above.

– Using the above s and so as to just about satisfy constraint 4, we set β = O(16dm7/2)·ω(
√

logm).

– We set q based on β above so as to just satisfy the final constraint, namely q = O(16dm4) ·
ω(
√

logm)2.

Since we consider PRFs in NC1, we can write d = c log ` (for some constant c) where ` = t+k is
the input length for the PRF. This yields β = O(`4cm7/2)·ω(

√
logm) and q = O(`4cm4)·ω(

√
logm)2.

5.4 Proof of Security

Completeness follows straightforwardly from the correctness of SampleLeft (Thm. 2) for DΛ⊥q (F),s.
In the following, we prove BU-security.

Theorem 4. Let λ denote the security parameter, and PRF be a biased bit QPRF as defined in
Def. 2 above. If the parameters n,m, q, β, s, d are picked as discussed above, and the SISq,β,n,m
problem is hard for QPT adversaries, then our signature scheme Sig constructed as above, with the
indicated parameters, satisfies Blind-Unforgeability as in Def. 6.

Proof. Consider a QPT A that is able to produce forgeries w.r.t. Sig in the blind-unforgeability
challenge. Our proof proceeds using a series of hybrid experiments. In the final hybrid we show
a reduction from an adversary producing succesful forgeries to the hardness of SISq,β,n,m. The
hybrids are as follows:

Hybrid H0: This is the blind-unforgeability game (Expr. 1). Namely, for an adversary-specified ε,
the challenger manually samples an ε-weight set Bε over messages, and does not answer queries in
Bε. Signing and verification keys are chosen just as in the ordinary signing procedure.

Hybrid H1: This hybrid is identical to the previous one, except that we change the ordinary key
generation into the following:

1. Sample A with a ‘trapdoor’ basis TA for Λ⊥q (A) using TrapGen as before.

2. Sample ‘low-norm’ matrices: R′A, {RBi}ki=1,RC0,RC1
$←− {−1, 1}m×m.

3. Let PRF and CPRF be as before.

4. Sample a PRF key kε ← PRF.Gen(1λ, ε), where kε = s1, . . . , sk (i.e. has length k).

5. Set A′ = ARA′ + G, where G the gadget matrix G, which has a publicly-known trapdoor T̃G

(as described in Lem. 10).

6. Set Cb = ARCb + bG for b ∈ {0, 1}, and sample Bi
$←− Zn×mq for every i ∈ [k].

7. Fix the Gaussian width parameter s as before.

8. Output vk = (A,A′, {Bi}ki=1, {C0,C1}, s,PRF,CPRF), and sk = (TA, kε).

Note that while this hybrid generates a key kε, it never uses it.
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H0
s
≈ H1: The only thing that changes (w.r.t. A) is the distribution of the various components

(A′,C0,C1) of the verification key handed out by the challenger. However, by Corollary 1 these
distributions are all statistically close to the corresponding distributions in H0. Note that the
verification key is picked at the start of the challenge and provided to A, so there is no scope for A
to have quantum access to these component distributions. Thus the outputs in these hybrids are
statistically close.

Hybrid H2: This hybrid is identical to the previous one, except that we change how the challenger
picks the blindset—Instead of manually sampling Bε as a random ε-weight set, it now sets Bε to
be the set of messages M where PRFkε(M) is 1 (note that the challenger now possesses kε as part
of sk, and can compute PRFkε(·)). Observe that the challenger in this hybrid is now efficient.

H1
c
≈ H2: Note that setup and key generation in H2 is identical to that in H1—In particular, the

adversary learns no information about the key kε. The indistinguishability between H1 and H2

then follows immediately from the security of the biased bit-QPRF (Def. 2).

Hybrid H3: This hybrid is identical to the previous one, except that we change how the matrices
Bi’s (in Step 6) are generated. Namely, we now set

∀i ∈ [k], Bi := ARBi + si ·G.

(Recall that si is the i-th bit of the kε generated in Step 4.)

H2
s
≈ H3: The only things that change between these hybrids are the matrices {Bi}i∈[k]. Again,

using Corollary 1 the distributions for Bi for each i ∈ [k] are all statistically close to the corre-
sponding distributions in H2, and just as in the similarity argument between H2 and H3, we can
conclude that these hybrids too have indistinguishable outputs.

Hybrid H4: Observe that, starting from H1, we have:

Fm = [A | A′ −Aprf,m] =
[
A | A′ − Evalbv(CPRF, {Bi}i∈[k], {CMj}j∈[t])

]
=
[
A | A′ −

(
ARprf,m + PRFkε(M) ·G

)]
=
[
A | A(RA′ −Rprf,m) +

(
1− PRFkε(M)

)
·G
]
.

In this hybrid, we switch to using SampleRight to answer signing queries, instead of using SampleLeft.
That is, we run SampleRight using TG, the publicly available trapdoor for G. Note this means that
now the challenger cannot answer queries where the ‘right half’ of Fm does not include G, i.e.,
PRFkε(M) = 1. But due to the way H2 generate the blindset, such a query is anyway answered
with “⊥”.

H3
c
≈ H4: We first show that these two hybrids answer signature queries for any classical query M in

a statistically indistinguishable manner. For any query M , there are two cases: (1) if PRFkε(M) = 1,
the challengers in both H3 and H4 return ⊥. In this case, these distributions are identical. (2) Else,
we have PRFkε(M) = 0. Since FM is computed identically in both hybrids, and by Thm. 2 and 3
both SampleLeft and SampleRight sample from distributions statistically close to DΛ⊥q (Fm),s, i.e.,
they are also statistically close to each other. Thus overall the distributions of signatures returned
in H3 and H4 are statistically close to each other, say with less than distance ∆(λ) (which is
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negligible in λ). Now since A is a quantum machine making at most polynomially (say q(λ)) many
quantum queries. Then, we can use Lem. 2 to conclude that A distinguishes between H3 and H4

with probability at most
√

8C0q3∆, which is negligible.

Hybrid H5: In this hybrid, the challenger no longer samples A using TrapGen. Instead, it samples
A uniformly from Zn×mq .

H4
s
≈ H5: This follows immediately from Lem. 8.

Reduction to QSIS. We can now describe our reduction R in this hybrid:

1. Asks for and recieves a uniform matrix in Zn×mq as the SISq,β,n,m challenge.

2. Sets A to be this matrix (instead of sampling A by itself).

3. When the adversary returns a forgery (M∗, σ∗), R checks if this is valid, i.e., that (i) M∗ ∈ Bε,
(ii) σ∗ ∈ Z2m

q , (iii) σ∗ 6= 0, (iv) Fm∗ · σ∗ = 0 mod q and (v) ||σ|| ≤ sigsizeλ. If any of these
checks fail, it aborts.

4. Represent σ∗ as [d>1 | d>2 ]>, with d1,d2 ∈ Zmq . R computes e = d1 + Rd2 where R = RA′ −
Rprf,m (we will use this shorthand going forward), and presents e as its solution to the SIS
challenge A.

Now we can prove that e is indeed an SIS solution with non-negligible probability by an argument
very similar as in the final reduction for [BL16, Theorem 3.1]. We present the final reduction in the
following.

The Final Reduction. Before showing that the reduction’s output e indeed breaks the given SIS
challenge, we must first examine the possibility of a ‘related message’ attack. Namely, we want to
avoid a situation where the adversary can directly use signatures for one message to get signatures
on another since this would render our reduction moot. We show that this is not the case by showing
that an adversary cannot come up with two messages M,M ′ such that Fm = F′m. The following
lemma accomplishes this task.

Lemma 3. If a QPT adversary produces two distinct messages M,M ′ such that Aprf,m = Aprf,m′

with non-negligible probability, then we can break the SISq,β,n,m challenge.

Proof. With the verification key in H5 picked just as in H2, if Aprf,m = Aprf,m′ , then we have

ARprf,m + PRFkε(M)G = ARprf,m′ + PRFkε(M
′)G.

Note that we have PRFkε(M) 6= PRFkε(M
′) with probability 2ε · (1 − ε), which is a constant. If

this holds, we have A(Rprf,m −Rprf,m′)±G = 0 mod q. Now by Lem. 10 and using SampleRight
we can find a low-norm vector d ∈ Zm×mq such that Gd = 0 mod q, d 6= 0 and ||d|| ≤ s′

√
2m

(for some s′ ≥
√

5ω(
√

logm)). Then [A(Rprf,m −Rprf,m′)±G]d = 0 mod q, yielding A(Rprf,m −
Rprf,m′)d = 0 mod q. By our choice of parameters, (Rprf,m −Rprf,m′) has low enough norm and
so (Rprf,m −Rprf,m′)d is a valid SIS solution for A. This happens with non-negligible probability
using our starting assumption, and thus we break SISq,β,n,m as claimed.

Now we can turn to validating our reduction. It is straightforward to verify that if σ∗ is a valid
signature, then e is a valid integer solution to A. Indeed, we have Fm∗ · σ∗ = 0 mod q, which from
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the above boils down to

[A | A(RA′ −Rprf,m) +
(
1− PRFkε(M)

)
G] · σ∗ = 0 mod q,

which can be rewritten as A(d1 + Rd2) = 0 mod q, proving our claim.
It remains to verify that e is (i) short and (ii) nonzero. Let us begin with shortness. Since

||σ∗|| ≤ s
√

2m, we have ||d1||, ||d2|| ≤ s
√

2m. We then have ||e|| ≤ ||d1|| + ||d2|| · ||R||2. By our
parameter choices, and using Lem. 14, this latter term is again at most O(4dm3/2)s

√
2m. By our

choice of parameters, this is less that β ≥ O(4d ·m3/2) · s
√
m, and so e is indeed a valid solution.

Next let us show that e is nonzero with overwhelming probability. Note that by assumption,
σ∗ is nonzero so at least one of d1 or d2 must be so. If d2 is zero, then we have that e is directly
is nonzero, so let us focus on the case that d2 is nonzero. Expressing d2 as (d1, . . . , dm)>, we must
have that at least one of the coordinates of d2 is nonzero. Let dj be such a coordinate. Expressing
R as (r1, . . . , rm), we have that

R · d2 = rjdj +

m∑
i=1,i 6=j

ridi.

Now we note that for the (fixed) M∗ for which A makes its forgery, R (and in turn rj) depends
only on the low-norm matrices RA′ , {RBi

}i∈[k],RC0 ,RC1 and kε. Now the only information about
R (in turn, rj) A has is derived from the components of vk, namely, A′, {Bi}i∈[k],C0,C1. This
implies that any r′j ∈ {−1, 1}m such that Arj = Ar′j is in fact a valid vector in the sense that
replacing rj with r′j is completely indistinguishable to the adversary. By the pigeonhole principle,
there are exponentially many such distinct r′j ’s so that Arj = Ar′j , and for such an admissible r′j ,
the probability that r′j ·dj hits a fixed value in Zmq is exponentially small. It is straightforward to see
that this implies that e is zero with at most negligible probability (since the chance that r′j ·dj equals
the exact value needed to cancel out the other terms in e is negligible). Finally, it is straightforward
to verify that H4 runs in polynomial time, and in turn that the reductionR is efficient. IfA produces
a valid forgery within Bε with probability ν(λ), R breaks the SISq,β,n,m challenge with probability
ν(λ)−negl(λ). We conclude that A wins the blind-unforgeability experiment with at most negligible
probability.

6 Post-Quantum Ring Signatures

6.1 Definition

6.1.1 Classical Ring Signatures

We start by recalling the classical definition of ring signatures [BKM06, BDH+19].

Definition 4 (Ring Signature). A ring signature scheme RS is described by a triple of PPT
algorithms (Gen,Sign,Verify) such that:

– Gen(1λ, N): on input a security parameter 1λ and a super-polynomial9 N (e.g., N = 2log
2 λ)

specifying the maximum number of members in a ring, output a verification and signing key
pair (VK,SK).

9 The N has to be super-polynomial to support rings of arbitrary polynomial size.
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– Sign(SK,R,m): given a secret key SK, a message m ∈ Mλ, and a list of verification keys
(interpreted as a ring) R = (VK1, · · · ,VK`) as input, and outputs a signature Σ.

– Verify(R,m,Σ): given a ring R = (VK1, . . . ,VK`), message m ∈Mλ and a signature Σ as input,
outputs either 0 (rejecting) or 1 (accepting).

These algorithms satisfy the following requirements:

1. Completeness: for all λ ∈ N, ` ≤ N , i∗ ∈ [`], and m ∈Mλ, it holds that ∀i ∈ [`] (VKi,SKi)←
Gen(1λ, N) and Σ ← Sign(SKi∗ ,R,m) where R = (VK1, . . . ,VK`), we have

Pr[RS.Verify(R,m,Σ) = 1] = 1,

where the probability is taken over the random coins used by Gen and Sign.

2. Anonymity: For any Q = poly(λ) and any PPT adversary A, it holds w.r.t. Expr. 2 that

Advλ,QAnon(A) :=
∣∣Pr

[
Expλ,QAnon(A) = 1

]
− 1/2

∣∣ ≤ negl(λ).

Experiment 2: Classical Anonymity Expλ,QAnon(A)

1. For each i ∈ [Q], the challenger generates key pairs (VKi, SKi) ← Gen(1λ, N ; ri). It sends
{(VKi, SKi, ri)}i∈[Q] to A;

2. A sends a challenge to the challenger of the form (i0, i1,R,m).a The challenger checks if
VKi0 ∈ R and VKi1 ∈ R. If so, it samples a uniform bit b, computes Σ ← Sign(SKib ,R,m),
and sends Σ to A.

3. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise 0.

a We stress that R might contain keys that are not generated by the challenger in the previous step. In
particular, it might contain maliciously generated keys.

3. Unforgeability: for any Q = poly(λ) and any PPT adversary A, it holds w.r.t. Expr. 3 that

Advλ,QUnf(A) := Pr
[
Expλ,QUnf(A) = 1

]
≤ negl(λ).

Experiment 3: Classical Unforgeability Expλ,QUnf(A)

1. For each i ∈ [Q], the challenger generates (VKi, SKi)← Gen(1λ, N ; ri), and stores these key
pairs along with their corresponding randomness. It then sets VK = {VK1, . . . ,VKQ} and
initializes a set C = ∅.

2. The challenger sends VK to A.
3. A can make polynomially-many queries of the following two types:

– Corruption query (corrupt, i): The challenger adds VKi to the set C and returns the
randomness ri to A.

– Signing query (sign, i,R,m): The challenger first checks if VKi ∈ R. If so, it computes
Σ ← Sign(SKi,R,m) and returns Σ to A. It also keeps a list of all such queries made by
A.

4. Finally, A outputs a tuple (R∗,m∗, Σ∗). The challenger checks if:

i. R∗ ⊆ VK \ C,
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ii. A never made a signing query of the form (sign, ·,R∗,m∗), and

iii. Verify(R∗,m∗, Σ∗) = 1.

If so, the experiment outputs 1; otherwise, 0.

We mention that the unforgeability and anonymity properties defined in Definition 4 correspond
respectively to the notions of unforgeability with insider corruption and anonymity with respect to
full key exposure presented in [BKM06].

6.1.2 Defining Post-Quantum Security

We aim to build a classical ring signature that is secure against adversaries making superposition
queries to the signing oracle. Formalizing the security requirements in this scenario is non-trivial.
An initial step toward this direction has been taken in [CGH+21]. But their definition has certain
restrictions (discussed below). In the following, we develop a new definition building on ideas from
[CGH+21].

Post-Quantum Anonymity. Recall that in the classical anonymity game (Expr. 2), the adver-
sary’s challenge is a quadruple (i0, i1,R,m). To define post-quantum anonymity, a natural attempt
is to allow the adversary to send a superposition over components of quadruple, and to let the
challenger respond using the following unitary mapping10:∑

i0,i1,R,m,t

ψi0,i1,R,m,t |i0, i1,R,m, t〉 7→
∑

i0,i1,R,m,t

ψi0,i1,R,m,t |i0, i1,R,m, t⊕ Sign(SKib ,m,R; r)〉 .

However, as observed in [CGH+21], this will lead to an unsatisfiable definition due to an attack
from [BZ13b]. Roughly speaking, the adversary could use classical values for R, m, and i1, but
she puts a uniform superposition of all valid identities in the register for i0. After the challenger’s
signing operation, observe that if b = 0, the last register will contain signatures in superposition
(as i0 is in superposition); if b = 1, it will contain a classical signature (as i1 is classical). These two
cases can be efficiently distinguished by means of a Fourier transform on the i0’s register followed
by a measurement. Therefore, to obtain an achievable notion, we should not allow superpositions
over (i0, i1).

Now, A only has the choice to put superpositions over R and m. The definition in [CGH+21]
further forbids A from putting superpositions over R. But this is only because they fail to prove
security if superposition attacks on R is allowed. Indeed, they leave open the problem to construct
a scheme that protects against superposition attacks on R. In this work, we solve this problem: our
definition allows superposition attacks on both R and m.

Definition 5 (Post-Quantum Anonymity). Consider a triple of PPT algorithms RS = (Gen,Sign,Verify)
that satisfies the same syntax as in Def. 4. RS achieves post-quantum anonymity if for any Q =
poly(λ) and any QPT adversary A, it holds w.r.t. Expr. 4 that

PQAdvλ,QAnon(A) :=
∣∣Pr

[
PQExpλ,QAnon(A) = 1

]
− 1/2

∣∣ ≤ negl(λ).

10 Of course, the challenger also needs to check if VKi0 ∈ R and VKi1 ∈ R. But we can safely ignore this for our
current discussion.
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Experiment 4: Post-Quantum Anonymity PQExpλ,QAnon(A)

1. For each i ∈ [Q], the challenger generates key pairs (VKi,SKi) ← RS.Gen(1λ, N ; ri). The
challenger sends {(VKi,SKi, ri)}i∈[Q] to A;

2. A sends (i0, i1) to the challenger, where both i0 and i1 are in [Q];

3. A’s challenge query is allowed to be a superposition of rings and messages. The challenger
picks a random bit b and a random string r. It signs the message using SKib and randomness
r, while making sure that VKi0 and VKi1 are indeed in the ring specified by A. Formally, the
challenger implements the following mapping:∑

R,m,t

ψR,m,t |R,m, t〉 7→
∑
R,m,t

ψR,m,t |R,m, t⊕f(R,m)〉 ,

where f(R,m) :=

{
RS.Sign(SKib , R,m; r) if VKi0 ,VKi1 ∈ R
⊥ otherwise

.

4. A outputs a guess b′. If b′ = b, the experiment outputs 1, otherwise 0.

Post-Quantum Unforgeability. In the classical unforgeability game (Expr. 3), A can make both
corrupt and sign queries. As discussed in Sec. 2.3, we do not consider quantum corrupt queries, or
superposition attacks over the identity in A’s sign queries. We also remark that in the unforgeability
game, [CGH+21] does not allow superpositions over the ring. Instead of a definitional issue, this is
again only because they are unable to prove the security of their scheme if superposition attacks on
the ring is allowed. In contrast, our construction can be proven secure against such attacks; thus,
this restriction is removed from our definition.

To define quantum unforgeability, [CGH+21] adapts one-more unforgeability [BZ13b] to the
ring setting: they require that, with sq quantum signing queries, the adversary cannot produce
sq + 1 signatures, where all the rings are subsets of VK \ C. This definition, when restricted to
the classical setting, seems to be weaker than the standard unforgeability in Def. 4.That is, in the
classical setting, any RS satisfying the unforgeability in Def. 4 is also one-more unforgeable; but
the reverse direction is unclear (we discuss this in Appx. B). Instead, our definition extends the
blind-unforgeability for ordinary signatures (Def. 1) to the ring setting. We present this definition
in Def. 6.

Definition 6 (Post-Quantum Blind-Unforgeability). Consider a triple of PPT algorithms
RS = (Gen,Sign,Verify) that satisfies the same syntax as in Def. 4. For any security parameter λ, let
Rλ and Mλ denote the ring space and message space, respectively. RS achieves blind-unforgeability
if for any Q = poly(λ) and any QPT adversary A, it holds w.r.t. Expr. 5 that

PQAdvλ,Qbu (A) := Pr
[
PQExpλ,Qbu (A) = 1

]
≤ negl(λ).

Experiment 5: Post-Quantum Blind-Unforgeability PQExpλ,Qbu (A)

1. A sends a constant 0 ≤ ε ≤ 1 to the challenger;
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2. For each i ∈ [Q], the challenger generates (VKi, SKi) ← Gen(1λ, N ; ri), and stores these key
pairs along with their corresponding randomness. It then sets VK = {VK1, . . . ,VKQ} and
initializes a set C = ∅; The challenger sends VK to A;

3. The challenger defines a blindset BRS
ε ⊆ 2Rλ ×Mλ: every pair (R,m) ∈ 2Rλ ×Mλ is put in

BRS
ε with probability ε;

4. A can make polynomially-many queries of the following two types:

– Classical corruption query (corrupt, i): The challenger adds VKi to the set C and returns
the randomness ri to A.

– Quantum Signing query (sign, i,
∑
ψR,m,t |R,m, t〉): That is, A is allowed to query the

signing oracle on some classical identity i and superpositions over rings and messages. The
challenger samples a random string r and performs:∑

R,m,t

ψR,m,t |R,m, t〉 7→
∑
R,m,t

ψR,m,t

∣∣∣R,m, t⊕BRS
ε f(R,m)

〉
,

where BRS
ε f(R,m) :=

{
⊥ if (R,m) ∈ BRS

ε

f(R,m) otherwise
, and

f(R,m) :=

{
RS.Sign(SKi,m,R; r) if VKi ∈ R

⊥ otherwise
.

5. Finally, A outputs (R∗,m∗, Σ∗). The challenger checks if:

(a) R∗ ⊆ VK \ C,

(b) Verify(R∗,m∗, Σ∗) = 1, and

(c) (R∗,m∗) ∈ BRS
ε .

If so, it outputs 1; otherwise, it outputs 0.

In contrast to the “one-more” unforgeability, we show in Lem. 4 that, when restricted to the
classical setting, Def. 6 (for ring signatures) is indeed equivalent to the standard existential un-
forgeability in Def. 4. Its proof is almost identical to that of [AMRS20, Proposition 2].

Lemma 4. Restricted to (classical) QPT adversaries, a ring signature RS scheme is blind-unforgeable
(Def. 6) if and only if it satisfies the unforgeability requirement in Def. 4.

Proof. We show necessity and sufficiency in turn. In the following, by “Expr. 5”, we refer to the
classical version of Expr. 5, where the signing query is of the form (sign, i,R,m) (i.e., (R,m) is
classical), and is answered as BRS

ε f(R,m).

Necessity (⇐). Let us first show how blind-unforgeability implies standard unforgeability (for clas-
sical settings). Assume we have an adversary Aeuf that breaks standard unforgeability of RS as
per Def. 4, i.e., in Expr. 3 it produces a forgery (m∗,R∗, Σ∗) that is valid with non-negligible
probability ν(λ). We show that this is easily converted into an adversary Abu that wins Expr. 5
with non-negligible probability as well. Abu first sets ε(λ) equal to 1/p(λ), where p(λ) denotes the
(polynomial) running time of Aeuf (the reasoning behind this choice will become clear very soon).
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It then simply forwards all the queries from Aeuf to the blind-unforgeability challenger and the
responses back to Aeuf. It also outputs whatever eventual forgery Aeuf does.

Let us consider the success probability of Abu. To start with, note that Aeuf makes at most
p(λ) many queries of the signing oracle. In each such query, we know that the (R,m) pair is in the
blind set independently with probability ε. Thus it is not in the blind set with probability 1 − ε,
and if so the query is answered properly. In turn, the probability that all the queries made are
answered properly is then at least (1 − ε)p(λ) ≈ 1/e (this uses independence and ε = 1/p), and so
the probability that the forgery (R∗,m∗, Σ∗) is valid is then at least (1− ε)p(λ) · ν(λ). Finally, the
forgery, even if successful, might lie in the blind set with probability ε. So, the total probability that
Aeuf outputs a valid forgery for the blind unforgeability game is (1−ε)p(λ)+1 ·ν(λ) ≈ (1−ε) ·ν ·1/e,
which is non-negligible since ν is non-negligible by assumption. Thus if Aeuf violates standard
ring signature unforgeability according to Def. 4, then Abu violates blind unforgeability for ring
signatures according to Def. 6, as claimed.

Sufficiency (⇒). Let us now turn to the other direction of the equivalence. Assume now that there
exists an adversary Abu that can break blind unforgeability of RS, i.e., win Expr. 5 with non-
negligible probability ν(λ). We show an adversary Aeuf that can win Expr. 3 with non-negligible
probability. Aeuf simply simulates Expr. 5 for Abu by answering oracle queries according to a
locally-simulated version of BRS

ε f(R,m). Concretely, the adversary Aeuf proceeds by drawing a
subset BRS

ε in the same manner as the challenger in Expr. 5 and answering queries made by Abu

according to BRS
ε f(R,m). Two remarks are in order:

1. when (R,m) ∈ BRS
λ , no signature needs to be done. That is, this query can be answered by Aeuf

without calling its own signing oracle;

2. Aeuf can construct the set BRS
ε by “lazy sampling”, i.e., when a particular query (sign, i,R,m)

is made by Abu, whether (R,m) ∈ BRS
ε and “remembering” this information in case the query

is asked again.

By assumption, Abu produces a valid forgery. And it follows from Item 1 that this forgery must be
on a point which was not queried by Aeuf, thus, also serving as a valid forgery for Aeuf’s game.

To conclude, we present the complete definition for quantum ring signatures.

Definition 7 (Post-Quantum Secure Ring Signatures). A post-quantum secure ring signa-
ture scheme RS is described by a triple of PPT algorithms (Gen, Sign,Verify) that share the same syn-
tax as in Def. 4. Moreover, these algorithms also satisfy the completeness requirement as per Def. 4,
the post-quantum anonymity requirement as per Def. 5, and the post-quantum blind-unforgeability
requirement as per Def. 6.

6.2 Building Blocks

6.2.1 Lossy PKEs with Special Properties

We need the following lossy PKE.

Definition 8 (Special Lossy PKE). For any security parameter λ ∈ N, let Mλ denote the
message space. A special lossy public-key encryption scheme LE consists of the following PPT
algorithms:
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– MSKGen(1λ, Q), on input a number Q ∈ N, outputs
(
{pki}i∈[Q],msk

)
. We call pki’s the injective

public keys, and msk the master secret key.

– MSKExt(msk, pk), on input a master secret key msk and an injective public key pk, outputs a
secret key sk.

– KSamls(1λ) outputs key pkls, which we call lossy public key.

– Valid(pk, sk), on input a public pk and a secret key sk, outputs either 1 (accepting) or 0 (reject-
ing).

– RndExt(pk) outputs a r which we call extracted randomness.

– Enc(pk,m), on input a public key pk, and a message m ∈Mλ, outputs ct.

– Dec(sk, ct), on input a secret key sk and a ciphertext ct, outputs m.

These algorithms satisfy the following properties:

1. Completeness. For any λ ∈ N, any (pk, sk) s.t. Valid(pk, sk) = 1, and any m ∈ Mλ, it holds
that

Pr
[
Dec

(
sk,Enc(pk,m)

)
= m

]
= 1.

2. Lossiness of lossy keys. For any pkls in the range of KSamls(1λ) and any m0,m1 ∈ Mλ, it
holds that {

Enc(pkls,m0)
}
λ∈N

s
≈
{
Enc(pkls,m1)

}
λ∈N.

3. Completeness of Master Secret Keys: for any Q = poly(λ), it holds that

Pr

[(
{pki}i∈[Q],msk

)
← MSKGen(1λ, Q) :

∀i ∈ [Q],Valid(pki, ski
)

= 1,
where ski := MSKExt

(
msk, pki)

]
≥ 1− negl(λ).

4. IND of MSKGen/KSamls mode: For any Q = poly(λ), the following two distributions are
computationally indistinguishable:

– ∀i ∈ [Q], sample pki ← KSamls(1λ; ri), then output {pki, ri}i∈[Q];

– Sample
(
{pki}i∈[Q],msk

)
← MSKGen(1λ, Q) and output

{
pki,RndExt(pki)

}
i∈[Q]

.

5. Almost-Unique Secret Key: For any Q = poly(λ), it holds that

Pr

[(
{pki}i∈[Q],msk

)
← MSKGen(1λ, Q) :

There exist i ∈ [Q] and sk′i such that
sk′i 6= MSKExt(msk, pki) ∧ Valid(pki, sk

′
i) = 1

]
= negl(λ).

We propose an instantiation of such a lossy PKE using dual mode LWE commitments [GVW15].
In lossy (statistically hiding) mode, the public key consists of a uniformly sampled matrix A and
a message m is encrypted by computing AR + mG, where R is a low-norm matrix and G is the
gadget matrix. Note that the random coins used to sample A simply consists of the matrix A it-
self. Furthermore, we can switch A to be an LWE-matrix (using some secret vector s) to make the
encryption scheme injective. Such a modification is computationally indistinguishable by an invoca-
tion of the LWE assumption. Note that this is true also in the presence of the output of RndExt(A),
since the algorithm simply returns A. Furthermore, by setting the dimensions appropriately, the
secret s is uniquely determined by A with overwhelming probability. Finally, we note that we can
define a master secret key for all keys in injective mode using a simple trick: sample a PRF key
k and sample the i-th key pair using PRF(k, i) as the random coins. It is not hard to see that the
distribution of public/secret keys is computationally indistinguishable by the pseudorandomness of
PRF. Furthermore, given k one can extract the i-th secret key simply by recomputing it.

26



6.2.2 ZAPs for Super-Complement Languages

As mentioned in Sec. 2.3, [CGH+21] uses a ZAP (for NP∩coNP) to prove a statement that the (ring)
signature contains a ciphertext of a valid signature w.r.t. the building-block signature scheme. Let
us denote this language as L. In the security proof, they need to argue that the adversary cannot
prove a false statement x∗ /∈ L. However, this L is not necessarily in coNP; thus, there may not exist
a non-witness w̃ for the fact that x∗ /∈ L. Therefore, it is unclear how to use a ZAP for NP ∩ coNP
here. To address this issue, the authors of [CGH+21] propose the notion of super-complement
languages. This notion considers a pair of NP languages (L, L̃) such that (x ∈ L̃)⇒ (x /∈ L). Their
ZAP achieves soundness such that the cheating prover cannot prove x ∈ L (except with negligible
probability) once there exists a “non-witness” w̃ s.t. (x, w̃) ∈ R

L̃
. The L̃ is set to a special language

that captures some necessary conditions for any forged signatures to be valid. Thus, a winning
adversary will break the soundness of the ZAP, leading to a contradiction.

In the following, we present the original definition of super-complement languages. But we will
only need a special case of it (see Rmk. 3).

Definition 9 (Super-Complement [CGH+21]). Let (L, L̃) be two NP languages where the
elements of L̃ are represented as pairs of bit strings. We say L̃ is a super-complement of L, if
L̃ ⊆ ({0, 1}∗\L)×{0, 1}∗. I.e., L̃ is a super complement of L if for any x = (x1, x2), x ∈ L̃⇒ x1 6∈ L.

Notice that, while the complement of L might not be in NP, it must hold that L̃ ∈ NP. The
language L̃ is used to define the soundness property. Namely, producing a proof for a statement
x = (x1, x2) ∈ L̃, should be hard. We also use the fact that L̃ ∈ NP to mildly strengthen the
soundness property. In more detail, instead of having selective soundness where the statement
x ∈ L̃ is fixed in advance, we now fix a non-witness w̃ and let the statement x be adaptively chosen
by the malicious prover from all statements which have w̃ as a witness to their membership in L̃.

Remark 3. Our application only needs a special case of the general form given in Def. 9—we will
only focus on L̃ where the x2 part is an empty string. Formally, we consider the special case where
L̃ ⊆ {0, 1}∗ \ L (i.e., x ∈ L̃⇒ x /∈ L).

We now define ZAPs for super-complement languages. We remark that the original definition
(and construction) in [CGH+21] captures the general (L, L̃) pairs defined in Def. 9. Since we only
need the special case in Rmk. 3, we will define the ZAP only for this case.

Definition 10 (ZAPs for Special Super-Complement Languages). Let L, L̃ ∈ NP be the
special super-complement language in Rmk. 3. Let R and R̃ denote the NP relations corresponding
to L and L̃ respectively. Let {Cn,`}n,` and {C̃

n,˜̀}n,˜̀ be the NP verification circuits for L and L̃

respectively. Let d̃ = d̃(n, ˜̀) be the depth of C̃
n,˜̀. A ZAP for (L, L̃) is a tuple of PPT algorithms

(V,P,Verify) having the following interfaces (where 1n, 1λ are implicit inputs to P, Verify):

– V(1λ, 1n, 1
˜̀
, 1D̃): On input a security parameter λ, statement length n for L, witness length ˜̀

for L̃, and NP verifier circuit depth upper-bound D̃ for L̃, output a first message ρ.

– P
(
ρ, x, w

)
: On input a string ρ, a statement x ∈ {0, 1}n, and a witness w such that (x,w) ∈ R,

output a proof π.

– Verify
(
ρ, x, π

)
: On input a string ρ, a statement x, and a proof π, output either 1 (accepting)

or 0 (rejecting).
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The following requirements are satisfied:

1. Completeness: For every x ∈ L, every ˜̀∈ N, every D̃ ≥ d̃(|x|, ˜̀), and every λ ∈ N, it holds
that

Pr
[
ρ← V(1λ, 1|x|, 1

˜̀
, 1D̃);π ← P(ρ, x, w) : Verify

(
ρ, x, π

)
= 1
]

= 1.

2. Public coin: V(1λ, 1n, 1
˜̀
, 1D̃) simply outputs a uniformly random string.

3. Selective non-witness adaptive-statement soundness: For any non-uniform QPT ma-
chine P ∗λ , any n, D̃ ∈ N, and any non-witness w̃ ∈ {0, 1}∗,

Pr

[
ρ← V(1λ, 1n, 1|w̃|, 1D̃);(
x, π∗

)
← P ∗λ (ρ)

:
Verify(ρ, x, π∗) = 1 ∧
D̃ ≥ d̃(|x|, |w̃|) ∧ (x, w̃) ∈ R̃

]
≤ negl(λ).

4. Statistical witness indistinguishability: For every (possibly unbounded) “cheating” verifier
V ∗ = (V ∗1 , V

∗
2 ) and every n, ˜̀, D̃ ∈ N, the probabilities

Pr
[
V ∗2 (ρ, x, π, ζ) = 1 ∧ (x,w) ∈ R ∧ (x,w′) ∈ R

]
in the following two experiments differ only by negl(λ):

– Experiment 1: (ρ, x, w,w′, ζ)← V ∗1 (1λ, 1n, 1
˜̀
, 1D̃), π ← P(ρ, x, w);

– Experiment 2: (ρ, x, w,w′, ζ)← V ∗1 (1λ, 1n, 1
˜̀
, 1D̃), π ← P(ρ, x, w′).

Lemma 5 ([CGH+21]). Assuming QLWE, there exist ZAPs as per Def. 10 for any super-
complement language as per Def. 9.

6.3 Construction

Our construction RS, shown in Constr. 3, relies on the following building blocks:

1. Pair-wise independent hash functions;

2. A blind-unforgeable signature scheme Sig satisfying Def. 1;

3. A lossy PKE scheme LE satisfying Def. 8;

4. A ZAP for special super-complement languages ZAP satisfying Def. 10.

We remark that the RS.Sign algorithm runs ZAP on a special super-complement language (L, L̃),
whose definition will appear after the construction in Sec. 6.3.1. This arrangement is because
we believe that the language (L, L̃) will become easier to understand once the reader has slight
familiarity with Constr. 3.

Construction 3: Post-Quantum Ring Signatures

Let D̃ = D̃(λ,N) be the maximum depth of the NP verifier circuit for language L̃ restricted to
statements where the the ring has at most N members, and the security parameter for Sig and
LE is λ. Let n = n(λ, logN) denote the maximum size of the statements of language L where the
ring has at most N members and the security parameter is λ. Recall that for security parameter
λ, secret keys in LE have size ˜̀= `sk(λ). We now describe our ring signature construction:
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Key Generation Algorithm Gen(1λ, N):

– sample signing/verification key pair: (vk, sk)← Sig.Gen(1λ);

– sample obliviously an injective public key of LE: pk ← LE.KSamls(1λ);

– compute the first message ρ← ZAP.V(1λ, 1n, 1
˜̀
, 1D̃) for ZAP;

– output the verification key VK := (vk, pk, ρ) and signing key SK := (sk, vk, pk, ρ).

Signing Algorithm Sign(SK,R,m):

– parse R = (VK1, . . . ,VK`); and parse SK = (sk, vk, pk, ρ);

– compute σ ← Sig.Sign(sk,R‖m);

– let VK := VKi ∈ R be the verification key corresponding to SK;

– sample two pairwise-independent hash functions PI1 and PI2, and compute

rc1 = PI1(R‖m), rc2 = PI2(R‖m).

– compute c1 ← LE.Enc(pk, (σ, vk); rc1) and c2 ← LE.Enc(pk, 0|σ|+|vk|; rc2);

– let VK1 = (vk1, pk1, ρ1) denote the lexicographically smallest member of R (as a string; note
that this is necessarily unique);

– fix statement x = (R,m, c1, c2) and witness w = (vk, pk, σ, rc1). We remark that this state-
ment and witness correspond to a super-complement language (L, L̃) that will be defined in
Sec. 6.3.1. Looking ahead, x with witness w is a statement in the L defined in Eq. (1); x
constitutes a statement that is not in the L̃ defined in Eq. (4).

– sample another pairwise-independent hash function PI3 and compute rπ = PI3(R‖m);

– compute π ← ZAP.P(ρ1, x, w; rπ);

– output Σ = (c1, c2, π).

Verification Algorithm Verify(R,m,Σ):

– identify the lexicographically smallest verification key VK1 in R;

– fix x = (R,m, c1, c2); read ρ1 from VK1;

– compute and output ZAP.Verify(ρ1, x, π).

6.3.1 The Super-Complement Language Proven by the ZAP

We now define the super-complement language (L, L̃) used in Constr. 3. This deviates from the
(L, L̃) defined in [CGH+21, Section 5], to accommodate Constr. 3.
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For a statement of the form x1 = (R,m, c) and witness w =
(
VK = (vk, pk, ρ), σ, rc

)
, define

relations R1, R2, and R3 as follows:

(x1, w) ∈ R1 ⇔ VK ∈ R,

(x1, w) ∈ R2 ⇔ LE.Enc
(
pk, (σ, vk); rc

)
= c,

(x1, w) ∈ R3 ⇔ Sig.Verify(vk,R‖m,σ) = 1.

Next, define the relation R′ as R′ := R1 ∩ R2 ∩ R3. Let L′ be the language corresponding to R′.
Define language L as

L :=
{
x = (R,m, c1, c2)

∣∣ (R,m, c1) ∈ L′ ∨ (R,m, c2) ∈ L′
}
. (1)

Now, we define another language L̃ and prove that it is a super-complement of L in Claim 1.
Let x1 = (R,m, c) as above, but let w̃ := msk. Define the following relations:

(x1, w̃) ∈ R4 ⇔ ∀j ∈ [`] : LE.Valid
(
pkj , LE.MSKExt(msk, pkj)

)
= 1 (2)

(x1, w̃) ∈ R5 ⇔


∃VK ∈ R : VK = (vk, pk, ρ) such that:
LE.Valid

(
pk, LE.MSKExt(msk, pk)

)
= 1 ∧

LE.Dec
(
LE.MSKExt(msk, pk), c

)
= (σ, vk) ∧

Sig.Verify(vk,R‖m,σ) = 1

(3)

where, for each j ∈ [`], VKj = (vkj , pkj , ρj) is the j-th member in R. Let L4 and L5 be the languages

corresponding to R4 and R5, respectively. Define further the relation R̂ according to R̂ := R4 \R5,
and let L̂ be the corresponding language. Define L̃ as follows:

L̃ :=
{
x = (R,m, c1, c2)

∣∣ (R,m, c1) ∈ L̂ ∧ (R,m, c2) ∈ L̂
}
. (4)

Following a similar proof as for [CGH+21, Lemma 5.1], we can show that L̃ is indeed a super-
complement of L.

Claim 1. If LE satisfies the completeness defined in Item 1 of Def. 8, then the language L̃ defined
in Eq. (4) is a super-complement (as per Def. 9) of the language L defined in Eq. (1).

Proof. To prove this claim, we need to show that for any statement x of the following form

x = (R,m, c1, c2), (5)

it holds that x ∈ L̃ ⇒ x /∈ L (see Rmk. 3). In the following, we finish the proof by showing the
contrapositive: x ∈ L⇒ x /∈ L̃.

For any x as in Eq. (5), we define

x1 := (R,m, c1) and x2 := (R,m, c2).

To prove “x ∈ L ⇒ x /∈ L̃”, it suffices to show that the following Expressions (6) and (7) hold for
every w = (VK = (vk, pk, ρ), σ, rc) and every w̃ = msk:

(x1, w) ∈ R′ ∧
(
x1, w̃

)
∈ R4 ⇒

(
x1, w̃

)
∈ R5 (6)

(x2, w) ∈ R′ ∧
(
x2, w̃

)
∈ R4 ⇒

(
x2, w̃

)
∈ R5. (7)

We first prove Expression (6). If (x1, w̃) ∈ R4, then for all VK = (vk, pk, ρ) ∈ R, we know that
LE.MSKExt(msk, pk) is a valid secret key for pk. This means that:
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Fact: any ciphertext w.r.t. any pk (contained in any VK) in R can be decrypted correctly by
LE.MSKExt(msk, pk).

Also, observe that (x1, w̃) ∈ R′ means (x1, w) ∈ R1 ∩R2 ∩R3, which says c1 is a valid ciphertext of
a signature for R‖m, encrypted by some pk in the ring R. Then, by the above Fact, we must have
(x1, w̃) ∈ R5.

Expression (7) can be proven similarly. This finish the proof of Claim 1.

6.4 Proof of Security

We now prove that Constr. 3 is a post-quantum secure post-quantum ring signature satisfying
Def. 7. Its completeness follows straightforwardly from the completeness of ZAP and Sig. We next
prove post-quantum anonymity and blind-unforgeability in Sec. 6.4.1 and Sec. 6.4.2, respectively.

6.4.1 Proving Post-Quantum Anonymity

In this section, we prove the following Lem. 6, which establishes post-quantum anonymity for
Constr. 3.

Lemma 6. Assume LE satisfies the lossiness (Item 2) described in Def. 8 and ZAP is statistically
witness indistinguishable. Then, Constr. 3 satisfies the post-quantum anonymity described in Def. 5.

Let A be a QPT adversary participating in Expr. 4. Recall that the classical identities specified
by A is (i0, i1) and the quantum query is

∑
R,m,t ψR,m,t |R,m, t〉. We will show a sequence of hybrids

where the challenger switches from signing using i0 to signing using i1. It is easy to see that the
scheme is post-quantum anonymous if A cannot tell the difference between each pair of adjacent
hybrids.

Hybrid H0: This hybrid simply runs the anonymity game with b = 0. That is, A’s query is
answered as follows: ∑

R,m,t

ψR,m,t |R,m, t〉 7→
∑
R,m,t

ψR,m,t |R,m, t⊕f(R,m)〉 ,

where f(R,m) :=

{
RS.Sign(SKi0 ,R‖m; r) if VKi0 ,VKi1 ∈ R
⊥ otherwise

. We remark that f(R,m) is performed

quantumly for each (R,m) pair in the superposition. We say that A wins if it outputs b′ = b (= 0).

It is worth noting that although RS.Sign is a randomized algorithm, it uses only a single random
tape r for all the (R,m) pairs in the superposition (See Rmk. 1). In Constr. 3, this means that
the pair-wise independent hash functions PI1,PI2,PI3) are sampled only once (i.e., they remain the
same for all the (R,m) pairs in the superposition).

Hybrid H1: In this hybrid, for each signing query from A, instead of sampling a pair-wise inde-
pedent function PI2(·) and compute rc2 = PI2(R‖m), we compute rc2 = P2(R‖m), where P2(·) is a
random function. In effect, rc2 is now randomly sampled for each (R,m) pairs.

H0
i.d.
== H1: This follows from Lem. 1.
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Hybrid H2: Here we switch c2 from an encryption of a zero string to c2 ← LE.Enc(pki1 , (σ
′, vki1); rc2),

where σ′ ← Sig.Sign(ski1 ,R‖m). In this hybrid, it is worth noting that the previous “dummy ci-
phertext” c2 becomes a valid one, i.e., it encrypts a valid signature for R‖m using identity i1.

H1
s
≈ H2: In both H1 and H2, rc2 is sampled (effectively) uniformly at random for each (R,m)

pair in the superposition in each signing query. Consider an oracle O that takes (R,m) as input
and returns (c1, c2, π) just as in H1, and an analogous oracle O′ that takes the same input and
returns (c1, c2, π) computed just as in H2. Note that the only difference between the outputs of O
and O′ is in c2, which encrypts 0|σ|+|vk| in H1 and (σ′, vki1) in H2. Recall that pki1 is produced
using LE.KSamls and therefore, by lossiness (Item 2), we have that the distributions of c2 in H1

and H2 are statistically indistinguishable, implying that the outputs of O and O′ are statistically
close for every input (R,m), say less than distance ∆ (which is negligible in λ). Then, by Lem. 2,
the probability that A distinguishes these two oracles even with q = poly(λ) quantum queries is at
most

√
8C0q3∆, which is negligible since ∆ is negligible. Similarity of these hybrids is immediate.

Hybrid H3: In this hybrid, we switch back to using the pairwise independent hash function PI2
to compute rc2 , instead of using a truly random function. Effectively we are undoing the change
made in H1.

H2
i.d.
== H3: This again follows from Lem. 1.

Hybrid H4: Here, we compute rπ as the output of a random function rπ = P3(R‖m), instead of
being computed using PI3 as before. In effect, rπ is now uniformly random.

H3
i.d.
== H4: This again follows from Lem. 1.

Hybrid H5: As mentioned in H2, the “block” (R,m, c2) is valid. Recall that in previous hybrids,
ZAP uses the witness w corresponding to the block (R,m, c1). In this hybrid, we switch the witness
used by ZAP from w = (vki0 , pki0 , σ, rc1) to w′ = (vki1 , pki1 , σ

′, rc2), i.e., the witness corresponding
to the (R,m, c2) block.

H4
s
≈ H5: In both H4 and H5, rπ is sampled (effectively) uniformly at random for each (R,m) pairs

in the superposition for each query. Consider an oracle O that takes (R,m) as input and returns
(c1, c2, π) just as in H4, and an analogous oracle O′ that takes the same input and returns (c1, c2, π)
computed just as in H5. Note that the only difference between the outputs of O and O′ is in π,
which is generated using w in H4 and using w′ in H5. Since both w and w′ are valid witnesses, by
the statistical witness indistinguishability of ZAP, we have that the distributions of π in H4 and
H5 are statistically indistinguishable for every (R,m) pair (aka the input to the O or O′). In other
words, the outputs of O and O′ are statistically close for every input (R,m), say less than distance
∆ (which is negligible in λ). Then, the statistical indistinguishability follows from Lem. 2.

Hybrid H6: In this hybrid, we switch back to using the pairwise independent hash function PI3 to
compute rπ, instead of using a truly random function. Effectively we are undoing the change made
in H4.

H5
i.d.
== H6: This again follows from Lem. 1.
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Hybrid H7: In this hybrid, instead of sampling rc1 = PI1(R‖m), we instead compute rc1 as the
output of a random function rc1 = P1(R‖m). In effect, rc1 is now randomly sampled.

H6
i.d.
== H7: This again follows from Lem. 1.

Hybrid H8: In this hybrid, we switch c1 from an encryption of (σ, vki0) to one of (σ′, vki1).

H7
s
≈ H8: This follows from the same argument for H1

s
≈ H2.

Hybrid H9: In this hybrid, we switch back to using the pairwise independent hash function PI1
to compute rc1 , instead of using a truly random function. Effectively we are undoing the change
made in H7.

H8
i.d.
== H9: This again follows from Lem. 1.

Hybrid H10: In this hybrid, we switch to computing rπ as the output of a random function
rπ = P3(R‖m), instead of being computed using PI3.

H9
i.d.
== H10: This again follows from Lem. 1.

Hybrid H11: In this hybrid, we again switch the witness used to generate π, from w′ to w′′ =
(vki1 , pki1 , σ

′, rc1).

H10
s
≈ H11: This follows from the same argument for H4

s
≈ H5.

Hybrid H12: In this hybrid, we switch back to using the pairwise independent hash function PI3
to compute rπ, instead of using a truly random function.

H11
i.d.
== H12: This again follows from Lem. 1.

Hybrid H13: Here, we switch to computing rc2 as the output of a random function rc2 = P2(R‖m).

H12
i.d.
== H13: This again follows from Lem. 1.

Hybrid H14: In this hybrid, we switch c2 to an encryption of zeroes, namely c2 = LE.Enc(pk, 0|σ|+|vk|; rc2),
instead of an encryption of (σ′, vki1).

H13
s
≈ H14: This argument is identical to that for simlarity between H1

s
≈ H2.

Hybrid H15: In this hybrid, we switch back to using the pairwise independent hash function PI2
to compute rc2 , instead of using a truly random function.

H14
i.d.
== H15: This again follows from Lem. 1.

Observe that H15 corresponds to sign using identity i1 in Expr. 4. This finishes the proof of
Lem. 6.
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6.4.2 Proving Post-Quantum Blind-Unforgeability

In this section, we prove the following Lem. 7, which establishes post-quantum blind-unforgeability
for Constr. 3.

Lemma 7. Assume Sig is blind-unforgeable as per Def. 1, LE satisfies the completeness of master
secret keys property (Item 3) and the almost-unique secret key property (Item 5), and ZAP has the
selective non-witness adaptive-statement soundness (Item 3). Then, Constr. 3 is blind-unforgeable
as per Def. 6.

Consider a QPT adversary ARS participating in Expr. 5. We proceed using a sequence of hybrids
to set up our reduction to the blind-unforgeability of Sig.

Hybrid H0: This is just the post-quantum blind-sunforgeability game (Expr. 5) for our construc-
tion. In particular, for all i ∈ [Q], the encryption key pki is generated as pki ← LE.KSamls(1λ; ri).
Recall that we are in the full key exposure setting, so both the public keys and random coins
{pki, ri}i∈[Q] are given to A.

Hybrid H1: In this experiment, the only difference is that, the challenger generates the {pki}i∈[Q]

by running
(
{pki}i∈[Q],msk

)
← LE.MSKGen(1λ, Q). The challenger keeps msk to itself, and sends{

pki, LE.RndExt(pki)
}
i∈[Q]

to A.

H0
c
≈ H1: This follows immediately from the IND of MSKGen/KSamls property (Item 4) of LE as

specified in Def. 8. It is worth noting that ARS’s quantum access to the signing algorithm does not
affect this proof at all, since the pki’s (contained in VKi’s) are sampled classically by the challenger
before ARS makes any quantum sign queries.

Reduction to the BU of Sig. We proceed to show that post-quantum blind-unforgeability holds
in H1. Consider the adversary’s forgery attempt(

R∗,m∗, Σ∗ = (c∗1, c
∗
2, π
∗)
)

satisfying (R∗,m∗) ∈ BRS
ε .

Let x∗ := (R∗,m∗, c∗1, c
∗
2). Let VK∗1 = (vk∗1, pk

∗
1, ρ
∗
1) be the lexicographically smallest verification key

in R∗.
Observe that for the x∗ defined above, one of the following two cases must happen: x∗ ∈ L̃

or x∗ /∈ L̃. (Recall that L̃ is the super-complement of L defined in Eq. (4).) In the following, we
show two claims. Claim 2 says that it cannot be the case that x∗ ∈ L̃, unless the ZAP verification
rejects (thus, the forgery is invalid). Claim 3 says that x∗ /∈ L̃ cannot happen either. Therefore,
Claims 2 and 3 together show that any QPT adversary has negligible chance of winning the blind-
unforgeability game for RS in H1. Note that winning the post-quantum blind-unforgeability game

for RS is an event that can be efficiently tested. Thus, by H0
c
≈ H1, no QPT adversaries can win the

post-quantum blind-unforgeability game for RS in hybrid H0. This concludes the proof of Lem. 7.

Now, the only thing left is to state and prove Claims 2 and 3, which is done in the following.

Claim 2. In H1, assume that ZAP satisfies selective non-witness adaptive statement soundness
(Item 3). Then, the following holds:

Pr
[
x∗ ∈ L̃ ∧ ZAP.Verify(ρ∗1, x

∗, π∗) = 1
]

= negl(λ).
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Proof. First, notice that by definition, the R∗ in ARS’s forgery contains only VK’s from the set
VK = {VKj}j∈[Q] generated by the challenger. Therefore, it suffices to show that for each j ∈ [Q],

Pr
[
x∗ ∈ L̃ ∧ ZAP.Verify(ρj , x

∗, π∗) = 1
]

= negl(λ), (8)

where ρj denotes the first-round message of ZAP corresponding to the j-th verification key VKj
generated in the game.

Let ARS be an adversary attempting to output a forgery such that

x∗ ∈ L̃ and ZAP.Verify(ρj , x
∗, π∗) = 1.

We build an adversary AZAP against the selective non-witness adaptive-statement soundness of
ZAP for (L, L̃) (defined in Eq. (1) and (4) respectively). The algorithm AZAP proceeds as follows:

– On input the 1st ZAP message ρ̂, it sets ρj = ρ̂ and proceeds exactly as H1.

– Upon receiving the forgery attempt
(
R∗,m∗, Σ∗ = (c∗1, c

∗
2, π
∗)
)

from A, it outputs(
x∗ := (R∗,m∗, c∗1, c

∗
2), π

∗).
We remark that H1 is quantum. So, AZAP needs to be a quantum machine to simulate H1 for

ARS. This is fine since we assume that the soundness (Item 3) of ZAP in Def. 10 holds against QPT
adversaries.

To finish the proof, notice that x∗ ∈ L̃ means that there exists a “non-witness” w̃∗ such that
(x∗, w̃∗) ∈ R̃. Therefore, if Eq. (8) does not hold, (ρj , x

∗, π∗) will break the soundness (Item 3)
w.r.t. the non-witness w̃.

Claim 3. In H1, assume that Sig satisfies the blind-unforgeability as per Def. 1, LE satisfies the
completeness of master secret keys propoerty (Item 3) and the almost-unique secret key property
(Item 5). Then, Pr

[
x∗ 6∈ L̃

]
= negl(λ).

Proof. Let ARS be a QPT adversary attempting to output a forgery w.r.t. our RS scheme such that
x∗ 6∈ L̃. We build an algorithm ASig against the blind-unforgeability of Sig. The algorithm ASig

(playing the blind-unforgeability game Expr. 1 for Sig) proceeds as follows:

1. invoke ARS to obtain the ε for the blind-unforgeability game of RS; give this ε to ASig’s own
challenger for the blind-unforgeability game of Sig;

2. receive v̂k from its own challenger; pick an index j
$←− [Q] uniformly at random; set vkj := v̂k;

then, proceeds as in H1 to prepare the rest of the verification keys and continue the execution
with ARS.

3. when ARS sends a quantum signing query (sign, i,
∑
ψR,m,t |R,m, t〉), if the specified identity i is

not equal to j, it proceeds as in H1; otherwise, it uses the blind-unforgeability (for Sig) game’s
signing oracle Sig.Sign to obtain a Sig signature for the j-th party and then continues exactly
as in H1; (See the paragraph right after the description of ASig.)

4. if ARS tries to corrupt the j-th party, ASig aborts; (It is worth noting that the identities are
classical. So, ARS’s quantum power does not affect this step.)
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5. upon receiving the forgery attempt Σ∗ from ARS, ASig decrypts c∗1 using msk to recover σ∗1.
(Recall that, the secret key for pkj can be obtained as LE.MSKExt(msk, pkj)). If

Sig.Verify(vkj ,R
∗‖m∗, σ∗1) = 1,

it sets σ̂ := σ∗1. Otherwise, it decrypts c∗2 with msk to recover σ∗2, and sets σ̂ := σ∗2. It outputs
(R∗‖m∗, σ̂).

We first remark that, up to (inclusively) Step 3, ARS’s view is identical to that in H1. Recall
that in H1, the challenger maintains a blindset BRS

ε such that any (R,m) ∈ BRS
ε will not be

answered (this is inherited from H0, which is exactly Expr. 5). In contrast, in the execution of ASig

described above, ASig first forwards the
∑
ψR,m,t |R,m, t〉 part of ARS’s query to its Sig.Sign oracle

to obtain
∑

R,m,t ψR,m,t

∣∣∣R,m, t⊕BSig
ε Sig.Sign(skj ,R‖m)

〉
(note that skj = ŝk), and then performs

the remaining computation exactly as in H1. Note that the BSig
ε is the blindset maintained by the

Sig signing algorithm. Importantly, since the “messages” singed by Sig are of the form R‖m, BSig
ε is

actually generated identically to BRS
ε —that is, both of them are generated by including each (R,m)

pair in with (the same) probability ε.
To finish the proof, we show that (R∗‖m∗, σ̂) is a valid forgery against Sig’s blind-unforgeability

game with probability at least 1
Q

(
Pr
[
x∗ 6∈ L̃

]
− negl(λ)

)
.

Recall that we are focusing on the case x∗ /∈ L̃, where L̃ is defined in Eq. (4); without loss of
generality, assume that (R∗,m∗, c∗1) 6∈ L̂. Then, observe that due to the way H1 generates the public
keys (more acurately, Item 3) and that R∗ ⊆ VK \ C (in particular, R∗ ⊆ VK), we have(

(R∗,m∗, c∗1),msk
)
∈ R4 (recall that R4 is defined in Eq. (2)). (9)

Since we assume that (R∗,m∗, c∗1) /∈ L̂, Expression (9) and the definition of L̂ imply the existence
of a string w̃ such that(

(R∗,m∗, c∗1), w̃
)
∈ R5 (recall that R5 is defined in Eq. (3)). (10)

We remark that the w̃ may not equal msk. However, note that R5 (Eq. (3)) tests if

LE.Valid
(
pk, LE.MSKExt(w̃, pk)

)
= 1

with respect to the pk contained in some VK in the ring. If this test passes, by Expression (9) and
the almost-unique secret key property (Item 5) of LE, it must hold for this pk that

LE.MSKExt(w̃, pk) = LE.MSKExt(msk, pk),

except with negligible probability.
To summarize, the above argument implies the following facts:

1. by our assumption, (R∗,m∗) ∈ BRS
λ ; this also implies (R∗,m∗) ∈ BSig

λ because BSig
ε = BRS

ε as
argued earlier;

2. by Expression (10), for some VK = (vk∗, pk∗, ρ∗) ∈ R∗, it must hold that

LE.Dec
(
LE.MSKExt(w̃, pk), c∗1

)
= (σ∗, vk∗) and Sig.Verify(vk∗,R∗‖m∗, σ∗) = 1.

Also, as mentioned earlier, LE.MSKExt(w̃, pk∗) = LE.MSKExt(msk, pk∗) for this pk∗.
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The above means that the ARS uses a VK∗ = (vk∗, pk∗, ρ∗) ∈ R∗ ⊆ VK \ C such that c∗1 encrypts
(among other things) a signature σ∗ that is valid for the forgery message R∗‖m∗ w.r.t. key vk∗ (for
the blind-unforgeability game of Sig). Moreover, ASig can extract this forgery message efficiently
by decrypting c∗ using LE.MSKExt(msk, pk∗)!

Finally, observe that index j is sampled uniformly. Therefore, we have that (v̂k =) vkj = vk∗

with probability 1/Q.

6.5 Discussion on Compactness

Our construction of post-quantum ring signatures (i.e., Constr. 3) is currently only of theoretical
interest. It is not efficient, and it does not enjoy compactness (i.e., the signatures size is independent
of, or even poly-logarithmic on, the ring size). It is an interesting problem for future research to
construction practical or compact ring signatures that satisfies our notion of post-quantum security.
In the following, we briefly discuss why this seems non-trivial.

Efficiency. Almost all known efficient ring signatures are in the random oracle model, following
the Fiat-Shamir paradigm (e.g., [ABB+13, LLNW16, TSS+18, BLO, WZZ18, EZS+19, BKP20,
LNS21]). Although these constructions are based on post-quantum hardness assumptions, their
security proofs can only handle adversaries making classical random oracle queries. Making these
constructions secure in the QROM requires a quantum version of the forking lemma [PS96b, BN06],
which seems hard to prove. Indeed, this problem is still open even for (ordinary) signatures in the
post-quantum setting (e.g., see the discussion in [Unr17]). (As a side note, our construction in Sec. 4
does not face this problem as it follows the hash-and-sign paradigm, instead of Fiat-Shamir.)

Compactness. The original construction in [CGH+21] does achieve compactness. Although based
on their work, our construction in Sec. 6.1 gives up compactness by using the underlying Sig to sign
R‖m together11; in contrast, [CGH+21] only uses Sig to sign m. Our choice is critical to achieving
BU: when proving BU for our RS, we need to reduce to the BU of Sig. The RS game will “blind”
(R,m) pairs, while the Sig game only blinds messages m. If we do not use R‖m as the message
for Sig to sign, the reduction will not be able to create the blindset in a consistent manner. This
problem cannot be resolved by applying some type of “hash” function on R‖m and asking Sig to
sign the short digest. Indeed, blinding (R,m) pairs with probability ε is different from blinding the
hash result of R‖m, unless the “hash” has pseudo-random output. Replacing the “hash” with a
PRF does not work either, as the verifier also needs to evaluate the “hash” to verify the signature.
We leave it as an open question to construct compact ring signatures achieving our post-quantum
security notion.
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LLNW16. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-based
accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. In Fischlin and
Coron [FC16], pages 1–31. 3, 37

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Smile: set membership from ideal lattices
with applications to ring signatures and confidential transactions. In Annual International Cryptology
Conference, pages 611–640. Springer, 2021. 3, 37

LZ19. Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Boldyreva and Micciancio
[BM19], pages 326–355. 1

Mer90. Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in Cryptology –
CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 218–238, Santa Barbara, CA,
USA, August 20–24, 1990. Springer, Heidelberg, Germany. 2

MMO21. Christian Majenz, Chanelle Matadah Manfouo, and Maris Ozols. Quantum-access security of the winter-
nitz one-time signature scheme. arXiv preprint arXiv:2103.12448, 2021. 2

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
Pointcheval and Johansson [PJ12], pages 700–718. 43, 44

MR04. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian measures.
In 45th Annual Symposium on Foundations of Computer Science, pages 372–381, Rome, Italy, October 17–
19, 2004. IEEE Computer Society Press. 43, 44

Noe15. Shen Noether. Ring signature confidential transactions for monero. Cryptology ePrint Archive, Report
2015/1098, 2015. https://eprint.iacr.org/2015/1098. 3

Pei09. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 333–342,
Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press. 44

PJ12. David Pointcheval and Thomas Johansson, editors. Advances in Cryptology – EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg,
Germany. 39, 41

PRS17. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-LWE for any
ring and modulus. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th Annual ACM
Symposium on Theory of Computing, pages 461–473, Montreal, QC, Canada, June 19–23, 2017. ACM
Press. 44

PS96a. David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Kwangjo Kim and
Tsutomu Matsumoto, editors, Advances in Cryptology – ASIACRYPT’96, volume 1163 of Lecture Notes in
Computer Science, pages 252–265, Kyongju, Korea, November 3–7, 1996. Springer, Heidelberg, Germany.
2

PS96b. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer, editor,
Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages
387–398, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany. 37

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of Computing, pages 84–93,
Baltimore, MA, USA, May 22–24, 2005. ACM Press. 44

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor, Advances
in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 552–565,
Gold Coast, Australia, December 9–13, 2001. Springer, Heidelberg, Germany. 3

SY17. Fang Song and Aaram Yun. Quantum security of NMAC and related constructions - PRF domain
extension against quantum attacks. In Katz and Shacham [KS17], pages 283–309. 2

TSS+18. Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K Liu, Veronika Kuchta, Nandita
Bhattacharjee, Man Ho Au, and Jacob Cheng. Post-quantum one-time linkable ring signature and appli-
cation to ring confidential transactions in blockchain (lattice ringct v1. 0). In Australasian Conference on
Information Security and Privacy, pages 558–576. Springer, 2018. 3, 37

Unr16. Dominique Unruh. Computationally binding quantum commitments. In Fischlin and Coron [FC16], pages
497–527. 1, 2

41

https://eprint.iacr.org/2015/1098


Unr17. Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer Science,
pages 65–95, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany. 1, 37

Wat06. John Watrous. Zero-knowledge against quantum attacks. In Jon M. Kleinberg, editor, 38th Annual ACM
Symposium on Theory of Computing, pages 296–305, Seattle, WA, USA, May 21–23, 2006. ACM Press. 1

WZZ18. Shangping Wang, Ru Zhao, and Yaling Zhang. Lattice-based ring signature scheme under the random
oracle model. Int. J. High Perform. Comput. Netw., 11(4):332–341, 2018. 3, 37

Zha12a. Mark Zhandry. How to construct quantum random functions. In 53rd Annual Symposium on Foundations
of Computer Science, pages 679–687, New Brunswick, NJ, USA, October 20–23, 2012. IEEE Computer
Society Press. 1, 2, 10

Zha12b. Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 758–775, Santa Barbara, CA, USA, August 19–23, 2012. Springer,
Heidelberg, Germany. 8

Zha15. Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Inf. Comput.,
15(7&8):557–567, 2015. 1, 2

42



Supplementary Material

A Additional Preliminaries

A.1 Preliminaries for Lattice

Throughout the current paper, we denote the Gram-Schmidt ordered orthogonalization of a matrix
A ∈ Zm×m by Ã.

A.1.1 Lattices

We define the notion of a lattice and integer lattice.

Definition 11 (Lattice). Let B = [ b1 | . . . | bm ] be a basis of linearly independent vectors
bi ∈ Rm, i ∈ [m]. The lattice generated by B is defined as Λ = {y ∈ Rm : ∃si ∈ Z,y =

∑m
1 sibi}.

The dual lattice Λ∗ of Λ is defined as Λ∗ = {z ∈ Rm : ∀y ∈ Λ, 〈z,y〉 ∈ Z}

Definition 12 (Integer Lattice). For a prime q, a modular matrix A ∈ Zn×mq and vector u ∈ Znq ,

we define the m-dimensional (full rank) integer lattice Λ⊥q (A) = {e ∈ Zm : Ae = 0 ( mod q)}, and
the ‘shifted’ lattice as the coset Λu

q (A) = {e ∈ Zm : Ae = u ( mod q)}

A.1.2 Lattice Trapdoors, Discrete Gaussians

The works [Ajt96, MP12] show how to sample close to uniform matrices A ∈ Zn×mq along with a

matrix trapdoor TA that consists of a basis of low norm vectors for the associated lattice Λ⊥q (A).
We call this sampling procedure TrapGen.

Lemma 8 (Trapdoor Matrices). There is a PPT algorithm TrapGen that given as input integers
n ≥ 1, q ≥ 2, and (sufficiently large) m = O(n log q), outputs a matrix A ∈ Zn×mq and a trapdoor
matrix TA ∈ Zm×mq , such that ATA = 0, the distribution of A is statistically close to uniform over

Zn×mq , and ||T̃A|| = O(
√
n log q).

We now define the notion of discrete Gaussian distributions.

Definition 13 (Discrete Gaussians). Let m ∈ Z>0, Λ ⊂ Zm. For any vector c ∈ Rm, and
positive real σ ∈ R>0, define the Gaussian function ρσ,c(x) = exp(−π||x− c||2/σ2) over Rm with
center c and width σ. Define the discrete Gaussian distribution over Λ with center c and width σ
as DΛ,σ,c = ρσ,c/ρσ(Λ) where ρσ(Λ) =

∑
x∈Lambda ρσ,c. For convenience, we use the shorthand ρσ

and DΛ,σ for ρσ,0 and DΛ,σ,0 respectively.

The following lemma is a very useful concentration bound on the norm of discrete guassian
samples, depending on the basis they were sampled using.

Lemma 9 (Discrete Gaussian Concentration [MR04]). For any lattice Λ of integer dimen-
sion m with basis T, c ∈ Rm, and Gaussian width parameter σ ≥ ||T̃|| · ω

(√
logm

)
, we have

Pr
[
x← DΛ,σ,c : ||x− c|| > σ

√
m
]
≤ negl(n)
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A.1.3 The Gadget Matrix

The gadget matrix G was defined in [MP12]. We use the following two properties of G in particular:

Lemma 10 ([MP12, Theorem 1]). Let q be a prime, and n,m be integers with m = n log q.
There is a fixed full-rank matrix G ∈ Zn×mq such that the lattice Λ⊥q (G) has a publicly known

trapdoor matrix TG ∈ Zn×m with ||T̃G|| ≤
√

5.

Lemma 11 ([BGG+14, Lemma 2.1]). There is a deterministic algorithm, denoted by G−1(·) :
Zn×mq → Zm×m that takes a matrix A ∈ Zn×mq as input, and outputs a ‘preimage’ G−1(A) of A
such that G ·G−1(A) = A (mod q) and ||G−1(A)|| ≤ m.

A.1.4 Hardness Assumptions

We recall the LWE and SIS problems, and their hardness based on worst case lattice problems.
For a positive integer dimension n and modulus q, and an error distribution χ over Z, the LWE

distribution and decision problem are defined as follows. For an s ∈ Zn, the LWE distribution As,χ

is sampled by choosing a uniformly random a ← Znq and an error term e ← χ, and outputting
(a, b = 〈s,a〉+ e) ∈ Zn+1

q .

Definition 14. The decision-LWEn,q,χ problem is to distinguish, with non-negligible advantage,
between any desired (but polynomially bounded) number of independent samples drawn from As,χ

for a single s ← Znq , and the same number of uniformly random and independent samples over
Zn+1
q .

A standard instantiation of LWE is to let χ be a discrete Gaussian distribution over Z with
parameter r = 2

√
n. A sample drawn from this distribution has magnitude bounded by, say,

r
√
n = Θ(n) except with probability at most 2−n, and hence this tail of the distribution can

be entirely removed. For this parameterization, it is known that LWE is at least as hard as quan-
tumly approximating certain “short vector” problems on n-dimensional lattices, in the worst case,
to within Õ(q

√
n) factors [Reg05, PRS17]. Classical reductions are also known for different param-

eterizations [Pei09, BLP+13].

Definition 15. The SISq,β,n,m problem is: given an uniformly random matrix A ∈ Zn×mq , find a
nonzero integral vector z ∈ Zm such that Az = 0 mod q, and ||z|| ≤ β.

When q ≥ β · Õ(
√
n), solving SISq,β,n,m is at least as hard as approximating certain worst-case

lattice problems (namely, SIVP) to within a β · Õ(
√
n) factor [MR04].

A.2 Random Sampling Related

We recall the following generalization of the leftover hash lemma.

Lemma 12 ([ABB10, Lemma 4]). Suppose that m > (n+ 1) log2 q+ω(log n) and that q > 2 is
a prime. Let R be an m × k matrix chosen uniformly from {−1, 1}m×k mod q where k = k(n) is
polynomial in n. Let A and B be matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then

for all vectors w ∈ Zmq , the distribution (A,AR,R>w) is statistically close to the distribution

(A,B,R>w).
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We will give an argument to show how Corollary 1 follows from this. This goes as follows:
assume we start with (A′,A′R,R>w). This is statistically close to (A,AR,R>w) since A is

sampled uniformly, and A′
s
≈ A. By Lem. 12 above, (A,AR,R>w)

s
≈ (A,B,R>w). The latter is

in turn statistically close to (A′,B,R>w). Therefore, we have (A′,B,R>w)
s
≈ (A′,A′R,R>w),

concluding the proof for Corollary 1.

We also recall the following concentration bound on the operator norm for the matrices R.

Lemma 13 ([ABB10, Lemma 5]). Let R be an uniformly random chosen matrix from {−1, 1}m×m,
then Pr

[
||R||2 > 12

√
2m
]
< e−m.

A.3 Key-Homomorphic Evaluation Algorithms

We recall the matrix key-homomorphic evaluation algorithm from [GSW13, BGG+14, BV14] more
fully. This was developed in the context of fully homorphic encryption and attribute-based encryp-
tion. This template works generally as follows: given a Boolean NAND circuit C : {0, 1}` → {0, 1}
with fan-in 2, ` matrices {Ai = ARi + xiG ∈ Zn×mq }i∈[`] which correspond to each input wire

of C where A
$←− Zn×mq , Ri

$←− {−1, 1}m×m, xi ∈ {0, 1} and G ∈ Zn×mq is the gadget matrix, the
key-homomorphic evaluation algorithm deterministically computes AC = ARC+C(x1, . . . , x`)G ∈
Zn×mq where RC ∈ {−1, 1}m×m has low norm and C(x1, . . . , x`) ∈ {0, 1} is the output bit of C on
the arguments x1, . . . , x`. This is done by inductively evaluating each NAND gate. For a NAND gate
g(u, v;w) with input wires u, v and output wire w, we have (inductively) matrices Au = ARu+xuG,
and Av = ARv+xvG where xu and xv are the input bits of u and v respectively, and the evaluation
algorithm computes

Aw = G−Au ·G−1(Av)

= G− (ARu + xuG) ·G−1(ARv + xvG)

= ARg + (1− xuxv)G
(11)

where 1− xuxv := NAND(xu, xv), and Rg = −Ru ·G−1(Av)− xuRv has low norm if both Ru and
Rv have low norm.

In [BV14], Brakerski and Vaikuntanathan observed that the norm of RC in the outlined evalua-
tion procedure grows asymmetrically (in the Rs corresponding to the input wires). They exploited
this observation to design a special evaluation algorithm that evaluates circuits in NC1 with moder-
ate blowup in the norm of RC . Specifically, the observation is that any circuit with depth d can be
simulated by a length 4d and width 5 branching program by Barrington’s theorem, recalled below:

Theorem 5 (Barrington’s Theorem). Every Boolean NAND circuit C that acts on ` inputs
and has depth d can be computed by a width 5 permutation branching program of length 4d. Given
the description of the circuit C, the description of the corresponding branching program can be
computed in poly(`, 4d) time.

Such a branching program can then be computed by multiplying 4d many 5 × 5 permutation
matrices. It is shown in [BV14] that homomorphically evaluating the multiplication of permutation
matrices using the above procedure and the asymmetric noise growth feature only increases the
noise by a polynomial factor, and thus allows us to use an LWE or SIS modulus that is polynomial
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in the security parameter. In our constructions, we will use this particular evaluation method just
as in [BV14] and denote it by EvalBV .

We will use a claim regarding the noise growth properties of EvalBV . It can be obtained from
Claim 3.4.2 and Lemma 3.6 of [BV14] and Barrington’s Theorem.

Lemma 14. Let C : {0, 1}` → {0, 1} be a NAND Boolean circuit. Let {Ai = ARi + xiG ∈
Zn×mq }i∈[`] be ` distinct matrices corresponding to the input wires of C, where A

$←− Zn×mq , Ri
$←−

{−1, 1}m×m, xi ∈ {0, 1} and G ∈ Zn×mq is the gadget matrix. There is an efficient determinis-
tic algorithm EvalBV that takes as input C and {Ai}i∈[`] and outputs a matrix AC = ARC +
C(x1, . . . , x`)G = EvalBV (C,A1, . . . ,A`) where RC ∈ Zm×m and C(x1, . . . , x`) is the output of C
on the arguments x1, . . . , x`. EvalBV runs in time poly(4d, `, n, log q). Let ||Rmax||2 = max{||Ri||2}i∈[`],
the norm of RC in AC output by EvalBV can be bounded with overwhelming probability by

||RC ||2 ≤ O(L · ||Rmax||2.m)

≤ O(L · 12
√

2m ·m)

≤ O(4dm3/2)

(12)

where L is the length of the width 5 branching program which simulates C and we have used
Lem. 13 to obtain ||Ri||2 ≤ 12

√
2m for each i with overwhelming probability. In particular, if C is

in NC1 and has depth d = c log l for a constant c, then L = 4d = `2c and ≤ O(`2c ·m3/2)

B One-More Unforeagibility vs PQ-EUF for Ring Signatures

The ring-signature analog of the one-more unforgeability by Boneh and Zhandry [BZ13b], when
restricted to the classical setting, seems to be weaker than the standard unforgeability in Def. 4.12

That is, in the classical setting, any RS satisfying the unforgeability in Def. 4 is also one-more
unforgeable; but the reverse direction is unclear. We provide discussion in the following.

To argue that one-more unforgeability is no weaker than Def. 4, one needs to show how to
convert a forger Aeuf winning in Expr. 3 to another forger Aom winning in the (classical version of)
“one-more forgery” game. Conceivably, Aom will run Aeuf internally; thus, Aom will make no less
sign queries than Aeuf. Recall that Aom needs to forge one more signature than the total number
of its queries. Also, crucially, all the ring signatures presented by Aom at the end must have no
corrupted members in the accompanying ring. Now ideally one might imagine that we can simply
use the queries made by Aom (which are really queries by Aeuf) to meet the “one-more” challenge;
however, this is thwarted immediately due to the fact that Aeuf has absolutely no obligation to
make queries meeting this requirement, so even if the final forgery produced by Aeuf is valid, our
attempted reduction does not have any means to provide Aom with all the signatures it needs to
win the “one-more” challenge (since not all of the queries can be reused). Indeed, it is not hard to
find attacks that use this definitional gap to violate standard unforgeability, while being ruled out
as a valid attack against one-more ring unforgeability. Contrast this with a comparison in the other
direction: an adversary Aom for the one-more unforgeability experiment is easily converted into a
standard Aeuf adversary since not all of the signatures output by Aom at the end can be previous
queries (by the pigeonhole principle); Aeuf simple outputs the one that is not.

12 This is in contrast to the case of ordinary signatures, where one-more unforgeability is equivalent to the standard
existential unforgeability [BZ13b].
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We remark however that this definitional gap between standard ring signature unforgeability
and the “one-more” version may not be inherent; rather, we just do not know how to meet this gap.
Our arguments here should not be interpreted as a proof showing that the former notion is strictly
stronger than the latter. We leave it as an open question to either demonstrate a separation, or
prove that the two are actually equivalent.
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