
Alpha-Rays: Key Extraction Attacks on

Threshold ECDSA Implementations

Dmytro Tymokhanov
Velas

dmytrotym1@gmail.com

Omer Shlomovits
ZenGo-X

omer.shlomovits@gmail.com

Abstract

In this paper we provide technical details on two new attack vectors,
relevant to implementations of [GG18] and [GG20] threshold ECDSA pro-
tocols. Both attacks lead to a complete secret key extraction by exploiting
different parts of the Multiplicative-to-Additive (MtA) sub-protocol the
parties run during signing. Our first attack applies to the setting of ”fast”
MtA, which runs the protocol with no range proofs. We leverage a power-
ful oracle, much stronger than originally anticipated in [GG18], to reveal a
part of the secret key with each signature we run. The number of required
signatures depends on the implementation under attack and the number
of parties controlled by the attacker. Our proof of concept demonstrates
a full key extraction by a single malicious party using eight signatures.
Our second attack deals with the more common setting of “full” MtA,
that is, including ZK proofs. The only requirement for mounting a suc-
cessful attack is to use a small Paillier encryption key. The key size check
was not specified in the protocol and therefore missing from most exist-
ing threshold ECDSA implementations, making them vulnerable. As we
show, choosing a small key completely eliminates a specific hiding prop-
erty in one of the values sent from the victim to the attacker during one of
ZK proofs. This allows a single malicious party to extract the full secret
key after a single valid signature. We provide a proof of concept for this
attack as well.

1 Introduction

In multiparty computation (MPC), a set of distrusting parties jointly run a com-
putation without exposing their private inputs. MPC has been systematically
studied for decades and recently began to see major adoption in the industry,
contributing to areas of privacy and security1.

A Threshold Signature Scheme (TSS) is an MPC that enables a group of
parties to collectively compute a digital signature without learning any infor-
mation about the private key. Due to the rising popularity of cryptocurrencies

1see www.mpcalliance.org for list of companies adopting MPC

1

www.mpcalliance.org

and blockchains which heavily rely on digital signatures, TSS, which offer su-
perior security properties in some settings, have seen a surge in interest by the
research community over the past few years. Most notably, solutions for thresh-
old ECDSA, the signing scheme used in Bitcoin and many other popular coins,
made a meteoric leap in their practicality, making threshold ECDSA usable
for several real-world applications. In this work, we investigate one construc-
tion for threshold ECDSA, originally introduced by Gennaro and Goldfeder in
2018 [GG18], which was one of the first protocols to enable efficient threshold
ECDSA in the dishonest majority setting. The protocol was later improved
[GG20] to support identifiable aborts and one round online signing. Our attack
surface concerns the Multiplicative-to-Additive sub-protocol, which is used in
both versions, as well as in protocols [CGG+21, FLOP18]. Due to its unique
combination of properties, the GG protocol is arguably the most frequently
used threshold ECDSA protocol nowadays. A growing number of maintained
open-source implementations exist for it, spanning some of the most prominent
products in the blockchain industry. For more details about existing libraries
as well as competing constructions, we refer to a recent survey [AHS20].

1.1 Related work

Prior to this work, several bugs have been reported on threshold ECDSA im-
plementations in the wild, as summarized in [AS20]. Our second attack follows
a similar pattern to the Golden Shoe attack from that paper: Some unverified
protocol parameters are sent to the victim. These parameters are corrupted
but this goes undetected. The parameters are later used by the victim in a ZK
proof, revealing the secret key to the attacker. Both attacks require the attacker
to control a single malicious party during the distributed key generation and
one run of signing. Both attacks are covert in the sense that they produce a
valid signature. Deep inspection however reveals that our attacks are in fact
different in nature. While previous attacks were enabled by wrong practice of
crypto-engineering, i.e. buggy code or misuse, both of our attacks can be traced
to erroneous analysis in [GG18] protocol.

1.2 Summary of our attacks

As part of a crypto-system, threshold ECDSA is a low-level primitive for dis-
tributing digital signing between different signers. We usually define two param-
eters: n — for the total number of parties, and t — for some threshold smaller
than n. Only > t honest signers will be able to output a valid signature, while
any group of t parties and less will not be able to forge a signature2. The thresh-
old assumption in a given crypto-system is that an attacker will never control
more than t parties at the same time, and hence will never be able to forge a
signature. The following is an overview of our attacks and their implications for
different implementations:

2in the rest of the paper n denotes the number of signers, and not the number of parties
that generate keys.

2

• Our first attack deals with the case where the Multiplicative-to-Additive
(MtA) sub-protocol is implemented using the ”fast” option, without range
proofs. Due to the missing range proof over the attacker’s input, we give
the attacker the ability to count how many times the victim’s output was
reduced modulo N . This is done by testing the equality a · b = α + β in
the exponent. If the attacker carefully crafts their nonce, they are able
to focus the search on different bits of the victim’s secret key with each
signature, until finally revealing the full secret key. In our proof of concept,
we extract the key using 16 signatures, but show that it’s doable with just
8. ZenGo [Zen] and ING [ING] libraries were found susceptible to this
attack.

• Since the malicious party uses it’s nonce to control the window and there-
fore the specific location of the bits it learns, the attack can be improved
if the attacker controls multiple parties. For example, for n = 17 parties
and threshold t = 8, if the signing is run with 9 parties, 8 of which are
controlled by the attacker, we can learn simultaneously 8 29-bit segments
of the ninth honest party. For 256-bit secret key, after a small exhaus-
tive search, this will allow us to learn the full secret key within a single
signature.

It’s important to note that signatures generated as part of this attack will
fail verification, or abort during the protocol execution. For some of the
libraries we looked into, we were able to produce one valid signature as
part of the attack.

• Our second attack vector is dealing with the case of running the expensive
version of the MtA sub-protocol, where range proofs are included. Con-
ditioned on missing the size check on Paillier encryption key N , simple
computation allows the attacker who knows a, α in the equation a·b = α+β
to learn β and deduce b, victim’s secret key. The trick is to choose N to
be close in size to |e|, where e is the public challenge. Thus, 256-bit N
is chosen. This choice will immediately give the attacker β. This means
that the attacker controlling a single party can extract the secret key of
all honest parties using a single successful (hence covert) signature. We
found tss-lib [Bin] and all its forks [Tho, Swi, Kee, Any] susceptible to this
attack.

2 Attacks on multiplicative-to-additive protocol

2.1 Preliminaries

MtA protocol. A principal problem in designing a threshold ECDSA protocol
is how to multiply two secretly shared values. In protocols [GG18] and [GG20]
multiplicative-to-additive sub-protocol (MtA for short) is used. It is described
in section 3 of [GG18], but we outline it here for completeness:

3

Suppose that two parties, Alice and Bob hold multiplicative shares of a
secret value x ∈ Zq. That is, Alice holds a ∈ Zq and Bob holds b ∈ Zq such
that x = ab mod q. The parties want to obtain additive shares of x, i.e. α ∈
Zq (known only to Alice) and β ∈ Zq (known only to Bob) such that x =
α + β mod q. This problem is in fact common in MPC protocols and several
techniques can be found in the literature to solve it. In the GG protocols, the
authors use an additive homomorphic encryption scheme, instantiated using
Paillier cryptosystem. This choice is unimportant for our attack. It is assumed
that Alice is associated with a public key EA of an additively homomorphic
encryption scheme over modulus N (i.e. plaintexts in this scheme are elements
of ZN). K is a bound that will be specified later. The MtA protocol works as
follows:

1. Alice starts the protocol:

• Encrypt a with own homomorphic key: cA = EA(a)

• Compute a ZK range proof πA that {∃a′ : DA(cA) = a′ ∧ a′ < K}
• Send (cA, πA) to Bob

2. After receiving (cA, πA) from Alice, Bob does the following:

• Verify πA and if it fails to verify, abort immediately

• Choose β′ uniformly at random from ZN
• Set own result β to be −β′ mod q

• Compute cB = b×E cA +E EA(β′) where ×E and +E are homomor-
phic operations provided by the encryption scheme

• Compute a ZK range proof πB that {∃b′, β′ : cB = b′ ×E cA +E

EA(β′) ∧ b′ < K}
• Send (cB , πB) to Alice

3. After receiving (cB , πB) from Bob, Alice does the following:

• Verify πB and if it fails to verify, abort immediately

• Set own output α to be DA(cB) mod q

If the protocol is successfully completed, Alice’s α is equal to ab+β′ mod N
(assuming parties used correct values of a and b). If ab+ β′ < N , the reduction
modulo N is never executed, and we have that ab + β′ = α as integers. This
guarantees that ab ≡ β+α mod q as desired. However, if the reduction modulo
N happens, this equality no longer holds. This is the reason range proofs are
used in the protocol, and the proofs used in [GG18] and [GG20] require that
K ∼ q3. As a result, in order to statistically prevent reduction modulo N ,
N has to be chosen at least of order q7. In practice, parameter q is often the
order of Secp256k1 curve, which is 256 bits in size, and N if often chosen to be
2048-bit, which is the current industry standard, equivalent to a security level
of 128 bits.

4

MtA with check. As mentioned above, MtA provides no way of checking
whether parties used correct values of a and b during protocol execution. How-
ever, if commitments to these values are publicly known, the MtA protocol can
be augmented to perform a check against these commitments. Here we describe
the so-called MtA with check protocol (MtAwc for short) used in [GG18] and
[GG20]3:

Consider a group of points on an elliptic curve G and its subgroup of order
q and a publicly agreed upon generator g. Suppose that B = gb is public
knowledge where b is Bob’s secret multiplicative share. Then the following
modifications are made to the MtA protocol to ensure that b used in it is equal
to logg B:

• Bob additionally computes and sends to Alice a ZK proof of knowledge
(ZKPoK) of b: {∃b′, β′ : cB = b′ ×E cA +E EA(β′) ∧ gb′ = B}

• After receiving Bob’s message, Alice verifies this proof of knowledge and
aborts if it does not verify

MtAs in [GG18] and [GG20]. In the setting of the two papers, signing is
performed by n parties: P1,P2, . . . ,Pn. They use additive secret sharing of the
following values, where party Pi holds the i’th term (also often called share):

1. x = w1 + w2 + · · ·+ wn is a ECDSA private key

2. k = k1 + k2 + · · ·+ kn is a one-time nonce

3. γ = γ1 + γ2 + · · · + γn is a field element used for blinding, such that the
computations on k are performed without revealing it.

All computations are done modulo q, and individual shares of all three values
are sampled uniformly at random from Zq.

In real-world applications, the same private key x is often reused multiple
times, but k and γ are freshly uniformly sampled random values per each sig-
nature.

During one signing, every pair of parties engage in one MtA protocol and
one MtAwc protocol4. Parties Pi and Pj obtain additive shares of ki · γj in the
course of MtA and additive shares of ki · wj in the course of MtAwc. In the
latter, a check is performed against the publicly known value of gwj .

Removal of range proofs from MtA. Both MtA and MtAwc are proven to be
statistically zero-knowledge via a simulation argument [GG18]. However, range
proofs over Paillier encryption are heavy, so the authors propose the following
simplification of MtA and MtAwc protocols:

3multiplicative group notation is used here and throughout the paper for elliptic curve
points.

4to be clear, we mean ordered pairs of parties here. For example, parties P1 and P2 engage
in 4 conversions: MtA for k1 and γ2, MtA for k2 and γ1, MtAwc for k1 and w2, MtAwc for
k2 and w1.

5

• Alice and Bob drop the range proofs from the protocol.

• In MtAwc, Bob does not prove the correspondence between gb and his
multiplicative share, used in the protocol.

• Instead, both in MtA and MtAwc, Bob reveals B = gb and B′ = gβ
′

to
Alice, proving the knowledge of logg B and logg B

′. Next, Alice verifies
the proofs, aborting if they do not verify, and checks if gα = BaB′. If
parties run MtAwc, Alice also verifies if B is equal to the publicly known
value of gb.

The authors conjecture that this version of the protocol leaks almost no
information. Quoting section 5 of [GG18]:

[If range proofs are removed] the MtA protocol needs to be secure
in the presence of an oracle that tells the parties if a reduction
mod N happens during the execution. Note that in reality, the oracle
represents the failure of the verification of the signature generated by
the protocol, and if that happens the system is reset. So the oracle
is a very weak oracle, which stops working the moment it tells you
that a reduction mod N happened.

The authors assume that after an unsuccessful signature, the private key x is no
longer used, which seems to be an impractical assumption. If x is a private key
associated with a cryptocurrency wallet, a bare minimum of one more signature
is required to move funds from the threatened wallet. And in practice users
of threshold ECDSA often do not change the secret key in response to a failed
signature at all [Tho].

Our main observation concerns the power of the oracle that is available to an
attacker controlling Alice after range proofs are removed. Consider an example
when the attacker (here and throughout the paper we will assume it is P1)

chooses k1 =
⌊
2N
q

⌋
(computation is over the integers) and uses this value in

MtAwc as Alice (as mentioned above, k1 plays the role of a in MtA and MtAwc
for party P1). Remember that in the simplified version of MtA and MtAwc

with party i, the attacker receives gwi and gβ
′
i,1 where by β′i,1 we denote β′ from

the original description of MtA. Denote the value that the attacker decrypted
as αi,1, which, as mentioned above, will equal wi · k1 + β′i,1 mod N . There are
different options for the value α′i,1 = wi · k1 + β′i,1, computed over the integers
and unknown to the attacker:

• α′i,1 ∈ [0;N). Thus, α′i,1 mod q = αi,1 mod q which yields:

gwi·k1 · gβ
′
i,1 = gαi,1

i.e. MtA protocol was executed successfully, without modulo N reduction.

• α′i,1 ∈ [N ; 2N). Thus, α′i,1 mod q = αi,1 +N mod q which yields:

gwi·k1 · gβ
′
i,1 = gαi,1 · gN

6

• α′i,1 ∈ [2N ; 3N). Thus, α′i,1 mod q = αi,1 + 2N mod q which yields:

gwi·k1 · gβ
′
i,1 = gαi,1 · g2N

We can see how the attacker can easily distinguish between the three options,
as opposed to distinguishing between the first, successful option, and the rest
as claimed in [GG18]. We think the authors might have missed the fact that in
their version without range proofs, a party playing as Alice additionally gains
access to gb and gβ

′
. This implies that the attacker can recover much more

information about the size of α′i,1 (and, subsequently wi — party Pi’s secret)
than previously assumed.

2.2 Attack on absent range proofs

Hopefully, it is clear how the pattern presented above continues if larger values of

k1 are chosen by the adversary. Specifically, if the attacker chooses k1 =
⌊
MN
q

⌋
for some integer M ∈ [1; q], α′i,1 will belong to one of M + 1 disjoint intervals
of the form [sN ; (s+ 1)N) for s ∈ {0, 1 . . .M}. In other words, for exactly one
value of s the following equation will hold:

gwi·k1 · gβ
′
i,1 = gαi,1 · gsN (1)

Thus, the attacker chooses M and then has access to an oracle that tells them

s ∈ {0, 1 . . .M} such that
⌊
MN
q

⌋
wi + β′i,1 ∈ [sN ; (s + 1)N). Considering that

β′i,1 is chosen from ZN , the attacker learns that wi ∈
[(s−1)q

M ; (s+1)q
M

]
5 if s > 0

and wi ∈
[
0; q

M

]
if s = 0.

This leads us to the algorithm 1 for the attacker. Each j in the outer for-
loop is one signature (either using protocol [GG18] or [GG20]). The attacker
P1 executes signing protocol correctly except for the choice of k1 which is given
by the algorithm on each iteration. MtAwci(k1) denotes running MtAwc with
party Pi and receiving the result, which is a part of the protocol execution.

The intuition behind the algorithm is that in the first signature, the attacker
learns the most significant bits of everyone’s secret. Then, adjusting the range
that is searched with that knowledge, they are able to recover subsequent bits
in the second signature by choosing larger k1, and so on. The first signature
can even complete successfully because the attacker can recover their ”correct”
additive shares after both MtA and MtAwc. In subsequent signatures, however,
we see no way to do this after MtA, as it is run for a very large k1 and random
γi. So, in our attack, these signatures fail.

To keep the attacker’s computation efficient, a reasonable value of M might
be 229, leading to the complete leakage of the secret in just 8 signatures. This
is assuming the signers who participate are the same each time so that wi’s do
not change. Alternatively, 8 signers can recover the shared secret key in just 1
failed signature provided there are at least 8 signers in total.

5can be shown using inequalities MN
q
− 1 <

⌊
MN
q

⌋
≤ MN

q
and N > q2.

7

Data: M ∈ N ; /* Attacker’s "step" */

Result: x =
∑n
i=1 wi ; /* Result is the shared secret key */

W ← [gw2 , gw3 , . . . , gwn] ; /* List of parties’ public keys

computed during keygen protocol */

G← [g0, gN , g2N , . . . , g2MN] ; /* List of pre-computed values.

*/

wmin ← [0, 0, . . . , 0] ; /* List of length n− 1 where the attacker

tracks their knowledge about minimum possible values of

each honest party’s wi. Naturally, initialized by zeros */

for j ← 1 to blogM qc do
k1 ←

⌊
2·Mj ·N

q

⌋
; /* We need blogM qc signatures */

for i← 2 to n do
(α,B,B′)← MtAwci(k1) ; /* The output of MtAwc with Pi
in which the attacker plays Alice */

kmin ←
⌊
k1·wmin[i−2]

N

⌋
·N ; /* The attacker is sure that

the value of k1 · wi must be at least k1 · wmin[i− 2].
Thus, the search starts from there */

h← Bk1 ·B′ · g−α · g−kmin ;
for s← 0 to 2M do

if h == G[s] then
wmin[i− 2]← wmin[i− 2] +

⌊
s·q

2·Mj

⌋
;

end

end

end

end
x← w1; /* At this point, to find wi, the attacker has to

search less than M values, which they can do */

for i← 2 to n do
for v ← 0 to M do

if W [i− 2] == gwmin[i−2]+v then
x← x+ wmin[i− 2] + v mod q;
break

end

end

end
return x;

Algorithm 1: An attack on missing range proofs

8

2.3 Small Paillier attack

Bob’s ZK proof from [GG18]. If range proofs are used in MtA and MtAwc,
[GG18] proposes the proof described in its appendix 2.A. This proof is inspired
by the proofs given in [MR01]. Here we only mention the details of it that are
relevant to our attack. Namely:

1. Challenge e ∈ Zq is calculated via Fiat-Shamir heuristic;

2. Bob chooses random γ ∈ Z∗N , where N is Alice’s Paillier public key;

3. Bob computes and sends Alice t1 = eβ′ + γ where β′ is Bob’s secret from
MtA between them. Note that t1 is computed over the integers.

The attack. It is considered a bad practice to generate invalid or short en-
cryption keys. Intuitively, such keys may pose a security risk to anyone that
uses them. In a multiparty computation with malicious adversaries, we expect
such keys to be detected before usage. In the previous attack, we have seen
how incorrect proportions of the Paillier encryption key N , and values that are
meant to be elements of Zq, can lead to a disaster. For instance, if Alice chooses
small Paillier N , the probability of a reduction modulo N in MtA may not be
negligible anymore. Thus, Alice might get access to some information about the
sizes of other parties’ secrets. Unfortunately, the first attack cannot be applied
as-is to the setting of MtA/MtAwc with ZK proofs since in this setting we no
longer have access to Bob’s gβ

′
as was the case in the ”simplified” version of

MtAwc protocol. Instead, we propose a different attack:
Suppose that an adversary (again, party P1) chooses their Paillier encryption

key to be slightly less then 2256 during the distributed key generation stage of
[GG18] or [GG20] protocol. If parties’ key sizes are not explicitly validated,
this choice might lead to successfully generated keys. Note that such a choice
immediately compromises the hiding property of β′ inside t1 from the ZK proof.
Dividing t1 by the public challenge e we get:

t1
e

= β′ +
γ

e

And because the ranges from which γ and e are taken are close to one another,
the second term will be less than 1 with probability 1

2 , and not larger than 15
bits with probability around 1 − 2−16. The strategy of an attacker is then to
play as Alice in MtA/MtAwc in the following way:

• Choose k1 = 1. Note that this choice and the fact that Paillier encryption
key N is close to q, implies that there are two options for what the result
of MtAwc between P1 and another party Pi might be:

1. α = wi + β′ if wi + β′ < N ,

2. α = wi + β′ −N if wi + β′ ∈ [N ; 2N).

9

• After MtAwc with party Pi is finished, try setting β =
⌊
t1
e

⌋
mod q,

⌊
t1
e

⌋
−

1 mod q,
⌊
t1
e

⌋
− 2 mod q . . . and calculate w(1) = α − β mod q and

w(2) = α − β + N mod q. Here t1, e and α are values from the range
proof and the decrypted share, all received from Bob in the course of this

MtAwc. If gw
(1)

= gwi or gw
(2)

= gwi , then Pi’s secret share is success-
fully recovered (remember that parties’ ”public keys” gwi are known to
everyone).

• Having recovered other parties’ secrets from MtAwc, the attacker can then
set their own output of MtAwc correctly. As to MtA, where parties receive
additive shares of ki · γj , the only difference is that the attacker does not
possess the value of gγj at the moment MtA is carried out. As previously,
denote values received from the ZK proof and the decrypted share as t1,
e, and α respectively. The attacker then calculates the approximate value
of β as

⌊
t1
e

⌋
mod q and the result of MtA is set to α if β < α, and to

α+N mod q otherwise.

Not only does it take just a single signature to recover the full secret key, but
the signature is also successfully generated afterward with high probability. This
might be important if parties manage several keys (which happens in practical
applications [Tho]), and we want to recover them one by one covertly without
causing any suspicion prematurely.

Root cause. When analyzing the attack, we can identify two factors that
contributed to its success.

First, we notice that the bound for γ, second step above, is simply wrong.
To achieve honest verifier zero-knowledge (HVZK), γ must be chosen randomly
from at least Zq2N . Taking γ to be from Z∗N as is the case in the paper, will
break HVZK — dividing by e will leak some bits from β′ regardless of the Paillier
modulus size. We note that a similar error, likely due to a typo, happens with
τ in the proof as well.

Finally, the missing Paillier size check was leveraged to make N comparable
in size to q. Composed with the broken HVZK, we were able to completely
remove the hiding of β′ from t1. Since the issue is with HVZK, completeness
remains and the output signature will be valid.

3 Implementation and experiments

For our first attack, targeting implementations of MtA and MtAwc with no
range proofs, we implemented a proof-of-concept on top of ZenGo’s multi-party-
ecdsa Rust library [Zen]. To make the attack fast, a value of M = 216 was
chosen, leading to secret key leakage in 16 signatures, which can be improved
by choosing a larger M .6

6https://github.com/velas/multi-party-ecdsa-no-range-proofs-attack

10

https://github.com/velas/multi-party-ecdsa-no-range-proofs-attack

For the small Paillier attack, a proof-of-concept was implemented for ING
bank’s threshold-signatures library [ING]. We stress that in this library, Paillier
size check is performed by all parties, and so it is not susceptible to the attack.
We commented out Paillier size check for the sake of demonstration.7

4 Responsible Disclosure

We reached out to maintainers from all existing open source threshold ECDSA
libraries.

We present below a table of what we perceive to be possible attack vectors
on different implementations. Since the attacks discovered in this work impact
multiple projects, one of the projects’ leads opened up a private telegram group
for all maintainers to coordinate SecOps. At the time of writing, all active
projects, that are dependent on the protocols we identified, already pushed the
fix. We describe the timeline of events in more detail on a separate document.
The Discovery was rewarded a bug bounty equivalent to 500, 000 USD, pooled
from several open source projects and led by Thorchain.

Library Vector of attack Required
number of
signatures

Number of signa-
tures that will com-
plete successfully

[ING]a Missing range proofs 8 1
[Zen] Missing range proofs 8 1
[Bin] Small Paillier 1 1
[Tho] Small Paillier 1 1
[Kee] Small Paillier 1 1
[Swi] Small Paillier 1 1
[Any] Small Paillier 1 1

aFast version only

5 Recommendations and conclusions

The body of research around threshold ECDSA has grown immensely over the
past few years, reflecting a concrete need coming from the industry. As a re-
sult, ”young” protocols were adopted, implemented, and put into production,
securing large sums of money. This, in turn, made threshold ECDSA imple-
mentations a lucrative and popular target for attacks. It also means that these
crypto-systems enjoy accelerated battle-testing. Our work is simply one part of
this fast-paced cycle. It is our belief that putting a spotlight on the technical
details of bugs and errors will lead to an even more robust protocol design and
implementation.

7https://github.com/velas/threshold-signatures-small-paillier-attack

11

https://github.com/velas/threshold-signatures-small-paillier-attack

We recommend that maintainers of all [GG18] or [GG20] implementations
check that in their libraries:

• Range proofs in MtA and MtAwc are in place at least for parties playing
as Alice.

• Every party checks that the sizes of other parties’ Paillier public keys are
correct. For instance, if Paillier keys are generated by multiplying two
random primes that are exactly 1024 bit in size, parties might check that
every Paillier modulus is either 2047-bit or 2048-bit and abort otherwise.

• In MtA and MtAwc, in Bob’s range proofs γ should be sampled from Zq2N
and τ from Zq3Ñ .

6 Acknowledgements

We would like to thank Claudio Orlandi and Elichai Turkel for reviewing the
draft of this paper.

References

[AHS20] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits.
A survey of ecdsa threshold signing. IACR Cryptol. ePrint Arch.,
2020:1390, 2020.

[Any] Anyswap’s implementation of TSS. https://github.com/anyswap/
FastMulThreshold-DSA.

[AS20] Jean-Philippe Aumasson and Omer Shlomovits. Attacking threshold
wallets. IACR Cryptol. ePrint Arch., 2020:1052, 2020.

[Bin] Threshold Signature Scheme, for ECDSA. https://github.com/

binance-chain/tss-lib.

[CGG+21] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos
Makriyannis, and Udi Peled. Uc non-interactive, proactive, thresh-
old ecdsa with identifiable aborts. Cryptology ePrint Archive, Re-
port 2021/060, 2021. https://ia.cr/2021/060.

[FLOP18] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and
Benny Pinkas. Fast distributed rsa key generation for semi-honest
and malicious adversaries. Cryptology ePrint Archive, Report
2018/577, 2018. https://ia.cr/2018/577.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold
ecdsa with fast trustless setup. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
pages 1179–1194, 2018.

12

https://github.com/anyswap/FastMulThreshold-DSA
https://github.com/anyswap/FastMulThreshold-DSA
https://github.com/binance-chain/tss-lib
https://github.com/binance-chain/tss-lib
https://ia.cr/2021/060
https://ia.cr/2018/577

[GG20] Rosario Gennaro and Steven Goldfeder. One round threshold ecdsa
with identifiable abort. IACR Cryptol. ePrint Arch., 2020:540, 2020.

[ING] Threshold Signature Scheme for ECDSA. https://github.com/

ing-bank/threshold-signatures.

[Kee] The smart contracts and client behind the Keep ECDSA client.
https://github.com/keep-network/keep-ecdsa.

[MR01] Philip MacKenzie and Michael K. Reiter. Two-party generation of
dsa signatures. In Joe Kilian, editor, Advances in Cryptology —
CRYPTO 2001, pages 137–154, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

[Swi] Threshold Signature Scheme for Skybridge. https://github.com/

SwingbyProtocol/tss-lib.

[Tho] Go implementation of TSS for Thorchain. https://gitlab.com/

thorchain/tss/go-tss.

[Zen] Rust implementation of t,n-threshold ECDSA (elliptic curve
digital signature algorithm). https://github.com/ZenGo-X/

multi-party-ecdsa.

13

https://github.com/ing-bank/threshold-signatures
https://github.com/ing-bank/threshold-signatures
https://github.com/keep-network/keep-ecdsa
https://github.com/SwingbyProtocol/tss-lib
https://github.com/SwingbyProtocol/tss-lib
https://gitlab.com/thorchain/tss/go-tss
https://gitlab.com/thorchain/tss/go-tss
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/ZenGo-X/multi-party-ecdsa

	Introduction
	Related work
	Summary of our attacks

	Attacks on multiplicative-to-additive protocol
	Preliminaries
	Attack on absent range proofs
	Small Paillier attack

	Implementation and experiments
	Responsible Disclosure
	Recommendations and conclusions
	Acknowledgements

