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Abstract

Distributed key generation (DKG) is a key building block in developing many efficient threshold
cryptosystems. This work initiates the study of communication complexity and latency of DKG pro-
tocols over a point-to-point (bounded) synchronous network. Our key result is the first synchronous
DKG protocol for discrete log-based cryptosystems with O(κn3) communication complexity (κ de-
notes a security parameter) that tolerates any t < n/2 Byzantine faults among n parties. We present
two variants of the protocol: a deterministic protocol with O(t∆) latency and randomized protocol
with O(∆) latency in expectation where ∆ denotes the bounded synchronous delay. In the process
of achieving our results, we design (1) a novel weak gradecast protocol with optimal communication
complexity of O(κn2) for linear-sized inputs and latency of O(∆), (2) a primitive called “recoverable
set of shares” for ensuring recovery of shared secrets, (3) an oblivious leader election protocol with
O(κn3) communication and O(∆) latency, and (4) a multi-valued validated Byzantine agreement
(MVBA) protocol with O(κn3) communication complexity for linear-sized inputs and O(∆) latency
in expectation. Each of these primitives is of independent interest.

1 Introduction

The problem of distributed key generation (DKG) is setting up a common public key and its correspond-
ing secret keys among a set of participating parties without a trusted entity. DKG protocols are used
to reduce the number of trust assumptions placed in cryptographic protocols such as threshold signa-
tures [10, 49] and threshold encryption schemes [17]. These threshold cryptosystems can themselves be
used to implement random beacons [13,20], reduce the complexity of consensus protocols [3,53], in mul-
tiparty computation protocols [30, 31], or to outsource management of secrets to multiple, semi-trusted
authorities [21,37].

Given its widespread applications and their recent adoption in practice (e.g., [20]), we need efficient
solutions for DKG. An ideal solution for DKG would have low communication complexity, low latency,
optimal resilience, and provide uniform randomness of generated keys such that the generated keys can
be useful in a wider class of cryptosystems while being secure. This work focuses on the synchronous
network setting where messages sent by a sender will arrive at a receiver within a known bounded delay
∆. Synchronous protocols have the advantage of tolerating up to a minority corruption. While a myriad
of DKG protocols [14,27,29,43,46] have been proposed in this setting, existing solutions fall short in one
way or the other. For example, Pedersen’s DKG [46] produces non-uniform keys in the presence of the
adversary, the DKG protocol due to Gennaro et al. [27] has high latency as it requires additional secret
sharing using Feldman’s VSS [23], and the protocol due to Gurkhan et al. [29] does not generate keys
for discrete log-based cryptosystems.

Moreover, all the DKG protocols considered in the synchronous model assume a broadcast channel
(that provides a consensus abstraction) and invoke Ω(n) broadcasts across two or more rounds [6], where
n is the number of parties. Since the best-known Byzantine consensus protocols with optimal resilience
incur at least O(κn3) communication (κ is a security parameter) in the absence of DKG-based threshold
signatures, instantiating a broadcast channel with state-of-the-art Byzantine broadcast [1,19] or Byzan-
tine agreement [35] trivially blows up the communication complexity to O(κn4). Moreover, due to the use
of multiple broadcast channel rounds, the latency of such protocols in a point-to-point network setting
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has not been explored. This leaves us with the following open question: Can we design a synchronous
DKG protocol supporting a wide class of cryptosystems with o(κn4) communication complexity, good
latency, and tolerating a minority corruption?

We answer this question positively by showing two DKG protocols for discrete log-based cryptosys-
tems each with O(κn3) communication complexity. The first protocol is deterministic and has O(t∆)
latency whereas the second protocol is randomized and has O(∆) latency in expectation.

1.1 Key Technical Ideas and Results

Our DKG protocols avoid the broadcast channel assumption and use a Byzantine consensus process in
a non-black-box fashion to achieve O(κn3) communication. Compared to the existing broadcast-based
DKG protocols which require Ω(n) broadcasts over two or more rounds, our protocols require a single
invocation of consensus instance. While DKG protocols [2, 36] without broadcast channel assumption
have been explored in the asynchronous model, they either incur high communication [36] or do not
generate keys for discrete log-based cryptosystems [2] or use stronger cryptographic assumptions [16].
More importantly, protocols designed for asynchronous or partially-synchronous settings can only tolerate
up to t < n/3 Byzantine failures, which is sub-optimal for many DKG applications such as random
beacons [20]. In the synchronous model, we provide the first solutions to DKG without a broadcast
channel with all the desirable properties with O(κn3) communication.

A typical approach among existing works is to perform n parallel verifiable secret sharings [23, 45]
such that all honest parties agree on a common set of qualified parties QUAL who correctly performed
secret sharing and then compute final public key and secret keys from the secret shares of all parties in
QUAL. In our protocols, we replace broadcast channels with weaker primitives such as gradecast [24,35].
Thus, parties first perform secret sharing by using this weaker primitive to identify a set of n− t parties
who correctly shared their secrets, where t is the fault tolerance. During the sharing phase, no consensus
primitives are invoked to agree on the set of qualified parties. The downside of this approach is that
different honest parties may have different views regarding the acceptance of shared secrets. As a result,
different honest parties obtain different sets of at least n − t parties (say AcceptListi for party Pi) who
they accept to have performed secret sharing correctly. For DKG, it is required that all honest parties
compute the final public key and secret keys from a common set of parties. Thus, we need to agree
on a common set of parties too. Parties then use a Byzantine consensus primitive to agree on one
common subset where the input is their individual AcceptList. Once, the Byzantine consensus primitive
terminates and outputs a common set AcceptListk, the final public key and secret keys are computed
from AcceptListk. Note that this approach requires only a single instance of Byzantine consensus.

1.1.1 Key Building Blocks

1. Communication optimal weak gradecast. As a building block, we first provide a communication
optimal weak gradecast protocol satisfying the gradecast definition of Katz and Koo [35]1, which required
a communication complexity of O(κn3). Specifically, we show the following result:

Theorem 1 (Informal). Assuming a public-key infrastructure and a universal structured reference string
under q-SDH assumption, there exists a gradecast protocol for an input of size ℓ bits with O(ℓn + κn2)
communication tolerating t < n/2 Byzantine faults.

2. Recoverable set of shares using weak gradecast. We use the gradecast primitive to perform
communication efficient secret sharing. A consequence of using gradecast (instead of broadcast channels)
is that parties may have different views regarding the acceptance of the shared secrets. For instance, each
party Pi outputs a different set AcceptListi and this set may also contain Byzantine parties. However, we
still do guarantee that for any set output by any party (including Byzantine parties), there is verifiable
proof vouching that all parties in the subset have correctly shared their secrets and these secrets are
thus recoverable. We call this sub-protocol Recoverable set of shares. Using our communication optimal
gradecast, our recoverable set of shares protocol can be achieved in O(κn3) communication and constant
latency.

1This definition is slightly weaker than the one presented by Feldman and Micali [24].
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Table 1: Comparison of related works on Distributed Key Generation

Net. Res. Comm. Latency Sim. Dlog Setup
Crypto

Assumption

Pedersen [46] sync. 1/2 O(κn4) O(t∆) ✗ ✓ CRS+PKI DL
Gennaro et al. [27] sync. 1/2 O(κn4) O(t∆) ✓ ✓ CRS+PKI DL
Canetti et al. [14] sync. 1/2 O(κn4) O(t∆) ✓ ✓ CRS+PKI DL
Neji et al. [43] sync. 1/2 O(κn4) O(t∆) ✓ ✓ CRS+PKI RO+CDH
ETHDKG [48] sync. 1/2 O(κn4) O(t∆) ✗ ✓ CRS+PKI RO+CDH

Gurkhan et al. [29] sync. logn Õ(κn3) O(t∆) ✗ ✗ CRS+PKI RO+SXDH+CBDH
NIDKG [28] sync. 1/2 O(κn4) O(t∆) ✓ ✓ CRS+PKI RO+DDH+. . .*

Hybrid-DKG [33] psync. 1/3 O(κn4) O(t) rnds ✓ ✓ CRS+PKI RO+DL
Kokoris et al. [36] async. 1/3 O(κn4) O(t) rnds ✗ ✓ CRS+PKI RO+DDH

Abraham et al. [2] async. 1/3 Õ(κn3) O(1) rnds ✗ ✗ CRS+PKI tVRF+VC**

Das et al. [16] async. 1/3 O(κn3) O(logn) rnds ✓ ✓ CRS+PKI RO+DCR+DDH

Our work (rand.) sync. 1/2 O(κn3) O(∆) ✓ ✓ CRS+PKI+PoT RO+DDH+q-SDH
Our work (deter.) sync. 1/2 O(κn3) O(t∆) ✓ ✓ CRS+PKI+PoT RO+q-SDH

κ is the security parameter. Net. refers to the network model. Res. refers to the number of Byzantine faults tolerated in the
system. Comm. refers to the communication complexity. Sim. means the protocol maintains secrecy which can be proven via a

simulator. Primitive refers to the cryptographic primitives used. PoT refers to the power of tau setup required for bilinear
accumulators. This setup can be removed by making use of Merkle trees at the cost of logn multiplicative communication
overhead. rnds. refers to rounds. Protocols expressed in terms of rounds are run in either partial synchrony or asynchrony.

rand. implies randomized. deter. implies deterministic. *NIDKG assumes RO, rleaf-IND-CCA, DDH, Erasures, and one-more
DH. **assumes black-box existence of threshold VRF and Vector Commitments.

Table 2: Comparison of related works on MVBA with ℓ-bit input

Net. Res. Communication Latency Assumption

Cachin et al. [12] async. 1/3 O(ℓn2 + κn2 + n3) O(1) rnds Threshold setup
VABA [4] async. 1/3 O(ℓn2 + κn2) O(1) rnds Threshold setup
DUMBO-MVBA [38] async. 1/3 O(ℓn + κn2) O(1) rnds Threshold setup

Our work sync. 1/2 O(ℓn2 + κn3) 48∆ (exp) PKI

Net. refers to Network model. Res. refers to resilience. κ is the security parameter. rnds refers to rounds and exp stands for
“in expectation”.

3. Oblivious leader election. We design a communication efficient oblivious leader election (OLE)
protocol (aka, common coin) with O(κn3) communication and O(∆) latency. The OLE protocol elects
a common honest leader with probability at least 1

2 . Our OLE protocol makes use of n weaker VSS
instance and a non-interactive threshold signature scheme [13] to generate randomness. The threshold
signature scheme requires a prior threshold setup which is essentially a DKG setup. To circumvent this
necessity, we make use of the AcceptList output by parties in the recoverable set of shares protocol as
an intermediate threshold setup for each party. The intermediate threshold setup is used to power the
threshold signature scheme and generate the required randomness. In particular, we show the following:

Theorem 2 (Informal). Assuming a public-key infrastructure, a universal structured reference string
under q-SDH assumption, random oracle, and DDH, there exists an oblivious leader election protocol
with O(κn3) communication and O(∆) latency tolerating t < n/2 Byzantine faults.

4. Agreeing on a recoverable set of shares using efficient multi-valued validated Byzantine
agreement. Our next goal is to agree on one such set output by one of the parties. We stress that
due to the proof associated with the output of the recoverable set of shares protocol, we can agree on
the set output by any party, including a Byzantine party. However, here, the size of the set and its
proof is linear, which can potentially worsen the communication complexity again. Thus, we need a
consensus primitive that takes long messages as inputs and outputs one of the “valid” input values. Such
a primitive is called multi-valued validated Byzantine agreement (MVBA) [12] in the literature.

MVBA was first formulated by Cachin et al. [12] to allow honest parties to decide on any externally
valid values. Recent works [4, 38] have given communication efficient protocols for MVBA in the asyn-
chronous model tolerating t < n/3 Byzantine faults. For long messages of size ℓ, the protocol due to
Abraham et al. [4] incurs O((ℓ + κ)n2) communication and the protocol due to Luo et al. [38] incurs
O(ℓn + κn2). Both of these works assume a threshold setup. Without threshold setup assumptions, the
communication blows up by a factor of n in all the above protocols.
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To the best of our knowledge, no MVBA protocols have been formulated in the synchronous model
tolerating t < n/2 faults. A recent work [42] provides an efficient BA protocol for long messages.
However, since it is a BA protocol, they output a value only when all honest parties start with the same
large input. We construct the first MVBA protocol in the synchronous setting without threshold setup.
Our MVBA protocol incurs expected O(ℓn2 +κn3) communication and expected 48∆ time. Specifically,
we show the following result:

Theorem 3 (Informal). Assuming a public-key infrastructure, random oracle, DDH, and a universal
structured reference string under q-SDH assumption, there exists a multi-valued validated Byzantine
agreement protocol for an input of size ℓ with expected O(ℓn2 + κn3) communication and expected 48∆
tolerating t < n/2 Byzantine faults.

Efficient distributed key generation. Using our recoverable set of shares protocol where parties
output different sets of size at least n − t parties and our MVBA protocol, honest parties can agree on
a common set from which the final public key and secret keys are computed. In particular, we obtain a
randomized DKG protocol with O(κn3) communication and expected 68∆ time.

Theorem 4 (Informal). Assuming public-key infrastructure, random oracle, a universal structured refer-
ence string under q-SDH assumption and DDH, there exists a randomized protocol that solves synchronous
distributed key generation tolerating t < n/2 Byzantine faults with expected O(κn3) communication and
expected 68∆ time.

Although the randomized DKG protocol terminates in constant expected time, it can take linear
time in the worst case. In this case, the protocol incurs O(κn4) communication. As an alternative,
we provide a deterministic solution that incurs O(κn3) communication. RandPiper [9] provides a BFT
SMR protocol with O(κn2) communication per epoch even for O(n)-sized input. Here, an epoch is a
period that incurs some constant ∆ time. In our deterministic DKG protocol, we execute the BFT SMR
protocol for t + 1 epochs with each epoch coordinated by a distinct leader. The leader proposes his set
of n− t parties along with the proof. Honest parties output the first committed set to compute the final
public key and secret keys. In particular, we obtain the following result:

Theorem 5 (Informal). Assuming a public-key infrastructure, and a universal structured reference string
under q-SDH assumption there exists a deterministic protocol that solves secure synchronous distributed
key generation tolerating t < n/2 Byzantine faults with O(κn3) communication and 18∆ + (11(t+ 1)∆).

A lower bound on the communication complexity of deterministic distributed key gener-
ation. We formalize a communication lower bound for a deterministic DKG protocol. Specifically, we
show the following result:

Theorem 6. There does not exist a deterministic protocol for secure distributed key generation tolerating
t Byzantine parties with a communication complexity of at most t2/4 messages.

We remark that our deterministic DKG protocol incurs O(κn3) communication and thus, our results
are not tight. We leave open the problem of coming up with a better bound or designing a deterministic
DKG protocol with improved communication complexity.
Limitations. In this work, we assume that the adversary is static, similar to several DKGs [27,29,32,43,
46,48] in the literature. Canetti et al. [14] show how to build adaptively secure DKG protocols and several
of our techniques could be applicable in realizing their protocol in the point-to-point network setting.
Very recently, Bacho et al. [5] gave a relaxed definition of DKG and show that prior DKG protocols such
as Gennaro et al [27] are adaptively-secure under this relaxed definition. It could be interesting to see if
our protocols are adaptively-secure under their relaxed definition. In addition, our protocols make the
q-SDH assumption. This assumption is only used for bilinear accumulators which could be replaced with
Merkle tree accumulators resulting in a log n multiplicative overhead in the communication complexity.

2 Related Work

2.1 Related Works in Distributed Key Generation Literature

We review the most recent and closely related DKG protocols. An overview of the closely related
work is provided in Table 1. While a myriad of DKG protocols [14, 22, 27–29, 43, 46, 48] have been
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proposed in the synchronous model, all of these protocols assume a broadcast channel. All of these
protocols invoke Ω(n) parallel broadcasts. A natural choice to instantiate the broadcast channels is via
Byzantine consensus primitives such as Byzantine Broadcast [1,19] or Byzantine agreement [35]. To the
best of our knowledge, all optimally resilient deterministic Byzantine consensus protocols incur O(κn3)
communication without threshold signatures and t+ 1 rounds [19]. For randomized consensus protocols,
the best known protocol with optimal resilience in this setting is Katz and Koo [35] which incurs O(κn4)
communication. Although, randomized consensus protocols terminate in expected constant rounds, n
parallel instances of randomized consensus requires log n rounds to terminate. For the sake of simplicity,
we assign a communication of O(κn4) and O(t∆) rounds for the DKG protocols that use broadcast
channel in Table 1. Compared to all prior DKG protocols, our protocols do not use broadcast channel
and use Byzantine consensus protocols. In fact, our protocols require a single consensus invocation and
incur O(κn3) communication and expected constant rounds for randomized protocol and O(t∆) rounds
for deterministic protocol. Our protocols are secure against static failures and generate uniform keys for
discrete logarithm based cryptosystems.

We also argue that the protocols by Momose and Ren [41] and Tsimos et al. [52] are relevant but
not sufficient to achieve our goals. Momose and Ren [41] gave a deterministic BA protocol with O(κn2)
communication with sub-optimal resilience of t < (1 − ϵ)n/2 for a small constant ϵ. Using their BA
protocol to instantiate broadcast channels will result in DKG protocols with O(κn3) communication
but with sub-optimal resilience and linear round complexity. Similarly, Tsimos et al. [52] present a
communication-efficient broadcast protocol RandomBroadcast in the bulletin PKI setting. It works with
t < (1− ϵ) resilience, O(κ2n2) communication, linear round complexity, and negligible error probability.
Using RandomBroadcast to instantiate broadcast channels will result in DKG protocols with optimal
resilience, O(κ2n3) communication, linear round complexity and negligible error probability. In contrast,
our protocols have optimal resilience, O(κn3) communication and expected O(∆) latency (O(t∆) for
deterministic protocol).

Pedersen [46] introduced the first efficient DKG protocol for discrete log cryptosystems in the syn-
chronous setting. Their protocol is based on n parallel invocations of Feldman VSS [23]. Gennaro et
al. [27] showed that Pedersen’s DKG protocol can be biased by an adversary to generate non-uniform
keys. To remove the bias, they proposed a new DKG protocol that requires additional secret sharing
rounds; hence, is less efficient. Canneti et al. [14] extended Gennaro et al.’s DKG to handle adaptive
corruptions.

Neji et al. [43] presented an efficient DKG protocol to remove the bias without the additional secret
sharing round. However, in their protocol, honest parties still need to agree on whether to perform
reconstruction for a secret shared by a party which requires additional consensus invocation.

Gurkhan et al. [29] presented DKG protocol without a complaint phase by using publicly verifiable
secret sharing (PVSS) [15] scheme. However, they tolerate only log n Byzantine faults and do not generate
keys for discrete-logarithms based cryptosystems; reducing its usefulness.

Recently, Groth [28] presents a non-interactive DKG protocol with a refresh procedure that allows
refreshing the secret key shares to a new committee. Erwig et al. [22] considers large scale non-interactive
DKG protocol and handles mobile Byzantine faults. Both of above protocols assume broadcast channels.

Several other works tackle the DKG problem from different angels. Kate et al. [34] reduced the size
of input to the broadcast channel from O(n) to O(1) by using polynomial commitments [34]. Tomescu
et al. [51] reduce the computational cost of dealings in Kate et al. [33] at the cost of a logarithmic
increase in communication cost. Schindler et al. [48] instantiate the broadcast channel with the Ethereum
blockchain. In Table 1, we replaced the Ethereum blockchain with Byzantine consensus primitives for
fair comparison.

Kate et al. [33] gave the first practical DKG protocol in the partially synchronous communication
model which requires 3t + 2f + 1 parties to tolerate t Byzantine faults and f crash faults. Kokoris-
Kogias et al. [36] gave the first DKG protocol in asynchronous communication model with optimal
resilience (t < n/3). Their protocol has O(κn4) communication and O(t) rounds overhead. Recently,
Abraham et al. [2] gave an improved DKG protocol with O(κn3) communication and expected O(1)
round complexity. However, their protocol uses PVSS and hence does not generate keys for dlog-based
cryptosystems. Recently, Das et al. [16] gave the dlog-based DKG protocol with O(κn3) communication
and optimal resilience in the asynchronous model. However, their protocol incurs expected O(log n)
round complexity and requires stronger Decisional Composite Residuosity (DCR) assumption.
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2.2 Related Works in Byzantine Agreement Literature

There has been a long line of work in improving communication and round complexity of consensus
protocols [1, 4, 11,25,35,41,50,53]. We review the most recent and closely related works.

Multi-valued validated Byzantine agreement was first introduced by Cachin et al. [12] to allow honest
parties to agree on any externally valid values. Their protocol works in asynchronous communication
model and has optimal resilience (t < n/3) with O(ℓn2 + κn2 + n3) communication for input of size ℓ.
Later, Abraham et al. [4] gave an MVBA protocol with optimal resilience and O(ℓn2 +κn2) communica-
tion in the same asynchronous setting. Luo et al. [38] extended the work of Abraham et al. [4] to handle
long messages of size ℓ with a communication complexity of O(ℓn+κn2). All of these protocols assumed
threshold setup. In the absence of threshold setup, the communication complexity blows up by a factor
of n in all of these protocols.

To the best of our knowledge, no MVBA protocol has been formulated in the synchronous setting
tolerating t < n/2 Byzantine faults. Our MVBA protocol incurs O(ℓn2 + κn3) for inputs of size ℓ and
does not assume threshold setup and terminates in expected constant rounds.

Our MVBA protocol can also be used for binary inputs as a Binary Byzantine Agreement (BBA)
protocol tolerating t < n/2 Byzantine faults and terminating in expected O(∆) rounds. Feldman and
Micali [25] were the first to give a BBA protocol that terminates in constant expected rounds. Their
protocol works in plain authenticated model without PKI and tolerates t < n/3 Byzantine faults (which
is optimal). In the authenticated setting, Katz and Koo [35] gave a BBA protocol tolerating t < n/2
Byzantine faults terminating in expected constant rounds. Their protocol incurs O(κn4) communication
and terminates in expected 4 epochs. We extend the BBA protocol of Katz and Koo [35] and reduce its
communication by linear factor while handling multi-valued input by designing a communication optimal
gradecast protocol. A simple and efficient BBA tolerating t < n/3 Byzantine faults in the authenticated
model was given by Micali [40]. Abraham et al. [1] reduced the round complexity of BBA protocol to
expected 10 rounds. However, their protocol required a threshold setup to generate a perfect common
coin; a perfect common coin ensures all honest parties output the same random value. Compared to
their work, our work does not require a threshold setup and executes with a weak common coin.

3 Model and Preliminaries

We consider a system consisting of n parties (P1, . . . , Pn) with pair-wise reliable, authenticated point-to-
point channels, where up to t < n/2 parties can be Byzantine faulty. The model of corruption is static
i.e., the adversary picks the corrupted parties before the start of protocol execution. The Byzantine
parties may behave arbitrarily. A non-faulty party is said to be honest and executes the protocol as
specified.

Messages exchanged between parties may take at most ∆ time before they arrive, where ∆ is a known
maximum network delay. To provide safety under adversarial conditions, we assume that the adversary
is capable of delaying the message for an arbitrary time upper bounded by ∆. In addition, we assume
all honest parties have clocks moving at the same speed. They also start executing the protocol within
∆ time from each other. This can be easily achieved by using the clock synchronization protocol [1]
once at the beginning of the protocol.

We make use of digital signatures and PKI to prevent spoofing and replays and to validate messages.
Message x sent by a party Pi is digitally signed by Pi’s private key and is denoted by ⟨x⟩i. We denote H(x)
to represent invocation of the random oracle H on input x. We also use a hash function H ′ : G → {0, 1}κ.
∆ Synchrony Model. Our protocols are expressed in a ∆ synchrony model where all parties execute
an epoch for a certain amount of ∆ time and all honest parties enter and exit an epoch within ∆ time
of each other. Within an epoch, parties are allowed to execute protocol steps when events are triggered
i.e., when certain messages are received. This model differs from lock-step synchrony model [1, 19, 35]
where honest parties are synchronized in each round and parties execute protocol steps only at the start
of the round. In this regard, ∆ synchrony model requires lesser time to execute a protocol.
Equivocation. Two or more messages of the same type but with different payload sent by a party
is considered an equivocation. In order to facilitate efficient equivocation checks, the sender sends the
payload along with signed hash of the payload. When an equivocation is detected, broadcasting the
signed hash suffices to prove equivocation by the sender.
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Setup. Let p be a prime number that is poly(κ) bits long, and G be a group of order p such that it is
computationally infeasible except with negligible probability in κ to compute discrete log. Let Zp denote
its scalar field. Moreover, let g and h denote the generators of G where a ∈ Zp such that ga = h is not
known to any t subset of the nodes.

We make the standard computational assumption on the infeasibility to compute discrete logarithms
called the discrete-log assumption [27]. In particular, we assume that the adversary is unable to compute
discrete logarithms modulo large (based on the security parameter κ) primes.

3.1 Definitions

Distributed key generation. A DKG protocol for n parties (P1, . . . , Pn) generates private outputs
(x1, . . . , xn) called the shares and a public output y.

Definition 3.1 (Secure DKG for Dlog based cryptosystems [27]). A dlog based DKG protocol that
distributes a secret x among n parties through shares (x1, . . . , xn) where xi is a share output to party Pi

is t-secure if in the presence of an adversary that corrupts up to t parties, the following requirements for
correctness and secrecy are maintained.

Correctness.

C1. All subsets of t + 1 shares provided by honest parties define the same unique secret key
x ∈ Zp.

C2. All honest parties have same value of public key y = gx ∈ G, where x ∈ Zp is secret
guaranteed by (C1).

C3. x is uniformly distributed in Zp (and hence y is uniformly distributed in G).

Secrecy. No information on x can be learned by the adversary except for what is implied by the
value y = gx.

More formally, the secrecy condition is expressed in terms of simulatability: for every (probabilistic
polynomial-time) adversary A that corrupts up to t parties, there exists a (probabilistic polynomial-time)
simulator S, such that on input an element y ∈ G, produces an output distribution which is polynomially
indistinguishable from A’s view of a run of the DKG protocol that ends with y as its public key output.

Oblivious leader election. An oblivious leader election protocol elects a common honest leader with
some constant probability.

Definition 3.2 (Oblivious Leader Election [35]). A protocol for parties P1, . . . , Pn is an oblivious leader
election protocol with fairness α tolerating t Byzantine failures if each honest party Pi outputs a value
vi ∈ [n] and the following conditions holds with probability at least α:

There exists a value j ∈ [n] such that (i) each honest party Pi outputs vi = j, and (ii) party Pj is
honest.

Multi-valued validated Byzantine agreement. In an MVBA protocol, there is an external valid
function ex-validation that every party has access to. Every honest parties start with some externally
valid input vi, and on termination must output a value. An MVBA protocol has following properties:

Definition 3.3 (Multi-valued Validated Byzantine Agreement [4, 38]). A protocol solves multi-valued
validated Byzantine agreement if it satisfies following properties except with negligible probability in the
security parameter κ:

• Validity. If an honest party decides a value v, then ex-validation(v) = true.

• Agreement. No two honest parties decide on different values.

• Termination. If all honest parties start with externally valid values, all honest parties eventually
decide.
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3.2 Primitives

In this section, we present several primitives used in our protocols.
Linear erasure and error correcting codes. We use standard (t+1, n) Reed-Solomon (RS) codes [47].
This code encodes t + 1 data symbols into code words of n symbols using ENC function and can decode
the t + 1 elements of code words to recover the original data using DEC function. More details on ENC
and DEC are provided in Section 11.1.
Cryptographic accumulators. A cryptographic accumulator scheme constructs an accumulation value
for a set of values using Eval function and produces a witness for each value in the set using CreateWit
function. Given the accumulation value and a witness, any party can verify if a value is indeed in the
set using Verify function. More details on these functions are provided in Section 11.2.

In this paper, we use collision free bilinear accumulators from Nguyen [44] as cryptographic accumu-
lators which generates constant sized witness, but requires q-SDH assumption. Alternatively, we can use
Merkle trees [39] (and avoid q-SDH assumption) at the expense of O(log n) multiplicative communication.
Non-interactive threshold signature scheme. We use (t, n) non-interactive threshold signature
scheme of Cachin et al. [13] in one of our protocols. The threshold signature scheme is secure against
static adversary. The signature scheme consists of following efficient algorithms: KeyGenTS, SignTS,
ShareVerifyTS, CombineTS, VerifyTS. More details on these algorithms in provided in Section 11.3.
Non-Interactive Proof-of-Equivalence of commitments [33]. Given two commitments C⟨g⟩(s) =
gs and C⟨g,h⟩(s, r) = gshr to the same value s for generators g, h ∈ G and s, r ∈ Zp, a prover
proves that she knows s and r such that C⟨g⟩(s) = gs and C⟨g,h⟩(s, r) = gshr. We denote it by
NIZKPK≡Com(s, r, g, h, C⟨g⟩(s), C⟨g,h⟩(s, r)) = π≡Com ∈ Z3

p. A full construction of NIZKPK≡Com is provided
in Section 11.4.
Normalizing the length of cryptographic building blocks. Let λ denote the security parameter,
κh = κh(λ) denote the hash size, κa = κa(λ) denote the size of the accumulation value and witness of
the accumulator and κv = κv(λ) denote the size of secret share and witness of a secret. Further, let
κ = max(κh, κa, κv); we assume κ = Θ(κh) = Θ(κv) = Θ(κa) = Θ(λ). Throughout the paper, we can
use the same parameter κ to denote the hash size, signature size, accumulator size and secret share size
for convenience.

4 Secure DKG with Two Broadcast Rounds

We first present a secure DKG protocol assuming a broadcast channel motivated from Gennaro et al.
DKG [27]. The presented DKG reduces the number of required rounds with broadcast to two, which is
a significant improvement over [27] requiring three broadcast rounds in the best case and five broadcast
rounds otherwise.2 In later sections, we replace the broadcast channel with a novel consensus primitives
to design communication-efficient DKG protocols.

Gennaro et al. [27] presented a secure DKG protocol that produces uniform public keys based on
Pedersen’s VSS [45]. In their protocol, each party, as a dealer, selects a secret uniformly at random and
shares the secret using Pedersen’s VSS protocol. Since Pedersen’s VSS provides information theoretic
secrecy guarantees, the adversary has no information about the public key and hence cannot bias it. At
the end of the secret sharing, a set of qualified parties QUAL who correctly shared their secret is defined.
Once the set QUAL is fixed, parties in set QUAL invoke an additional round of secret sharing using Feldman’s
VSS [23] to generate the final public key. While this approach ensures generation of uniform keys and
maintains secrecy, it adds additional overhead as it incurs more latency and communication to perform
additional secret sharing. In addition to the above overhead, Pedersen VSS requires three broadcast
rounds. In particular, parties post the commitment, complaints and secret shares corresponding to the
complaints on to the broadcast channel during the sharing phase.

The protocol in Figure 1 improves upon the DKG protocol of Gennaro et al. [27] in the following
ways.
Improving latency in the sharing phase. We improve latency by reducing information posted on
the broadcast channel by using improved eVSS (iVSS) protocol [9] which requires only 2 broadcast

2Using NIZK similar to us, the number of rounds for Gennaro et al. DKG [27] can be reduced to two in the best case
and three otherwise in a rather straightforward manner; however, reducing to two broadcast rounds in all situations is the
key challenge here.
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Sharing Phase

1. Deal. Each party (as a dealer) Pi selects two random polynomials fi(y), f
′
i(y) ∈ Zp[y] of degree t:

fi(y) = ai0 + ai1y + · · ·+ aity
t, f ′

i(y) = bi0 + bi1y + · · ·+ bity
t

Let si = ai0 = fi(0). Party Pi posts Cik = gfi(k)hf ′
i(k) ∀k ∈ {1, . . . , n} on the broadcast channel. Party Pi computes

the secret shares sij = fi(j), s
′
ij = f ′

i(j) and sends sij , s
′
ij privately to Pj ∀j ∈ [n].

2. Blame. Each party Pi verifies that the commitment vector contains a t degree polynomial (Equation (2)). For j ∈ [n],
check if

gsji · hs′ji = Cji (1)

n∏
k=1

CCodekjk = 1G, where {Code1, . . . ,Coden} ∈ C⊥ using Equation (4) (2)

If the check fails for (dealer) party Pj , send ⟨blame, j⟩i to all parties and collect all the blames.

3. Forward blame. If more than t blame messages are collected for party Pj as the dealer in the previous step, do not
send anything for dealer Pj until the Decide step (Step 6).

Otherwise, for every ⟨blame, j⟩k received from party Pk, forward the blame messages to the dealer Pj .

4. Open. Each party Pi, who as a dealer, received ⟨blame, i⟩k from any party Pj , sends valid secret shares sik, s
′
ik (that

verifies Equation (1)) to party Pj .

5. Vote. If in Step 2, a party Pi received ≤ t ⟨blame, j⟩k messages and party Pj sent valid secret shares sjk, s
′
jk for

every ⟨blame, j⟩k it forwarded to party Pj , send a vote ⟨vote, j⟩i to party Pj . Forward the secret shares sjk, s
′
jk to

party Pk.

6. Decide. If party Pi, as a dealer, receives t+ 1 ⟨vote, i⟩ messages, post the vote-certificate on the broadcast channel.

Each party Pi marks a party Pj qualified if it receives a vote-certificate for party Pj on the broadcast channel;
otherwise the party is disqualified. Party Pi builds a set of non-disqualified parties QUAL.

Generating Public key

7. Party Pi sets its share of the secret as xi =
∑

j∈QUAL sji, and computes x′
i =

∑
j∈QUAL s

′
ji, C⟨g⟩(xi) = gxi ,

C⟨g,h⟩(xi, x
′
i) = gxihx′

i and π≡Comi = NIZKPK≡Com(xi, x
′
i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x

′
i)). Party Pi sends (C⟨g⟩(xi),

π≡Comi) to all parties.

8. Upon receiving a tuple (C⟨g⟩(xj), π≡Comj), compute C⟨g,h⟩(xj , x
′
j) = gxjhx′

j locally as follows:

gxjhx′
j =

∏
m∈QUAL

Cmj (3)

Ensure π≡Comj verifies NIZKPK≡Com between C⟨g⟩(xj) and C⟨g,h⟩(xj , x
′
j).

9. Upon receiving t+ 1 valid gxj values, perform Lagrange interpolation in the exponent to obtain y = gx. Output y as
the public key and xi as the private key.

Figure 1: Secure distributed key generation in dlog-based cryptosystems
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rounds.3 Reducing the broadcast rounds greatly improves latency as broadcast channels are generally
instantiated using Byzantine broadcast or Byzantine agreement protocols which have worst-case linear
round complexity.

In iVSS, the dealer posts commitments on the broadcast channel and privately sends the secret
shares to each party. Instead of posting the complaints on the broadcast channel, parties multicast
blame message if they receive invalid secret shares or receive no secret shares at all. Parties then forward
all blame messages to the dealer4. The dealer is expected to send secret shares corresponding to the
blame messages (i.e., secret shares sij , s

′
ij if a Pj sent blame message against dealer Pi). If the dealer

sends all secret shares corresponding to the blame message it forwarded, a party sends a vote message to
the dealer. Upon receiving t + 1 vote messages, the dealer posts a vote-certificate containing t + 1 vote
messages. Honest parties consider the dealer to be honest if they see the vote-certificate on the broadcast
channel.

Observe that using iVSS scheme, the dealer posts only the commitment and vote-certificate on the
broadcast channel. This improves the sharing phase by one broadcast round.
Using commitments to evaluations instead of commitments to coefficients. In VSS such as
Pedersen’s VSS and Feldman’s VSS and thus in [27], commitments to the secret share are commitments
to the coefficients of a t-degree polynomial, which imply verifying a share requires O(t) computations.
This results in O(nt) computations per VSS instance in the complaint stage (where every node verifies
opening of up to t complaints) and during reconstruction. SCRAPE [15, Section 2.1] showed how to
commit (using discrete log commitments) to evaluations instead of coefficients of the polynomial and
verify that the committed evaluations are of a degree t polynomial by using the property of coding
schemes: if C is the code space for an (n, t) sharing, then the following vector

C⊥ := {Code1, . . . ,Coden;Codei = poly(i)

n∏
j=1,j ̸=i

1/(i− j)

poly(x) is a random polynomial of degree n− t + 1} (4)

is orthogonal to C. We can check that the Pedersen’s commitments to the evaluations are an (n, t) sharing
(see Equation (1)). If λ is logg h, then commitments to evaluations form a polynomial gfhf ′

= gf+λf ′

which is another (n, t) polynomial thereby allowing to use the coding technique. This is an information-
theoretic technique and therefore does not affect the security of the underlying VSS.
Removing additional secret sharing while generating public key. We remove the additional
secret sharing performed using Feldman’s VSS by taking an alternate approach [33]. Instead of executing
an additional secret sharing, assuming random oracle, we make use of the NIZK proof of equivalence
of commitments NIZKPK≡Com to generate the public key. This approach does not require additional
secret sharing via Feldman’s VSS. Once the sharing phase is completed, a set of qualified parties QUAL

is finalized. Then, each party Pi computes its share of the shared secrets i.e., xi =
∑

Pj∈QUAL sji and

x′
i =

∑
Pj∈QUAL s

′
ji along with commitments C⟨g⟩(xi), C⟨g,h⟩(xi, x

′
i). It then multicasts commitment of its

share C⟨g⟩(xi) and the corresponding NIZKPK≡Com proof π≡Comi to prove Pi knows xi and x′
i.

All parties can compute the commitment C⟨g,h⟩(xi, x
′
i) locally as shown in Equation (3) and verify

the correctness of commitment C⟨g⟩(xi) using π≡Comi. The final public key Y is computed via Lagrange
interpolation in the exponent using t + 1 distinct commitments C⟨g⟩(xi).

We present detailed security analysis in Section 12

5 Communication Optimal Weak Gradecast

One of the main tools in the design of our communication efficient protocols is our communication
optimal weak gradecast protocol. Gradecast (aka graded broadcast) is a relaxed version of broadcast
introduced by Feldman and Micali [24] which can be obtained in constant number of rounds. Feldman
and Micali [24] provided a gradecast protocol tolerating t < n/3 Byzantine faults in the plain authen-
ticated model without PKI and digital signatures. Later, Katz and Koo [35] provided a slightly weaker

3Alternatively, we can use broadcast optimal VSS protocol of Backes et al. [7] which has 2 broadcast rounds. We prefer
iVSS protocol for its simplicity.

4In an implementation, we can only forward up to t blames instead of all the blames.
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gradecast protocol in the authenticated model tolerating t < n/2 Byzantine faults using PKI and digital
signatures. The gradecast protocol of Katz and Koo [35] incurs O(κn3) communication in the absence
of threshold signatures. We present its communication optimal counterpart with O(κn2) communication
while propagating linear-sized input.

Definition 5.1 (Weak Gradecast [35]). A protocol with a designated sender Pi holding an initial input
v is a weak gradecast protocol tolerating t < n/2 Byzantine parties if the following conditions hold

1. Each honest party Pj outputs a value vj with a grade gj ∈ {0, 1, 2}.

2. If the sender is honest, each honest party outputs vi with a grade of 2.

3. If an honest party Pi outputs a value v with a grade of 2, then all honest parties output value v
with a grade of ≥ 1.

Deliver(mtype,m, ze, e) :

1. Partition input m into t+ 1 data symbols. Encode the t+ 1 data symbols into n code words (s1, . . . , sn) using ENC
function. Compute witness wj ∀sj ∈ (s1, . . . , sn) using CreateWit function. Send ⟨codeword,mtype, sj , wj , ze, e⟩i to
party Pj ∀j ∈ [n].

2. If party Pj receives the first valid code word ⟨codeword,mtype, sj , wj , ze, e⟩∗ for the accumulator ze, forward the code
word to all the parties.

3. Upon receiving t+ 1 valid code words for the accumulator ze, decode m using DEC function.

Figure 2: Deliver function

Our gradecast (refer Figure 3) implements weaker gradecast [35] (Definition 5.1) which relaxes grade-
cast [24] when no honest party outputs a grade of 2 and allows honest parties to output different values
with a grade of 1. In particular, when an honest party Pj outputs a value v with a grade of 1, our
primitive allows other honest parties to output a different value v′ with a grade of 1 as long as no honest
party outputs a value with a grade of 2. This weaker gradecast suffices for our purpose. In Section 17,
we show a quadratic lower bound on the communication complexity of weak gradecast for completeness.
Deliver. As a building block, we first present a Deliver function (refer Figure 2) used by an honest
party to efficiently propagate long messages. This function is adapted from RandPiper [9] where linear-
sized messages are propagated among all honest parties with O(κn2) communication cost. The Deliver
function enables efficient propagation of long messages using erasure coding techniques and cryptographic
accumulators. The input parameters to the function are a keyword mtype, long message m, accumulation
value ze corresponding to message m and epoch e in which Deliver function is invoked. The input keyword
mtype corresponds to message type containing long message m sent by its sender. In order to facilitate
efficient leader equivocation, the input keyword mtype, hash of long message m, accumulation value ze,
and epoch e are signed by the sender of message m. We omit epoch parameter when the Deliver function
is not invoked within an epoch.

Set oi = ⊥ and gradei = ⊥. Set epoch-timer to 5∆ and start counting down. Each party Pi performs the following
operations:

1. If party Pj is the designated sender, then it multicasts its input value v in the form of ⟨gcast, v, z⟩j where z is the
accumulation value of v.

2. If epoch-timer ≥ 3∆ and party Pi receives pr := ⟨gcast, v, z⟩j , invoke Deliver(gcast, pr, z,⊥). Set grade-timer to 2∆
and start counting down. When grade-timer expires and no party Pj equivocation has been detected, set oi = v and
gradei = 2.

3. When epoch-timer expires, let vi be the first value received. If vi = ⊥, set oi = ⊥ and gradei = 0, else if oi = ⊥, set
oi = vi and gradei = 1. Output (oi, gradei).

4. (At any time) If equivocating hashes signed by party Pj are detected, multicast the equivocating hashes.

Figure 3: Weak Gradecast with O(ℓn+ (κ+ w)n2) communication.

The gradecast protocol is presented in Figure 3. In the protocol, we assume that parties start
executing a protocol instance within ∆ time of each other. The designated sender Pj sends value v by
multicasting ⟨gcast, v, z⟩j where z is the accumulation value for value v. We note that the size of input
value v can be large. To facilitate efficient equivocation checks, the sender Pj signs ⟨gcast, H(v), z⟩ and
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sends v separately. Whenever an equivocation by the sender is detected, multicasting signed hashes
suffices to prove equivocation by the sender. The reduction in communication is obtained via the use of
efficient erasure coding schemes [47], cryptographic accumulators [8] and broadcast of equivocating hashes
(if any). Broadcasting of equivocating hashes been explored in several efficient BFT protocols [3, 50].

We present security analysis in Section 13.

6 Recoverable Set of Shares

In Section 4, we presented a secure DKG protocol by assuming broadcast channels. In general, broadcast
channels are instantiated using Byzantine Broadcast (BB) or Byzantine agreement (BA) protocols. To
the best of our knowledge, all known BB and BA protocols tolerating t < n/2 Byzantine faults incur
O(κn3) communication in the absence of threshold signatures [1, 19, 35]. The secure DKG protocol
required 2n broadcasts. Thus, instantiating broadcast channel using BB or BA protocols for our secure
DKG protocol trivially incurs O(κn4) communication. In this section, we present a slightly weaker
sharing protocol by appropriately replacing the broadcast channel with multicast and our weak gradecast.
This protocol completes in constant rounds and acts as a building block towards constructing the DKG.
We call this protocol Recoverable Set of Shares.

In the sharing phase of our secure DKG protocol with broadcast channels (Figure 1), each honest
party outputs a common set QUAL consisting of size at least n − t parties such that the secrets shared
by parties in set QUAL can be reconstructed. In more detail, honest parties have a common decision on
which parties correctly shared their secret at the end of the sharing phase. Requiring this agreement
was free in the presence of broadcast channels; however, under a point-to-point network, it blows up
communication complexity.

Thus, in our protocol, we instead rely on the use of weaker primitive such as gradecast instead of
consensus to share secrets. As a result, each honest party Pi may have a different view regarding the
acceptance of the shared secret. Thus, each honest party Pi outputs a possibly different subset AcceptListi
of size at least n− t parties which they accept to have shared the secret correctly; i.e., party Pi observes
the secrets shared by parties in AcceptListi can be reconstructed. It is in this regard, we call our protocol
recoverable set of shares as the secret shared by parties in AcceptListi can be reconstructed independent
of whether these parties are present in AcceptListj for j ̸= i.

We stress that in recoverable set of shares protocol, honest parties need not agree on a common set
and may output a different subset of size at least n− t parties which they believe have shared the secret
properly. To ensure that the final keys for DKG are generated for a common set, parties need to agree on
one such set. In the following section, we present a multi-valued validated Byzantine agreement protocol
to agree on a common set.
Protocol details. Each honest party Pi starts the recoverable set of shares protocol (refer Figure 4)
with its epoch-timeri set to 16∆ and starts counting down. At the start of the protocol, each honest party
Pi selects two random t degree polynomials fi(y) =

∑
k aiky

k over Zp and f ′
i(y) =

∑
k biky

k over Zp such

that fi(0) = si and f ′
i(0) = s′i. Party Pi generates the commitment Cik = gfi(k)hf ′

i(k) ∀k ∈ {1, . . . , n}.

Let VSS.C⃗i represent Cik ∀k ∈ {1, . . . n.}. Party Pi multicasts the commitment in the form of a proposal

⟨propose,VSS.C⃗i, zpi⟩i where zpi is the accumulation value of VSS.C⃗i. In order to facilitate efficient

equivocation checks, party Pi signs ⟨propose, H(VSS.C⃗i), zpi⟩ separately and sends VSS.C⃗i separately.
Party Pi also privately sends secret share sij , s

′
ij to party Pj ∀j ∈ [n].

If a party Pj receives valid secret share sij , s
′
ij along with the proposal commi := ⟨propose,VSS.C⃗i, zpi⟩i

in a timely manner (such that its epoch-timerj ≥ 14∆), it invokes Deliver(propose, commi, zpi,−) to prop-

agate the commitment VSS.C⃗i; otherwise party Pj multicasts ⟨blame, i⟩j . Observe that we ignore the
epoch e parameter in Deliver as the current protocol is not executed in an epoch.

Party Pj waits to collect any blame messages sent by other parties. If no blame message or party
Pi equivocation have been detected within the waiting time, party Pj sends a vote ⟨vote, H(commi)⟩j
to party Pi. If up to t blame messages are received for Pi, Pj forwards the blame messages to party
Pi. Party Pi then privately sends secret shares sik, s′ik to party Pj , for every blame ⟨blame, i⟩k received
from party Pj . Upon receiving valid secret shares for all ⟨blame, i⟩k it forwarded, party Pj sends a vote
⟨vote, H(commi)⟩ to party Pi and also forwards secret shares sik, s′ik to party Pk.

Party Pi then waits to collect t+ 1 vote messages for H(commi), denoted by C(commi). A certificate
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Set epoch-timeri to 16∆ and start counting down. Each party Pi performs following operation:

1. Distribute. Each party Pi selects two random polynomials fi(y), f
′
i(y) over Zp of degree t:

fi(y) = ai0 + ai1y + · · ·+ aity
t, f ′

i(y) = bi0 + bi1y + · · ·+ bity
t

Let si = ai0 = fi(0). Party Pi generates the commitment Cik = gfi(k)hf ′
i(k) ∀k ∈ {1, . . . , n}. Let VSS.C⃗i represent

Cik ∀k ∈ {1, . . . n}. Party Pi multicasts its proposal ⟨propose,VSS.C⃗i, zpi⟩i. Party Pi computes the shares sij = fi(j),
s′ij = f ′

i(j) and sends sij , s
′
ij to Pj ∀j ∈ [n].

2. Blame/Forward. If epoch-timeri ≥ 14∆ and party Pi receives commitment commj := ⟨propose,VSS.C⃗j , zpj⟩j and

valid secret share sji, s
′
ji (i.e., satisfy Equation (1) with VSS.C⃗j), then invoke Deliver(propose, commj , zpj ,−). If no

valid secret shares has been received from party Pj until epoch-timer ≥ 13∆, multicast ⟨blame, j⟩i to all parties.

3. Request open. Wait until epoch-timeri ≥ 11∆. Collect all blames received so far. If up to t blame are received for
party Pj , forward the blame messages to party Pj . If more than t blames are received for party Pj then do not send
anything until 5. If no blames for party Pj or party Pj equivocation has been detected, send ⟨vote, H(commj)⟩i to
party Pj .

4. Open. Party Pi sends secret shares sik, s
′
ik to party Pj , for every blame ⟨blame, i⟩k received from party Pj .

5. Vote. Upon receiving valid secret shares sjk, s
′
jk for every ⟨blame, j⟩k it forwarded and no party Pj equivocation

has been detected, send ⟨vote, H(commj)⟩i to party Pj . Forward secret share sjk to party Pk for every ⟨blame, j⟩k it
received.

6. Vote cert. Upon receiving t + 1 distinct vote messages for commi (denoted by C(commi)), multicast
⟨vote-cert, C(commi), zvi⟩i.

7. Grade. If epoch-timeri ≥ 5∆ and party Pi receives the first vcj := ⟨vote-cert, C(commj), zvj⟩j , invoke
Deliver(vote-cert, vcj , zvj ,−). Set accept-timer[j] to 2∆ and start counting down. When accept-timer[j] reaches 0,
if no party Pj equivocation has been detected, set AcceptListi[j] = 2.

8. Propose Grade. Wait until epoch-timeri ≥ 3∆. Let C(commj,i) be the first vote certificate received from party
Pj . If C(commj,i) = ⊥, set AcceptListi[j] = 0, else if AcceptListi[j] ̸= 2, set AcceptListi[j] = 1. Multicast
⟨accept-list,AcceptListi⟩i.

9. Verify and Ack. Upon receiving ⟨accept-list,AcceptListj⟩j from party Pj , if the following conditions hold send
⟨ack, H(AcceptListj)⟩i to party Pj .

(a) |{h |AcceptListj [h] = 2}| ≥ n− t

(b) If AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n].

10. (Non-blocking) Equivocation. If equivocating hashes signed by party Pj are detected, multicast the equivocating
hashes.

Figure 4: Recoverable Set of Shares

on the commi implies that secret si shared by party Pi can be reconstructed later. Party Pi then
“gradecasts” ⟨vote-cert, C(commi), zvi⟩i where zvi is the accumulation value of C(commi). Similar to the
proposal, the hash of the certificate is signed to allow for efficient equivocation checks. It is important to
note that two different certificates for the same commitment commi is still considered an equivocation.

Invocation of gradecast on C(commi) ensures that if the party Pi is honest, all honest parties output
a common C(commi) with a grade of 2 and if an honest party Pk output C(commi) with a grade of 2,
all other honest parties output the certificate with a grade of ≥ 1. We note that we “embedded” our
gradecast protocol in our recoverable set of shares protocol. Alternatively, we could invoke our weak
gradecast protocol with the same complexity metric.

Note that all parties (at least all honest parties) are executing the secret sharing phase. Thus, at
the end of gradecast step, each honest party outputs at least n − t certificates with a grade of 2 and
outputs at most t values with a grade ≤ 2. We call the list of grades for party Pj as AcceptListj . This
list is a set of parties which party Pj observes to have shared their secret properly and each secret can
be reconstructed. Party Pj then multicasts its AcceptListj to all other parties. Party Pk then checks the
validity of AcceptListj by checking if (i) |{h |AcceptListj [h] = 2}| ≥ n − t, and (ii) if AcceptListj [h] = 2
then AcceptListk[h] ≥ 1 ∀h ∈ [n]. The first check ensures that AcceptListj contains at least n− t entries
with AcceptListj [h] = 2. This check trivially satisfies for AcceptList sent by an honest party as each honest
party receives at least n−t certificates with a grade of 2. Later, the DKG protocols use secrets from parties
in AcceptListj such that AcceptListj [h] = 2 to compute the final keys. This is required to ensure security
of DKG protocol. The second check ensures that all the secrets corresponding to AcceptListj [h] = 2 are
recoverable; observe that if AcceptListj [h] = 2 then AcceptListk[h] ≥ 1 due to weak gradecast properties.
This implies party Pk has received a C(commh) from party Ph and C(commh) implies the secret shared
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by party Ph can be reconstructed. If the checks pass, party Pk sends ⟨ack, H(AcceptListj)⟩k to party Pj .
A set of t + 1 ack (ack-cert) messages for AcceptListj (denoted by AC(AcceptListj)) implies at least one
honest party has verified that all the secrets corresponding to AcceptListj [h] = 2 can be recovered.

The idea of using gradecast to perform secret sharing has been explored before in the works of
Feldman and Micali [24, 25] to generate common source of randomness. Compared to their work, our
protocols work in authenticated model with t < n/2 resilience and invoke a single gradecast per secret
sharing. Their protocols work in unauthenticated model without PKI with t < n/4 [24] and t < n/3 [25]
resilience and involved multiple invocation of gradecast per secret sharing.

We present a detailed security analysis in Section 14.

7 Oblivious Leader Election

In this section, we construct an oblivious leader election (OLE) (aka, common coin) protocol that outputs
a common honest leader with some constant probability called the fairness. In the absence of an existing
threshold (DKG) setup, the common coin was designed via n2 parallel invocations of weaker VSS prim-
itives such as graded VSS [24] or moderated VSS [35] which trivially incurs Ω(n4) communication. A
recent work [2] designs an OLE protocol tolerating t < n/3 Byzantine faults using Aggregatable PVSS [29]
for the asynchronous model which incurs only O(κn3) communication. Aggregatable PVSS [29] allows a
linear number of secret sharings to be aggregated into a single transcript whose size is linear. However,
Aggregatable PVSS requires additional cryptographic assumptions which is not desirable. In this work,
we build an OLE protocol using n parallel invocations of weaker VSS primitives and non-interactive
threshold signatures [13] which incurs a communication complexity of O(κn3).

7.1 Construction

The starting point of our construction is the threshold coin-tossing scheme of Cachin et al. [13] which
makes use of non-interactive threshold signature scheme. The threshold signature scheme requires a
prior threshold setup which is essentially a DKG. After the threshold setup phase, all parties sign a
common message (e.g., an epoch number) with their threshold secret keys to obtain threshold shares.
Any combination of any t+1 valid threshold shares is then used to obtain a unique and random threshold
signature. We make use of this unique and random threshold signature in our leader election protocol.

Note that the threshold signature scheme requires a prior threshold setup. The threshold setup
establishes a tuple (sk1, . . . , skn) of secret keys, a tuple (vk1, . . . , vkn) of verification keys. We fulfill this
requirement in a weaker manner by using the output of recoverable set of shares protocol (Section 6). In
recoverable set of shares protocol, each party Pi outputs a AcceptListi along with AC(AcceptListi). An
AcceptListi consists of at least n − t entries with grades of 2 and all honest parties will contain secret
shares shared by parties in AcceptListi whose grades are 2. Thus, each party Pi uses secret shared by
parties in an AcceptListi with grades of 2 as their local DKG setup local dkg[i]. This establishes required
keys for local DKG local dkgi. With local DKG setup local dkg[i] as the threshold setup for party Pi,
parties generate threshold signature which is used to generate coin value assigned to party Pi. A party
with highest (or lowest) coin value is selected to be the leader.

Looking ahead, the final DKG is also computed from one of the valid AcceptList output from the
recoverable set of shares. Making use of the secret shares in an AcceptList output from the recoverable
set of shares during this local DKG setup phase will leak the final public key before the final DKG
is decided. Note that the final public key can be computed from t + 1 verification keys. This allows
the adversary ability to force the final DKG to have certain final public key. To circumvent this issue,
we execute two separate instances of recoverable set of shares in parallel; one instance to setup local
DKG instances and the other to setup the final DKG instance. To remove ambiguity, we call the accept
list output from the recoverable set of shares executed for local DKG as AcceptList2 i.e. each party Pi

outputs an AcceptList2i along with AC(AcceptList2i).
Protocol Details. The setup phase of the protocol is presented in Figure 5. In order to use the threshold
signature scheme, each party Pi invokes recoverable set of shares protocol and outputs AcceptList2i which
is used to setup local DKG instance local dkg[i]. The local dkg[i] uses secret shares shared by parties in
AcceptListi whose grades are 2. At the end of the threshold setup phase, each party Pi sets the local
DKG instance for other parties (local dkgi[j]) for party Pj) along with a grade (i.e, local dkg gradei[j]).
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1. Each party Pi invokes recoverable set of shares protocol (refer Figure 4). Each party Pi outputs (AcceptList2i
AC(AcceptList2i)).

2. Each party Pi invokes weak gradecast to propagate (AcceptList2i,AC(AcceptList2i)).
3. Let (oj,i, gradei[j]) be the output with party Pj as dealer. Let oj,i contains AcceptList2j . If gradei[j] ≥ 1, set

local dkgi[j] = AcceptList2j , local dkg gradei[j] = gradei[j].

- Set skj,i =
∑

m∈AcceptList2j |AcceptList2j [m]=2 smi, vkj,i = gskj,i , and sk′j,i =
∑

m∈AcceptList2j |AcceptList2j [m]=2 s
′
ji.

- Compute C⟨g⟩(skj,i), C⟨g,h⟩(skj,i, sk′j,i)) and π≡Comj,i = NIZKPK≡Com(skj,i, sk
′
j,i, g, h, C⟨g⟩(skj,i), C⟨g,h⟩(skj,i, sk′j,i)).

Multicast (vkj,i, π≡Comj,i) to all parties.

Figure 5: Threshold setup protocol

If local dkg gradei[j] = 2, due to weak gradecast properties, all honest parties have a common local
DKG instance for party Pj (i.e., local dkg[j]). Each party Pi also computes required secret keys skj,i,
verification keys vkj,i for local DKG instance local dkgi[j] as shown in Figure 5.

Let sid be the input of party Pi.
Set Xi ← ∅. Each party Pi performs following operations:

1. Perform σj,i = SignTS(skj,i, (j, sid)) and multicast σj,i if local dkg gradei[j] ≥ 1 ∀j ∈ [n].

2. Upon receiving a set S of t + 1 valid signature shares for party Pj , compute σj = CombineTS(pk, sid, S) and Xi[j] ←
H′(σj).

3. Perform ℓ← argmaxh{Xi[h]|local dkg gradei[h] = 2}. Output Pℓ.

Figure 6: Oblivious Leader Election

The leader election protocol is presented in Figure 6. The input to the protocol is a sequence id
sid. Once the local DKG instances are setup, each party Pi uses its secret key skj,i to sign a common
message i.e., (j, sid) (for party Pj) if local dkg gradei[j] ≥ 1 to obtain a threshold share. A set of t + 1
valid signature shares corresponding to local dkg[j] is combined to form a single threshold signature σj

and a hash H ′(σj) generates coin value for party Pj . Note that two or more parties could have the same
AcceptList2; hence their local DKG might be same. However, parties sign a distinct message e.g. (j, sid)
for party Pj . Such generated threshold signatures are unique and random regardless of their local DKG
instance being common; hence the coin value is also random. Honest parties consider coin values for
party Pj if local dkg gradei[j] = 2. Note that if local dkg gradei[j] = 2, a threshold signature σj for party
Pj . This is because all honest parties will have local dkg grade[j] ≥ 1 and a common local dkgj due to
weak gradecast properties. The party Pℓ with highest coin value is elected as leader.
Latency and communication complexity. The threshold setup phase has a latency of 23∆ to invoke
recoverable set of shares and n parallel instances of weak-gradecast and distribute verification keys. The
OLE protocol requires only 2∆ to generate threshold signatures. The threshold setup phase invokes n
parallel weak-gradecasts with an input of size O(κn) and recoverable set shares. This incurs O(κn3)
communication. The threshold signature generation incurs O(κn3) communication.

We present security analysis in Section 15.

8 Multi-Valued Validated Byzantine Agreement

In the previous section, we presented a recoverable set of shares protocol where each honest party Pi

outputs a (possibly different) set AcceptListi of size at least n− t and its ack-cert AC(AcceptListi)–both
of which are linear sized. For DKG, all honest parties need to agree on a common set of parties whose
secret shares are used to compute final secret keys and a public key. Thus, we need a consensus primitive
that takes a different O(n)-sized input from each party and outputs a common set which is valid. Here,
a valid set is accompanied by its certificate and can potentially also be the input of a Byzantine party.
Such a consensus primitive is called a multi-valued validated Byzantine agreement.

Multi-valued validated Byzantine agreement (MVBA) was introduced by Cachin et al. [12] to allow
honest parties to agree on any externally valid value. Recent works [4,38] have proposed MVBA protocols
for the asynchronous communication model with reduced communication assuming t < n/3 Byzantine
faults. Abraham et al. [4] present a MVBA protocol with O(κn2) communication for small size inputs
and Luo et al. [38] present MVBA protocol for long message of size ℓ with O(nℓ + κn2) communication
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Let vi be party Pi’s input and e be the current epoch. Each party Pi sets epoch-timere to 12∆ and locki ← ⊥. Each
party Pi performs following operations.

1. Propose. Each party Pi invokes weak gradecast (refer Figure 3) to propagate vi.

2. Update. Wait until epoch-timere ≥ 7∆. Let (vj,i, gradei[j]) be the output with party Pj as the dealer. Let

Svi := {j : vj,i = v ∧ gradei[j] = 2} and S̃vi := {j : vj,i = v ∧ gradei[j] ≥ 1}. If locki = ⊥, then:

(a) If |S̃vi | > t, update vi ← v.

(b) If |Svi | > t, set locki ← 1.

Invoke weak gradecast (refer Figure 3) to propagate vi.

3. Update2. Wait until epoch-timere ≥ 2∆. Again, let (vj,i, gradei[j]) be the output with party Pj as the dealer. Define

Svi and S̃vi as above. If locki = ⊥ and |S̃vi | > t, set vi ← v. Multicast vi.

4. Leader election. Invoke OLE protocol (refer Figure 6) with input e.

5. Terminate/Advance Epoch. Let Pℓ be the output of leader election protocol. When epoch-timere expires,

(a) If locki = 0, output vi and terminate.

(b) If locki = 1, set locki = 0. If locki = ⊥ and |Svi | ≤ t, vℓ,i ̸= ⊥ and ex-validation(vℓ,i) = true, update vi ← vℓ,i.
Advance to epoch e+ 1, set epoch-timere to 12∆ and start counting down.

6. (Non-blocking) Equivocation. If equivocating hashes signed by party Pj are detected, multicast the equivocating
hashes.

Figure 7: MVBA with O(κn3) communication and expected 4 epochs.

and constant expected rounds. Both of the works assume threshold signatures to generate constant-
sized certificates. In the absence of threshold signatures, the communication blows up linearly in both
protocols. In addition, to the best of our knowledge, no MVBA protocol have been proposed in the
synchronous communication model for t < n/2 case. In this paper, we present a synchronous MVBA
protocol tolerating t < n/2 Byzantine faults with O(κn3) communication and expected constant rounds.

We extend the Binary Byzantine agreement (BBA) protocol of Katz and Koo [35] to MVBA for large
(ℓ = Θ(n)) input. Their protocol tolerates t < n/2 Byzantine faults and terminates in expected 4 epochs.
They present two BBA protocols. The first protocol involves invoking n parallel gradecasts; with each
gradecast propagating small sized input. As mentioned before, their gradecast protocol incurs O(κn3)
communication; thus, their first protocol trivially incurs O(κn4) communication. Their second protocol
avoids the use of gradecast to reduce round complexity; however the protocol can output ⊥ if honest
parties do not start with the same input; which is not desired for our purpose. Thus, we make efficiency
improvements on their first protocol to obtain our MVBA protocol.

We replace their gradecast protocol with our communication optimal gradecast protocol from Sec-
tion 5. Our gradecast protocol incurs only O(κn2) communication while propagating O(n)-sized input.
Using our gradecast protocol allows BBA protocol of Katz and Koo [34] to handle large input while
simultaneously reducing the communication to O(κn3).

To circumvent the linear round lower bound for a deterministic BA protocol [19], BA protocols use
a common source of randomness called common coin to achieve agreement in constant expected rounds.
The common coin is weak if honest parties may output different random values and outputs a common
random value with some constant probability. In Katz and Koo BBA, the weak common coin was
obtained by invoking n2 moderated VSS instances which incurs Ω(κn4) communication. We replace
their common coin protocol with our communication efficient leader election protocol from Section 7
which outputs a common honest leader with some constant probability. Our OLE protocol incurs O(κn3)
communication and 2∆ latency. We present our MVBA protocol in Figure 7.
Exact round complexity. By Lemma 19, a common honest leader is selected with probability at least
1
2 and all honest parties terminate in the next 2 epochs. Thus, the expected number of epochs required
is 4 epochs.

We present security analysis in Section 16.

9 Distributed Key Generation

Finally, we present two communication efficient DKG protocols with O(κn3) communication. The first
protocol is randomized and terminates in expected constant epochs while the second protocol is deter-

16



1. Deal/Setup. Each party Pi invokes recoverable set of shares protocol (refer Figure 4). Each party Pi outputs a set
AcceptListi with an ack-cert for AcceptListi (i.e., AC(AcceptListi)). Each party Pi also invokes threshold setup phase
(refer Figure 5) in parallel.

2. MVBA. Each party Pi invokes MVBA (Figure 7) with input (AcceptListi, AC(AcceptListi)). Let AcceptListk be the
output of all honest parties.

3. Synchronize. Each party Pi multicasts ⟨sync⟩i when it terminates from MVBA protocol. Upon receiving t + 1
distinct sync messages, multicast t+ 1 sync messages and proceed to the next step.

4. Generating keys. Let xi =
∑

j∈AcceptListk|AcceptListk[j]=2 sji and x′
i =

∑
j∈AcceptListk|AcceptListk[j]=2 s

′
ji

be the sum of secret shares in AcceptListk. Compute C⟨g⟩(xi), C⟨g,h⟩(xi, x
′
i) and π≡Comi =

NIZKPK≡Com(xi, x
′
i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x

′
i)).

- Multicast (C⟨g⟩(xi), π≡Comi) to all parties.

- Verify the received (C⟨g⟩(xi), π≡Comj) as shown in Equation (3).

- Upon receiving t + 1 valid C⟨g⟩(xi), interpolate them to obtain y = gx. Set y as the public key and xi as the
private key.

Figure 8: Randomized DKG with O(κn3) communication and expected O(∆) epochs

ministic and terminates in t+ 1 epochs. The DKG protocols in this section differs from the secure DKG
protocol of Section 4 in the following ways. First, we replace the broadcast channel with Byzantine
consensus primitives and requires a single invocation of consensus instance. Second, in the secure DKG
protocol, the final public key and secret keys are computed from the secret shares of all honest parties.
In particular, all honest parties belong to set QUAL and the public key and secret keys are computed from
parties in QUAL. In contrast, the DKG protocols in this section compute the final public key and secret
keys from a common set of size at least n− t where at least n− 2t parties are honest (i.e., at least one
honest party when n = 2t + 1). This suffices to ensure construction of a secure DKG protocol.

9.1 Randomized DKG

The randomized DKG protocol uses recoverable set of shares protocol (refer Figure 4) to perform secret
sharing. The threshold setup protocol (refer Figure 5) is also executed at the start of the execution. At
the end of the recoverable set of shares, each honest party Pi outputs a (possibly different) set of at least
n− t parties (AcceptListi) which they observe to have correctly shared their secret along with an ack-cert
for AcceptListi (AC(AcceptListi)). The ack-cert for AcceptListi serves an external validity function to the
MVBA protocol i.e., if there is an AC(AcceptListi) for AcceptListi, then ex-validation(AcceptListi) = true.
Note that both AcceptListi and AC(AcceptListi) are linear sized. Each honest party Pi then invokes
MVBA protocol with (AcceptListi, AC(AcceptListi)) as input. At the end of MVBA protocol, each
honest party outputs a common set AcceptListk. Additionally, parties synchronize to ensure all honest
parties begin computing keys within ∆ time of each other. The final secret key and public key is then
computed using secret shares shared by parties h such that AcceptListk[h] = 2 using the reconstruction
protocol in Figure 1.
Latency and communication complexity. The recoverable set of shares protocol incurs a latency
of 16∆ and O(κ + w)n3) communication. The threshold setup protocol incurs a communication of
O((κ+w)n3) and a latency of 23∆; but is executed in parallel and completes before the OLE protocol is
invoked in the MVBA protocol. Thus, it does not increase overall latency of the protocol. The MVBA
protocol incurs expected 4 epochs (with each epoch being 12∆) and O((κ+w)n3) communication where
the size of input is O(κn). The Synchronize step incurs O(κn3) communication and 2∆ time in the worst
case. The reconstruction phase requires O(κn2) communication and 2∆ time in the worst case. Thus,
the protocol incurs O((κ + w)n3) communication and expected 68∆ time.

9.2 Deterministic DKG

While the above randomized protocol terminates in expected 4 epochs in the best case, it has probabilistic
termination and may require a linear number of epochs in the worst case with a communication of O(κn4).
As an alternate solution, we present a deterministic DKG protocol with guaranteed termination in t+ 1
epochs with O(κn3) communication in the worst case. The protocol is presented in Figure 9. In the
protocol, honest parties execute the recoverable set of shares protocol and each honest party Pi outputs
a (possibly different) set of at least n − t parties (AcceptListi) which they observe to have correctly
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shared their secret along with an ack-cert for AcceptListi (AC(AcceptListi)). The tuple (AcceptListi,
AC(AcceptListi)) is input into a leader-based Byzantine fault tolerant state machine replication (BFT
SMR) protocol of RandPiper [9] to agree on a common set. We present a brief overview of the BFT
SMR.

1. Deal. Each party Pi invokes recoverable set of shares protocol (refer Figure 4). Each party Pi output a set AcceptListi
with an ack-cert for AcceptListi.

2. BFT SMR. Each party Pi participates in BFT SMR (refer Figure 11) with input AcceptListi and AC(AcceptListi).
The BFT SMR protocol is executed in round-robin manner with first t + 1 leaders. Let AcceptListk be the first
committed value of all honest parties.

3. Generating keys. Let xi =
∑

j∈AcceptListk|AcceptListk[j]=2 sji and x′
i =

∑
j∈AcceptListk|AcceptListk[j]=2 s

′
ji

be the sum of secret shares in AcceptListk. Compute C⟨g⟩(xi), C⟨g,h⟩(xi, x
′
i)) and π≡Comi =

NIZKPK≡Com(xi, x
′
i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x

′
i).

- Multicast (C⟨g⟩(xi), π≡Comi) to all parties.

- Verify the received (C⟨g⟩(xi), π≡Comj) as shown in Equation (3).

- Upon receiving t + 1 valid C⟨g⟩(xi), interpolate them to obtain y = gx. Set y as the public key and xi as the
private key.

Figure 9: Deterministic DKG with O(κn3) communication and t+ 1 epochs

BFT SMR of RandPiper [9]. The BFT SMR protocol of RandPiper [9] (refer Figure 11) is a
communication efficient rotating-leader SMR protocol with O(κn2) communication per epoch even for
O(n)-sized input. The BFT SMR protocol has optimal resilience i.e., tolerates t < n/2 Byzantine faults.
The leaders are rotated in each epoch; in their protocol, an epoch is a duration of 11∆. When the leader
of an epoch is honest, all honest parties commit the proposed value in the same epoch, whereas, when the
leader of the epoch is Byzantine, some honest parties may require linear number of epochs to commit the
proposed value. The BFT SMR utilizes the “block-chaining” paradigm i.e., each proposal is represented
in the form of a block which explicitly extends a block B proposed earlier by including hash of previous
block B. In this paradigm, when a block B is committed, all its ancestors are also committed. We refer
the readers to the RandPiper [9] for more details.

In this deterministic DKG protocol, we execute the BFT SMR protocol for t + 1 epochs. In each
epoch, the epoch leader is expected to propose its (AcceptList, AC(AcceptList)). If the epoch leader is
honest, all honest parties commit the proposed set in the same epoch; otherwise honest parties may
require linear number of epochs when the leader is Byzantine to commit the proposed value or commit
no value at all if the Byzantine leader does not propose. Since the BFT SMR protocol is executed for
t + 1 epochs, there will be at least one honest leader; thus all honest parties commit at least one set.
Honest parties output the first committed set and perform reconstruction using this set to generate the
final secret key and public key.
Latency and communication complexity. The recoverable set of shares protocol incurs a latency
of 16∆ and O(κn3) communication. The BFT SMR protocol incurs O(κn2) communication per epoch;
O(κn3) communication for t + 1 epochs. The length of each epoch is 11∆. The reconstruction phase
requires O(κn2) communication and 2∆ time in the worst case. Thus, the protocol incurs O(κn3)
communication and 18∆ + ((t + 1) ∗ 11∆) time.

10 A Lower bound on the Communication Complexity for Se-
cure Distributed Key Generation

In this section, we formalize a communication lower bound for a deterministic protocol for secure dis-
tributed key generation. The proof of this lower bound is inspired by the well-known communication
lower bound for Byzantine broadcast by Dolev and Reischuk [18]. In the lower bound proof, we argue
properties C1 and C2 (refer Definition 3.1) for a secure DKG protocol map to the agreement property
in Byzantine broadcast and properties C3 and secrecy (refer Definition 3.1) map to the validity property
in Byzantine broadcast. We conclude a secure DKG protocol must incur Ω(t2/4) communication.

Theorem 7. There does not exist a deterministic protocol for distributed key generation tolerating t
Byzantine parties with a communication complexity of at most t2/4 messages.
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Proof. Suppose for the sake of contradiction, there exists such a protocol. By secrecy property in
Definition 3.1, the unique secret x has to be generated by the input contributions of a set Q of least t+ 1
parties; otherwise, the adversary controlling t Byzantine parties can learn about the secret x. Moreover,
the input contribution by at least one honest party r ∈ Q is not predetermined and must be selected
uniformly at random; otherwise, t Byzantine parties can bias the unique secret x and violate correctness
property (C3). Since input contribution by the honest party r ∈ Q is chosen uniformly at random, with
high probability, there must be a unique secret v ∈ Zp (and corresponding public key) that honest parties
do not decide if they receive no messages. Consider the parties being partitioned into the following 2
sets – A: a set of ⌈t/2⌉ parties, B: all remaining parties.

We consider two executions where correctness is violated in the last execution. In the first execution
(W1), all parties in A are Byzantine. Parties in A do not communicate with each other. Towards B,
parties in A execute honestly except they ignore the first ⌈t/2⌉ messages from parties in B. Since, the
maximum faults in W1 is ⌈t/2⌉, the protocol decides and assume all honest parties decide a common
public key y = gv for some unique secret v.

Since the communication complexity of the protocol is at most t2/4, there must exist a party (say s)
in A that receives at most t/2 messages from parties in B; otherwise the communication complexity will
be more than t2/4. Let Bs be the set of all parties that send messages to party s in W1.

In the second execution (W2), all parties in A\{s} are Byzantine and all parties in Bs are Byzantine.
The total number of Byzantine parties is (⌈t/2⌉ − 1) + ⌈t/2⌉ ≤ t which is within allowed fault threshold
t. All parties in Bs execute the protocol in the same way as in W1 except they do not send any messages
to party s. Parties in A \ {s} execute the protocol in the same way as in W1. Party s in W1 behave as
an honest party which did not receive the first ⌈t/2⌉ messages which is similar to party s in W2 which
receives no messages. Thus, parties in B \ Bs cannot distinguish W1 and W2. Thus, they decide the
same common public key y. Since, party s does not receive any messages in W2, it does not decide y. If
it does not decide any public key or decides any other public key y′ ̸= y, the correctness property (C2)
is violated. A contradiction.
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11 Extended Preliminaries

11.1 Linear erasure and error correcting codes.

• ENC. Given inputs m1, . . . ,mt+1, an encoding function ENC computes (s1, . . . , sn) = ENC(m1, . . . ,mt+1),
where (s1, . . . , sn) are code words of length n. A combination of any t + 1 elements of n code words
uniquely determines the input message and the remaining of the code word.

• DEC. The function DEC computes (m1, . . . ,mt+1) = DEC(s1, ..., sn), and is capable of tolerating up
to c errors and d erasures in code words (s1, . . . , sn), if and only if t ≥ 2c + d.

11.2 Cryptographic accumulators.

Formally, given a parameter k, and a set D of n values d1, . . . , dn, an accumulator has the following
components:

• Gen(1k, n): This algorithm takes a parameter k represented in unary form 1k and an accumulation
threshold n (an upper bound on the number of values that can be accumulated securely), returns an
accumulator key ak. The accumulator key ak is part of the q-SDH setup and therefore is public to all
parties.

• Eval(ak,D): This algorithm takes an accumulator key ak and a set D of values to be accumulated,
returns an accumulation value z for the value set D.

• CreateWit(ak, z, di,D): This algorithm takes an accumulator key ak, an accumulation value z for D
and a value di, returns ⊥ if di ∈ D, and a witness wi if di ∈ D.

• Verify(ak, z, wi, di): This algorithm takes an accumulator key ak, an accumulation value z for D, a
witness wi and a value di, returns true if wi is the witness for di ∈ D, and false otherwise.
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11.3 Non-interactive threshold signature scheme

The threshold signature scheme of Cachin et al. [13] consists of following interfaces:

• The randomized key generation algorithm KeyGenTS that takes a security parameter κ as input
and outputs a tuple (sk1, . . . , skn) of secret keys, a tuple (pk1, . . . , pkn) and a common public key
pk.

• The deterministic signing algorithm SignTS that takes as input ski and a message m and outputs
a signature σi on m.

• The deterministic share verification algorithm ShareVerifyTS that takes as input public key pki, a
signature share σi and tuple (i,m). It outputs a bit b ∈ {0, 1} indicating whether σi is a valid
signature share on m under secret key ski.

• The deterministic combining CombineTS takes as input a tuple of public keys (pk1, . . . , pkn), a
message m, and a list of t + 1 pairs (i, σi). It outputs either a signature σ on m or ⊥, if (i, σi)
contains ill-formed signature shares.

• The deterministic verification algorithm VerifyTS takes as input a signature σ, a message m and a
common public key pk. It outputs a bit b ∈ {0, 1} indicating whether σ is a valid signature on m.

11.4 Construction of NIZKPK≡Com.

NIZKPK≡Com is generated as follows:
- Pick v1, v2 ∈R Zp, and let t1 = gv1 and t2 = hv2 .
- Compute hash c = H≡Com(g, h, C⟨g⟩(s), C⟨g,h⟩(s, r), t1, t2), where H≡Com : G6 → Zp is a random oracle

hash function.
- Let u1 = v1 − c · s and u2 = v2 − c · r.
- Send the proof π≡Com = (c, u1, u2) along with C⟨g⟩(s) and C⟨g,h⟩(s, r).
The verifier checks this proof (given π≡Com, g, h, C⟨g⟩(s), C⟨g,h⟩(s, r)) as follows:

- Let t′1 = gu1C⟨g⟩(s)c and t′2 = hu2(
C⟨g,h⟩(s,r)

C⟨g⟩(s)
)c.

- Accept the proof as valid if c = H≡Com(g, h, C⟨g⟩(s), C⟨g,h⟩(s, r), t′1, t
′
2).

12 Analysis of Secure DKG

We rely on the following Lemma of [45].

Lemma 8 ( [45]). Under the discrete-log assumption, Pedersen’s VSS satisfies following properties in
the presence of a polynomially bounded adversary that corrupts up to t parties.

(i) If the dealer is not disqualified during the sharing phase, then all honest parties hold secret shares
that interpolate to unique polynomial of degree t. In particular, any t + 1 of these shares suffice to
reconstruct the secret σ.

(ii) The protocol produces information (i.e., commitments Ck and secret shares σi) that can be used at
reconstruction time to test for the correctness of each secret share; thus, reconstruction is possible,
even in the presence of malicious parties, from any subset of shares containing at least t+ 1 correct
secret shares.

(iii) The view of the adversary is independent of the value of the secret σ, and therefore the secrecy of
σ is unconditional.

Note that Lemma 8 also holds when using evaluations instead of coefficients as discussed in Section 9.
The coding check (see Equation (2)) ensures that the shared commitments to evaluations are indeed a t
degree polynomial except with 1/p probability in Zp. Since p is sufficiently large (poly(κ)), the probability
of the check failing is negligible in the security parameter.

Fact 9. If a dealer Pi receives a vote-certificate, all honest parties must have received their corresponding
secret shares sij, s

′
ij.
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Proof. Suppose a dealer Pi receives a vote-certificate i.e, t + 1 vote messages. At least one of the vote
messages is sent by an honest party (say Pj). An honest party Pj sends a vote message only when it
receives no blame messages or receives up to t blame messages and dealer Pi sent secret shares sik, s′ik
for every ⟨blame, i⟩k message it forwarded.

If party Pj received no blame messages, all honest parties must have received their corresponding
secret shares sij , s

′
ij ; otherwise honest parties would have sent blame messages. On the other hand, if

party Pj received f ≤ t blame messages, n− t− f honest parties must have received their corresponding
secret shares; otherwise, these honest parties would have sent blame messages and party Pj would have
received more than f blame messages. Since party Pj forwards secret shares sik, s′ik to party Pk for every
⟨blame, i⟩k message it received, all honest parties must have received corresponding secret shares.

Theorem 10. Under discrete-log assumption and random oracle, the protocol in Figure 1 is a secure
protocol for distributed key generation in dlog-based cryptosystem tolerating t < n/2 Byzantine faults.

Let B be the set of parties controlled by the adversary, and G be the set of honest parties (run by the simulator
S). Without of loss of generality, let B = [P1, Pt′ ] and G = [Pt′+1, Pn], where t′ ≥ t. Let Y ∈ G be the input
public key and H≡Com : G6 → Zp is a random oracle hash table for NIZKPK≡Com.

1. Perform Step 1 through Step 6 on the behalf of the uncorrupted parties Pt′+1, . . . , Pn exactly as secure DKG
protocol (refer Figure 1) until set QUAL is finalized. At the end of Step 6, the following holds:

- Set QUAL is well-defined with at least one honest party in it.

- The adversary’s view consists of polynomials fi(y), f ′
i(y) for Pi ∈ B, the secret shares sij , s′ij for

Pi ∈ QUAL ∩ G, Pj ∈ B, and the commitments Ci for Pi ∈ QUAL.

- S knows all fi(y) and f ′
i(y) for Pi ∈ QUAL as it knows n− t′ shares for each of those.

2. Perform the following computations for each i ∈ {t+ 1, . . . , n} before Step 6 (refer Figure 1).

(a) Compute xj for party Pj ∈ B. Similarly, compute xj for party Pj ∈ [Pt′+1, Pt]. Interpolate in the
exponent (0, Y ) and (j, gxj ) for j ∈ [1, t] to compute C⟨g⟩(x

∗
i ) = gx

∗
i .

(b) Compute the corresponding NIZKPK≡Com by generating random challenges ci ∈ Zp and responses

ui,1, ui,2 ∈ Zp, computing the commitments ti,1 = (gx
∗
i )cigui,1 and ti,2 =

C⟨g,h⟩(xi,x
′
i)

ci

C⟨g⟩(x
∗
i )

hui,2 and include

entry ⟨(g, h, C⟨g⟩(x
∗
i ), C⟨g,h⟩(xi, x

′
i), ti,1, ti,2), ci⟩ in the hash table H≡Com so that π≡Com = (ci, ui,1, ui,2).

3. In the end, x =
∑

Pi∈QUAL si such that Y = gx.

Figure 10: Simulator for Secure DKG

Proof. We first prove correctness of the protocol. Observe that all honest parties build the same set of
non-disqualified parties QUAL in Step 6. This is true because the commitment to the shared polynomials
and vote-certificates are posted on the broadcast channel and broadcast channel ensures all honest parties
output a common value.

Note that if a party Pj ∈ QUAL, it must have posted its commitment and vote-certificate on the
broadcast channel. By Fact 9, all honest parties have received secret shares shared by party Pj . This
implies party Pj is not disqualified during the sharing phase. By part (i) of Lemma 8, all honest parties
hold correct secret shares and any t + 1 of these secret shares suffices to reconstruct the secret sj . This
is true for all parties Pj ∈ QUAL. Since, the secret key x is sum of individual secret sj contributed by
Pj ∈ QUAL and each secret sj can be reconstructed using Lagrange interpolation via a combination of
t + 1 secret shares provided by honest parties, the secret key x can be reconstructed via t + 1 shares
provided by honest parties. This proves property C1 of a secure DKG protocol.

By part (ii) of Lemma 8, there exists information (i.e., commitments) that can be used to verify
correctness of each secret share. Observe that each honest party Pj sends gxj and NIZKPK≡Com proof
π≡Comj at the end of sharing phase. Each party Pi can verify correctness of C⟨g⟩(xj) by checking Equa-
tion (3). A valid NIZKPK≡Com proof π≡Comj proves in zero knowledge that party Pj knows xj and x′

j

thus proving the correctness of gxj . By using t + 1 valid gxj , honest parties can compute the same gx

via Lagrange interpolation in the exponent which is the public key. This proves property C2 of a secure
DKG protocol.
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Observe that the secret key x is the sum of secrets shared by parties in QUAL which contains at
least one honest party and honest parties select their secret uniformly at random. This suffices to prove
property C3 of a secure DKG protocol.

We now prove secrecy. Our proof of secrecy is based on the proof of secrecy in earlier works [27,33].
We provide a simulator S for our secure DKG protocol in Figure 10. Without loss of generality, we
assume the adversary A compromises parties P1, . . . , Pt′ , where t′ ≤ t, denoted by set B. The rest of the
parties Pt′+1, . . . , Pn, denoted by set G are controlled by the simulator.

Informally, the simulator S with input Y runs as follows. S will run on the behalf of the honest
parties G Step 1 until Step 6 following exactly the instructions. At this point, the set QUAL is well-defined
and S knows all fi(y) and f ′

i(y) for Pi ∈ QUAL as it knows n− t′ shares for each of those. Observe that
the view of adversary A that interacts with S is identical to the view of A that interacts with honest
parties in a regular run of the protocol. In particular, A sees following distribution of data:

- Polynomials fi(y), f ′
i(y) for Pi ∈ B

- Values fi(j), f
′
i(j) for i ∈ G, j ∈ B and values Ci for Pi ∈ QUAL

S will then change the secret shared by one honest party (say Pn) to “hit” the desired public key Y
such that the above data distribution observed by A remains identical. For parties Pi ∈ (G \ {Pn}), the
input polynomial fi(y) and f ′

i(y) remains identical. Thus, their data distribution remains identical. For
party Pn, the input polynomial is modified such that gf

∗
n(0) = gs

∗
n = Y∏

Pj∈QUAL\{Pn} gsi
and f∗

n(j) = snj for

j ∈ [1, t]. Define f ′∗(y) such that f∗
n(y) +λf ′∗

n (y) = fn(y) +λf ′
n(y), where λ = logg(h). Observe that for

these polynomials, the evaluations and commitments seen by parties in B is identical to the real run of
the protocol.

Simulator S will then compute gxj for party Pj ∈ [P1, Pt] and interpolate in the exponent (0, Y ) and
(j, gxj ) for j ∈ [1, t] to compute C⟨g⟩(x∗

i ) = gx
∗
i and the corresponding NIZKPK≡Com and publish these

values. Observe that these values pass the verification in the real run of protocol.
It remains to be shown that polynomials f∗

i (y) and f ′∗
i (y) belong to the right distribution. For

QUAL \ (G \ {Pn}), this is trivially true as they are defined identically to fi(y) and f ′
i(y) which were

chosen uniformly at random. For f∗
n, the polynomial evaluates to random values fn(j) at j ∈ [1, t] and

evaluates to logg(s∗n) required to hit Y . Finally, f ′∗
n (y) is defined as f∗

n(y) + λf ′∗
n (y) = fn(y) + λf ′

n(y),

and since f ′
n(y) is chosen to be random, so is f

′∗
n (y).

13 Analysis of Gradecast

Fact 11. If an honest party invokes Deliver at time τ for an object b sent by party Pj and no honest
party has detected a party Pj equivocation by time τ + ∆, then all honest parties will receive object b by
time τ + 2∆.

Proof. Suppose an honest party Pi invokes Deliver at time τ for an object b sent by party Pj . Party Pi

must have sent valid code words and witness ⟨codeword, mtype, sk, wk, ze, e⟩i computed from object b to
every party Pk ∈ P at time τ . The code words and witness arrive at all honest parties by time τ + ∆.

Since no honest party has detected a party Pj equivocation by time τ + ∆, it must be that either
honest parties will forward their code word ⟨codeword,mtype, sk, wk, ze, e⟩ when they receive the code
words sent by party Pi or they already sent the corresponding code word when they either invoked Deliver
for object b or received the code word from some other party Pj . In any case, all honest parties will
forward their epoch e code word corresponding to object b by time τ + ∆. Thus, all honest parties will
have received t + 1 valid code words for a common accumulation value ze by time τ + 2∆ sufficient to
decode object b by time τ + 2∆.

Theorem 12. The protocol in Figure 3 is gradecast protocol satisfying Definition 5.1.

Proof. We first consider the case when an honest party Pi outputs a value vi with a grade of 2. If an
honest party Pi outputs a value vi with a grade of 2, then it must have received value vi at some time
τ such that its epoch-timer ≥ 3∆ and invoked Deliver to deliver value v, and set grade-timer to 2∆. In
addition, party Pi did not detect any party Pj (the designated sender) equivocation by time τ + 2∆.
This implies no other honest party detected a party Pj equivocation by time τ + ∆. By Fact 11, all
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honest parties receive value v by time τ + 2∆. In addition, since party Pi invoked Deliver at time τ , all
honest parties receive a code word for value v by time τ + ∆. Thus, value v is the first value received by
all honest parties and all honest parties output value v with a grade of ≥ 1.

Next, we consider the case when the designated sender (party Pj) is honest. Since, the sender is
honest, it sends its input value v to all honest parties such that their epoch-timer ≥ 3∆. Thus, all honest
parties invoke Deliver and set grade-timer to 2∆. Moreover, the honest sender does not equivocate. This
implies all honest parties output value v with a grade of 2.

The case where each honest party outputs a value with a grade ∈ {0, 1, 2} is trivial by design.

Lemma 13 (Communication Complexity). Let ℓ be the size of the input, κ be the size of accumulator, and
w be the size of witness. The communication complexity of the protocol in Figure 3 is O(nℓ+(κ+w)n2).

Proof. At the start of the protocol, the sender multicasts its value of size ℓ to all party Pj ∀j ∈ [n] along
with κ sized accumulator. This step incurs O(nℓ + κn). Invoking Deliver on an object of size ℓ incurs
O(nℓ + (κ + w)n2), since each party multicasts a code word of size O(ℓ/n), a witness of size w and an
accumulator of size κ. Thus, the overall communication complexity is O(nℓ + (κ + w)n2).

14 Analysis of Recoverable Set of Shares

Fact 14. If an honest party sends vote for a commitment comm, then (i) all honest parties receive comm,
(ii) all honest parties receive their valid secret shares corresponding to commitment comm.

Proof. Suppose an honest party Pi sends a vote for commitment commk := ⟨propose,VSS.C⃗k, zpk⟩k at
time τ . Party Pi must have received up to t blame messages for party Pk. This implies at least one honest
party Pj received valid secret share sk,j and commitment commk when its epoch-timerj ≥ 14∆ and in-
voked Deliver(propose, commk, zpk,−). Let τ ′ be the time when party Pj invoked Deliver(propose, commk, zpk,−).
The earliest party Pi sends a vote for commk is when it waits until its epoch-timeri ≥ 11∆ and does not
detect any equivocation by party Pk or any blame messages for party Pk.

Note that honest parties may start the protocol within ∆ time. Thus, when epoch-timeri = 11∆ for
party Pi, party Pj may have 10∆ ≤ epoch-timerj ≤ 12∆. In any case, the time when Pi waits until
epoch-timeri ≥ 11∆ corresponds to at least τ ′ + 2∆. Since party Pi did not detect party Pk equivocation
by time τ ′ + 2∆, no honest party detected party Pk equivocation by time τ ′ + ∆. By Fact 11, all honest
parties receive the commitment commk by time τ ′ + 2∆. This proves part (i) of the Lemma.

For part (ii), party Pi can send vote on two occasions: (a) when it does not detect a party k
equivocation or ⟨blame, k⟩ until its epoch-timeri ≥ 11∆, and (b) when party k sent valid secret shares for
every ⟨blame, k⟩ message it forwarded and does not detect any party k equivocation by time τ .

In case (a), party Pi did not detect a party k equivocation or ⟨blame, k⟩ until its epoch-timeri ≥ 11∆
at time τ . Observe that all honest parties must have received valid secret shares corresponding to the
commitment commk when epoch-timer ≥ 14∆; otherwise party Pi must have received ⟨blame, k⟩ by time
τ (since honest parties start protocol with ∆ time difference and send ⟨blame, k⟩ if no valid secret shares
are received until epoch-timer ≥ 14∆). Thus, all honest parties receive valid secret shares corresponding
to commitment commk.

In case (b), party Pi receives valid secret shares from party Pk for every ⟨blame, k⟩ (up to t blame)
messages it forwarded and detected no party k equivocation by time τ . Observe that party Pi received
f ≤ t ⟨blame, k⟩ messages and received valid secret shares for every ⟨blame, k⟩ message it forwarded. This
implies at least n− t−f honest parties have received valid shares for commitment commk from party Pk

such that epoch-timer ≥ 14∆; otherwise, party Pi would have received more than f ⟨blame, k⟩ message
by the time its epoch-timeri = 11∆. Since, party Pi forwards f received secret shares corresponding
to f received ⟨blame, k⟩, all honest parties receive valid secret shares corresponding to commitment
commk.

Lemma 15. If an honest party sends an ack for a grade list AcceptListj, then all honest parties have
valid secret shares corresponding to commh for all h such that AcceptListj [h] = 2.

Proof. Suppose an honest party Pi sends an ack for a grade list AcceptListj . Then, it must be that if
AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n]. Party Pi sets AcceptListi[h] ≥ 1 when it receives
a vote certificate C(commh). If there is a vote certificate C(commh) for value commh, then at least one
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honest party (say party Pk) must have voted for commh. By Fact 14 part (ii), all honest parties have
valid secret shares corresponding to commitment commh. Thus, all honest parties have valid secret
shares corresponding to commh for all h such that AcceptListj [h] = 2.

Lemma 16 (Liveness). Each honest party Pi will receive an ack-cert for its grade list AcceptListi.

Proof. Consider an honest party Pi. Let τ be the time when party Pi starts the protocol. Party Pi will
send valid commitment VSS.C⃗i and secret share sij to party Pj ∀j ∈ [n] at time τ . All honest parties
will receive their valid secret shares sij and commitment commi by time τ + ∆. Since honest parties
start the protocol within ∆ time, all honest parties receive valid secret shares and commitment when
their epoch-timer ≥ 14∆. Thus, no honest party will send ⟨blame, i⟩.

Observe that up to t Byzantine parties can always send ⟨blame, i⟩. Honest parties wait until their
epoch-timer ≥ 11∆ to collect blame messages for any party. At worst, this time corresponds to τ + 6∆.
Honest parties forward ⟨blame, i⟩ to party Pi which party Pi receives by time τ + 7∆. Party Pi forwards
valid secret shares to party Pj for every ⟨blame, i⟩ message it received from party Pj which party Pj

receives by time τ + 8∆. Thus, party Pj will send vote for party Pi which party Pi receives by time
τ + 9∆. This implies party Pi collects t + 1 distinct vote messages by τ + 9∆.

Party Pi send vote-cert message vci which all parties receive by time τ +10∆. Thus, all honest parties
receive vci such that their epoch-timer ≥ 5∆ (since honest parties start the protocol within ∆ time).
Thus, all honest parties will invoke Deliver to deliver vci. Moreover, honest party Pi does not equivocate.
Thus, all honest parties set AcceptList[i] to 2.

Observe that for an honest party Pi, all honest parties set AcceptList[i] to 2. Thus, for any honest party
Pj , all honest parties set AcceptList[j] to 2. This implies all honest parties will have |{h |AcceptListj [h] =
2}| ≥ n− t.

Next, we consider the case when a Byzantine party (say, party Pl) sends vote-cert message vcl to only
party Pi. If honest party Pi sets AcceptListi[l] = 2, it must be that party Pi invoked Deliver to propagate
vcl when its epoch-timeri ≥ 5∆ at some time τ ′ and did not detect any party Pl equivocation by time
τ ′ + 2∆. This implies no honest party detected party Pl equivocation by time τ ′ + ∆. By Fact 11, all
honest parties receive vote-cert for party Pl and set AcceptList[l] ≥ 1. Thus, for every AcceptListi[h] = 2
then AcceptList[h] ≥ 1 for all honest parties.

Observe that party Pi multicasts AcceptListi when its epoch-timeri ≥ 3∆. At this time all honest
parties have epoch-timer ≥ 2∆ (Since honest parties start the protocol within ∆ time). Thus, all honest
parties will receive AcceptListi when their epoch-timer ≥ ∆ and since AcceptListi satisfies both the
conditions |{h |AcceptListi[h] = 2}| ≥ n − t and AcceptListi[h] = 2 then AcceptList[h] ≥ 1, all honest
parties will send ack for the grade list AcceptListi proposed by party Pi and party Pi will receive ack-cert
for AcceptListi by the time epoch-timeri expires.

Lemma 17 (Communication Complexity). Let ℓ be the size of commitment comm, κ be the size of secret
share and accumulator, and w be the size of witness. The communication complexity of the protocol is
O(n2ℓ + (κ + w)n3) bits per epoch.

Proof. At the start of the protocol, each party Pi multicasts commi of size ℓ to all party Pj ∀j ∈ [n] and
sends secret share si,j to party Pj ∀j ∈ [n]. This step incurs O(n2ℓ + κn3). In the Forward step, parties
invoke Deliver for the first commj from party Pj for j ∈ [n]. Invoking Deliver on an object of size ℓ incurs
O(nℓ + (κ + w)n2), since each party multicasts a code word of size O(ℓ/n), a witness of size w and an
accumulator of size κ. Thus, invoking Deliver on n commitments incurs O(n2ℓ + (κ + w)n3).

In the Blame step, honest parties may blame up to t Byzantine parties if they do not receive valid
secret shares. Multicast of t blame from each party incurs O(κtn2) communication. In addition, t
Byzantine parties always can blame honest parties. Honest parties forward up to t ⟨blame, j⟩ messages
to party Pj . This incurs O(κtn2) communication.

In the Private open step each party can send up to t secret shares to all other parties. This incurs
O(κtn2) for all parties. In the Vote cert step, each party multicasts O(n)-sized vote-cert to all other
parties which incurs O(κn3) in communication. Invoking Deliver on an O(n)-sized certificate incurs
O(n2 + (κ + w)n2). For n certificate, this step incurs O(n3 + (κ + w)n3).

In the Propose grade step, each party multicast their grade list of size O(n). Multicast of O(n)-
sized grade list by n parties incurs O(n3) communication. Thus, the total communication complexity is
O(n2ℓ + (κ + w)n3) bits.
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15 Analysis of OLE protocol

Lemma 18 ( [13]). In the random oracle model, the coin-tossing protocol of Cachin et al. [13] is secure
i.e., satisfies robustness and unpredictability.

Lemma 19. The protocol in Figure 6 is an oblivious leader election protocol with fairness at least 1
2 .

Proof. Given a local DKG instance computed from input contribution of at least one honest party,
the coin value generated from threshold signatures satisfies termination, fairness, and unpredictability
by Lemma 18.

Observe that each party Pi signs a distinct message (i.e, (j, sid)) for each part Pj . Thus, the threshold
signature σj for each party Pj is unique and random even if two or more parties have the same local
DKG instance; hence each party Pj will be assigned a unique and random coin value (H ′(σj)) except
with probability 1

nκ . Since, the coin value assigned to a party is uniform and random, the coin value
assigned to an honest party will be a global maximum with probability at least n−t

n . The coin values
of any two parties can be common with probability 1

nκ . Thus, all honest parties select the coin value
corresponding to a common honest leader with probability n−t

n − 1
nκ ≥ 1

2 .

16 Analysis of MVBA

Fact 20. If an honest party sets lock to 1 with a value v in epoch e, then all honest parties adopt value
v in epoch e.

Proof. Suppose an honest party Pi sets locki to 1 in epoch e. Party Pi must have received value v from
a set Q of at least t+ 1 parties such that |Sv

i | > t. By the properties of weak gradecast, all other honest
parties receive value v corresponding to parties in Q with a grade ≥ 1 (i.e., all other honest parties have
grade[j] ≥ 1 ∀j ∈ Q) and |S̃v| > t for all other honest parties and all honest parties adopt value v in the
Update step.

Once all honest parties adopt value v in the Update step, they invoke weak-gradecast to propagate
value v at the end of the Update step. Since, honest parties do not equivocate and send value v in a
timely manner, all honest parties output value v such that grade[j] to 2. Thus, |S̃v

i | > t and |Sv
i | > t

in the Update2 step. Since, |Sv
i | > t, no honest party will adopt value vℓ selected from the proposal

election protocol. Thus, all honest parties adopt value v in epoch e.

Lemma 21. If all honest parties start an epoch e with same input v, then all honest parties decide value
v and terminate by the end of epoch e + 1.

Proof. Suppose all honest parties start an epoch e with the same input v. All honest parties invoke
weak-gradecast with value v in the Propose step. By the properties of weak gradecast, for an honest
dealer, all honest parties output a grade of 2. Thus, all honest parties will set grade[j] = 2 for all other
honest parties. Thus, for value v, all honest parties have |Sv

i | > t and |S̃v
i | > t If lock = ⊥, honest parties

set lock to 1.
Similarly, all honest parties invoke weak-gradecast with value v in the Update2 step. By similar

argument, all honest parties will set grade[j] = 2 for all other honest parties i.e., |Sv
i | > t and |S̃v

i | > t
for all honest parties at the of Update 2 step. Moreover, no honest party will adopt the value output
from the proposal election protocol.

Honest parties with lock = 0, output v and terminate in epoch e. All the remaining honest parties
with lock = 1, set lock = 0 and advances to epoch e + 1. In the next epoch, all the remaining honest
parties have lock = 1 and will not update its value and stick to value v. At the end of epoch epoch
e + 1, they set their lock lock = 0, output value v and terminate. Thus, all honest parties output v and
terminate by the end of epoch e + 1.

Theorem 22. The protocol in Figure 7 solves MVBA.

Proof. We first consider external validity i.e., if an honest party decides a value v, then ex-validation(v) =
true. Observe that an honest party Pi decides a value v only when its sets locki = true. An honest party
sets locki = true only when it observes |Sv

i | > t. Thus, at least one honest party Pj must have sent
value v in Propose step. Honest party Pj sends value v either when its input at the start of the protocol
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execution is v in which case ex-validation(v) = true, or when its updates its value vj to v at the end of
an epoch. In the latter case, party Pj checks if ex-validation(v) = true.

Next, we consider agreement. Consider an epoch e and let Pℓ be the common leader in epoch e
elected via OLE protocol. There are two cases to consider.
Case I. locki = 1 for at least one honest party Pi with a value v in epoch e. By Fact 20, all honest party
adopt value v in epoch e and enter epoch e + 1 with same value v. By Lemma 21, all honest parties
output value v and terminate by epoch e + 2.
Case II. locki = ⊥ for all honest parties in epoch e. If leader Pℓ is honest, leader Pℓ sends the same
value vℓ to all parties. If |Sv

i | ≤ t for all honest parties, then all honest parties adopt the value vℓ in
epoch e. By Lemma 21, all honest parties output value vℓ and terminate in epoch e + 2.

If |Sv
i | > t for at least one honest party Pi in the Update2 step, by the properties of weak-gradecast,

|S̃v| > t for all honest parties. Thus, all honest parties including leader Pℓ adopt value v in the Update2
step. If the leader Pℓ is honest, it sends the same value v to all parties. Honest parties with |Sv

i | ≤ t
adopt value vℓ which is the same value adopted by party Pi with |Sv

i | > t. Thus, all honest parties have
value v at the end of epoch e. By Lemma 21, all honest parties output value v and terminate by epoch
e + 2.

Lemma 23 (Communication Complexity). Let ℓ be the size of input v for each party, κ be the size of
accumulator and w be the size of witness. The communication complexity of the protocol is O(n2ℓ+ (κ+
w)n3) bits per epoch.

Proof. At the start of the protocol, each party Pi invokes weak gradecast with O(ℓ)-sized proposal.
By Lemma 13, this step incurs O(n2ℓ + (κ + w)n3). Similarly, in the Update2 step, each party invokes
weak gradecast with O(ℓ)-sized proposal. By Lemma 13, this step also incurs O(n2ℓ + (κ + w)n3). The
proposal election protocol has a communication complexity of O(κn3). Thus, the total communication
complexity of the protocol is O(n2ℓ + (κ + w)n3) bits per epoch.

17 A Lower Bound on the Communication Complexity of Weak
Gradecast

In this section, we show a quadratic communication lower bound for the weak gradecast protocol. The
proof of this lower bound is a trivial extension of the communication lower bound for Byzantine broadcast
by Dolev and Reischuk [18].

Lemma 24. There does not exist a protocol for weak gradecast tolerating t Byzantine parties with a
communication complexity of at most t2/4 messages.

Proof. Suppose for the sake of contradiction, there exists such a protocol. Consider the parties being
partitioned into the following two sets: A: a set of ⌈t/2⌉ parties, and B: all remaining parties which
includes the designated sender r.

We consider two executions W1 and W2 where the third property of weak gradecast (i.e., if an honest
party outputs a value v with a grade of 2, all other honest parties output value v with a grade of ≥ 1)
is violated in the W2. In the first execution (W1), all parties in A are Byzantine. Parties in A do not
communicate with each other. Towards B, parties in A execute honestly except they ignore the first
⌈t/2⌉ messages from parties in B. The designated sender r ∈ A sends value v to all parties. Since, the
maximum faults in W1 is ⌈t/2⌉ and the designated sender is honest, all honest parties decide value v
with a grade of 2.

Since the communication complexity of the protocol is at most t2/4, there must exist a party (say s)
in A that receives at most t/2 messages from parties in B; otherwise the communication complexity will
be more than t2/4. Let Bs be the set of all parties that send messages to party s in W1.

In the second execution (W2), all parties in A\{s} are Byzantine and all parties in Bs are Byzantine
which includes the designated sender r. The total number of Byzantine parties is (⌈t/2⌉− 1) + ⌈t/2⌉ ≤ t
which is within allowed fault threshold t. The designated sender r sends value v. The parties in Bs

execute the protocol in the same way as in W1 except they do not send any messages to party s. Parties
in A\{s} execute the protocol in the same way as in W1. Party s in W1 behave as an honest party which
did not receive the first ⌈t/2⌉ messages which is similar to party s in W2 which receives no messages.
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Thus, parties in B \ Bs cannot distinguish W1 and W2. Thus, they decide value v with a grade of 2.
Since, party s does not receive any messages in W2, it does not decide v with a grade of ≥ 1. This
violates the third property of weak gradecast where if an honest party outputs a value v with a grade of
2, then all honest parties need to output a value v with a grade of ≥ 1. A contradiction.

Theorem 25. Let CC(ℓ) be the communication complexity of weak gradecast for ℓ bit input. Then
CC(ℓ) = Ω(nℓ + n2)

Proof. Since each party must learn ℓ bit input, the protocol needs Ω(nℓ) bits (The argument follows
from [26]). From Lemma 24, weak gradecast requires Ω(n2) even for a single bit input. Thus, CC(ℓ) =
Ω(nℓ + n2) for ℓ bit input.

18 BFT SMR from RandPiper [9]

Let e be the current epoch and Le be the leader of epoch e. For each epoch e, party Pi performs the following operations:

1. Epoch advancement. When epoch-timere−1 reaches 0, enter epoch e. Upon entering epoch e, send highest ranked
certificate Ce′ (Bl) to Le. Set epoch-timere to 11∆ and start counting down.

2. Propose. Le waits for 2∆ time after entering epoch e and broadcasts ⟨propose, Bh, Ce′ (Bl), zpe, e⟩Le where Bh

extends Bl. Ce′ (Bl) is the highest ranked certificate known to Le.

3. Vote. If epoch-timere ≥ 7∆ and party Pi receives the first proposal pe = ⟨propose, Bh, Ce′ (Bl), zpe, e⟩Le where Bh

extends a highest ranked certificate, invoke Deliver(propose, pe, zpe, e). Set vote-timere to 2∆ and start counting down.
When vote-timere reaches 0, send ⟨vote, H(Bh), e⟩i to Le.

4. Vote cert. Upon receiving t+ 1 votes for Bh, Le broadcasts ⟨vote-cert, Ce(Bh), zve, e⟩Le .

5. Commit. If epoch-timere ≥ 3∆ and party Pi receives the first ve = ⟨vote-cert, Ce(Bh), zve, e⟩Le , invoke
Deliver(vote-cert, ve, zve, e). Set commit-timere to 2∆ and start counting down. When commit-timere reaches 0, if
no equivocation for epoch-e has been detected, commit Bh and all its ancestors.

6. (Non-blocking) Equivocation. Broadcast equivocating hashes signed by Le and stop performing epoch e opera-
tions.

Figure 11: BFT SMR Protocol from RandPiper [9]
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