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Abstract. We derive the first adaptively secure IBE and ABE for t-CNF,
and selectively secure ABE for general circuits from lattices, with 1−o(1)
leakage rates, in the both relative leakage model and bounded retrieval
model (BRM).
To achieve this, we first identify a new fine-grained security notion for
ABE – partially adaptive/selective security, and instantiate this notion
from LWE. Then, by using this notion, we design a new key compress-
ing mechanism for identity-based/attributed-based weak hash proof sys-
tem (IB/AB-wHPS) for various policy classes, achieving (1) succinct se-
cret keys and (2) adaptive/selective security matching the existing non-
leakage resilient lattice-based designs. Using the existing connection be-
tween weak hash proof system and leakage resilient encryption, the succinct-
key IB/AB-wHPS can yield the desired leakage resilient IBE/ABE schemes
with the optimal leakage rates in the relative leakage model. Finally, by
further improving the prior analysis of the compatible locally computable
extractors, we can achieve the optimal leakage rates in the BRM.

1 Introduction

Leakage-resilient cryptography aims to create crypto systems that maintain se-
curity even when partial information of the secret key is leaked. This line of
studies is motivated by both theoretic curiosities and perhaps more important-
ly, real-world scenarios, where some secure crypto systems might be completely
broken if some partial key leakage is given to the attackers. One famous example
is the side-channel attacks where the adversary can obtain leakage from measur-
ing some physical behavior of an implementation, e.g., [1,31]. Another source of
leakage comes from imperfect erasure where the attacker can obtain partial in-
formation before the content is completely erased, e.g., the cold boot attacks [27].
On the other hand, leakage resilience can be used to achieve security for other
more complicated systems. For example, in the design of non-malleable codes,
the work [21,30,35] leveraged leakage resilience to prove non-malleability. There-
fore, leakage resilience has been an active research subject for the community,
e.g., [4–6,11,20,29,38], to name a few.



Main Goal. As motivated above, we aim to determine how to derive encryption
schemes with better leakage rates, stronger security, and more expressive access
control functionalities. More specifically, our goal is to construct leakage resilient
encryption schemes in both the relative leakage model and the bounded retrieval
model (BRM) with (1) optimal leakage rates, i.e., 1 − o(1), (2) post-quantum
security and (3) more fine-grained access control, i.e., IBE and ABE for various
classes of policy functions.

The Leakage Models. Various leakage models have been studied in the lit-
erature, capturing information leaked to the adversary. This work focuses on a
simple yet general model called the bounded-leakage model (also known as the
memory leakage model), allowing the attacker to learn arbitrary information
about the secret key sk, as long as the number of leaked bits is bounded by some
parameter `. This model has drawn a lot of attentions (e.g., [4, 5, 29, 38]) for
its elegance and simplicity, and can be used as a building block towards more
sophisticated and realistic models, such as the continual leakage model [12, 18]
(see [29]). Thus, understanding this model is not only of theoretic interests but
also a necessary step towards realizing security for broader physical attacks.

The bounded leakage model would require ` < |sk|, as otherwise, the attacker
can trivially obtain the whole secret key, and thus no meaningful security can
be attained. To further characterize this requirement, there are two important
models studied in the literature that treat the relation between ` and sk in a
different way: (1) relative leakage model, and (2) bounded retrieval model (BRM).

In the former, the secret key and public-key are chosen in the same way as
a standard crypto system (not necessary leakage resilient), and then the leakage
parameter ` would be determined. The latter model generalizes the former by
considering ` as an independent parameter whose growth (essentially) only goes
with |sk|, but would barely affect the other parameters, such as the public-key
size, encryption running time, and ciphertext size. Basically, both models can
scale up ` to allow an arbitrarily long leakage. But their difference is that the
former would require to scale up the security parameter and thus all the other
parameters, while the latter would only scale up the secret-key size and keep the
other parameters essentially the same. Thus, constructions in the BRM is more
desirable yet more challenging.

Leakage rate, i.e., the ratio `/|sk|, is an important measure of efficiency for
crypto systems in these two models. Particularly, rate 1−o(1) is the best we can
hope for – in order to tolerate ` bits of leakage, the system only needs to scale
|sk| slightly larger than `, optimizing the security/efficiency tradeoff.

Current State of the Arts and Challenges. We first notice that for the pre-
quantum settings, leakage resilience can be achieved via the beautiful framework
– dual system encryption, even for IBE/ABE and with optimal leakage rates,
e.g., [32]. However, current instantiations of the dual system encryption are all
group-based [15, 24, 32, 33, 48, 49], and thus cannot defend against quantum al-
gorithms. It is an interesting yet extremely challenging open question how to
instantiate a dual system from a post-quantum candidate, such as LWE or LPN.
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For post-quantum leakage resilient encryption schemes, we notice that there
are some limitations of the current techniques in achieving the optimal leakage
rate beyond the basic PKE. In prior work, there have been constructed LWE/LPN-
based PKE schemes with leakage rates 1−o(1), e.g., [14,17], but their ideas do not
generalize to more advanced settings, such as IBE and ABE. In a subsequent work,
Hazay et al. [29] proposed a unified framework, showing that (1) PKE implies
leakage resilient PKE in the relative leakage model, and (2) IBE implies leakage
resilient PKE/IBE in the BRM. Moreover, the leakage resilient IBE achieves the
same level of adaptive/selective security as that of the underlying IBE. Their
idea can be generalized to construct leakage resilient ABE, but this approach
inherently yields a very low leakage rate (i.e., 1/O(λ)).

A recent work [40] somewhat mitigated this issue by improving the leakage
rates, yet at the cost of weaker security guarantees for the post-quantum instan-
tiations. Particularly, they construct LWE-based leakage resilient IBE schemes in
both the relative leakage model and the BRM, achieving 1 − o(1) leakage rate
in the former and 1 − O(1) (for any arbitrarily small constant) in the latter.
Their improvement relies on a novel key-compression mechanism that shortens
the secret key length required in the framework of Hazay et al. [29]. Due to
some technical limitation in the mechanism, their IBE scheme however, can only
achieve the selective security. From these works [29,40], we see a tradeoff between
security and leakage rate, i.e., either we have an adaptively secure IBE with a
low leakage rate, or a selectively secure IBE with a higher leakage rate.

Main Question. In this work, we aim to further determine whether the tradeoff
between (selective/adaptive) security and leakage rates as above is inherent.
Particularly, we ask the following:

Can we achieve the optimal leakage rate (1−o(1)) for IBE (and ABE) in
both relative and bounded retrieval models with security matching existing
non-leakage resilient IBE (ABE), under LWE?

1.1 Our Contributions

In this work, we give positive answers in many settings of the main question.
Our central idea is a refinement of the framework of [29,40] by designing a new
key compression mechanism from ABE with succinct keys. Below we describe our
contributions in more details.

– As a warm-up, we propose a new leakage model for ABE that incorporates
parameters ` and ω, where ` is the number of bits allowed to leak per key and
ω is the number of keys the adversary can leak. We note that for PKE and
IBE, there is only one possible secret key corresponding to the challenge id.
In this case, it is without loss of generality to just consider ω = 1. However,
for the ABE setting, there could be many possible secret keys corresponding
to the challenge attribute, so specifying ω is natural and necessary in the
leakage model. We call a scheme (`, ω)-leakage resilient if the scheme can
tolerate leakage on ω keys, each within ` bits.
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– Next, we design improved instantiations of attribute-based weak hash proof
system (AB-wHPS), which generalizes (identity-based) weak hash proof sys-
tem [5, 29] by associating each ciphertext with an attribute and each secret
key with a policy function. Particularly, we construct lattice-based AB-wHPS
from ABE for various function classes, achieving two important new features:
(1) succinct secret keys, i.e., the secret key length is |f | + o(|f |) where f is
the policy function, and (2) security matching currently the best known
lattice-based ABE schemes (not necessarily leakage resilient). More specifi-
cally, we construct adaptively secure AB-wHPS for the class of comparison
functions (which is the IB-wHPS) and the class t-CNF∗5, and selectively se-
cure AB-wHPS for general circuits.

– By using AB-wHPS for class F with succinct keys, we are able to construct
(`, 1)-leakage resilient ABE for F , with leakage rate `/|sk| = (1−o(1)) in the
relative leakage model.
We view AB-wHPS with succinct key as an improved key compression mech-
anism from prior works [29, 40] in the following two aspects: (1) AB-wHPS
has better expressibility of policy function (the prior work [40] can only
express the comparison function), and (2) we can derive adaptively secure
AB-wHPS with succinct keys for classes which we have adaptively secure
(non-leakage resilient) ABE. Prior to our work, for lattice-based schemes, we
only had either a selectively secure IB-wHPS with succinct secret keys [40]
or an adaptively secure IB-wHPS with non-succinct keys [29].

– From our AB-wHPS, we can further derive (`, 1)-leakage resilient ABE in the
BRM, via an amplification and a connection with locally computable extrac-
tors as pointed out by [29]. However, prior compatible locally computable
extractors [5] can only achieve 1−O(1) leakage rate for an arbitrarily small
constant. To achieve 1− o(1) leakage rate, we improve the prior analysis [5]
by refining their proof technique via the framework of Vadhan [47].

– Finally, we present a bootstrapping mechanism that generalizes our prior
(`, 1)-leakage resilient ABE schemes to (`, ω)-leakage resilient schemes for
any bounded polynomial ω, in both relative leakage model and bounded
retrieval model. The resulting leakage rate is still optimal (i.e., 1 − o(1))
against block leakage functions, a slightly more restricted class.

1.2 Overview of Our Techniques

Our central insight is a new key-compression mechanism for the framework in
[29]. To illustrate our new idea, we first briefly review the prior framework [29]
and point out the barrier of their leakage rates. Then we will describe our new
ideas for the improvement.

(Weak) Hash Proof System. A hash proof system can be described as a key
encapsulation mechanism that consists of four algorithms (Setup,Encap,Encap∗,

5 This is the dual class of t-CNF where the function is an assignment x and attribute
is a description of t-CNF. We use the dual class as we are working on Key-policy
ABE while the prior work [45] worked on Ciphertext-policy ABE.
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Decap): (1) Setup outputs a key pair (pk, sk), (2) Encap(pk) outputs a pair (CT, k)
where k is a key encapsulated in a “valid” ciphertext CT, (3) Encap∗(pk) outputs
an “invalid” ciphertext CT∗, and (4) Decap(sk,CT) outputs a key k′. A (weak)
hash proof system requires the following:

– Correctness. For a valid ciphertext CT, Decap always outputs the encap-

sulated key k′ = k, i.e., Decap(sk,CT) = k, where (CT, k)
$←− Encap(pk).

– Ciphertext Indistinguishability. Valid ciphertexts and invalid cipher-
texts are computationally indistinguishable, even given the secret key. This
condition is essential for achieving leakage resilience [5, 38].

– Universality. The decapsulation of an invalid ciphertext has information
entropy, even for unbounded adversaries. Here, the randomness of invalid
decapsulation comes from randomness in generating secret keys. A weak
HPS (wHPS) only requires this property to hold for a random invalid cipher-

text, i.e. CT∗
$←− Encap∗(pk), while a full-fledged HPS requires this to hold

for any invalid ciphertext.

As noted in prior work [5], a wHPS already suffices to achieve leakage resilience,
though it is not sufficient for the CCA2 security, for which the HPS was originally
intended to design [16]. Roughly speaking, the leakage resilient scheme derived
from wHPS [5, 29, 38] can tolerate ` ≈ |k| − λ bits of leakage, i.e., the length
of encapsulated key minus security parameter, and thus the leakage rate of the

derived encryption scheme would be `/|wHPS.sk| ≈ |k|−λ
|wHPS.sk| .

Moreover, the idea can be generalized to IB-wHPS and AB-wHPS where an
additional id or attribute x is associated with the ciphertext, and id or a policy
function f is associated with the secret key. In the same way [29], IB-wHPS and
AB-wHPS suffice to derive leakage resilient IBE and ABE.

wHPS from Any PKE and Generalizations [29]. While there were several
instantiations of wHPS from specific assumptions [5,38], Hazay et al. [29] showed
somewhat surprisingly, any PKE implies wHPS. Their construction [29] can be
thought as the following two steps: (1) construct a basic wHPS that only outputs
1 bit (or log λ-bits), (2) amplify the output of the wHPS via parallel repetition.
As pointed out in the work [29], parallel repetition might not amplify HPS in
general, yet it does for wHPS as required in the application of leakage resilience.

The basic wHPS is simple: given any PKE = (Enc,Dec), the wHPS.pk consists
of two public keys pk0, pk1 from PKE, and wHPS.sk is (b, skb) for a random bit
b where skb corresponds to pkb. The Encap algorithm outputs a valid ciphertext
CT = (Encpk0

(k),Encpk1
(k)) to encapsulate a uniformly random key k ∈ {0, 1}.

The Encap∗ algorithm outputs an invalid ciphertext CT∗ = (Encpk0
(k),Encpk1

(1−
k)) for a uniformly random bit k. With a parallel repetition of n times, i.e.,
wHPS‖.pk := {pki,0, pki,1}i∈[n] and wHPS‖.sk := {(i, bi), ski,bi}i∈[n], we can get
a wHPS‖ with |k| = n for an arbitrarily large n� λ, and thus a leakage resilient
encryption that tolerates ` = n− λ ≈ n− o(|wHPS‖.sk|).

Naturally, this elegant approach can be generalized to construct IB-wHPS and
AB-wHPS for class F from any IBE and ABE for F , and the (adaptive/selective)
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security of the IB-wHPS and AB-wHPS matches the underlying IBE and ABE.
Therefore, this framework provides a powerful way to design leakage resilient IBE
and ABE from any IBE and ABE that can tolerate an arbitrarily large leakage `.

Technical Challenges from Prior Work. This technique of [29] achieves al-
most everything one would desire, except for the leakage rate. The main reason
comes from the secret key size of wHPS‖, which is also scaled up by the paral-

lel repetition, resulting in a low leakage rate as `
|wHPS‖.sk|

=
n−o(|wHPS‖.sk|)
|wHPS‖.sk|

≈
n−o(n|PKE.sk|)

n|PKE.sk| ≈ 1
|PKE.sk| . To further improve the rate, it suffices to decrease

|wHPS.sk| as observed by [40]. In particular, if we can shrink the secret key
size of the wHPS to roughly |wHPS‖.sk| ≈ n + |PKE.sk|, then the leakage rate

would be
n−o(|wHPS‖.sk|)
|wHPS‖.sk|

≈ n−o(n+|PKE.sk|)
n+|PKE.sk| ≈ 1 − o(1), for sufficiently large n.

Therefore, now the goal becomes to design a compact form of wHPS‖.sk that
can encode n possible keys in a succinct way.

The work [40] achieved this goal and the more general IB-wHPS by proposing
a novel key compression mechanism from a new primitive called multi -IBE. Then
they instantiated the required multi-IBE from inner-product encryption (IPE) [3,
15, 49] with succinct keys. However, for lattice-based IPE schemes [3], only the
selective security can be achieved under currently known techniques. Thus, the
work [40] can only derive selectively secure leakage resilient IBE from lattices.

At this point, we summarize two limitations from the prior key compression
mechanism [40]: (1) the approach is tied to IBE/IB-HPS, and it is unclear whether
we can further generalize the technique for further expressive policies, i.e., ABE;
(2) the lattice-based instantiations are only selectively secure under currently
known techniques. Below we show our new ideas to break these limitations.

Our New Key Compression Mechanism. We first present a new key com-
pression mechanism that can be generalized to more expressive policy functions,
i.e., ABE. To illustrate our core insight, we first describe how to use the tech-
nique of key-policy (KP)-ABE to encode wHPS‖.sk succinctly. The idea can be
naturally generalized to compress IB-wHPS and AB-wHPS. To facilitate further
discussions, we first recall the concept of KP-ABE.

In a KP-ABE scheme, a secret key is associated with a policy function f :
{0, 1}∗ → {0, 1}, and a ciphertext is associated with an attribute x. The secret
key can decrypt and recover the encrypted message if and only if f(x) = 1.

Now we explain our key compression mechanism. Let us describe the for-

mat of a valid ciphertext of wHPS‖ as CT :=
{
Encpki,0(ki),Encpki,1(ki)

}
i∈[n]

,

and a secret key is of the form {(i, bi), ski,bi}i∈[n]. From another angle look-
ing at the ciphertext, we can view the indices (i, b)’s as attributes in an ABE,
i.e. CT := {ABE.Enc(mpk, (i, 0), ki),ABE.Enc(mpk, (i, 1), ki)}i∈[n]. Then we can

use a single ABE secret key to encode the set of keys {(i, bi), ski,bi}i∈[n] as fol-
lows. Let b = (b1, b2, . . . , bn) ∈ {0, 1}n be a binary vector, and define the fol-
lowing policy function gb(i, z) = 1 iff bi = z for each i ∈ [n]. In this way,
only this set of attributes {(i, bi)}i∈[n] satisfies the policy function gb, so the
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ABE decryption algorithm with skgb can successfully recover the encrypted mes-
sages from {ABE.Enc(mpk, (i, bi), ki)}i∈[n]. The other part of the ciphertext, i.e.,
{ABE.Enc(mpk, (i, 1 − bi), ki)}i∈[n] is hidden by the security of the ABE. This
approach can be naturally extended to the setting of IB-wHPS and AB-wHPS
by adding an additional string x ∈ {0, 1}∗ (either an ID or general attribute)
to the existing attributes as above, resulting in ciphertexts of the form CT :=
{ABE.Enc(mpk, (x, i, 0), ki),ABE.Enc(mpk, (x, i, 1), ki)}i∈[n]. It is not hard to check

these designs satisfy the requirements of (IB/AB)-wHPS.

Here we can conclude: (1) skgb is functionally equivalent to the set of secret
keys {(i, bi), ski,bi}i∈[n], and (2) as long as skgb has a succinct representation,
i.e., |skgb | only depends on the depth but not the size of the function gb when
gb is given, we can achieve the optimal leakage rate. We can instantiate the
desired ABE by the lattice-based schemes [10, 26], and consequently derive a
PKE/IBE/ABE with the optimal rate in the relative leakage model.

Adaptive Security for Various Function Classes. A careful reader may
already observe that the underlying ABE schemes of [10, 26] do not achieve
adaptive security, and neither do the IB-wHPS and AB-wHPS as constructed
above. Moreover, it seems that lattice-based ABE that supports the computation
gb(·) with succinct keys (e.g., general circuits [10,26]) can only achieve selective
security. Thus, existing techniques plus the above approach do not suffice for our
goal on adaptive security.

To overcome the limitation, we further observe that our constructions of
IB-wHPS and AB-wHPS above actually do not require the full adaptive security
of the whole attribute (x, (i, b)) from the underlying ABE. We only need the
selective security over the second part (i, b), as this part is generated by the
honest key generation algorithm, instead of being challenged by the adversary.

With this insight, we define a more fine-grained security notion that con-
siders partially adaptive/selective security over partitioned attributes (x, (i, b)).
Intuitively, if the underlying ABE is adaptively (or selectively) secure over x
and selective secure over (i, b), then we can prove the AB-wHPS is adaptive-
ly (resp. selectively) secure. Furthermore we instantiate the required partial-
ly adaptive-selective ABE for various function classes. As a result, we obtain
an adaptively secure IB-wHPS and AB-wHPS for t-CNF∗, and selectively secure
AB-wHPS for general circuits. This matches the function classes for which we
know how to construct adaptively secure ABE without leakage.

Application. Our AB-wHPS with succinct keys immediately yields a (`, 1)-
leakage resilient ABE with leakage rate 1 − o(1) in the relative leakage model,
followed from the framework [29]. More specifically, by using our adaptively
secure AB-wHPS for the comparison function (i.e., IB-wHPS) and the t-CNF∗

functions, we get leakage resilient and adaptively secure ABE for these classes
with optimal leakage rates. Additionally, we can have selectively secure leakage
resilient ABE for general circuits, with leakage rate 1− o(1).
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Extension I. As pointed out by [29], we can further derive (`, 1)-leakage re-
silient ABE in the BRM from AB-wHPS, via an amplification and a connection
with locally computable extractors [47]. However, the analysis from prior com-
patible locally computable extractors only yields 1 − O(1) rate for the leakage
resilient encryption scheme. It was left as an interesting open question by [40]
how to improve the analysis of the extractor. We solve this open question by
improving the analysis of the sampler [5] required by the general construction of
Vadhan [47]. With our improved analysis, we are able to achieve 1−o(1) leakage
rate in the BRM.

Extension II. Finally, we show how to derive (`, ω)-leakage resilient ABE with
the optimal leakage rate in the block leakage setting for both relative model and
BRM, for any bounded polynomial ω. Inspired by the work [25], we derive a new
bootstrapping mechanism by connecting secret sharing with our AB-wHPS. We
leave it as an interesting open question how to achieve leakage resilient ABE even
for an unbounded polynomial ω.

1.3 Other Related work

AB-wHPS has been studied to construct leakage resilient ABE schemes in [50,51].
Particularly, in [50], the authors focus on AB-wHPS supporting linear secret
sharing schemes as the policy function class, from the pre-quantum decisional
bilinear Diffie-Hellman assumption. The work in [51] constructed an AB-wHPS
from a post-quantum, i.e, LWE, assumption. However, the constructions only
achieve selective security for linear secret sharing schemes. And both of these
related work only consider security in the relative leakage model. Compared
with the prior works, our design/analysis approach is more modular, supporting
broader function classes and/or stronger (adaptive) security.

2 Preliminaries

We use several standard mathematical notations, whose detailed descriptions
are deferred to Section A.1.

2.1 Attribute-based Encryption (ABE)

Definition 2.1 (ABE [44]) An attribute-based encryption (ABE) scheme for a
function class Fλ = {f : Xλ → {0, 1}} consists of four algorithms
ABE.{Setup,KeyGen,Enc,Dec} as follows.

– Setup. ABE.Setup(1λ) takes a security parameter λ as input, and generates
a pair of master public key and master secret key (mpk,msk), where mpk
contains the attribute space Xλ, message space M and ciphertext space CT .

– Key generation. ABE.KeyGen(f,msk) takes as input a function f ∈ Fλ
and the master secret key msk, and generates a secret key (f, skf ). Without
loss of generality, we think the secret key contains two parts, the function
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description f , and an extra skf . The secret key is succinct if |skf | = o(|f |).
When the context is clear, we often omit the description of f .

– Encryption. ABE.Enc(mpk,x, µ) takes as input the master public key mpk,
an attribute x ∈ Xλ and a message µ ∈M, and outputs a ciphertext ct ∈ CT .

– Decryption. ABE.Dec(skf , ct) takes as input a secret key skf and a cipher-
text c, and outputs µ ∈ M if f(x) = 1 and ⊥ if f(x) = 0, where x is the
corresponding attribute used to generate ct.

Correctness. We require that for all f ∈ F , x ∈ Xλ, µ ∈ M, for correctly

generated (mpk,msk)
$←− ABE.Setup(1λ), skf

$←− ABE.KeyGen(msk, f) and ct
$←−

ABE.Enc(mpk,x, µ), it holds that

– if f(x) = 1, Pr [ABE.Dec(skf , ct) = µ] ≥ 1− negl(λ).
– if f(x) = 0, Pr [ABE.Dec(skf , ct) = ⊥] ≥ 1− negl(λ).

Leakage Resilience in the Relative Leakage Model

Next, we give the formal definition of leakage-resilient key-policy ABE.

Definition 2.2 (Leakage-Resilient ABE) A leakage-resilient ABE with attri-
bute space Xλ for a class of functions Fλ = {f : Xλ → {0, 1}} in the relative leak-
age model consists of four algorithms ABE.{Setup,KeyGen,Enc,Dec}, which are
parameterized by a security parameter λ and leakage parameters `, ω. In partic-
ular, (`, ω)-leakage-resilient security can be defined by the following experiment.

Experiment ExpLR
ABE,A(λ, `, ω)

Attribute Challenge: In the setting of selective case, A chooses an challenge
attribute x∗ ∈ Xλ before the Setup stage and sends it to C; In the setting of
adaptive case, A chooses an challenge x∗ ∈ Xλ in the challenge stage, and
sends it to C.

Test Stage 1: A adaptively queries the challenger C with function f ∈ Fλ. For each
query, C responds with (f, skf ) if f(x∗) 6= 1 and ⊥ otherwise.

ω-Leakage Queries Stage: A adaptively queries the challenger C with q pairs
(fi, hi) for i ∈ [ω], where fi is a policy function such that fi(x

∗) = 1, and

hi : {0, 1}∗ → {0, 1}` is a leakage function. The adversary gets hi(skfi) from C.
Challenge Stage: A chooses two messages µ0, µ1 ∈M and sends them to C. Then

C chooses b
$←− {0, 1} and computes ctb

$←−ABE.Enc(mpk,x∗, µb). Finally, C returns
ctb to A.

Test Stage 2: A adaptively queries the challenger C with function f ∈ Fλ. Then C
responds with (f, skid,f ) if f(x∗) 6= 1 and ⊥ otherwise.

Output: The adversary A outputs a bit b′ ∈ {0, 1}.

We define the advantage of A in the above experiment6 to be

AdvLR
ABE,A(λ, `, ω) = |Pr[b = b′]− 1/2| .

6 Notice that in the above experiment ExpLR
ABE,A(λ, `, ω), we allow the adversary to

interleave key queries in Test Stage 1 and leakage queries in ω-Leakage queries Stage,
in an arbitrary way.
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The scheme is (`, ω)-leakage resilient if for any ppt adversary A, we have
AdvLR

ABE,A(λ, `, ω) ≤ negl(λ), and the leakage rate of this ABE is `
|sk| .

Furthermore, the scheme is abbreviated as `-leakage resilient if ω = 1 in the
above experiment.

Remark 2.3 We use the parameter ω to denote the number of different chal-
lenge keys that can be conducted leakage queries. For PKE and IBE, we have
ω = 1 as for these two settings, there is a unique challenge key corresponding to
the challenge attribute. For the more general ABE, there might be many different
“1”-keys corresponding to the challenge attribute. Thus, this parameter ω would
be an important specification for the leakage resilient ABE.

Remark 2.4 In our security model, the adversary can obtain leakage on ω secret
keys adaptively one after another. The secret keys would then form a block-source
under the leakage.7 We note that it is possible to generalize the model where the
leakage function takes inputs all the ω secret keys. In this work, we focus mainly
on the block-source setting, as it already captures many useful scenarios.

Leakage Resilience in the BRM.

Below, we generalize to the setting of ABE the definition of leakage-resilience in
the BRM by Alwen et al. [5].

Definition 2.5 (ABE in the BRM) An ABE for attribute space Xλ and policy
function class F := {Xλ → {0, 1}} is (`, ω)-leakage resilient in the BRM if its
master public-key size, ciphertext size, encryption time and decryption time (and
the number of secret-key bits used by decryption) are independent of the leakage-
bound `. Besides, in the leakage resilient experiment, the adversary is allowed
to conduct key leakage attacks on ω secret keys corresponding to the challenge
attribute. More formally, there exist polynomials mpksize, ctsize, encT, decT, such

that, for any polynomial ` and any (mpk,msk)
$←− ABE.Setup(1λ, 1`(λ)), x ∈ Xλ,

µ ∈M, ct
$←− ABE.Enc(mpk,x, µ), the scheme satisfies:

1. Master public-key size is |mpk| ≤ O(mpksize(λ)), ciphertext size is |ct| ≤
O(ctsize(λ, |µ|)).

2. Run-time of ABE.Enc(µ, pk) is bounded by O(encT(λ, |µ|)).
3. Run-time of ABE.Dec(ct, skf ) and the number of bits of skf used in this

decryption bounded by O(decT(λ, |µ|)), where skf
$←− ABE.KeyGen(msk, f)

with f ∈ F such that f(x) = 1. Here we assume that the secret key skf
is stored in a random access memory (RAM), and the decryption algorithm
ABE.Dec(ct, ·) only needs to read partial bits of skf to decrypt.

7 For the case that sk := S = (S1, . . . , Sm) is an m × e block source as in [46], we
define leakage functions fi : {0, 1}∗ → {0, 1}` independently for each block Si with
all i ∈ [m]. We say (f1, . . . , fm) are block leakage functions, if the min-entropy of
Si is still large enough even given leakage (f1(S1), . . . , fi−1(Si−1)) for any i ∈ [m].
Clearly, when m = 1, this is the trivial case in Definition 2.2. Here, we call m`

|sk| the
block leakage rate of the corresponding scheme.
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The leakage rate of this scheme is defined as `
|skf | . Furthermore, the scheme is

abbreviated as `-leakage resilient if the parameter ω = 1 in the experiment.

Policy Function Classes

This work considers three function classes: (1) ID comparison functions, (2) t-
CNF∗ formulas, and (3) general circuits. (1) and (3) are clear from the literature.
We elaborate on (2). First we present the definition of the function class t-CNF.

Definition 2.6 (t-CNF [45]) A t-CNF policy f : {0, 1}` → {0, 1} is a set of
classes f = {(Ti, fi)}i, where for all i, Ti ⊆ [`], |Ti| = t and fi : {0, 1}t → {0, 1}.
For all x ∈ {0, 1}` the value of f(x) is computed as f(x) =

∧
i fi(xTi), where xT

is the length-t bit-string consisting of the bits of x in the indices T . A function
class F is t-CNF if it consists only of t-CNF policies for some fixed ` ∈ N and a
constant t ≤ `. If F is a t-CNF class, we say that t is the CNF locality of F .

In this paper, we use the “dual” form of t-CNF, called t-CNF∗. The use of
the dual version is because the prior work [45] worked on the ciphertext-policy
ABE for t-CNF, and this work presents the result in the key-policy setting.

Definition 2.7 (t-CNF∗) For any x ∈ {0, 1}` (the domain of t-CNF), let Ux(·)
denote the function for which x is hardwired into Ux(·), and Ux(·) takes f ∈ t-
CNF as input and outputs Ux(f) such that Ux(f) = f(x). Ux(·) is uniquely
determined by x. We denote the function class {Ux(·)} as t-CNF∗.

2.2 Entropy and Extractors

Definition 2.8 (Min-Entropy) The min-entropy of a random variable X, de-

noted as H∞(X) is defined as H∞(x) = − log

(
max
x0∈X

Pr[x = x0]

)
.

Definition 2.9 (Average-Conditional Min-Entropy [19]) The average-
conditional min-entropy of a random variable X conditioned on a correlated
variable Z, denoted as H∞(X|Z) is defined as

H∞(X|Z)=− log
(
Ez←Z [max

x
Pr[X = x|Z = z]]

)
=− log

(
Ez←Z [2H∞[X|Z=z]]

)
.

This notion of conditional min-entropy measures the best guess for X by an
adversary that may observe an average-case correlated variable Z.

Lemma 2.10 ( [19]) Let X,Y,Z be arbitrarily correlated random variables where
the support of Y has at most 2` elements. Then H∞(X|(Y,Z)) ≥ H∞(X|Z)− `.
In particular, H∞(X|Y ) ≥ H∞(X)− `.

We also give the definition of randomness extractors [39], which is somewhat
stronger than the average-case strong extractor [19].
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Definition 2.11 (Randomness Extractor) An efficient function Ext : X ×
S → Y is a (v, ε)-extractor if for all (correlated) random variable X,Z such that
the support of X is X and H∞(X|Z) ≥ v, we have ∆((Z, S,Ext(X;S)), (Z, S, Y ))
≤ ε, where S (also called the seed) and Y are distributed uniformly and inde-
pendently over their domains S,Y respectively.

Theorem 2.12 ( [19]) Let H = {hs : X → Y}s∈S be a universal family of hash
functions meaning that for all x = x′ ∈ X we have Prs←S [hs(x) = hs(x

′)] ≤ 1
|Y| .

Then Ext(x, s)
def
= hs(x), is a (v, ε)-extractor for any parameter v ≥ log |Y| +

2 log(1/ε).

3 Attribute-Based Weak Hash Proof Systems

In this section, we first present a generalization of the weak hash proof system
called attribute-based weak hash proof system (AB-wHPS). This notion associates
attributes and policy functions to the system following the spirit of attribute-
based encryption. Next, we show how to construct AB-wHPS from ABE that
achieves the property of succinct keys, which is the key to leakage resilience
with the optimal rate. With a new fine-grained approach, we are able to achieve
AB-wHPS with selective security for general circuits, adaptive security of identity
comparison functions (i.e., identity-based wHPS), and adaptive security for t-
CNF∗ functions8, from lattices. This would imply lattice-based leakage resilient,
adaptively secure PKE, IBE, ABE for t-CNF∗, and selectively secure ABE for
general circuits, all with the optimal rate, matching the best known non-leakage
resilient selectively/adaptively secure constructions.

3.1 Formal Definition of Attribute-Based wHPS

We first present the formal definition of an AB-wHPS.

Definition 3.1 (AB-wHPS) An attribute-based weak hash proof system
(AB-wHPS) for an attribute space Xλ = {0, 1}∗ and a class of functions Fλ =
{f : Xλ → {0, 1}} consists of five algorithms AB-wHPS.{Setup,KeyGen,Encap,
Encap∗,Decap}:

– Setup. AB-wHPS.Setup(1λ) takes a security parameter λ as input, and gen-
erates a pair of master public key and master secret key (mpk,msk). The
attribute space Xλ and the encapsulated key space K are determined by mpk.

– Key generation. AB-wHPS.KeyGen (f,msk) takes as input a function f ∈
Fλ and the master secret key msk, and generates a secret key (f, skf ). With-
out loss of generality, we think the secret key contains two parts, the function
description f , and an extra skf . The secret key is succinct if |skf | = o(|f |).
When the context is clear, we often omit the description of f .

8 We use a “dual” variant of the CNF functions as we discussed in the introduction.
The formal definition is presented in Section 2.1.
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– Valid encapsulation. AB-wHPS.Encap(mpk,x) takes as input the master
public key mpk and an attribute x ∈ Xλ, and outputs a valid ciphertext CT
and its corresponding encapsulated key k ∈ K.

– Invalid encapsulation. AB-wHPS.Encap∗(mpk,x) takes as input the mas-
ter public key mpk and x ∈ Xλ, and outputs an invalid ciphertext CT∗.

– Decapsulation. AB-wHPS.Decap(skf ,CT) takes as input a secret key skf
and a ciphertext CT, and deterministically outputs k ∈ K if f(x) = 1 and ⊥
if f(x) = 0, where x is the corresponding attribute used to generate CT.

Furthermore, an AB-wHPS needs to satisfy three properties: correctness, ci-
phertext indistinguishability, and universality.

Correctness. For (mpk,msk)
$←− AB-wHPS.Setup(λ), any x ∈ Xλ and any

f ∈ Fλ such that f(x) = 1, we have

Pr
[
k = k′

∣∣∣skf $←− AB-wHPS.KeyGen(f,msk),

(CT, k)
$←− AB-wHPS.Encap(mpk,x), k′ = AB-wHPS.Decap(skf , c)

]
= 1.

Ciphertext Indistinguishability. For any challenge attribute x∗, valid/in-
valid ciphertexts output by AB-wHPS. Encap(mpk,x∗) and AB-wHPS.Encap∗(mpk,
x∗) are indistinguishable, even given one secret “1-key” skf such that f(x∗) = 1
and perhaps many “0-keys” skf ′ such that f ′(x∗) = 0. More formally, this in-
distinguishability is always described by the experiment between an adversary
A and a challenger C in Table 1.

We define the advantage of A in the above game to be AdvAB-wHPS
Π,A,Fλ (λ) =

|Pr[A wins]− 1/2| . The indistinguishability means that AdvAB-wHPS
Π,A,Fλ (λ) ≤ negl(λ).

Remark 3.2 In this definition, we require ciphertext indistinguishability to hold
even given a single skf such that f(x∗) = 1. This suffices to achieve leakage
resilient PKE, IBE, and (`, 1)-leakage resilient ABE directly, and (`, ω)-leakage
resilient ABE for any bounded-polynomial ω via a bootstrapping procedure (re-
f. Section 6), where ` ≈ (1− o(1))|skf |.

Universality. We need one additional information theoretic property, requiring
that for any adversary with public parameters, the decapsulation of an invalid
ciphertext has information entropy. We define this property in as follow.

Definition 3.3 (Universal AB-wHPS) We say that an AB-wHPS is (l, w̄)-

universal, if for any attribute x ∈ Xλ, (mpk,msk)
$←− AB-wHPS.Setup(1λ), and

CT∗
$←− AB-wHPS.Encap∗(mpk,x), it holds

H∞(AB-wHPS.Decap(CT∗, skf )|mpk,msk,CT∗,x) ≥ w̄,

where skf = AB-wHPS.KeyGen(f,msk) with f(x) = 1, and l is the bit-length of
the decapsulated value from AB-wHPS.Decap(CT∗, sk).
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Valid/Invalid Ciphertext Indistinguishability Experiment

Attribute Challenge: In the setting of selective case, A chooses an challenge
attribute x∗ ∈ Xλ before the Setup stage and sends it to C; In the setting of
adaptive case, A chooses a challenge x∗ ∈ Xλ in any arbitrary stage before
the challenge stage, and sends it to C.

Setup: The challenger C gets a pair of (mpk,msk) by running AB-wHPS.Setup(1λ),
and sends mpk to A.

Test Stage 1: A adaptively queries the challenger C with f ∈ Fλ, and C responds
with (f, skf ).

Challenge Stage: C selects b
$←− {0, 1}.

If b = 0, C computes (CT, k)
$←−AB-wHPS.Encap(mpk,x∗).

If b = 1, C computes CT
$←−AB-wHPS.Encap∗(mpk,x∗).

Then C returns CT to A.
Test Stage 2: A adaptively queries the challenger C with f ∈ F . Then C responds

with (f, skf ).
Output: A outputs a bit b′ ∈ {0, 1}. A wins the experiment, if b = b′ and at most

one of A’s key queries f satisfies f(x∗) = 1.

Table 1.

3.2 Fine-grained Security Notions and General Construction of
AB-wHPS from ABE

In this section, we present how to construct AB-wHPS from ABE. To achieve
adaptive security for several subclasses of policy functions, we present a more
fine-grained approach as follows. We first define a notion called partially selec-
tive/adaptive security over partitioned attributes. Next we show for a specific
class G, if an ABE is (X, sel)-secure for class F∧‖G for X ∈ {sel, ada}, then we can
construct an X-secure AB-wHPS for F . Moreover, suppose the underlying ABE
has succinct keys, so does the AB-wHPS. In the next section, we show instanti-
ations of (ada, sel)-secure ABE for various function classes. Below we elaborate
on the notations and the new security definition.

Definition 3.4 Let F1 = {f1 : X1 → {0, 1}} and F2 = {f2 : X2 → {0, 1}}
be two function classes. We define the operator ∧‖ over two function classes as
follow: F := F1∧‖F2 is a function class that consists of function maps X1×X2 →
{0, 1}, where each function ff1,f2

∈ F is indexed by two functions f1 ∈ F1 and
f2 ∈ F2 such that on input x = (x1,x2) ∈ X1×X2, ff1,f2(x) = f1(x1)∧ f2(x2).

Using this composed function class in Definition 3.4, we can naturally con-
sider any combination of selective/adaptive security for ABE as follows.

Definition 3.5 (Partial Selective/Adaptive Security) For any ABE with
the attribute space X1 × X2 for the policy function class F := F1 ∧‖ F2 defined
as in Definition 3.4, we define partial selective/adaptive security as follows:
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– ada-sel security: For any challenge attribute x∗ = (x∗1,x
∗
2) ∈ X1 ×X2, x∗1 is

chosen adaptively but x∗2 is chosen selectively in the corresponding indistin-
guishability experiment.

– sel-ada security: For any challenge attribute x∗ = (x∗1,x
∗
2) ∈ X1 ×X2, x∗1 is

chosen selectively and x∗2 is chosen adaptively in the corresponding indistin-
guishability experiment.

This notion also captures the standard selective (or adaptive) security as sel-
sel (or ada-ada) security, where both parts of the challenge attribute are chosen
selectively (or adaptively).

Remark 3.6 In this work, we need a slightly weaker version of the partial se-
lective/adaptive security from ABE – the adversary is only allowed to query one
key (f, g) such that f(x∗1) = 1 and g(x∗2) = 0. The other keys are of the form
(f ′, g′) such that f ′(x∗1) = 0. Therefore, throughout this work we will use this
slightly weaker version by default.

Remark 3.7 In the same way, we can define the partial selective/adaptive ci-
phertext indistinguishability for AB-wHPS.

Remark 3.8 This definition can be defined recursively. For example, the first
part F1 can also consists of two parts, i.e., F1 = F1,1 ∧‖ F1,2. In this case, we
can consider (X-Y)-Z security for any combination of X,Y,Z ∈ {sel, ada}.

To construct our desired AB-wHPS for F , we need an ABE for F ∧‖G for this
specific G as we describe below.

Definition 3.9 Let m = m(λ) and n = n(λ) be two integer parameters, and we
define a function class G = {g : [n] × [m] → {0, 1}} as follows. Each function
gy ∈ G is indexed by a vector y = (y1, . . . , yn)> ∈ [m]n, and gy(x1, x2) = 1 if
and only if x2 = yx1

.

Remark 3.10 The class G can be captured by boolean circuits with input length

log n+ logm, and depth within O(log(n+m)), i.e.,
∨
i∈[n](i

?
= x1) ∧ (yi

?
= x2).

Given this particular class G (with parameters m,n) defined in Definition 3.9
and a class F , we show how to use ABE for F ∧‖ G to construct AB-wHPS for
F . For different classes F ’s, the AB-wHPS can be used to further derive leakage
resilient PKE, IBE, and ABE.

Construction 3.11 (AB-wHPS from ABE) Let ΠABE = ABE.{Setup,KeyGen,
Enc,Dec} be an ABE scheme with attribute-space X̄λ = Xλ×X ′λ = {0, 1}∗×{[n]×
[m]}, message-space M = Zm and ciphertext space CT for the policy-function
class F ∧‖ G for the class G as in Definition 3.9 with parameters m,n. Then, an
AB-wHPS ΠAB-wHPS with attribute space Xλ = {0, 1}∗ and the encapsulated-key-
space K = Znm for the policy-function class F = {f : {0, 1}∗ → {0, 1}} can be
constructed as follows:
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– AB-wHPS.Setup(1λ): Given the security parameter λ as input, the algorithm

runs ABE.Setup to generate (mpkABE,mskABE)
$←− ABE.Setup(1λ), and out-

puts mpk := mpkABE and msk := mskABE.
– AB-wHPS.KeyGen(msk, f): Given a master secret-key msk := mskABE and a

function f ∈ F as input, the algorithm first chooses a random vector y
$←−

[m]n, and sets f̂ := f̂f,gy ∈ F ∧‖ G. Then the algorithm runs ABE.KeyGen to

generate skABE
f̂

$←− ABE.KeyGen(mskABE, f̂), and outputs skf := (f̂ , skABE
f̂

) as

the secret key for f . Note that the description of f̂ can be expressed as (f,y)
– AB-wHPS.Encap(mpk,x): Given a master public-key mpk and an attribute
x ∈ {0, 1}∗ as input, the algorithm first samples a random vector k =
(k1, . . . , kn)> ∈ Znm, and then runs ABE.Enc mn times with attributes xi,j =
(x, i, j) ∈ {0, 1}∗ × [n]× [m] to set

CT := {cti,j
$←− ABE.Enc(mpk,xi,j , ki)}(i,j)∈[n]×[m] ∈ CT n×m, i.e.,

CT :=

ABE.Enc(x1,1, k1) . . . ABE.Enc(x1,j , k1) . . . ABE.Enc(x1,m, k1)
...

. . .
...

. . .
...

ABE.Enc(xn,1, kn) . . . ABE.Enc(xn,j , kn) . . . ABE.Enc(xn,m, kn)

 .
Finally, the algorithm outputs (CT,k).

– AB-wHPS.Encap∗(mpk,x): Given a master public-key mpk and an attribute
x ∈ {0, 1}∗ as input, the algorithm first samples a random vector k =
(k1, . . . , kn)> ∈ Znm, and then runs ABE.Enc mn times with attributes xi,j =
(x, i, j) to set

CT∗ := {ct∗i,j
$←− ABE.Enc(mpk,xi,j , ki + j)}(i,j)∈[n]×[m] ∈ CT n×m, i.e.,

CT∗ :=

ABE.Enc(x1,1, k1+1) . . . ABE.Enc(x1,j , k1+j) . . . ABE.Enc(x1,m, k1+m)
...

. . .
...

. . .
...

ABE.Enc(xn,1, kn+1) . . . ABE.Enc(xn,j , kn+j) . . . ABE.Enc(xn,m, kn+m)

,
where the addition ki+j is performed over Zm. The algorithm outputs CT∗.

– AB-wHPS.Decap(skf ,CT): Given a secret key skf := (y, skABE
f̂

) and CT :=

{cti,j}(i,j)∈[n]×[m] as input, the algorithm runs ABE.Dec to compute ki =

ABE.Dec(skABE
f̂

, cti,yi) for all i ∈ [n], and then outputs k = (k1, . . . , kn)>, if

f̂(x, i, yi) = f(x) ∧ gy(i, yi) = 1 for all i ∈ [n], and ⊥ otherwise.

Intuitively, our attribute design (the class G) allows the secret key to open
one ciphertext per row while keeps the others secret. For the valid encapsulation,
all ciphertexts in a row encrypts the same element, while for the invalid encap-
sulation, they encrypt different elements. As the secret key can only open one
per row, an adversary cannot distinguish a valid from an invalid encapsulation,
even given the secret key.

Our AB-wHPS secret key would be of length |f̂f,gy | + s(f̂f,gy ) = |y| + |f | +
s(f̂f,gy ) = n logm + |f | + s(f̂f,gy ), where s(·) is the key-size function (of the
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extra part, excluding the function description) of the underlying ABE. If the
underlying ABE has succinct keys, i.e., s(f) = o(|f |), then our AB-wHPS secret

would have size n logm + |f | + s(f̂f,gy ) = n logm + |f | + o(n logm + |f |). By
setting sufficiently large n,m, we can achieve ABE with the optimal leakage rate,
ref. Section 4.

Next we present the following theorem. Due to space limit, we defer the full
proof to Section B.1.

Theorem 3.12 (AB-wHPS from ABE) SupposeΠABE is a secureABE scheme
with attribute space X̄λ = Xλ × X ′λ = {0, 1}∗ × {[n] × [m]} for the function
class F ∧‖ G, where G is the class as in Definition 3.9 with parameters m,n,
then the construction ΠAB-wHPS described above is an (n logm,n logm)-universal
AB-wHPS with the attribute space Xλ and the encapsulated-key-space K = Znm,
for the function class F . Furthermore,

– if the ABE is X-sel secure for X ∈ {sel, ada}, then the AB-wHPS is X secure;
– if the key-size (of the extra part, excluding the function description) of the

ABE scheme for policy function f is s(f), then the key size of the AB-wHPS

for f is n logm + |f | + s(f̂f,gy ), where s(·) is the key-size function (of the
extra part, excluding the function description) of the underlying ABE.

3.3 Instantiations of AB-wHPS from Lattices

Now we show how to instantiate the required underlying ABE. By combining the
work [10] with [2] or [45], we get ABE for the following three classes.

Theorem 3.13 Assuming LWE, then there exist:

1. ada-sel-secure ABE for I ∧‖ G, where I is the comparison function (IBE).
2. ada-sel-secure ABE for t-CNF∗ ∧‖ G, where t-CNF∗ is the dual of the t con-

junctive normal form formula. (Ref. Section 2.1.)
3. sel-sel secure ABE for F ∧‖ G, where F is the general boolean circuits.

In all three cases, the size of the secret keys (excluding the function description)
depends only on the depth of the circuit but not the size.

We present the constructions in Section C for completeness. As a direct
corollary of this theorem, we obtain the following AB-wHPS from lattices.

Corollary 3.14 Assuming LWE, there exists AB-wHPS that is

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions.
3. selectively secure for general circuits.

Moreover, the secret key size (excluding the function description) of the AB-wHPS
only depends on the depth of the function, but not the size.
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4 Optimal-rate Leakage-Resilient Encryption Schemes in
the Relative Leakage Model

Prior work (e.g., Naor and Segev [38], Alwen et al. [5], and Hazay et al. [29])
showed how to construct leakage resilient PKE/IBE from wHPS/IB-wHPS in the
relative model. The construction can be generalized to construct leakage resilient
ABE from AB-wHPS in the same spirit. To further achieve the optimal leakage
rate, we observe that all we need is an AB-wHPS with succinct keys (which do not
depend on the function size). This is what we construct in Section 3.2, i.e., Con-
struction 3.11, Theorem 3.12, AB-wHPS and the underlying ABE instantiations
in Corollary 3.14.

Construction 4.1 Let Π =AB-wHPS.{Setup,KeyGen,Encap,Encap∗,Decap}
be a (log |K|, log |K|)-universal AB-wHPS with the encapsulated-key-space K and
attribute space X = {0, 1}∗ for a class of policy functions F = {f : {0, 1}∗ →
{0, 1}}. Let Ext : K × S → M be a (log |K| − `, ε)-extractor, where three sets
K,S,M are efficient ensembles, ` = `(λ) is some parameter and ε = ε(λ) =
negl(λ) is negligible. Furthermore, assume that M is an additive group. Then, a
leakage-resilient ABE scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec} with message
space M and policy function class F can be constructed as follows:

– ΠF .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ)
$←− Π.Setup(1λ), and out-

puts mpk := mpkΠ , and msk := mskΠ .
– ΠF .KeyGen(msk, f): Given a master secret-key msk and a function f ∈ F as

input, the algorithm runs AB-wHPS.KeyGen to generate and output (f, skΠf ),

where skf := skΠf
$←− AB-wHPS.KeyGen(msk, f).

– ΠF .Enc(mpk,x, µ): Given a master public-key mpk, an attribute x ∈ X =
{0, 1}∗, and a message µ ∈M as input, the algorithm runs AB-wHPS.Encap

to generate (CT′, k) ←AB-wHPS.Encap(mpk,x), and then samples s
$←− S.

Furthermore, the algorithm computes and outputs

ct = (s, ct0, ct1) = (s,CT′, µ+ Ext(k, s)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = (s, ct0, ct1) and a secret key skf as
input, the algorithm runs AB-wHPS.Decap to generate
k = AB-wHPS.Decap(skf , ct0), and then output µ = ct1 − Ext(k, s).

Our construction achieves a leakage resilient ABE, and can be re-calibrated into
a leakage resilient PKE/IBE. We summarize the results in the following theorem,
and defer the full proof to the supplementary material in Section D.1.

Theorem 4.2 Assume Π is a selectively (or adaptively, resp.) secure (log |K|,
log |K|)-universal AB-wHPS for the policy function class F , and Ext : K × S →
M be a (log |K| − `, negl(λ))-extractor. Then the above ABE scheme ΠF =
ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.) `(λ)-
leakage resilient attribute-based encryption scheme for the policy function class
F in the relative-leakage model. Particularly, ΠF is aslo
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– an `(λ)-leakage-resilient PKE in the relative-leakage model, if F contains
only a single function that always outputs 1.

– an `(λ)-leakage-resilient IBE in the relative-leakage model, if F contains the
following comparison functions, i.e., each function fy ∈ F is indexed by a
vector y, and fy(x) = 1 if and only if y = x.

Combining Theorem 3.12 and Theorem 4.2, we obtain the following results.
Assume there exists a sel-sel (or ada-sel) secure ABE scheme with the message
space Zm for the function class F ∧‖ G, where G is the class as in Definition 3.9
with parameters m,n, and the key-length (of the extra part, excluding the func-
tion description of f) of this underlying ABE scheme for policy function f is
s(f). Then the allowed leakage length of the above leakage resilient ABE (or
IBE or PKE) scheme ΠF for the function class F is ` = (n logm − 2λ) and the

key-length of ΠF for f is |skf | = n logm+ |f |+ s(f̂f,gy ).

Furthermore, if the secret key size s(f̂f,gy ) is succinct, i.e., s(f̂f,gy ) = o(|f̂f,gy |) =
o(n logm + |f |), then we can set sufficiently large n,m such that n logm =
ω(|f |). Consequently, the leakage rate of this scheme ΠF is n logm−2λ

n logm+|f |+s(f̂f,gy )
=

1− 2λ
n logm

1+
s(f̂f,gy

)+|f|
n logm

≈ 1− o(1), achieving the desired optimal leakage rate.

Finally, by combining Corollary 3.14 and Theorem 4.2, we obtain the follow-
ing Corollary.

Corollary 4.3 Assuming LWE, for all polynomial S = poly(λ), there exist 1 −
o(1) leakage resilient ABE schemes in the relative leakage model, which are

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions of size up to S;
3. selectively secure for general circuits of size up to S.

Remark 4.4 We note that our ABE schemes are leakage resilient even if the
policy function goes beyond the size bound S. The leakage rate would still be
1 − o(1) for a slightly restricted class that leaks n logm − 2λ on the part y,
the whole description of f , and the extra part of skΠf (excluding the function
description) of the underlying AB-wHPS. This is more restrictive than functions
that leak n logm− 2λ+ |f | from the whole secret key.

5 Extension I: Optimal-rate Leakage-Resilient Encryption
Schemes in the BRM

In this section, we present how to use AB-wHPS to construct optimal-rate leakage
resilient ABE in the BRM. We follow the structure of [5, 29] by first amplifying
the hash proof system and then combining it with a locally computable extrac-
tor [47]. In particular, we first amplify AB-wHPS through parallel repetition and
random sampling in Section 5.1. Then, in Section 5.2, we generalize the notion of
locally computable extractor by Vadhan [47] into one with larger alphabets, and
show that a refined analysis of this tool can be used to derive 1 − o(1) leakage
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rate in the BRM, improving the prior analysis [5, 40] that can only achieve a
constant leakage rate. Finally in Section 5.3, we present the overall construction
of our leakage resilient ABE in the BRM with the optimal leakage rate.

5.1 Amplification of AB-wHPS

Definition 5.1 Let n′ be a positive integer, and H = {h : [n′] → {0, 1}} be a
function class where each function hy ∈ H is indexed by a value y ∈ [n′], and
hy(x) = 1 if and only if x = y.

Construction 5.2 (Construction of Amplified AB-wHPS.) Let
Π = AB-wHPS.{Setup,KeyGen,Encap,Encap∗,Decap} be an AB-wHPS with the
encapsulated-key-space K and attribute space X = {0, 1}∗ × [n′] for a class of

functions F∧‖H, and let t ≤ n′ be a positive integer. Then a new AB-wHPS Πn′,t
‖

with attribute space {0, 1}∗ and the encapsulated-key-space Kt for the function
class F can be constructed.

– Πn′,t
‖ .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ)

$←− Π.Setup(1λ), and

outputs mpk := mpkΠ , and msk := mskΠ .

– Πn′,t
‖ .KeyGen(msk, f): Given a function f ∈ F , the algorithm first sets f̂ i =

f̂ if,hi ∈ F ∧‖ H for every i ∈ [n′], and runs AB-wHPS.KeyGen n′ times to

generate skf̂i
$←− Π.KeyGen(mskΠ , f̂ i) for i ∈ [n′]. The algorithm outputs

skf :=
(
skf̂1 , skf̂2 , . . . , skf̂n′

)
.

– Πn′,t
‖ .Encap(mpk,x): Given mpk and an attribute x ∈ {0, 1}∗ as input, the

algorithm chooses a random subset r := {r1, . . . , rt} ⊆ [n′] and computes

(CTi, ki)
$←− Π.Encap(mpk, (x, ri)) for all i ∈ [t].

The algorithm finally outputs CT := (r,CT1, . . . ,CTt) and k = (k1, . . . , kt)
>.

– Πn′,t
‖ .Encap∗(mpk,x): Given mpk and an attribute x ∈ {0, 1}∗ as input, the

algorithm chooses a random subset r := {r1, . . . , rt} ⊆ [n′] and computes

CTi
$←− Π.Encap∗(mpk, (x, ri)) for all i ∈ [t].

Finally, the algorithm outputs CT := (r,CT1, . . . ,CTt).

– Πn′,t
‖ .Decap(skf ,CT): Given a ciphertext CT := (r,CT1, . . . ,CTt) and a se-

cret key skf :=
(
skf̂1 , skf̂2 , . . . , skf̂n′

)
, the algorithm runs Π.Decap to gen-

erate ki = Π.Decap(skf̂ri ,CTi) for i ∈ [t], and outputs k = (k1, . . . , kt)
> if

f̂ri(x, ri) = 1 for all i ∈ [t]. Otherwise, the algorithm outputs ⊥.

Next, we present the following amplification theorem, which is essential an
extension of the work [5]. Due to space limit, we defer the full proof to the
supplementary material in Section E.1.

20



Theorem 5.3 Assume Π is an (l, w)-universal AB-wHPS with the encapsulated-

key-space K for F ∧‖H. Then the above amplified construction of Πn′,t
‖ is an (t ·

l, t ·w)-universal AB-wHPS with the encapsulated-key-set Kt for F . Furthermore,

– if the underlying Π is selectively (or adaptively) secure, then the Πn′,t
‖ is

also selectively (or adaptively) secure;

– if the secret-key-size of Π scheme for the policy function f is (|f |+ s(f)),9

then the secret-key size of the Πn′,t
‖ for f is n′ × (|f |+ log n′ + s(f̂f,h)).

Combining Theorem 3.12 and Theorem 5.3, we obtain the following corollary.

Corollary 5.4 Assume there exists an ABE scheme with the message space
Zm for the function class F ∧‖ H ∧‖ G, where G with parameters m,n and H
with parameter n′ are as Definitions 3.9 and 5.1, then there exists an amplified
AB-wHPS with the encapsulated-key-space Ztm for the function class F .

5.2 Locally Computable Extractor

Definition 5.5 (Locally Computable Extractor, Definition 6 in [47])
An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}v is said to be t-locally computable
if for every r ∈ {0, 1}d, Ext(x, r) depends only on t-bits of x ∈ {0, 1}n.

For our application (constructing leakage-resilient encryption in the BRM), we
need a generalized variant of the above notion. Let x ∈ {0, 1}nk be a vector.
We can view it as a concatenation of n vectors xi ∈ {0, 1}k for i ∈ [n], i.e.,
x = (x>1 , . . . ,x

>
n )>. In this case, each xi ∈ {0, 1}k can be viewed as a symbol of

some larger alphabet, i.e., Γ = {0, 1}k, and we will need a locally computable
extractor for Γ as follow.

Definition 5.6 (Locally Computable Extractor for Larger Alphabets)
Let Γ = {0, 1}k be some alphabet. An extractor Ext : Γn × {0, 1}d → {0, 1}v is
t-locally computable with respect to Γ if for every r ∈ {0, 1}d, Ext(x, r) depends
only on t symbols of x = (x>1 , . . . ,x

>
n )> ∈ Γn.

Generally, a locally computable extractor can be obtained in two steps [47]:
(1) the extractor uses part of the seed to select t bits (or symbols) of x, and
(2) the remaining seed is used to apply a standard extractor on the selected bit-
s/symbols in the previous step. Vadhan [47] showed that as long as the selection
in step (1) achieves an average sampler, then the combined steps would achieve
a locally computable extractor. We summarize the result of Vadhan [47] below.
We first recall the notion of an average sampler.

9 Recall that the function s(f) denotes the size of the extra part of the secret key,
excluding the description of the function.
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Definition 5.7 (Average Sampler, Definition 8 in [47]) A function
Samp : {0, 1}r → [n]t is a (µ, θ, γ) average sampler if for every function f :
[n]→ [0, 1] with average value 1

n

∑
i f(i) ≥ µ,

Pr
(i1,...,it)

$←−Samp(Ur)

1

t

t∑
j=1

f(ij) < µ− θ

 ≤ γ.
Next, we present a theorem by Vadhan in [47] that describes detailed require-
ments for a locally computable extractor.

Theorem 5.8 (Theorem 10 in [47]) Suppose that Samp : {0, 1}r → [n]t is a
(µ, θ, γ) average sampler with distinct samples for µ = (δ − 2τ)/ log(1/τ) and
θ = τ/ log(1/τ), and Ext : {0, 1}t × {0, 1}d → {0, 1}v is a strong ((δ − 3τ)t, ε)
extractor. Define Ext′ : {0, 1}n × {0, 1}r+d → {0, 1}v by

Ext′(x, (y1,y2)) = Ext(xSamp(y1),y2).

Then Ext′ is a t-local strong (δn, ε+ γ + 2−Ω(τn)) extractor.

As we mentioned above, our application needs a locally computable extractor
for larger alphabets, which may not be implied directly from Theorem 5.8. To
tackle this issue, we define the following sampling procedure Sampler 1 that
outputs t distinct symbols of samples, and then prove that Sampler 1 is in fact
a good average sampler as needed in Theorem 5.8. This would imply a locally
computable extractor for larger alphabets as required in our application.

Notations for the Sampling. Before describing the algorithm, we set up some
notations as follows. Let Γ = {0, 1}k and x = (x>1 , . . . ,x

>
n )> ∈ Γn be a vector

of n symbols, where xi = (xi1, xi2, . . . , xik)> ∈ Γ = {0, 1}k for i ∈ [n]. Let S
denote a subset of [n]× [k], i.e. S contains tuples (i, j) ∈ [n]× [k] as its elements.
In this case, we define xS = {xij}(i,j)∈S . Then, we define Sampler 1 as below.

Sampler 1: Sample a random subset R of [n] that contains t distinct elements,
i.e., R = {r1, . . . , rt}, and output S := {(ri, j)}i∈[t],j∈[k]. Then we derive the
following lemma.

Lemma 5.9 For any λ ∈ Z, µ, θ ∈ (0, 1] and γ = 2λ exp(−tθ2/4) +
(
t(t−1)

2n

)λ
,

Sampler 1 is a (µ, θ, γ) averaging sampler.

Proof. According to the natural bijection between [nk] and [n]×[k], to prove that
Sampler 1 is a good average sampler as Definition 5.7, it suffices to show that
for any f : [n] × [k] → [0, 1] such that 1

nk

∑
i∈[n],j∈[k] f(i, j) ≥ µ, the following

inequality holds:

Pr
S

$←−Sampler 1

 1

|S|
∑

(i,j)∈S

f(i, j) < µ− θ

 ≤ γ. (1)
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It might be hard to prove inequality (1) directly, since all blocks output by Sam-
pler 1 are distinct. To handle this issue, we then define the following Sampler 2
through using “sample with replacement” and rejection sampling. It is not hard
to show that these two procedures are statistically close. Furthermore, by using
use a Chernoff bound argument, we show that Sampler 2 is a good average
sampler as required in Theorem 5.8. Thus, we conclude that Sampler 1 with
any strong extractor yields a locally computable extractor for larger alphabets.

Sampler 2:

1. Sample R = {r1, . . . , rt} from [n]t uniformly at random.

– If all elements are distinct, then output S := {(ri, j)}i∈[t],j∈[k] and ter-
minate.

2. Otherwise, i.e., there is a repeated element, discard the whole sample and
redo Step 1.
Note: the algorithm will only redo Step 1 up to λ times. If the algorithm
does not produce an output by then, then output ⊥.

Next we analyze Sampler 1 and Sampler 2 by the following two claims. Due to
space limit, we defer the full proof to the supplementary material in Section E.2.

Claim 5.10 For a set X consisting of n = n(λ) different blocks and the param-
eters t = t(λ) such that t(t − 1) < n, the output distributions of Sample 1 and
Sample 2 are statistically close.

Claim 5.11 For any µ, t, θ, n, Sampler 2 is a (µ, θ, γ) average sampler condi-
tioned on non-⊥ output, where γ = 2λ exp(−tθ2/4).

The proof of the lemma follows by the above Claims 5.10 and 5.11.
ut

Furthermore, by applying the Sample 1 to Theorem 5.8 with the following
parameters setting, we derive the following theorem.

Parameter Setting. Taking λ as the security parameter, we set all the pa-
rameters in the following way: k = poly(λ), n = poly(λ), t = λ log3(nk), δ =

1
log(nk) , τ = 1

6 log(nk) , µ = 2
3 log(nk) log(6 log(nk)) , θ = 1

6 log(nk) log(6 log(nk)) , γ =

2λ exp(−tθ2/4) +
(
t(t−1)

2n

)λ
, ε = negl(λ).

Theorem 5.12 Let Γ = {0, 1}k, Samp : {0, 1}r → [n]t be the Sampler 1 (as
a (µ, θ, γ) average sampler), and let Ext : Γ t × {0, 1}d → {0, 1}v be a strong
((δ − 3τ)tk, ε) extractor. Define Ext′ : Γn × {0, 1}r+d → {0, 1}v as

Ext′(x, (y1,y2)) = Ext(xSamp(y1),y2).

Then Ext′ is a t-block-local strong (δnk, ε + γ + 2−Ω(τn)) extractor, where ε +
γ + 2−Ω(τn) = negl(λ) according to the setting of parameters.
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5.3 Leakage-Resilient Encryption in the Bounded-Retrieval Model

In this section, we construct leakage-resilient encryption schemes in the BRM,
through combining an random extractor with an amplified AB-wHPS present-
ed in Section 5.1. Below, we give the specific construction of leakage resilient
ABE scheme in the BRM from an amplified AB-wHPS.

Construction 5.13 (Construction in the BRM) Let Π = AB-wHPS.
{Setup,KeyGen,Encap,Encap∗,Decap} be an amplified AB-wHPS with integer pa-
rameters n′, t, the encapsulated-key-space Kt and attribute space X = {0, 1}∗ for
a class of policy functions F = {f : {0, 1}∗ → {0, 1}}. Let Ext : Kt × S →M be
a strong extractor, where three sets K,S,M are efficient ensembles, k denotes
the size of K. Furthermore, assume that M is an additive group. Then, an ABE
scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec} with message space M and policy
function class F can be constructed as follows:

– ΠF .Setup(1λ): The algorithm runs (mpkΠ ,mskΠ)
$←− Π.Setup(1λ), and out-

puts mpk := mpkΠ , and msk := mskΠ .
– ΠF .KeyGen(msk, f): ΠF .KeyGen(msk, f): Given a master secret-key msk and

a function f ∈F as input, the algorithm runs

skΠf
$←− AB-wHPS.KeyGen(msk, f) and output skf := skΠf .

– ΠF .Enc(mpk,x, µ): Given a master public-key mpk, an attribute x ∈ {0, 1}∗
and a message µ ∈ M as input, the algorithm runs AB-wHPS.Encap to
generate (CT′,k)←AB-wHPS.Encap(mpk,x) with k ∈ Kt, and then samples

s
$←− S. Furthermore, the algorithm computes and outputs

ct = (s, ct0, ct1) = (s,CT′, µ+ Ext(k, s)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = (s, ct0, ct1) and a secret key skf as
input, the algorithm runs AB-wHPS.Decap to generate k = AB-wHPS.
Decap(skf , ct0) with k ∈ Kt, and then output µ = ct1 − Ext(k, s).

Parameter Setting. For security parameter λ, we set the system parame-
ters as follows: k = poly(λ), n′ = poly(λ), t = λ log3(n′k), δ = 1

log(n′k) , τ =
1

6 log(n′k) , ε = negl(λ). Moreover, for the proof of leakage-resilience in the BRM,

we let Ext : Kt × S →M be a ((δ − 3τ)tk, ε)-extractor.

Next, we prove that the construction is a leakage resilient ABE in the BRM.
Our proof uses a technique of locally computable extractors [47], i.e., Theo-
rem 5.12, in a black-box way. Due to the space limit, we defer the detailed proof
in Section E.3.

Theorem 5.14 Assume Π is a selectively (or adaptively, resp.) secure amplified
AB-wHPS with integer parameters n′, t = λ log3(n′k) for the policy function class
F , and Ext : Kt × S → M be a strong extractor. Then the above ABE scheme
ΠF = ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.)
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`-leakage-resilient attribute-based encryption scheme with message space M in
the BRM where ` = kn′ − kn′

log(kn′) .

Particularly, ΠF is also

– an `-leakage-resilient public-key encryption scheme in the BRM with ` =
kn′ − kn′

log(kn′) , if F contains only a single function that always outputs 1.

– a selectively (or adaptively, resp.) `-leakage-resilient identity-based encryp-

tion scheme in the BRM with ` = kn′ − kn′

log(kn′) , if F contains the following

comparison functions, i.e., each function fy ∈ F is indexed by a vector y,
and fy(x) = 1 if and only if y = x.

Moreover,

1. Public-key (resp. master public-key) size of ΠF is the same as that of Π,
which is not dependent on leakage parameter `.

2. The locality-parameter is t = λ log3(n′k). Thus, the size of secret-key ac-
cessed during decryption depends on t, but not `.

3. The ciphertext-size/encryption-time/decryption-time of ΠF depends on t,
but not `.

Combining Corollary 5.4 and Theorem 5.14, we obtain the following results.
Assume there exists an ABE scheme with the message space Zm for the function
class F∧‖H∧‖G, where G with parameters m,n and H with parameter n′ are as
defined in Definitions 3.9 and 5.1, and the key-length (of the extra part, excluding
the function description of f) of this underlying ABE scheme for policy function
f is s(f). Then the largest allowed leakage length of the above ABE (or IBE or

PKE) scheme ΠF for the function class F is ` = (kn′− kn′

log(kn′) ) with k = n logm

and the key-length of ΠF for f is |skf | = n′(n logm+ log n′ + |f |+ s(f̂f,h,gy )).

Furthermore, if the secret key size s(f̂f,h,gy ))is succinct, i.e., s(f̂f,h,gy ) =

o(|f̂f,h,gy |) = o(n logm+ log n′ + |f |), then we can set sufficiently large n,m, n′

such that (log n′+|f |) = o(n logm). Consequently, the leakage rate of this scheme

ΠF is
kn′− kn′

log(kn′)

n′(n logm+logn′+|f |+s(f̂f,h,gy ))
=

1− 1
log(nn′ logm)

1+
logn′+|f|+s(f̂f,h,gy )

n logm

≈ 1 − o(1), achieving

the desired optimal leakage rate.
Finally, by combining Corollary 3.14 and Theorem 5.14, we obtain the fol-

lowing Corollary.

Corollary 5.15 Assuming LWE, for all polynomial S = poly(λ), there exist
1− o(1) leakage resilient ABE schemes in the BRM, which are

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions of size up to S;
3. selectively secure for general circuits of size up to S.

For unbounded polynomial S, our schemes are still leakage resilient with the
optimal rate for a smaller function class. See Remark 4.4 for the discussion.
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6 Extension II: Leakage on Multiple Keys

Our prior ABE constructions from AB-wHPS only achieve leakage resilience in
the one-key setting where the adversary can only leak on one of the all possible
decrypting keys with respect to the challenge attribute. In this section, we show
how to achieve leakage resilience in the multiple-key setting where the attacker
can obtain leakage on ω possible decrypting keys for any bounded polynomial ω.
Our construction leverages the normal AB-wHPS (where the ciphertext indistin-
guishability holds when the adversary gets one decrypting key) and a threshold
secret sharing scheme, following the bootstrapping idea of the work [25].

Construction 6.1 (Extended Leakage Resilient ABE) Let Π = Π.{Setup,
KeyGen,Encap,Encap∗,Decap} be a (log |K|, log |K|)-universal AB-wHPS with the
encapsulated-key-space K and attribute space X = {0, 1}∗ for a class of policy
functions F = {f : {0, 1}∗ → {0, 1}}. Let Ext : K×S →M be a (log |K| − `, ε)-
extractor, where K,S,M are efficient ensembles, ` = `(λ) is some parameter
and ε = ε(λ) = negl(λ) is negligible. In addition, let (Share,Rec) be a (t̂ + 1)-
out-of-n threshold secret sharing scheme with respect to secret domain M, an
additive group.

Then, a leakage-resilient ABE scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec}
with message space M for policy function class F can be constructed as follows:

– ΠF .Setup(1λ, n): The algorithm runs (mpkΠi ,mskΠi )
$←− Π.Setup(1λ) for ev-

ery i ∈ [n], and outputs mpk := {mpkΠi }i∈[n] and msk := {mskΠi }i∈[n].

– ΠF .KeyGen(msk, f): Given a master secret-key msk := {mskΠi }i∈[n] and a
function f ∈ F as input, the algorithm first chooses a random subset of

cardinality t̂ + 1, i.e., Γ = {r1, . . . , rt̂+1} ⊆ [n], and then runs sk
(ri)
f

$←−
Π.KeyGen(mskΠri , f) for i ∈ [t̂+ 1]. Finally, the algorithm outputs

skf := (Γ, sk
(r1)
f , . . . , sk

(rt̂+1)

f ).

– ΠF .Enc(mpk,x, µ): Given a master public-key mpk := {mpkΠi }i∈[n], an at-
tribute x ∈ X = {0, 1}∗ and a message µ ∈ M as input, the algorithm first

runs (µ1, . . . , µn)
$←− Share(µ). Furthermore, the algorithm runs Π.Encap to

generate (CTi, ki)
$←− Π.Encap(mpki,x) for every i ∈ [n]. Next, the algorithm

samples s1, . . . , sn
$←− S, and outputs

ct = (s1, . . . , sn, ct1, . . . , ctn, ctn+1, . . . , ct2n)

= (s1, . . . , sn,CT1, . . . ,CTn, µ1 + Ext(k1, s1), . . . , µn + Ext(kn, sn)).

– ΠF .Dec(skf , ct): Given a ciphertext ct = ({si}i∈[n], {cti}i∈[2n]) and a secret

key skf = (Γ, {sk(ri)
f }i∈[t̂+1]) as input, the algorithm first runs Π.Decap to

generate kri = Π.Decap(sk
(ri)
f , ctri) and µri = ctn+ri−Ext(kri , sri) for every

i ∈ [t̂+ 1]. Then, the algorithm outputs µ = Rec(µr1 , . . . , µrt̂+1
).
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Parameter Setting. For security parameter λ, given any ω = poly(λ), we set
t̂ = Θ(ω2λ) and n = Θ(ω2t̂). For details, we refer readers to Lemma F.1.

Our construction achieves a leakage resilient ABE in the multiple key setting.
We summarize the results in the following theorem, and defer the full proof to
the supplementary material in Section F.1.
Theorem 6.2 Assume Π is a selectively (or adaptively, resp.) secure (log |K|,
log |K|)-universal AB-wHPS for the policy function class F , and Ext : K × S →
M be a (log |K| − `, negl(λ))-extractor. Then the above ABE scheme ΠF =
ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.) (`(λ), ω(λ))-
leakage resilient attribute-based encryption scheme for F in the relative-leakage
model, for any fixed bounded polynomial ω(λ) = poly(λ).

The corresponding leakage rate is `(λ)

(t̂+1)(|skf |+logn)
. Furthermore, when the

underlying secret keys (sk
(r1)
f , . . . , sk

(rt̂+1)

f ) form a block source under each leakage

function, the corresponding leakage rate is `(λ)
(|skf |+logn) .

Combining Theorem 3.12 and Theorem 6.2, we obtain the following results.
Assume there exists an sel-ada/sel-sel (or ada-ada/ada-sel) secure ABE scheme
with the message space Zm̄ for the function class F ∧‖ G, where G is the class
as in Definition 3.9 with parameters m̄, n̄, and the key-length (of the extra part,
excluding the function description of f) of this underlying ABE scheme for policy
function f is s(f). Then the allowed leakage length of the above leakage resilient
ABE scheme ΠF with parameters n, t̂, ω as in the above paragraph setting for
the function class F is ` = (n̄ log m̄ − 2λ) and the key-length of ΠF for f is

|skf | = (t̂+ 1)(log n+ n̄ log m̄+ |f |+ s(f̂f,gy )).

Furthermore, if the secret key size s(f̂f,gy ) is succinct, i.e., s(f̂f,gy ) = o(n̄ log m̄
+|f |), then we can set sufficiently large n, m̄, n̄ such that (log n+|f |) = o(n̄ log m̄).
Consequently, when the underlying secret keys form a block source under each
leakage function, the corresponding leakage rate of this scheme ΠF is

n̄ log m̄−2λ

logn+n̄ log m̄+|f |+s(f̂f,gy )
=

1− 2λ
n̄ log m̄

1+
logn+|f|+s(f̂f,gy )

n̄ log m̄

≈ 1 − o(1), achieving the desired

optimal leakage rate.
Finally, by combining Corollary 3.14 and Theorem 6.2, we obtain the follow-

ing Corollary.

Corollary 6.3 Assuming LWE, for any S = poly(λ) and ω = poly(λ), there
exist (`, ω)-leakage resilient ABE’s in the relative leakage model, which are

1. adaptively secure for t-CNF∗ functions of size up to S;
2. selectively secure for general circuits of size up to S.

Moreover, when the underlying secret keys form a block source under the each
leakage function, the corresponding leakage rate is 1− o(1).

Furthermore, we can also achieve similar results in the BRM. By combining
Corollary 3.14, Theorem 5.3 and Theorem 6.2, we obtain the following corollary.

Corollary 6.4 Assuming LWE, for any polynomial S = poly(λ) and ω = poly(λ),
there exist (`, ω)-leakage resilient ABE schemes in the BRM, which are
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1. adaptively secure for t-CNF∗ functions of size up to S;
2. selectively secure for general circuits of size up to S.

Moreover, when the underlying secret keys form a block source under the each
leakage function, the corresponding leakage rate is 1− o(1).
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Supplementary Material

A Supplementary Preliminaries

A.1 Notations.

In this paper, Z denotes the set of integers. We use λ to denote the security
parameter, which is the implicit input for all algorithms presented in this paper.
A function f(λ) > 0 is negligible and denoted by negl(λ) if for any c > 0 and
sufficiently large λ, f(λ) < 1/λc. A probability is called to be overwhelming if
it is 1 − negl(λ). A column vector is denoted by a bold lower case letter (e.g.,
x). A matrix is denoted by a bold upper case letter (e.g., A). For a vector x, its
Euclidean norm (also known as the `2 norm) is defined to be ‖x‖ = (

∑
i x

2
i )

1/2.
For a matrix A, its ith column vector is denoted by ai and its transposition
is denoted by A>. The Euclidean norm of a matrix is the norm of its longest
column: ‖A‖ = maxi ‖ai‖.

For a set D, we denote by u
$←− D the operation of sampling a uniformly

random element u from D, and represent |u| as the bit length of u. For an
integer ` ∈ N, we use U` to denote the uniform distribution over {0, 1}`. Given

a randomized algorithm or function f(·), we use y
$←− f(x) to denote y as the

output of f and x as input. For a distribution X, we denote by x
$←− X the

operation of sampling a random x according to the distribution X. Given two
different distributions X and Y over a countable domain D, we can define their
statistical distance to be ∆(X,Y ) = 1

2

∑
d∈D |X(d)− Y (d)|, and say that X and

Y are ∆(X,Y ) close. Moreover, if ∆(X,Y ) is negligible in λ, we say that the two

distributions are statistically close, which is always denoted by X
s
≈ Y . If for

any ppt algorithm A that
∣∣Pr[A(1λ, X) = 1]− Pr[A(1λ, Y ) = 1]

∣∣ is negligible in
λ, then we say that the two distributions are computationally indistinguishable,

denoted by X
c
≈ Y .

A.2 Weak Hash Proof Systems from its Generic Construction from
PKE

We present a detailed review of the weak hash proof system from the work by
Hazay et al. in [29].

Definition A.1 (Weak Hash Proof System, [29]) A weak hash proof sys-
tem (wHPS) with the encapsulated-key-space K consists of four algorithms wHPS.
{Gen, Encap, Encap∗, Decap} as follows. (We will omit wHPS when the context
is clear).

– Key generation. Gen(1λ) takes a security parameter λ as input, and gen-
erates a pair of public key and secret key (pk, sk).

– Valid encapsulation. Encap(pk) takes a public key pk as input, and outputs
a valid ciphertext CT and its corresponding encapsulated key k ∈ K.
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– Invalid encapsulation. Encap∗(pk) takes a public key pk as input, and
outputs an invalid ciphertext CT∗.

– Decapsulation. Decap(sk,CT) takes as input a secret key sk and ciphertext
CT, and deterministically outputs k ∈ K.

At the same time, a (weak) hash proof system needs to satisfy the following three
properties.

Correctness. For all (pk, sk)
$←− Gen(λ), it holds

Pr
[
k = k′

∣∣∣(CT, k)
$←− Encap(pk), k′ = Decap(sk,CT)

]
= 1.

Ciphertext Indistinguishability. For (pk, sk)
$←− Gen(λ), (CT, k)

$←− Encap(pk),

and CT∗
$←− Encap∗(pk), it holds

(pk, sk,CT)
c
≈ (pk, sk,CT∗).

Namely, for any ppt adversary even given the secret key sk, a valid ciphertext
CT sampled by Encap is still computationally indistinguishable from an invalid
ciphertext CT∗ sampled by Encap∗.

Universality. We need one additional information theoretic property, requiring
that for any adversary with public parameters, the decapsulation of an invalid
ciphertext has information entropy. We define this property in as follow.

Definition A.2 (Universal wHPS) We say that a wHPS is (`, w)-universal,

if for any attribute x ∈ Xλ, (pk, sk)
$←− Gen(1λ), and CT∗

$←− Encap∗(mpk,x), it
holds

H∞(Decap(CT∗, sk)|pk,CT∗) ≥ w,

where ` is the bit-length of the decapsulated value from Decap(CT∗, sk).

Remark A.3 A weak hash proof system only requires the universal property

hold for random invalid ciphertexts, i.e. c∗
$←− Encap∗(pk), instead of all possible

ciphertexts (in the worst case manner). This is the main difference between weak
hash proof system and standard hash proof system [16], which was originally de-
signed for achieving CCA2 security. The weak hash proof system is not sufficient
to achieve the CCA2 security, but nevertheless, can achieve leakage resilience as
pointed out by [29].

Hazay et al. [29] showed an elegant construction of a weak hash proof system
from any public-key encryption scheme. The construction is summarized below.
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Construction. Let Π = PKE.{KeyGen,Enc,Dec} be a PKE with message space
Zm and n = n(λ) be a parameter. Then, a wHPS with the encapsulated-key-
space K = Znm can be constructed as follow:

– wHPS.Gen(1λ): the algorithm takes the security parameter λ as input, runs
PKE.KeyGen mn times to generate

{(pki,j , ski,j)
$←− PKE.KeyGen(1λ)}(i,j)∈[n]×[m], and samples a random vector

t = (t1, . . . , tn)> ∈ [m]n. The algorithm outputs sk := {(ti, ski,ti)}i∈[n], and
pk := {pki,j}(i,j)∈[n]×[m].

– wHPS.Encap(pk): the algorithm takes pk as input, samples a random vector

k = (k1, . . . , kn)> ∈ Znm, and runs PKE.Enc to generate CT := {cti,j
$←−

PKE.Enc(pki,j , ki)}(i,j)∈[n]×[m] ∈ CT n×m, which can be presented in the fol-
lowing matrix form:

CT :=

PKE.Enc(pk1,1, k1) . . . PKE.Enc(pk1,m, k1)
...

. . .
...

PKE.Enc(pkn,1, kn) . . . PKE.Enc(pkn,m, kn)

 .
The algorithm outputs (CT,k).

– wHPS.Encap∗(pk): the algorithm takes pk as input, samples a random vec-

tor k = (k1, . . . , kn)> ∈ Znm, and runs PKE.Enc to set CT∗ := {ct∗i,j
$←−

PKE.Enc(pki,j , ki + j)}(i,j)∈[n]×[m] ∈ CT n×m, i.e.,

CT∗ :=

PKE.Enc(pk1,1, k1+1) . . . PKE.Enc(pk1,m, k1+m)
...

. . .
...

PKE.Enc(pkn,1, kn+1) . . . PKE.Enc(pkn,m, kn+m)

 ,
where the addition ki+ j is performed over Zm. The algorithm outputs CT∗.

– wHPS.Decap(sk,CT): the algorithm takes sk := {(ti, ski,ti)}i∈[n] and CT :=
{cti,j}(i,j)∈[n]×[m] as input, and runs PKE.Dec to compute ki=PKE.Dec(ski,ti ,

cti,ti) for all i ∈ Zn. The algorithm outputs k = (k1, . . . , kn)> ∈ Znm.

Remark A.4 (1) The ciphertext of above wHPS, no matter valid or invalid,
can be viewed as a matrix included in CT n×m. (2) For a valid wHPS ciphertext
CT, the ciphertexts cti,j in every row are encryptions of the same message. In
contrast, for an invalid ciphertext CT∗, the ciphertexts in one row are encryptions
of all different messages.

A.3 Lattices

A lattice is a discrete additive subgroup of Rm. Let B = (b1, . . . , bm) ⊂ Rm con-
sists of m linearly independent vectors. The m-dimensional lattice Λ generated
by the basis B is Λ = L(B) = {B · c =

∑
i∈[m] ci·bi : c = (c1, . . . , cm) ∈ Zm}.

The minimum distance λ1(Λ) of a lattice Λ is the length in the Euclidean `2
norm of the shortest nonzero vector: λ1(Λ) = min

0 6=x∈Λ
‖x‖. For an approximation
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factor γ = γ(n) > 1, we define the problem GapSVPγ as follows: given a basis
B of an m-dimensional lattice Λ = L(B) and a positive number d, distinguish

between the case where λ1(Λ) ≤ d and the case where λ1(Λ) ≥ γd. We let B̃

denote the Gram-Schmidt orthogonalization of B, and ‖B̃‖ is the length of the
longest vector in it.

In this paper, we will focus on a particular family of integer lattices. Let
A ∈ Zm×nq for three positive integers m, n, q, where m and q are functions of n.
We consider the following two kinds of full-rank m-dimensional integer lattices
defined by Λ⊥q (A) = {e ∈ Zm : A> · e = 0 mod q} and its shift Λuq (A) = {e ∈
Zm : A> · e = u mod q}.

Lemma A.5 ( [7]) For any integers n ≥ 1, q ≥ 2, and sufficiently large m =
d6n log qe, there is a probabilistic polynomial-time algorithm TrapGen(q, n) that
outputs a pair (A ∈ Zm×nq ,TA ∈ Zm×m) such that the distribution of A is s-
tatistically close to the uniform distribution over Zm×nq and TA is a short basis

for Λ⊥q (A) satisfying ‖T̃A‖ ≤ O(
√
n log q) and ‖TA‖ ≤ O(n log q) with over-

whelming probability.

Gaussians on Lattices Let σ be any positive real number. The Gaussian
distribution Dσ,c with parameter σ and c is defined by probability distribu-
tion function ρσ,c(x) = exp(−π‖x − c‖2/σ2). For any set S ∈ Rm, define
ρσ,c(S) =

∑
x∈S ρσ,c(x). The discrete Gaussian distribution DS,σ,c over S with

parameter σ and c is defined by the probability distribution function ρσ,c(x) =
ρσ,c(x)/ρσ,c(S) for all x ∈ S.

Lemma A.6 ( [2], Lemma 8) Let A and TA be a pair of matrices output by

TrapGen(q, n), and r > ‖T̃A‖ · ω(
√

logm). Then for c ∈ Rm and u ∈ Znq , we
have:

1. Pr[x← DΛu
q (A),r : ‖x‖ > r

√
m] ≤ negl(n).

2. There is a probabilistic polynomial-time algorithm SampleGaussian(A,TA, r,
c) that outputs a sample from a distribution statistically to DΛ,r,c.

3. There is a probabilistic polynomial-time algorithm SamplePre(A,TA,u, r)
that outputs a sample from a distribution statistically to DΛu

q (A),r.

The next two efficient algorithms SampleLeft and SampleRight is used to
generate identity secret key and prove anonymous indistinguishability for our
new constructions.

Lemma A.7 ( [2]) Given integers n ≥ 1, q ≥ 2 there exists some m = m(n, q) =
O(n log q) There are sampling algorithms as follows:

– There is a ppt algorithm SampleLeft(A,B,TA,u, s), that takes as input:
(1) a rank-n matrix A ∈ Zn×mq , and any matrix B ∈ Zn×m1

q , (2) a “short”

basis TA for lattice Λ⊥q (A), a vector u ∈ Znq , (3) a Gaussian parameter

s > ‖T̃A‖ · ω(
√

log(m+m1)); then outputs a vector r ∈ Zm+m1 distributed

statistically close to DΛu
q (F),s where F := [A|B] ∈ Zn×(m+m1)

q is an extension
of A with B.
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– There is a ppt algorithm SampleRight(A,B,R,TB,u, s), that takes as input:
(1) a matrix A ∈ Zn×mq , and a rank-n matrix B ∈ Zn×mq , a matrix R ∈
Zm×mq , where sR := ‖R‖ = supx:‖x‖=1 ‖Rx‖, (2) a “short” basis TB for

lattice Λ⊥q (B), a vector u ∈ Znq , (3) a Gaussian parameter s > ‖T̃B‖ · sR ·
ω(
√

logm); then outputs a vector r ∈ Z2m distributed statistically close to
DΛu

q (F),s where F := [A|(AR + B)] ∈ Zn×2m
q .

Lattice Evolution. We need to use the following homomorphic evaluation
algorithms in [10].

Lemma A.8 ( [10,26]) Given integers n > 1, q > 2 and m = O(n log q), there
exist three deterministic algorithms Evalpk ,Evalct and EvalSim as follows:

– Evalpk(f,C1, . . . ,C`) takes as input a d-depth circuit f : {0, 1}` → {0, 1}
and matrices C1, . . . ,C` ∈ Zn×mq , and outputs a matrix Cf ∈ Zn×mq .

– Evalct(f,C1, . . . ,C`, c1, . . . , c`,x) takes as input a d-depth circuit f : {0, 1}` →
{0, 1}, matrices Ci ∈ Zn×mq , vectors ci ∈ Zmq and x ∈ {0, 1}`, and outputs
a vector cf ∈ Zmq , such that if there exists some s ∈ Znq such that for every
i ∈ [`],

ci = s>(Ci − xiG) + ei

with ‖ei‖∞ ≤ B, then

cf = s>(Cf − f(x)G) + ef ,

where ‖ef‖∞ ≤ (m+ 1)d ·B.
– EvalSim(f, {(xi,Ri)}`i=1,A) takes as input a d-depth circuit f : {0, 1}` →
{0, 1}, x = (x1, · · · , x`) ∈ Z`q, A ∈ Zn×mq and R1, . . . ,R` ∈ {−1, 1}m×m,
and outputs a matrix Rf satisfying

ARf − f(x)G = Bf where Bf = Evalpk(f,AR1 − x1G, . . . ,AR` − x`G),

and ‖Rf‖∞ ≤ 3 · 4dm+ 1

Furthermore, the running time of Evalpk, Evalct and EvalSim is |f | · poly(n, log q).

We rely on the following lemma, which says that adding large noise “s-
mudges” out any small values.

Lemma A.9 (Smudging Lemma) Let B1 = B1(λ), and B2 = B2(λ) be pos-
itive integers and let e1 ∈ [−B1, B1] be a fixed integer. Let e2 ← [−B2, B2] be
chosen uniformly at random. Then the distribution of e2 is statistically indistin-
guishable from that of e2 + e1 as long as B1/B2 = negl(λ).

Gadget Matrix. We recall the “gadget matrix” G defined in [37]. The “gadget

matrix” G = g ⊗ In ∈ Zn×ndlog qe
q where g = (1, 2, 4, ..., 2dlog qe−1).

Lemma A.10 ( [37], Theorem 1) Let q be a prime, and n,m be integers with
m = ndlog qe. There is a full-rank matrix G ∈ Zn×mq such that the lattice Λ⊥q (G)

has a publicly known trapdoor matrix TG ∈ Zn×m with ‖T̃G‖ ≤
√

5, where T̃G

is the Gram-Schmidt order orthogonalization of TG.
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Lemma A.11 ( [10],Lemma 2.1) There is a deterministic algorithm, denoted
by G−1(·) : Zn×mq → Zm×m, that takes any matrix A ∈ Zn×mq as input, and
outputs the preimage G−1(A) of A such that G · G−1(A) = A (mod q) and
‖G−1(A)‖ ≤ m.

Lemma A.12 ( [2], Lemma 13) Suppose that m > (n + 1) log q + ω(log n)
and that q > 2 is a prime. let R be an m × m matrix chosen uniformly in
{0, 1}m×m. Let A and B be chosen uniformly in Zn×mq . Then for all vectors

w ∈ Zmq , the distribution (A,AR,R>w) is statistically close to the distribution

(A,B,R>w).

Learning With Errors. The Learning with errors problem, or LWE, is the
problem of determining a secret vector over Fq given a polynomial number of
“noisy” inner products. The decision variant is to distinguish such samples from
random. More formally, we define the problem as follows:

Definition A.13 ( [42]) Let n ≥ 1 and q ≥ 2 be integers, and let χ be a
probability distribution on Zq. For s ∈ Znq , let As,χ be the probability distribution
on Znq ×Zq obtained by choosing a vector a ∈ Znq uniformly at random, choosing
e ∈ Zq according to χ and outputting (a, 〈a, s〉+ e).

The decision LWEq,n,χ problem is: for uniformly random s ∈ ZNq , given a
poly(n) number of samples that are either (all) from As,χ or (all) uniformly
random in Znq × Zq, output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time
algorithms A, the probability that A solves the decision-LWE problem (over s
and A’s random coins) is negligibly close to 1/2 as a function of n. The works
of [13,41,42] show that the LWE assumption is as hard as (quantum or classical)
solving GapSVP and SIVP under various parameter regimes.

A.4 Pairwise Independent Hash Function

In order to prove the security of our IB-ABE scheme, we need to use the parti-
tioning strategy. As a preparation, we give a lemma which shows that pairwise
independent hash function family which is denoted as Hpind has the isolation
property as long as a conditional probability defined as below approximates
1 = |Q|.

Lemma A.14 ( [8], Lemma 6.1) Let Q ⊆ {0, 1}n, A,B be integers such that
B ≤ A, |Q| ≤ δB for some δ ∈ (0, 1), and let Hpind : {0, 1}n → Y be an pairwise
independent hash function family which has the following properties:

– ∀a ∈ {0, 1}n, PrH←Hpind
[H(a) = 0] = 1/A;

– ∀a 6= b ∈ {0, 1}n, PrH←Hpind
[H(a) = 0|H(b) = 0] ≤ 1/B.

Then for any element a /∈ Q, we have

PrH∈Hpind
[H(a) = 0

∧
H(a′) 6= 0,∀a′ ∈ Q] ∈

(
1− δ
A

,
1

A

)
.
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An Explicit Almost Pairwise Independent Hash Construction. Let q ∈
N be a prime, t ∈ N, and let f(x) be a monic irreducible polynomial in Zq of
degree t. Then we define R = Zq[X]/〈f(x)〉, and note that R is isomorphic to
GF(qt) as q is a prime and f(x) is an irreducible polynomial of degree t. We will
use R as the representation of GF(qt). We then define two mappings φ : R→ Ztq
and Rot : R→ Zt×tq by

φ : θ = a1 + a2x+ ...+ atx
t−1 7→ (a1, ..., at)

>,

Rot : θ = a1 + a2x+ ...+ atx
t−1 7→

[
φ(θ)φ(θx)...φ(θxt−1)

]
.

We note that Rot(θ) · φ(ϑ) = φ(θϑ), Rot(θ) · Rot(ϑ) = Rot(θϑ), and Rot(θ) +
Rot(ϑ) = Rot(θ + ϑ). This means that Rot is a ring-homomorphism from R to
Zt×tq . If θ 6= θ

′ ∈ GF(qt), then Rot(θ)− Rot(θ
′
) = Rot(θ − θ′) 6= 0.

For any h ∈ GF(qt), we define G(h) as G(h) := Rot(h) ∈ Zt×tq , then we

define an pairwise independent hash function family Hpind : Z`q → Zn×n where

t|n as: ∀H ∈ Hpind, H is indexed by (h1, ...h`) ∈ GF(qt)`, ∀x = (x1, ..., x`) ∈ Z`q,
H(x) = In +

∑`
i=1 xi(G(hi)⊗ In/t)G. We have the following lemma.

Lemma A.15 ( [2, 8]) The function family Hpind defined above is an pairwise
independent hash function. Moreover, we have

– ∀H ← Hpind and ∀a ∈ {0, 1}`, Pr[H(a) = 0] = (1/q)t.
– ∀H ← Hpind and ∀a 6= b ∈ {0, 1}`, Pr[H(b) = 0|H(a) = 0] ≤ (1/q)t.

B Supplementary Material for Section 3

B.1 Proof of Theorem 3.12

Theorem (Restatement of Theorem 3.12) Suppose ΠABE is a secure ABE
scheme with attribute space X̄λ = Xλ × X ′λ = {0, 1}∗ × {[n] × [m]} for the
function class F ∧‖ G, where G is the class as in Definition 3.9 with parameters
m,n, then the construction ΠAB-wHPS described above is an (n logm,n logm)-
universal AB-wHPS with the attribute space Xλ and the encapsulated-key-space
K = Znm, for the function class F . Furthermore,

– if the ABE is X-sel secure for X ∈ {sel, ada}, then the AB-wHPS is X secure;
– if the key-size (of the extra part, excluding the function description) of the

ABE scheme for policy function f is s(f), then the key size of the AB-wHPS

for f is n logm + |f | + s(f̂f,gy ), where s(·) is the key-size function (of the
extra part, excluding the function description) of the underlying ABE.

Proof. The second part of the theorem follows directly by our construction from
ABE to AB-wHPS, especially by the relationship between policy functions of
ABE and that of AB-wHPS.

To prove the first part of the theorem, we need to prove the following three
properties: correctness, smoothness and ciphertext indistinguishability.
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Correctness. Correctness of our AB-wHPS follows directly from the correctness
of the underlying ABE.

Universality. Given the master public key mpk and an invalid ciphertext CT∗ =
AB-wHPS.Encap∗(mpk,x) = {ABE.Enc(xi,j , ki + j)}i∈[n],j∈[m], we have

AB-wHPS.Decap(skf ,CT
∗) = k + y

where skf := (y, skf̂f,gy
) for a randomly and independently chosen vector y =

(y1, . . . , yn), and k is the vector used to generate the invalid ciphertext. Clearly,
the decryption function can be written as the permutation hk(y) = k + y.

As this is an injective function of y (for any fixed k), the min-entropy of y
remains the same after applying this function, i.e.,

H∞(AB-wHPS.Decap(CT∗, skf )|mpk,CT∗,x) = H∞((k + y)|mpk,x,CT∗)

= H∞(y|mpk,x,CT∗).

Moreover, we note that y is independent of mpk,x,CT∗, soH∞(y|mpk,x,CT∗) =
n logm. As a result, the construction ΠAB-wHPS is (l, w)-universal, where l = w =
n logm.

Ciphertext Indistinguishability. We prove that the ciphertexts output by
AB-wHPS.Encap(mpk,x∗) and AB-wHPS.Encap∗(mpk,x∗) are indistinguishable,
given one secret “1-key” skf such that f(x∗) = 1 and perhaps many “0-keys”
skf ′ such that f ′(x∗) = 0, where x∗ is the challenge attribute. We summarize
the result in the lemma below.

Lemma B.1 (Ciphertext indistinguishability) The construction of
AB-wHPS satisfies selective (or adaptive) valid/invalid cipheretext indistinguisha-
bility as Definition 3.1, following from the sel-ada/sel-sel (or ada-ada/ada-sel)
security of the underlying ABE.

Proof. To facilitate the proof presentation, we introduce an intermediate notion
denoted as multi-ABE (with parameter t), where the adversary can send two vec-
tors of challenge messages k0 = (k0,1, . . . , k0,t) ∈ Znm and k1 = (k1,1, . . . , k1,t) ∈
Znm, along with t different attributes x1, . . . ,xt as the challenge attributes. The
adversary then receives a vector of challenge ciphertexts
{ci ← ABE.Enc(xi, kb,i)}i∈[t] for a random bit b, and needs to decide a bit b′.
Here the adversary is allowed to query skf as long as f(xi) = 0 for all i ∈ [t],
i.e., the key cannot open any component in the challenge ciphertexts. It is not
hard to prove a reduction from the standard ABE to this multi-ABE via a hybrid
argument, which only incurs a security loss t.

Claim B.2 For any t ∈ N, if there exists an adversary A that breaks the (partial-
ly) selective/adaptive security of multi-ABE with parameter t and advantage ε,
then there exists a reduction B that breaks the same (partially) selective/adaptive
security of ABE with advantage ε/t.
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Proof. This follows from a standard hybrid argument. ut

Next, we prove the valid/invalid ciphertext indistinguishability of AB-wHPS
via a hybrid argument. We define the following hybrids, where we start from a
valid ciphertext, and then switch row-by-row towards an invalid ciphertext. We
prove that each two neighboring hybrids are indistinguishable via a reduction
from multi-ABE (with parameter m−1). The proof of this lemma follows directly
from the indistinguishability of these hybrids.

Hybrid H0: This hybrid is defined as the ciphertext indistinguishability exper-
iment in Definition 3.1, where A is given a valid ciphertext

CT0 :=

ABE.Enc(x1,1, k1) . . . ABE.Enc(x1,m, k1)
...

. . .
...

ABE.Enc(xn,1, kn) . . . ABE.Enc(xn,m, kn)

 ∈ CT n×m.
In this hybrid, it is clear that the ciphertext is generated as Encap.

Hybrid Hz: For any 1 ≤ z ≤ n− 1, Hz is almost same to Hz−1, except that A
is given the following ciphertext

CTz :=



ABE.Enc(x1,1, k1+1) . . . ABE.Enc(x1,m, k1+m)
...

. . .
...

ABE.Enc(xz,1, kz+1) . . . ABE.Enc(xz,m, kz+m)
ABE.Enc(xz+1,1, kz+1) . . . ABE.Enc(xz+1,m, kz+1)

...
. . .

...
ABE.Enc(xn,1, kn) . . . ABE.Enc(xn,m, kn)


∈ CT n×m.

In this hybrid, the first z rows are generated as Encap∗ (that encrypts different
keys), and the rest is as Encap (that encrypts the same key).

Hybrid Hn: This hybrid is almost same to Hn−1, except that A is given the
following ciphertext

CTn :=

ABE.Enc(x1,1, k1+1) . . . ABE.Enc(x1,m, k1+m)
...

. . .
...

ABE.Enc(xn,1, kn+1) . . . ABE.Enc(xn,m, kn+m)

 ∈ CT n×m,
In this hybrid, it is clear that the ciphertext is generated as Encap∗.

Then, it suffices to prove the computational indistinguishability between Hz
and Hz+1 for z ∈ [n− 1]

Claim B.3 Suppose the basic multi-ABE (with parameter m − 1) is secure,
then the above hybrids Hz and Hz+1 are computational indistinguishability for
any z ∈ [n− 1].

40



Proof. We prove this claim through establishing a reduction from the (partially)
selective/adaptive security of multi-ABE to the corresponding indistinguishabil-
ity between Hz and Hz+1. This means if there is an efficient adversary D who
can distinguish Hz from Hz+1 with advantage ε, then we can construct an effi-
cient reduction B to break the corresponding multi-ABE with ε. Here, we just
describe the reduction in the case of ada-sel security (multi-ABE), and note that
a similar argument can be carried to the sel-ada/ada-ada/sel-sel security in a
straight-forward way.

In particular, letA be the adaptive adversary for the AB-wHPS with attribute
space Xλ for the policy function class F , and D be a distinguisher that distin-
guishes Hz from Hz+1 with a non-negligible advantage for some z ∈ [n−1]. Now
we describe the reduction B that breaks the ada-sel security of multi-ABE with
attribute space Xλ × {[n] × [m]} for the policy function class F ∧‖ G, when
interacting with the challenger C.

Setup: B simulates either the hybrid Hz or Hz+1 by running A in the following
way.

1. With respect to the ada-sel security of multi-ABE, B selectively chooses (m−
1) attributes (z + 1, 2), . . . , (z + 1,m) ∈ [n]× [m], and then sends them to C
before getting mpk, where (z + 1, 2), . . . , (z + 1,m) are essential the second
part of challenge attributes for multi-ABE;

2. B gets a master public-key mpk from the challenger C for the multi-ABE.

3. Then B forwards this mpk to the adversary A for the AB-wHPS.

4. At the same time, B sets a table T = ∅.

Test Stage 1: B answers the secret key queries of A in the following way.

1. A sends a function f ∈ F to B for a secret key query.

2. B first checks whether there exists an item containing this f in the table T .

– If yes, B returns the corresponding secret key skf in T to A.

– Otherwise, B goes to the next step 3.

3. B chooses a random vector y
$←− [m]n such that gy(z + 1, j) = 0 for all

2 ≤ j ≤ m, and sets f̂ := f̂f,gy ∈ F ∧‖ G.

4. Then B sends this f̂ to C as a secret key query for multi-ABE, and then gets
skABE
f̂

as its response.

5. Finally, B sends skf := (y, skABE
f̂

) as the secret key for f to A, and stores

the tuple (f,y, skABE
f̂

)) as an item in the table T .

Challenge Stage: B simulates the challenge ciphertext to A as follows.

1. With respect to the adaptive security of AB-wHPS, A adaptively selects an
attribute x∗ ∈ Xλ and sends it to B.
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2. B chooses a random values k
$←− Zm, and uses k to set two sequences of

messages
k0 = (k0,2, . . . , k0,m)> = (k, . . . , k)> ∈ Zm−1

m

and

k1 = (k1,2, . . . , k1,m)>

= (k + 1, . . . , k +m− 1)> ∈ Zm−1
m .

3. Then B sends (k0,k1) and the attribute x∗ as the challenge query of multi-
ABE, where x∗ composes of the first part of challenge attributes for multi-
ABE.

4. As a result, B obtains (m− 1) ciphertexts{
ct∗z+1,j

$←− ABE.Enc(x∗z+1,j , kb,j)
}

2≤j≤m

for a random b ∈ {0, 1} chosen by the multi-ABE challenger C, where
{x∗z+1,j = (x∗, z + 1, j)}2≤j≤m.

5. Furthermore, B chooses (n−1) random values v1, . . . , vi, vi+2, . . . , vn
$←− Zm.

6. B sets x∗i,j = (x∗, i, j), and then calculates{
ct∗i,j

$←− ABE.Enc(x∗i,j , vi + j)
}
i∈[z],j∈[m]

,

{
ct∗i,j

$←− ABE.Enc(x∗i,j , vi)
}
i∈[n]\[z+1],j∈[m]

and
ct∗z+1,w

$←− ABE.Enc(x∗z+1,1, k)

by himself.
7. B collects all ciphetexts ct∗i,j for i ∈ [n], j ∈ [m] together to construct a n×m

matrix CT∗ according to the indexes of these ciphertexts.
8. Finally, B sends this matrix CT∗ as the challenge encapsulation ciphertext

to A.

Test Stage 2: B answers the secret key queries of A as in Test Stage 1, but
with a restriction that there is at most one function f ∈ F such that f(x∗) = 1
can been queried in Test Stage 1 and 2.

Output: B simulates the output of the experiment according to the response of
A, and thus obtain a view H, which is either Hz or Hz+1 as we will prove below.
Finally, B outputs D(H).

Next, we analyze the advantage of B. We observe that B perfectly simulates
one of the two hybrids: if the challenge ciphertext from C encrypts k0, then the
AB-wHPS challenge ciphertext CT∗ is generated according to Hz, and otherwise
Hz+1. Thus, the advantage of B is the same as that of D in distinguishing Hz

42



from Hz+1, i.e., a non-negligible advantage ε. Thus, B breaks the multi-ABE with
advantage ε, which reaches a contradiction. This completes the proof of this
claim. ut

Lemma B.1 follows directly from Claim B.3 by a standard hybrid argument. ut

In summary, we complete the proof of the first part of theorem. ut

C ada-sel secure ABE Based on LWE

In this section, we instantiate two partial-adaptively secure ABE schemes as
needed in Section 3.2 from LWE with a polynomial modulus. The first construc-
tion is with respect to the function family I ∧‖ G, where I is the equation test
function family for which a function id ∈ I satisfies id(x) = 1 if and only if
id = (b1, · · · , b`) = x and 0 otherwise, and G is general circuit family. The
second construction is respect to the function family (t-CNF∗) ∧‖ G.

In particular, our first construction combines the adaptively secure IBE scheme
proposed by Agrawal, Boneh and Boyen [2] and the selectively secure ABE pro-
posed by Boneh et al [10] in a natural way, and achieves the ada-sel security. The
second construction combines the recent ABE scheme by Tsabary [45] and [10],
and obtains the ada-sel security. We present our first construction in Section C.1,
and the second in Section C.2.

C.1 Construction of ABE for I ∧‖ G from lattices

For convenience, we denote F1 as I ∧‖ G for short.

ABE.SetupF1
(1λ): The setup algorithm takes as input a security parameter λ,

and then dose the following:

1. Sample a random matrix A ∈ Zn×mq along with a trapdoor basis TA ∈
Zm×m of lattice Λ⊥q (A) by running TrapGen.

2. Select `1 + 1 uniformly random matrices A1, . . . ,A`1 ,B ∈ Zn×mq .
3. Select `2 uniformly random matrices C1, . . . ,C`2 ∈ Zn×mq .

4. Select a random matrix U
$←− Zn×zq .

5. Output the public parameters

mpk = (A, {Ai}i∈[`1], {Ci}i∈[`2],B,U)

and the master secret key msk = (TA).

ABE.KeyGenF1
(mpk,msk, id ∧‖ f): The key generation algorithm takes as

input mpk,msk, an equation test function id with binary representation
(b1, b2, ..., b`1) ∈ {0, 1}`1 and a policy function f with depth d, and then does
the following:
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1. Compute
Aid = B +

∑`1
i=1(biAi) ∈ Zn×mq .

2. Define function f̄(·) = 1− f(·), and compute

Hf = Evalpk(f̄ ,C1, . . . ,C`2) ∈ Zn×mq .

3. Let Fid∧‖f = (A|A′id∧‖f ) = (A|Aid|Hf ) ∈ Zn×3m
q .

4. Sample D ∈ Z3m×z as D← SampleLeft(A,TA,A
′
id∧‖f ,U, τ).

5. Output skid∧‖f := D, where Fid∧‖f ·D = U mod q.

ABE.EncF1(mpk, (x1, x2), µ): In order to encrypt a message µ ∈ {0, 1}z with
respect to attribute (x1,x2) where x1 = (x11, · · · , x1`1) ∈ {0, 1}`1 and x2 =
(x21, · · · , x2`2) ∈ Z`2q , the encryption algorithm first chooses a random vector
s ← Znq and two error vectors e0 ← χm, e1 ← χz where χ is a B bounded
discrete Gaussian distribution, and then does the following:

1. Compute Ax1
= B +

∑`1
i=1(x1iAi) ∈ Zn×mq .

2. Choose `1 uniformly random matrices Ri ← {−1, 1}m×m for i ∈ [`1], and

compute Rx1
=
∑`1
i=1(x1iRi).

3. Set e2 = R>x1
· e0 ∈ Zmq .

4. Set Hx2
= (x21G + C1| · · · |x2`2G + C`2) ∈ Zn×m`2q .

5. Choose `2 uniformly random matrices R′j ← {−1, 1}m×m for j ∈ [`2], and

set e3 = (R′1| · · · |R′`2)> · e0 ∈ Zm`2q .

6. Set Fx = (A|A′x) = (A|Ax1 |Hx2) ∈ Zn×(2+`2)m
q .

7. Output c = (F>x · s+ (e>0 , e
>
2 , e

>
3 )>,U> · s+ e1 + bq/2eµ) ∈ Z(2+`2)m+z

q .

ABE.DecF1(mpk, skid∧‖f , (x, c)): The decryption algorithm uses the key
skid∧‖f := D to decrypt c with attribute x = (x1,x2). If id(x1) ∧ f(x2) 6=
1, output ⊥. Otherwise, let the ciphertext c = (cin,1, cin,2, c1, . . . , c`2 , cout) ∈
Z(2+`2)m+z
q , compute cf = Evalct(f̄ , {(xi,Ci, ci)}`2i=1) ∈ Zmq , where cin,1, cin,2 ∈

Zmq , cout ∈ Zzq and ci ∈ Zmq for 1 ≤ i ≤ `2.

Let c′f = (cin,1, cin,2, cf ) ∈ Z3m
q and output Round(cout−D> ·c′f ) ∈ {0, 1}m.

Correctness. The correctness of the scheme follows from our choice of param-
eters. Specifically, to show correctness first note that when id(x1) ∧ f(x2) = 1
we know cin,2 = A>id · s+ e2, cf = H>f · s+ ef , then we have during decryption,

µ′ = Round(cout −D> · c′f )

= Round(cout −D> · ((A|Aid|Hf )> · s+ (e0, e2, ef )))

= Round(U> · s+ e1 + bq/2eµ−U> · s−D> · (e0, e2, ef ))

= Round(bq/2eµ+ e1 −D> · (e0, e2, ef ))

= µ

This completes the proof of correctness.
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Parameter Setting for our Construction. For arbitrarily small constant ε,
we set the system parameters according to the Table below.

Parameters Description Setting

λ security parameter

z message length O(log λ)

n PK-lattice row dimension λ

m PK-lattice column dimension n1+ε

q modulus n5m4

d depth of f O(log λ)

τ SampleLeft and SampleRight parameter n2m2

B bound of errors λ

`1 identity length n

`2 attribute length n

Table 2. Parameter Setting

These values are chosen in order to satisfy the following constraints:

– To ensure correctness, we require ‖e1 −D> · (e0, e2, ef )‖∞ ≤ q/4; here we
bound the dominating term:

‖D> · ef‖∞ ≤ τ
√

3m · 4dm3/2B ≤ q/4.

– For SampleLeft, we know ‖T̃A‖ = O(
√
n log q), so require that the sampling

width τ satisfies
τ ≥ O(

√
n log q) · ω(

√
log 3m).

– For SampleRight. we know ‖T̃G‖ ≤
√

5 and that

τ ≥
√

5 · 4dm3/2 · ω(
√

logm) ≥ ‖T̃G‖ · sRf
· ω(
√

logm).

– To apply Regev’s reduction, we need B ≥
√
nω(log n).

– To apply the Leftover Hash Lemma, we need m > (n+ 1) log q + ω(log n).

Secret Key Size. We give a simple analysis of the secret key size of our ABEF1

construction. By Lemma A.6, we know that

Pr[D← DΛU
q (Fid∧‖f ),τ : ‖D‖ > τ

√
3m] ≤ negl(n).

By our setting of parameters above, the size of the secret key of our ABE scheme
for F1 is bounded by O(λ1+ε log2 λ).

Security Proof of ABEF1

Theorem C.1 For parameter setting in Table 2, ABEF1
scheme above is ada-

sel secure as defined in Definition 3.5 and Remark 3.6, assuming the LWEn,q,χ
assumption holds.
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Proof. We prove the security of ABEF1
construction by a sequence of hybrids,

where the first hybrid is identical to the original security experiment Expada-sel
A (1λ)

as in Definition 3.5. We show that if a ppt adversary A that makes at most
|Q| secret key queries, can break the ABEF1 scheme described above with non-
negligible advantage ε (i.e. success probability 1/2 + ε), then there exists a re-
duction that can break the LWE assumption with advantage poly(ε) − negl(ε).
Given such an adversary A, we consider the following hybrids. In Hybrid Hi we
let Wi denote the event that the adversary correctly guessed the challenge bit,
namely that b = b′ at the end of the game. The adversary’s advantage in Hi is
|Pr[Wi]− 1

2 |.

The Sequence of Hybrids (H0,H1,H2,H3,H4)

Hybrid H0: This is the original security experiment Expada-sel
A (1λ) from Defi-

nition 3.5 between the adversary A and the challenger.
Hybrid H1: In hybrid H1, we slightly change the way that the challenger gen-

erates the matrices Ai, i ∈ [`1] and the matrices Cj , j ∈ [`2] in the public
parameters. We let Ri ∈ {−1, 1}m×m for i ∈ [`1] and R′j ∈ {−1, 1}m×m
for j ∈ [`2] denote the `1 + `2 ephemeral random matrices generated for the
creation of ct∗. The hybrid H1 challenger chooses choose `1 random element
hi ∈ GF(qt). Next it generates matrices A and B as in H0 and constructs
the matrices Ai for i ∈ [`1] as

Ai = A ·Ri + (G(hi)⊗ In/t)G,

where G is the the ring isomorphic map described in Section A.4, and con-
structs Cj for j ∈ [`2] as

Cj = A ·R′j − x2jG,

where x2 = (x21, ..., x2`2) ∈ {0, 1}`2 .
We show that H0 and H1 are statistically indistinguishable. Observe that in
H1 the matrices Ri, i ∈ [`2] are used only in the construction of the matrices
Ai and in the construction of the challenge ciphertext where e2 = (Rx∗1

)> ·
e0 ∈ Zmq and where Rx∗1

=
∑`1
i=1 x

∗
1iRi. Let R̃ = (R1| . . . |R`1 |R

′

1| . . . |R′`2) ∈
Zm×(`1+`2)m
q then by Lemma A.12, the distributions(

A,A · R̃, (R̃)> · e0

)
s
≈
(
A, (A

′

1| . . . |A
′

`1+̀ 2
), (R̃)> · e0

)
are statistically statistically close, where A′i for i ∈ [`1 + `2] are uniform
independent matrices in Zn×mq . It follows that with e2 = (Rx∗1

)> · e0 and

e3 = (R′1| · · · |R′`2)> · e0 the distributions(
A,AR1, . . . ,AR′`2 , e2, e3

) s
≈
(
A,A

′

1, . . . ,A
′

`1+̀ 2
, e2, e3

)
.

Therefore, in the adversary’s view, the matrices ARi,AR′j are statistically
close to uniform and independent of e2, e3. Hence, the Ai and Cj as defined
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as above are close to uniform meaning that they are random independent
matrices in the attacker’s view, as in H0. This shows that |Pr[W0]−Pr[W1]| =
negl(λ).

Hybrid H2: Hybrid H2 is identical to Hybrid H1 except that we add an abort
event that is independent of the adversary’s view. The H2 challenger behaves
as follows:

– The setup phase is identical to H1 except that the challenger also chooses
a random hash function H ∈ Hpind and keeps it to itself.

– The challenger responds to identity-policy queries and issues the chal-
lenge ciphertext exactly as in H1 (using a random bit b ∈ {0, 1} to select
the type of challenge). Let

(
(id1 ∧‖ f1), . . . , (idt ∧‖ ft)

)
be the identity-

policy pairs where the attacker queries and let x∗1 be the challenge iden-
tity and x∗2 be the challenge attribute. By definition, the two events that
x∗1 ∈ {id1, . . . , idt} and f(x∗2) = 1 can not happen at the same time.

– In the final guess phase, the attacker outputs its guess b′ ∈ {0, 1} for b.
The challenger now does the abort check: H(x∗1) = 0 and H(idi) 6= 0 for
all idi ∈ {idi}i∈[t]\{x∗1}. If the condition does not hold, the challenger
overwrites b′ with a freshly random bit in {0, 1}, and we say the challenge
aborts the game.

Note that the adversary never sees the random hash function, and has no
idea if an abort event took place. While it is convenient to describe the abort
action at the end of the game, nothing would change if the challenger aborted
the game as soon as the abort condition becomes true.

The only difference between hybrids H0 and H1 is the abort event. We argue
that the adversary still has non-negligible advantage in H1 even though the
abort event can happen. More formally, we will use Lemma 28 in the full
version of the work [2], which is described as follows.

Lemma C.2 Let I be a Q+ 1 tuple (x∗1, id1, ..., id|Q|) denoted the challenge
attribute x∗1 along with the queried ID’s, and ε(I) define the probability that
an abort does not happen in hybrid Hi. For i = 1, 2, we set Wi be the event
that b = b′ at the end of hybrid Hi. Assuming ε(I) ∈ [εmin, εmax], then we
have ∣∣∣∣Pr[W2]− 1

2

∣∣∣∣ ≥ εmin ∣∣∣∣Pr[W1]− 1

2

∣∣∣∣− 1

2
(εmax − εmin).

The lemma was analyzed by Bellare and Ristenpart [9], and further elaborat-
ed in the work [2]. As our overall proof just uses this lemma in a “black-box
way”, we do not include its proof for simplicity of presentation.

Hybrid H3: We now change how A and B in H2 are chosen. In H3 we generate
A as a random matrix in Zn×mq , but generate B by sampling a random
matrix R ∈ {−1, 1}m×m and computing B = A · R + G ∈ Zn×mq . The
construction of Ai for i = 1, ..., `1 and Cj for j = 1, ..., `2 remains as in
H2, namely, Ai = A · Ri + (G(hi) ⊗ In/t)G. To respond to a private key

query for id = (b1, ..., b`1) ∈ {0, 1}`1 the challenger needs a small matrix
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D ∈ ΛU
q (Fid∧‖f ) where

Fid∧‖f =

(
A|B +

`1∑
i=1

(biAi)|Hf

)
= (A|A·Rid+H(id)G|A·Rf−(1−f(x))G)

where

Rid =

`1∑
i=1

(biRi) and Rf = Eval(f̄ ,A,R1, ...,R`2 ,x)

and H(id) = In +

`1∑
i=1

bi(G(hi)⊗ In/t)G.

Note that H is the hash function in Hpind defined by (h1, ..., h`1) as in Sec-
tion A.4.

The challenger now does the following:

1. Construct H(id) and Rid as in above. If H(id) = 0 and f(x2) = 1 abort
the game and pretend that the adversary outputs a random bit b′ in
{0, 1}, as in H2.

2. Set D← SampleRight(A, H(id),Rid,TG,U, σ,Rf ) ∈ Z3m×z.

3. Send skid,f = D to A.

H3 is otherwise the same as H2. In particular, in the challenge phase the
challenger checks if the challenge attribute (x∗1,x

∗
2) ∈ {0, 1}`1+`2 satisfies

H(x∗1) = 0 and f(x∗2) = 1. If not, the challenger aborts the game (and
pretends that the adversary output a random bit b′ in {0, 1}), as in H2.
Similarly, in H3 the challenger implements an abort check in the guess phase.

Since H2 and H3 are statistically indistinguishable in the attacker’s view (the
public parameters, responses to private key queries, the challenge ciphertext,
and abort conditions) the adversary’s advantage in H3 is statistically indis-
tinguishable to its advantage in H2, namely

|Pr[W3]− Pr[W2]| = negl(λ).

Hybrid H4: Hybrid H4 is identical to H3 except that the challenge ciphertext

ct is always chosen as a random independent element in Z(2+`2)m+z
q . Since

the challenge ciphertext is always a fresh random element in the ciphertext
space, A’s advantage in this hybrid is zero.

It remains to show that H3 and H4 are computationally indistinguishable, which
we do by giving a reduction from the LWE problem. If an abort event happens
then the games are clearly indistinguishable. Therefore, it suffice to focus on
sequences of queries that do not cause an abort. We have the following lemma:

Lemma C.3 Assuming the hardness of LWE assumption, hybrid H3 and H4 are
computationally indistinguishable.
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Proof. Suppose there exists an adversary who has non-negligible advantage in
distinguishing hybrid H3 and H4, then we can construct a reduction B that breaks
the LWE assumption using the adversary A. Recall in Definition A.13, an LWE
instance is provided as a sampling oracle O that can be either uniformly random
O$ or a pseudorandom Os for some secret random s ∈ Znq . The reduction B uses
adversary A to distinguish the two oracles as follows:

Invocation. Reduction B requests m + z instances from oracle O, i.e. pair
(ai, bi) for i = 1, ...,m+ z.

Setup. Reduction B constructs master public key mpk as follows:
1. Set matrix A ∈ Zn×mq to be the first m vectors ai in pairs (ai, bi) for
i = 1, ...,m.

2. Assign the {m+ i}i∈[m+1,m+z]-th LWE instances (atm+1, ...,a
t
m+z) to be

matrix U ∈ Zn×zq .
3. Construct the reminder of master public key, namely matrices {Ai}i∈[`1]

and {Cj}j∈[`2] as in hybrid H3.
4. Send mpk = (A, {Ai}i∈[`1], {Cj}j∈[`2],U) to A.

Queries. Reduction B answers identity queries as in hybrid H3, including abort-
ing the simulation if needed.

Challenge. When adversary A sends message (µ0,µ1) and challenge attribute
(x∗1,x

∗
2), reduction B does the following:

1. Set v ∈ Zmq the first m integers bi in LWE pairs (ai, bi), for i = 1, ...,m.
2. Set challenge ciphertext ct = (c1, c2) as

c1 =
(
v, (Rx∗1

)> · v, (R′1| . . . |R′`2)> · v
)

and c2 = (bm+1, ..., bm+z) + bq/2eµb.
3. Send challenge ciphertext ct = (c1, c2) to adversary A.

Guess. After being allowed to make additional queries, A guesses if it is inter-
acting with a hybrid H3 or H4 challenger. Our simulator outputs the final
guess as the answer to the LWE challenge it is trying to solve.

We can see that when O = Os, the adversary’s view is as in hybrid H3; when
O = O$, the adversary’s view is as in hybrid H4. Hence, B’s advantage in solving
LWE is the same as A’s advantage in distinguishing hybrids H3 and H4. ut

Completing the Proof. Recall that |Q| is the upper bound of the number of
the adversary’s key queries, and ε is the advantage of the adversary in H0. By
Lemma A.14 and A.15, we can know that

Pr
H

[
H(x∗1) = 0

∧
H(id1) 6= 0

∧
. . .
∧
H(id|Q|) 6= 0

]
∈
(

1

qt
(1− Q

qt
),

1

qt

)
.

Thus, we know that for any (Q+ 1)-tuple I denoting a challenge id∗ along with

ID queries, we have ε(I) ∈
(

1
qt (1−

Q
qt ),

1
qt

)
. Then by setting [εmin, εmax] =[

1
qt (1−

Q
qt ),

1
qt

]
in Lemma C.2, we have∣∣∣∣Pr[W2]− 1

2

∣∣∣∣ ≥ 1

qt
(1− Q

qt
)

∣∣∣∣Pr[W1]− 1

2

∣∣∣∣− Q

2q2t
.
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By our parameter setting, |Q| ≤ 1
2εq

t, where ε =
∣∣Pr[W0]− 1

2

∣∣, we have that∣∣∣∣Pr[W2]− 1

2

∣∣∣∣ ≥ 1

qt
(1− Q

qt
)

∣∣∣∣Pr[W0]− 1

2
− negl(λ)

∣∣∣∣− Q

2q2t
≥ ε

4qt
− negl(λ).

We set t = dlogq(2|Q|/ε)e, then we have qt ≥ 2|Q|/ε ≥ qt−1. This implies
1
qt ≥

ε
2q|Q| . We can further derive: ε

4qt ≥
ε2

4|Q|q . This quantity is non-negligible

as long as ε is non-negligible, as q is polynomial for our setting of parameters
and |Q| is polynomially bounded.

In summary, as Pr[W4] = 1
2 , we have that

ε2

4|Q|q
− negl(λ) ≤

∣∣∣∣Pr[W2]− 1

2

∣∣∣∣+ negl(λ)

≤
∣∣∣∣Pr[W3]− 1

2

∣∣∣∣−AdvLWE
B (1λ)

≤
∣∣∣∣Pr[W4]− 1

2

∣∣∣∣ = 0,

which implies AdvLWE
B (1λ) ≥ ε2

4|Q|q−negl(λ). This means the reduction B defined

in Lemma C.3 breaks the LWE assumption with non-negligible probability. This
reaches a contradiction, which completes the proof. ut

C.2 ada-sel secure ABE for (t-CNF∗) ∧‖ G from LWE

Before presenting the ABE scheme, let us first recall the building block – con-
forming cPRF of the ABE construction by Tsabary [45].

Definition C.4 (Conforming Constrained PRF [45]) Let F be a function
class such that F ⊆ {0, 1}` → {0, 1}. A conforming constrained PRF for policies
in F is a tuple of ppt algorithms with the following syntax and properties.

– cPRF.Setup(1λ)→ (pp,msk) takes as input a security parameter λ and out-
puts public parameters pp along with a master secret key msk.

– cPRF.Evalmsk(x) → rx is a deterministic algorithm that takes as input a
master secret key msk and a bit-string x ∈ {0, 1}`, and outputs a bit-string
rx ∈ {0, 1}k.

– cPRF.Constrainmsk(f) → skf takes as input a master secret key msk and a
function f ∈ F , and outputs a constrained key skf .

– cPRF.ConstrainEvalskf (x) is a deterministic algorithm that takes as input a

constrained key skf and a bit-string x ∈ {0, 1}`, and outputs a bit-string
r′x ∈ {0, 1}k.

Correctness. A cPRF scheme is correctness if for all x ∈ {0, 1}` and f ∈ F
for which f(x) = 1, it holds that cPRF.Evalmsk(x) = cPRF.ConstrainEvalskf (x)

where (pp,msk)← cPRF.Setup(1λ) and skf ← cPRF.Constrainmsk(f).
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Gradual Evaluation. The algorithm cPRF.Constrain (in addition to cPRF.Eval,
cPRF.ConstrainEval) is deterministic and the following holds. For any fixing of
pp ← cPRF.Setup(1λ), f ∈ F and x ∈ {0, 1}` for which f(x) = 1, define the
following circuits:

– Uσ→x : {0, 1}λ → {0, 1}k takes as input msk and computes cPRF.Evalmsk(x).
– Uσ→f : {0, 1}λ → {0, 1}`f takes as input msk and computes cPRF.Constrainmsk(f).
– Uf→x : {0, 1}`f → {0, 1}k takes as input skf and computes cPRF.ConstrainEvalskf (x).

We require that for all pp, f, x as define above, the circuit Uσ→x and the effective
sub-circuit of Uf→x ◦ Uσ→f are the same. That is, the description of Uσ→x as
a sequence of gates is identical to the sequence of gates that go from the input
wires to output wires of circuit Uf→x ◦ Uσ→f .

Pseudorandomness. The adaptive security game of a cPRF scheme between
an adversary A and a challenger C is as follows.

1. Initialization: C generates (pp,msk)→ cPRF.Setup(1λ) and sends pp to A.
2. Queries Phase I: A makes (possibly many) queries in an arbitrary order:

– Evaluation Queries: A sends a bit-string x ∈ {0, 1}`, C returns rx ←
cPRF.Evalmsk(x).

– Key Queries: A sends a function f ∈ F , C returns

skf ← cPRF.Constrainmsk(f).

3. Challenge Phase: A sends the challenge bit-string x∗ ∈ {0, 1}`. C uniformly

samples b
$←− {0, 1}. If b = 0 then returns r∗

$←− {0, 1}k. Otherwise it returns
r∗ ← cPRF.Evalmsk(x

∗).
4. Queries Phase II: same as the first queries phase.
5. End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b; (2) all the evaluation queries are not for x∗; and
(3) all of the key queries f are such that f(x∗) = 0. Moreover, we call it to be
single-key adaptive security if in the above described game, A can only make
a single key query throughout the entire game. A cPRF scheme is secure (resp.
single-key secure) if for any ppt adversary A, the probability that A wins in the
adaptive (resp. single-key adaptive) security game is at most 1/2 + negl(λ).

Key Simulation. We require a ppt algorithm KeySimpp(f) → skf such that
any ppt adversary A has at most 1/2 + negl(λ) probability to win the following
game against a challenger C.

– Initialization: C generates (pp,msk)← cPRF.Setup(1λ) and sends pp to A.
– Evaluation Queries I: A makes (possible multiple) queries. In each query it

sends a bit-string x ∈ {0, 1}` and C returns rx ← cPRF.Evalmsk(x).
– Challenge Phase: A sends the challenge constrain f∗ ∈ F . C uniformly sam-

ples b← {0, 1}. If b = 0 then C returns skf∗ ← cPRF.Constrainmsk(f), other-
wise, it returns skf∗ ← KeySimpp(f).
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– Evaluation Queries II: same as the first queries phase.
– End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b and (2) all the evaluation queries x are such that
f∗(x) = 0.

We first recall a lemma from a prior work, and the present our construction.

Lemma C.5 ( [45]) Assuming the hardness of LWE with super-polynomial modulo-
to-noise ratio, there exists a conforming cPRF scheme for t-CNF function family
such that all the required properties above are satisfied.

Construction

Let Π = (cPRF.Setup, cPRF.Eval, cPRF.Constrain, cPRF.ConstrainEval) be a con-
forming cPRF for t-CNF function family with input length `1 and output length
k, and assume that the length of mskΠ is λ. For all f ∈ t-CNF let `f de-
note the size of skf for the function f . Let Uσ→x, Uσ→f and Uf→x be the cir-
cuit as defined in the part of Gradual Evaluation, and denote the depth of
Uf→x as dce. Let the G be the function family with input length `2 and out-
put length 1. For convenience, we denote F2 as t-CNF∗ ∧‖ G for short. The
ABE = (ABE.SetupF2

,ABE.EncF2 ,ABE.KeyGenF2
,ABE.DecF2) is as follows.

ABE.SetupF2
(1λ): The setup algorithm takes as input a security parameter λ,

and then dose the following:

1. Sample a random matrix A ∈ Zn×mq along with a trapdoor basis TA ∈
Zm×m of lattice Λ⊥q (A) by running TrapGen.

2. Sample (ppΠ ,mskΠ)← cPRF.Setup(1λ), denote σ = mskΠ .
3. Select λ uniformly random matrices B1, . . . ,Bλ ∈ Zn×mq .
4. Select `2 uniformly random matrices C1, . . . ,C`2 ∈ Zn×mq .

5. Select a random matrix U
$←− Zn×zq .

6. Output the public parameters

mpk = (A, {Bi}i∈[λ], {Ci}i∈[`2],U, ppΠ)

and the master secret key msk = (TA, σ).

ABE.KeyGenF2
(mpk,msk, Ux ∧‖ g): The key generation algorithm takes as

input mpk,msk, a policy function Ux ∧‖ g ∈ F2 where the depth of g is d, and
then does the following:

1. Compute the matrix Bσ→x ← Evalpk(Uσ→x, {Bi}i∈[λ]).

2. Compute r ← Π.Evalσ(x) and let Ir : {0, 1}k → {0, 1} be the function that
on input r′ returns 1 if and only if r = r′. Compute Br ← Evalpk(Ir,Bσ→x).

3. Define function ḡ(·) = 1− g(·), and compute

Hg = Evalpk(ḡ,C1, . . . ,C`2) ∈ Zn×mq .
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4. Let FUx∧‖g = (A|A′Ux∧‖g) = (A|Br|Hg) ∈ Zn×3m
q .

5. Sample D ∈ Z3m×z as D← SampleLeft(A,TA,A
′
Ux∧‖g,U, τ).

6. Output skUx∧‖g := (r,D), where FUx∧‖g ·D = U mod q.

ABE.EncF2(mpk, (f, x), µ): In order to encrypt a message µ ∈ {0, 1}z with
respect to attribute (f,x) where f ∈ t-CNF and x = (x1, · · · , x`2) ∈ Z`2q , the
encryption algorithm first chooses a random vector s← Znq and two error vectors

e0 ← χm, e1 ← χ̃m·`f , e2 ← χz where χ and χ̃ are B and B̃ bounded discrete
Gaussian distribution, respectively, and then does the following:

1. Sample skf ← KeySimpp(f), and denote sf = skf .
2. Compute Bf ← Evalpk(Uσ→f , {Bi}i∈[λ]).

3. Set Hx = (x1G + C1| · · · |x`2G + C`2) ∈ Zn×m`2q .
4. Choose `2 uniformly random matrices R′j ← {−1, 1}m×m for j ∈ [`2], and

set e3 = (R′1| · · · |R′`2)> · e0 ∈ Zm`2q .

5. Set Ff,x = (A|A′f,x) = (A|Bf − sf ⊗G|Hx) ∈ Zn×(2+`2)m
q .

6. Output c = (sf ,F
>
f,x · s+ (e>0 , e

>
1 , e

>
3 )>,U> · s+ e2 + bq/2eµ).

ABE.DecF2(mpk, skUx∧‖g, ((f, x), c)): The decryption algorithm uses the key
skUx∧‖g := D to decrypt c with attribute (f,x). If Ux(f) ∧ g(x) 6= 1, output ⊥.

Otherwise, let the ciphertext c = (sf , cin,1, cin,2, c1, . . . , c`2 , cout), compute
r′ ← Uf→x(sf ). If r = r′ then abort. Otherwise, compute Bf ,Bσ→x as in Enc
and KeyGen respectively. Then compute ctsf→r′ ← Evalct

(
Uf→x, (sf ,Bf , ctin,2)

)
and ctr,r′ ← Evalct

(
Ir, (r

′,Bσ→x, ctsf→r′)
)
, and also compute

cg = Evalct(ḡ, {(xi,Ci, ci)}`2i=1).

Lastly, output µ′ = Round(ctout −D> · (ctin,1, ctr,r′ , ctg)).

Correctness.

Lemma C.6 If Π is a conforming cPRF for function class t-CNF, then ABEF2

is a correct ABE scheme for the function class F2.

Proof. Fix µ ∈ {0, 1}z, (pp,msk)← ABEF2
.Setup(1λ), Ux∧‖g ∈ F2 and attribute

(f,x) such that Ux(f) ∧ g(x) = 1. Consider the execution of ABE.DecF2
.

We can show that ctr,r′ = B>r · s+ e
′

1 by similar computation as [45], where

‖e′1‖ ≤ m2`fkB̃(2m)dce+1 and B̃ is the bound of distribution χ̃. On the other
hand, ctg = H>g · s+ eg, where ‖eg‖ ≤ 4dm3/2B. Therefore,

ctout −D> · (ctin,1, ctr,r′ , ctg))

= U> · s+ e2 + bq/2eµ−D> · (A|Br|Hg) · s−D> · (e0, e
′

1, eg)

= e2 + bq/2eµ−D> · (e0, e
′

1, eg),

by our choice of parameters, the error term ẽ = e2 −D> · (e0, e
′

1, eg) satisfies
that ‖ẽ‖ ≤ q/4. This completes the proof of correctness. ut
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Parameter Setting for our Construction. For arbitrarily small constan-
t ε1 ∈ (0, 1) and constant ε2 ∈ Z, we denote ε3 = 2ε2

ε1
, and set the system

parameters according to the Table below.

Parameters Description Setting

λ security parameter

n PK-lattice row dimension λε3

m PK-lattice column dimension O(n log q)

q modulus B(2n2)3dce+5

d depth of g O(log λ)

dce depth of Uf→x λε2

τ SampleLeft and SampleRight parameter λ(2m)dce+3

B bound of error distribution χ O(λ)

B̃ bound of error distribution χ̃ Bλ2(2m)dce+1

k output length of conforming cPRF λ

`2 input length of g λ

`f the size of skf O(1)

Table 3. Parameter Setting

These values are chosen in order to satisfy the following constraints:

– To ensure correctness, we require ‖e2 −D> · (e0, e
′

1, eg)‖∞ ≤ q/4; here we
bound the dominating term:

‖D> · e
′

1‖∞ ≤ τ
√

3m ·m2`fkB̃(2m)dce+1 ≤ q/4.

– For SampleLeft, we know ‖T̃A‖ = O(
√
n log q), so require that the sampling

width τ satisfies

τ ≥ O(
√
n log q) · ω(

√
log 3m).

– For SampleRight. we know ‖T̃G‖ ≤
√

5 and that

τ ≥
√

5 ·m2λ(2m)dce+1 · ω(
√

logm) ≥ ‖T̃G‖ · sRσ→r · ω(
√

logm).

– To apply Regev’s reduction, we need B ≥
√
nω(log n).

– To apply the Leftover Hash Lemma, we need m ≥ (n+ 1) log q + ω(log n).

Secret Key Size. We give a simple analysis of the secret key size of our ABEF2

construction. By Lemma A.6, we know that

Pr[D← DΛU
q (FUx∧‖g),τ : ‖D‖ > τ

√
3m] ≤ negl(n).

By our setting of parameters above, the size of the secret key of our ABE scheme
for F2 is bounded by O(λ2ε3+ε2 log2 λ).
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Security Proof of ABEF2

Theorem C.7 For parameter setting in Table 3, ABEF2
scheme above is ada-

sel secure as defined in Definition 3.5 and Remark 3.6, assuming the LWEn,q,χ
assumption holds.

Proof. (Sketch) The proof proceeds in a sequence of games where the first game
is identical to the security experiment as in Definition 3.5, while in the last
game in the sequence the adversary has advantage zero. Our goal is to prove
indistinguishability among the adjacent games. We let Wi denote the event that
adversary wins the ABEF2 security experiment in game i, thus adversary’s ad-
vantage in game i is |Pr[Wi]− 1/2|. The sequence of games can be described as
follows:

The Sequence of Hybrids (H0,H1,H2,H3,H4)

Hybrid H0: This is the original security experiment Expada-sel
A (1λ) from Defi-

nition 3.5 between the adversary A and the challenger.
Hybrid H1: Hybrid H1 is identical to Hybrid H0 except that we add an abort

event that is independent of the adversary’s view. Suppose the number of
queries made by adversary is polynomial Q, and let (x1, g1), · · · , (xQ, gQ)
denote the key queries. W.l.o.g., assume that there exists one query (x, g)
such that Ux(f∗) = f∗(x) = 1, where f∗ is the first part of the challenge
attribute. Before the setup phase, the challenger guesses an index i ∈ [Q]. In
final guess phase, upon receiving the adversary’s guess b′ ∈ {0, 1} for b, the
challenger does the abort check: f∗(xi) = 1. If the condition does not hold,
the challenger overwrites b′ with a freshly random bit in {0, 1}, and we say
the challenge aborts the game.

Hybrid H2: We change the way challenger answers key queries. For i-th query,

instead of computing ri ← Evalσ(xi), it outputs a random string ri
$←−

{0, 1}k. The answers for the remaining queries are identical to H1.
Hybrid H3: We change the way challenger generates the challenge ciphertext.

Instead of computing skf∗ ← KeySimpp(f
∗), it computes skf∗ ← cPRF.

Constrainmsk(f
∗). Now skf∗ = Uσ→f∗(σ).

Hybrid H4: We change the way challenger generates the matrices {Bi}, {Cj} as

follows. It samples uniformly matrices {Ri}, {R′j}, where Ri
$←− {0, 1}m×m,

R′j
$←− {0, 1}m×m, and set Bi = ARi + σiG,Cj = AR′j − x2jG.

Hybrid H5: We change the way challenger generates the challenge ciphertext a-
gain. Specifically, let the ciphertext c = (sf , cin,1, cin,2, c1, . . . , c`2 , cout). Re-
call that previously cin,2 = s>(Bf−sf⊗G)+e>1 , cj = s>(xjG+Cj)+e>3,j ,

where j ∈ [`2], e1
$←− χ̃m·`f . In this hybrid, these vectors will be computed as

cin,2 = cin,1 ·Rσ→f + e>1 , where Rσ→f = EvalSim(Uσ→f , {(σi,Ri)}λi=1,A),
and cj = cin,1 ·R′j .

Hybrid H6: We change the way challenger answers key queries. Let x be query
and fix r′ ← Evalσ(x). Note that Bσ→x = ARσ→x + r ⊗G, where Rσ→x =
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EvalSim(Uσ→x, {(σi,Ri)}λi=1,A), and Br = ARr + Ir(r
′) ⊗G, where Rr =

EvalSim(Ir, (r,Rσ→x),A).
Since Ux(f∗)∧g(x∗) = 0, then Pr[¬(f∗(x) = 1∧g(x∗) = 1)] = 1. If f∗(x) = 1,
then Ir(r

′) = 0 with overwhelming probability. On the other hand, when
f∗(x) = 1, g(x∗) must be 0, then Hg = AR′g + (1− g(x∗))G = AR′g + G,
where R′g = EvalSim(ḡ, (x∗, {R′j}),A). Now challenger can use algorithm
SampleRight to make the following equation hold

[A|ARr|AR′g + G] ·D = U mod q.

Similarly, If f∗(x) = 0, Ir(r
′) = 1. Then challenger can also use algorithm

SampleRight to make the following equation hold

[A|ARr + G|AR′g + (1− g(x∗))G] ·D = U mod q,

no matter g(x∗) = 0 or 1.
Hybrid H7: We change the way A is generated. Instead of sampling it via

TrapGen, we sample A
$←− Zn×mq uniformly at random.

Hybrid H8: We change again the way challenger generates the challenge cipher-
text. It now samples cin,1 and cout uniformly at random. Now the challenge
completely hides b and so adversary has no advantage.

Now we explain the indistinguishability between the adjacent hybrids briefly.
For H0 and H1, the challenger in H1 has probability 1

Q that doesn’t abort the

game, so |Pr[W1]− 1/2| = 1
Q |Pr[W0]− 1/2|. The indistinguishability between H1

and H2 comes from the pseudorandomness of the underling PRF of the cPRF.
H2 is indistinguishable from H3 because of the Key Simulation security and
the fact that random ri doesn’t leak any information of msk. We can apply the
leftover hash lemma A.12 to show the indistinguishability between H3 and H4.
H4 is indistinguishable from H5 due to the smudging Lemma A.9. The indistin-
guishability between H5 and H6 comes from Lemma A.7. H6 is indistinguishable
from H7 because of Lemma A.5. Finally, H7 is indistinguishable from H8 due to
the hardness of LWE.

In conclusion, |Pr[W0]−1/2| = Q|Pr[W1]−1/2| ≤ Q(|Pr[W2]−1/2|+εPRF) ≤
Q(|Pr[W3] − 1/2| + εPRF + εkeysim) ≤ · · · ≤ Q(|Pr[W8] − 1/2| + εPRF + εkeysim +
εLWE + negl(λ)) = Q(εPRF + εkeysim + εLWE + negl(λ)). Therefore, the advantage
of adversary in ABE security game is negligible assuming the security of cPRF
and the hardness of LWE.

ut

D Supplementary Material for Section 4

D.1 Proof of Theorem 4.2

Theorem (Restatement of Theorem 4.2) Assume Π is a selectively (or adap-
tively, resp.) secure AB-wHPS for the policy function class F , then the above ABE
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scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptive-
ly, resp.) `(λ)-leakage resilient attribute-based encryption scheme for the policy
function class F in the relative-leakage model. Particularly, ΠF is aslo

– an `(λ)-leakage-resilient PKE in the relative-leakage model, if F contains
only a single function that always outputs 1.

– a selectively (or adaptively, resp.) `(λ)-leakage-resilient IBE in the relative-
leakage model, if F contains the following comparison functions, i.e., each
function fy ∈ F is indexed by a vector y, and fy(x) = 1 if and only if y = x.

Proof. Here, we just prove the general case of ABE for a general function class
F . Then, the results for IBE and PKE are clearly set up, since IBE and PKE
are special cases of ABE for equation-testing functions and constant function,
respectively.

First, the correctness of this ABE scheme ΠF follows naturally from that
of AB-wHPS Π. Furthermore, the security of this ABE scheme can be argued
through using a sequence of hybrids as follows.

Hybrid H0: This hybrid is defined to be the security experiment with `-leakage
in Definition 2.2. In this hybrid, the view of A consists of the master public-key
pk, leakage information h(skf ), and challenge ciphertext (s,CT0,CT1), where

(mpk,msk)
$←− AB-wHPS.Setup(1λ), skf

$←− AB-wHPS.KeyGen(msk, f), s
$←− S,

(CT0, k)← AB-wHPS.Encap(mpk,x), CT1 = µb + Ext(k, s).

Notice that the leakage function h : {0, 1}∗ → {0, 1} is chosen adaptively by
the adversary before the challenge stage. More importantly, in the leakage query
stage, A is allowed to query only one policy function f such that f(x∗) = 1
where x∗ is the challenge attribute.

Hybrid H1: This hybrid is almost identical to the Hybrid 0, except the challenge
ciphertext is computed in the following way:

(CT0, k)
$←− AB-wHPS.Encap(mpk,x), k1 = AB-wHPS.Decap(skf ,CT0),

CT1 = µb + Ext(k1, s).

The only difference between Hybrid 0 and Hybrid 1 is the usage of k and k1

in the computation of c1. In fact, k = k1 according to the correctness of the
underlying AB-wHPS. Hence, Hybrid 0 and Hybrid 1 are identical.

Hybrid H2: This hybrid is almost same to Hybrid 1, except the challenge
ciphertext is computed in the following way:

CT′0
$←− AB-wHPS.Encap∗(mpk,x), k1 = AB-wHPS.Decap(skf ,CT

′
0),

CT1 = µb + Ext(k1, s).
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The only difference between Hybrid 1 and Hybrid 2 is the computation and us-
age of CT0 and CT′0. In fact, according to the ciphertext indistinguishability of
the underlying AB-wHPS, CT0 and CT′0 are computationally indistinguishable
even for the adversary having secret key skf . Hence, Hybrid 0 and Hybrid 1
are indistinguishable for the adversary having the leakage information h(skf ).
Notice that, in the real scenarios, one party is always issued just one secret key
satisfying his attributes, which will be used in the following decryption compu-
tation. Therefore, it makes sense for us to limit just one policy function f such
that f(x∗) = 1 in the leakage query stage.

Hybrid H3: This hybrid is almost same to Hybrid 2, except that the challenge
ciphertext is computed in the following way:

CT′0
$←− AB-wHPS.Encap∗(mpk,x), r

$←−M, CT1 = µb + r.

Essentially, pk, CT′0, k1 = AB-wHPS.Decap(skf ,CT
′
0) and h(skf ) are correlated

variables. According to the universality of underlying AB-wHPS, we know that
k1 is uniform over K even given pk and CT′0, i.e.,

H∞(k1|pk,CT′0) = log(|K|).

Furthermore, since the bit-length of leakage information h(skf ) is `, we have

H∞(k1|pk,CT′0, h(skf )) ≥ log(|K|)− `.

Then, for a random s
$←− S, Ext(k1, s) is ε-close to the uniform distribution over

M even given pk,CT′0, h(skf ), since Ext is assumed to be a strong (log(|K|)−`, ε)-
extractor for ε = negl(λ). As a result, Hybrid 2 and Hybrid 3 are statistically
close.

Notice that the view of A in Hybrid 3 is completely independent of µb and b.
Therefore, the advantage of A in Hybrid 3 is 0. Finally, combining all above hy-
brids together, we conclude that the advantage of A in Hybrid 0 is also negligible
in λ. Thus the ABE scheme ΠF is `-leakage-resilient for F . ut

E Supplementary Material of Section 5

E.1 Proof of Theorem 5.3

Theorem (Restatement of Theorem 5.3) Assume Π is an AB-wHPS with
the encapsulated-key-space K for F ∧‖H. Then the above amplified construction

of Πn′,t
‖ is an AB-wHPS with the encapsulated-key-set Kt for F . Furthermore,

– if the underlying Π is selectively (or adaptively) secure, then the Πn′,t
‖ is

also selectively (or adaptively) secure;
– if the secret-key-size of Π scheme for the policy function f is s(f), then the

secret-key size of the Πn′,t
‖ for f is n′ × s(f̂f,h).
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Proof. The second part of the theorem follows directly by our construction from

the underlying Π to the amplified Πn′,t
‖ , especially by the relationship between

policy functions of Π and that of Πn′,t
‖ .

Similar to Theorem 3.12, in order to prove the first part of this theorem,
we need to prove the following three properties: correctness, smoothness and
ciphertext indistinguishability.

Correctness. Correctness of our Πn′,t
‖ follows directly from the correctness of

the underlying Π.

Universality. As Πn′,t
‖ is a parallel repetition of the underlying Π, universality

of our Πn′,t
‖ follows directly from the universality of the underlying Π.

Ciphertext Indistinguishability. We prove that the ciphertexts output by

Πn′,t
‖ .Encap(mpk,x∗) and Πn′,t

‖ .Encap∗(mpk,x∗) are indistinguishable, given one

secret “1-key” skf such that f(x∗) = 1 and perhaps many “0-keys” skf ′ such
that f ′(x∗) = 0, where x∗ is the challenge attribute. We summarize the result
in the lemma below.

Lemma E.1 (Ciphertext indistinguishability) The construction of the
amplified AB-wHPS satisfies valid/invalid cipheretext indistinguishability as Def-
inition 3.1.

Proof. We prove the valid/invalid ciphertext indistinguishability of AB-wHPS vi-
a a hybrid argument. More specifically, we define the following hybrids, where
we start from a valid ciphertext, and then switch row-by-row towards an invalid
ciphertext. We prove that each two neighboring hybrids are indistinguishable
via a reduction from the underlying AB-wHPS. The proof of this lemma follows
directly from the indistinguishability of these hybrids.

Hybrid H0: For a randomly chosen subset r := {r1, . . . , rt} ⊆ [n′], this hybrid
is defined as the ciphertext indistinguishability experiment in Definition 3.1,
where A is given a valid ciphertext

CT0 := (r, Π.Encap(mpk, (x, r1)), . . . ,Π.Encap(mpk, (x, rt))),

In this hybrid, it is clear that the ciphertext CT0 is generated as Πn′,t
‖ .Encap.

Hybrid Hz: For any 1 ≤ z ≤ t− 1, Hz is almost same to Hz−1, except that A
is given the following ciphertext

CTz :=(r, Π.Encap∗(mpk, (x, r1)), . . . ,Π.Encap∗(mpk, (x, rz)),

Π.Encap(mpk, (x, rz+1)) . . . , ,Π.Encap(mpk, (x, rt))).

In this hybrid, the first z ciphertexts are generated by Π.Encap∗ (with z different
attributes), and the rest are by Π.Encap (with other t− z different attributes).
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Hybrid Ht: This hybrid is almost same to Ht−1, except that A is given the
following ciphertext

CTt := (r, Π.Encap(mpk, (x, r1)), . . . ,Π.Encap(mpk, (x, rt))),

In this hybrid, it is clear that the ciphertext CTt is generated as Πn′,t
‖ .Encap∗.

Then, it suffices to prove the computational indistinguishability between Ht
and Ht+1 for z ∈ [t− 1]

Claim E.2 Suppose the valid/invalid ciphertext of the underlying AB-wHPS is
selective or adaptive indistinguishability, then the above hybrids Hz and Hz+1 are
selective or adaptive indistinguishability for any z ∈ [t− 1].

Proof. We prove this claim through establishing a reduction from the valid/inva-
lid ciphertext of the underlying AB-wHPS to the indistinguishability between Hz
and Hz+1. This means if there is an efficient adversary D who can distinguish
Hz from Hz+1 with advantage ε, then we can construct an efficient reduction B
to break the corresponding indistinguishability of underlying AB-wHPS with ε.
Here, we just describe the reduction in the case of adaptive indistinguishability
(underlying AB-wHPS), and note that a similar argument can be carried to the
selective security in a straight-forward way.

Let A be the adversary for the ciphertext indistinguishability experiment for
the amplified AB-wHPS, and D be a distinguisher that distinguishes Hz from
Hz+1 with a non-negligible advantage for some z ∈ [t − 1]. Now we describe
the reduction B that breaks the ciphertext indistinguishability of the underlying
AB-wHPS when interacting with the challenger C.

Setup: B simulates either the hybrid Hz or Hz+1 by running A in the following
way.

1. B first get a master public-key mpk from the challenger C for the underlying
AB-wHPS Π.

2. Then B forwards this mpk to the adversary A for the amplified AB-wHPS

Πn′,t
‖ .

3. At the same time, B sets a table T = ∅.

Test Stage 1: B answers the secret key queries of A in the following way.

1. A sends a function f ∈ F to B for a secret key query.
2. B first checks whether there exists an item containing this f in the table T .

– If yes, B returns the corresponding secret key skf in T to A.
– Otherwise, B goes to the next step 3.

3. B sets f̂ i = f̂ if,hi ∈ F ∧‖ H for every i
$←− [n′], .

4. Then B sends all f̂ i to C to conduct secret key query for AB-wHPS, and thus
get skf̂i as a respond.

5. Finally, B sends skf :=
(
skf̂1 , skf̂2 , . . . , skf̂n′

)
as the secret key for f to A,

and stores the tuple (f, skf ) as an item into the table T .
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Challenge Stage: B simulates the challenge ciphertext to A as follows.

1. A choose any x∗ ∈ X satisfying that there is at most one function f ∈ F
such that f(x∗) = 1 had been queried in Test Stage 1, as the challenge
attribute to conduct the challenge query.

2. For a randomly chosen subset r := {r1, . . . , rt} ⊆ [n′], B sets attribute
x∗z+1 = (x∗, rz+1).

3. Then B send attribute x∗z+1 to C for the challenge query with respect to the
underlying AB-wHPS.

4. Next, B obtains a ciphertext CT∗z+1
$←− AB-wHPS.Encap(x∗z+1) or AB-wHPS.

Encap∗(x∗z+1) depending on a random b ∈ {0, 1} as the challenge ciphertexts
from C.

5. Furthermore, B sets x∗i = (x, ri) for i ∈ [t], and then calculates{
CT∗i

$←− AB-wHPS.Encap∗(x∗i )
}
i∈[z]

and {
CT∗i

$←− AB-wHPS.Encap(x∗i )
}
i∈[t]\[z+1]

by himself.

6. B collects all ciphetexts c∗i for i ∈ [t] together to construct (CT∗1, . . . ,CT
∗
t )

according to the indexes of these ciphertexts.

7. Finally, B sends this matrix CT∗ := (r,CT∗1, . . . ,CT
∗
t ) as the challenge en-

capsulation ciphertext to A.

Test Stage 2: B answers the secret key queries of A as in Test Stage 1, but
with a restriction that there is at most one function f ∈ F such that f(x∗) = 1
can been queried in Test Stage 1 and 2.

Output: B simulates the output of the experiment and obtain a view H, which
is either Hz or Hz+1 as we will prove below. Finally, B outputs D(H).

Next, we analyze the advantage of B. We observe that B perfectly simu-
lates one of the two hybrids: if the challenge ciphertext from C is valid, then
the amplified AB-wHPS challenge ciphertext CT∗ is generated according to Hz,
and otherwise Hz+1. Thus, the advantage of B is the same as that of D in dis-
tinguishing Hz from Hz+1, i.e., a non-negligible advantage ε. Thus, B breaks
the ciphertext indistinguishability of the underlying AB-wHPS with advantage
ε, which reaches a contradiction. This completes the proof of this claim. ut

Lemma E.1 follows directly from Claim E.2 by a standard hybrid argument. ut

In summary, we complete the proof of the first part of theorem. ut
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E.2 Proof of Claims 5.10 and 5.11

Claim (Restatement of Claim 5.10) For a set X consisting of n = n(λ)
different blocks and the parameters t = t(λ) such that t(t − 1) < n, the output
distributions of Sample 1 and Sample 2 are statistically close.

Proof. We notice that the distribution of Sampler 1 is identical to that of Sampler
2 conditioned on non-⊥ values. Therefore, their statistical distance is bounded
by the probability that Sampler 2 does not terminate in λ steps. Let T denote
the event that Sampler 2 selects distinct elements at a particular round (and
thus terminates). We have

Pr[T ] =
n(n− 1) · · · (n− t+ 1)

nt
.

Since every round of Sample 2 is independent of others, we know the probability
of Sample 2 outputs ⊥ is

(1− Pr[T ])
λ

=

(
1− n(n− 1) · · · (n− t+ 1)

nt

)λ
≤
(
t(t− 1)

2n

)λ
.

Therefore, the statistical distance between two output distributions is at most(
t(t−1)

2n

)λ
≤ negl(λ). ut

Claim (Restatement of Claim 5.11) For any µ, t, θ, n, Sampler 2 is a (µ, θ, γ)
average sampler conditioned on non-⊥ output, where γ = 2λ exp(−tθ2/4).

Proof. As we discussed above, it suffices to show that for any f : [n]× [k]→ [0, 1]
such that 1

nk

∑
i∈[n],j∈[k] f(i, j) ≥ µ, we have:

Pr
S

$←−Sampler 2

 1

|S|
∑

(i,j)∈S

f(i, j) < µ− θ

 ≤ γ,
conditioned on S 6= ⊥.

In particular, let f : [n] × [k] → [0, 1] be a function such that µf :=
1
nk

∑
i∈[n],j∈[k] f(i, j) ≥ µ. Let r1, . . . , rt be i.i.d. random variables sampled from

[n], and Si = {(ri, j)}j∈[k]. Clearly, S1, . . . , St are the choices of Sampler 2 at
a particular round, and they are also i.i.d. random variables. If r1, . . . , rt are
distinct, then Sampler 2 will output S = {S1, . . . , St}. Next we denote random

variables µri := 1
k

∑k
j=1 f(ri, j) for i ∈ [t], and clearly, µri ’s are also i.i.d. random

variables with the same expectation E[µr1 ] =
∑
i∈[n]

1
k

∑
j∈[k] f(i, j)Pr[r1 = i] =

1
nk

∑
i∈[n],j∈[k] f(i, j) = µf . Therefore, by the Chernoff bound, we have:

Pr

[ ∣∣∣∣∣1t
t∑
i=1

µri − µf

∣∣∣∣∣ ≥ θ
]
≤ 2 exp(−tθ2/4),
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for any θ, t > 0. As µf ≥ µ from the assumption. Thus for this particular round,
we have

Pr

[
1

t

t∑
i=1

µri ≤ µ− θ

]
≤ Pr

[
1

t

t∑
i=1

µri ≤ µf − θ

]

≤ Pr

[ ∣∣∣∣∣1t
t∑
i=1

µri − µf

∣∣∣∣∣ ≥ θ
]

≤ 2 exp(−tθ2/4).

(2)

Then by a union bound over all rounds, we have:

Pr
S

$←−Sampler 2

 1

|S|
∑

(i,j)∈S

f(i, j) < µ− θ


≤Pr

[
∃ a round such that

1

t

t∑
i=1

µri ≤ µ− θ

]
≤2λ exp(−tθ2/4).

This concludes the proof of the claim. ut

E.3 Proof of Theorem 5.14

Theorem (Restatement of Theorem 5.14) Assume Π is a selectively (or
adaptively, resp.) secure amplified AB-wHPS with integer parameters n′, t =
λ log3(n′k) for the policy function class F , then the above ABE scheme ΠF =
ΠF .{Setup,KeyGen,Enc,Dec} for F is a selectively (or adaptively, resp.) `-leakage-
resilient attribute-based encryption scheme with message space M in the BRM
where ` = kn′ − kn′

log(kn′) .

Particularly, ΠF is also

– an `-leakage-resilient public-key encryption scheme in the BRM with ` =
kn′ − kn′

log(kn′) , if F contains only a single function that always outputs 1.

– a selectively (or adaptively, resp.) `-leakage-resilient identity-based encryp-

tion scheme in the BRM with ` = kn′ − kn′

log(kn′) , if F contains the following

comparison functions, i.e., each function fy ∈ F is indexed by a vector y,
and fy(x) = 1 if and only if y = x.

Moreover,

1. Public-key (resp. master public-key) size of ΠF is the same as that of Π,
which is not dependent on leakage parameter `.

2. The locality-parameter is t = λ log3(n′k). Thus, the size of secret-key ac-
cessed during decryption depends on t, but not `.

3. The ciphertext-size/encryption-time/decryption-time of ΠF depends on t,
but not `.
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Proof. Similar to the proof for leakage-resilience in the relative model, we just
prove the general case of ABE for general functions F in the BRM. Then, the
results for IBE and PKE can be proved similarly, since IBE and PKE are special
cases of ABE for equation-testing functions and constant function, respectively.
The correctness of this ABE scheme ΠF follows naturally from that of amplified
AB-wHPS Π. Below we focus on proving leakage resilience.

Let us denote r ∈ {0, 1}∗ as the randomness used to sample random sub-
set {r1, . . . , rt} ⊆ [m] in the construction of amplified AB-wHPS, i.e., r =
(r1, . . . , rt)

>. That is, for k′ = (k1, . . . , kn′)
> ∈ Kn′ , there exists a random

sampling algorithm Sampr(k′) that samples a random subset {r1, . . . , rt} ⊆
[m] and outputs k = (kr1 , . . . , krt)

>. Similarly, for (CT1, . . . ,CTn′) ∈ CT n
′
,

Sampr(CT1, . . . ,CTn′) outputs (CTr1 , . . . ,CTrt).
We define Ext′ : Kn′ × ({0, 1}∗ × S)→M by

Ext′(k′, r, s) = Ext(kSampr(k′), s).

As a result, the ciphertext CT for ΠF can be rewritten as

ct = (r, s,CTr1 , . . . ,CTrt ,m+ Ext′(k′, r, s)).

From Theorem 5.12 and the setting of parameters for Construction 5.13, we
can conclude that Ext′ : Kn′ × ({0, 1}∗ × S) → M is a t-locally computable

strong ( n′k
log(n′k) , ε+ γ + 2−Ω(τn′k)) extractor for alphabets K. Thus, the leakage

resilience of ΠF can be proved through a sequence of hybrids similar to the proof
of Theorem 4.2 in the relative leakage model.

The allowed leakage length is kn′− kn′

log(kn′) . At the same time, it is clear that

all efficiency parameters of ΠF are not dependent on leakage parameter `. Thus,

ΠF is a
(
kn′ − kn′

log(kn′)

)
-leakage resilient ABE in the BRM. ut

F Supplementary Material of Section 6

Lemma F.1 Let Γ1, . . . , Γω be randomly chosen subsets of size t + 1. Let t0 =
Θ(ω2tλ

1
c ), and n = Θ(ω2t). It holds

Pr

∣∣∣∣∣∣
⋃
i 6=j

(Γi ∩ Γj)

∣∣∣∣∣∣ ≤ t0
 = 1− e−Ω(λ),

where the probability is over the random choice of the subsets Γ1, . . . , Γω.

Proof. For all i, j ∈ [ω] such that i 6= j, we use Xij to denote a random variable,
which represents the size of the intersection of Γi and Γi. Then, we define the
following random variable

X =
∑

i,j∈[ω],i6=j

Xij .
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Clearly, it holds
∣∣∣⋃i 6=j(Γi ∩ Γj)∣∣∣ ≤ X. Thus, for the proof of this lemma, it is

sufficient to get a meaningful upper bound for X.
Notice also that for a fixed set Γi and a randomly chosen set Γj , Xij follows

a hypergeometric distribution, where t+1 serves as the number of success states

and number of trials, and n is the population size. In this case, for 0 < δ < (t+1)2

n ,
there is an tail bound:

Pr

[
Xij ≥

(t+ 1)2

n
+ δ(t+ 1)

]
≤ e−2δ2(t+1).

Furthermore, it holds

Pr

[
X ≥ ω(ω − 1)

2
(
(t+ 1)2

n
+ δ(t+ 1))

]

= Pr

 ∑
i,j∈[ω],i6=j

Xij ≥
ω(ω − 1)

2
(
(t+ 1)2

n
+ δ(t+ 1))


≤Pr

⋃
i 6=j

(
Xij ≥

(t+ 1)2

n
+ δ(t+ 1)

)
≤ω(ω − 1)

2
Pr

[
Xij ≥

(t+ 1)2

n
+ δ(t+ 1)

]
≤ω(ω − 1)

2
e−2δ2(t+1).

Thus, setting n = Θ(ω2t), t0 = Θ(ω2tλ
1
c ) for any constant c, we have

Pr[X ≥ t0] ≤ e−Ω(λ).

ut

For security parameter λ, we set the system parameters according to the Table
below. For details, we refer readers to Lemma F.1.

F.1 Proof of Theorem 6.1

Theorem (Restatement of Theorem 6.2) Assume Π is a selectively (or adap-
tively, resp.) secure (log |K|, log |K|)-universal AB-wHPS for the policy function
class F , then the above ABE scheme ΠF = ΠF .{Setup,KeyGen,Enc,Dec} for F
is a selectively (or adaptively, resp.) (`(λ), ω(λ))-leakage resilient attribute-based
encryption scheme for the policy function class F in the multiple key setting of
the relative-leakage model, where the number ω of leaked challenge keys can be
any polynomially bounded.

Proof. Clearly, the correctness of this ABE scheme ΠF follows naturally from
that of AB-wHPSΠ and (t+1)-out-of-n threshold secret sharing scheme (Share,Rec).
Furthermore, the security of this ABE scheme can be argued through using a se-
quence of hybrids as follows.
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Hybrid H0: This hybrid is defined to be the security experiment with (`, ω)-
leakage in Definition 2.2. In this hybrid, the view of A consists of the master
public-key mpk, leakage information {hi(skfi)}i∈[w], and challenge ciphertext

ct = ({si}i∈[n], {cti}i∈[2n]), where mpk := {mpkΠi }i∈[n], skfi := (Γi, {sk
(ri,j)
fi
}j∈[t+1])

with Γi = {ri,1, . . . , ri,t+1} ⊆ [n], fi(x
∗) = 1 and i ∈ [ω], si

$←− S with i ∈ [n],
and

(cti, ki)← Π.Encap(mpki,x
∗), ctn+i = µb,i + Ext(ki, si)

with i ∈ [n] and (µb,1, . . . , µb,t+1)
$←− Share(µb). Notice that the block leakage

function hi : {0, 1}∗ → {0, 1}` is chosen adaptively by the adversary before the
challenge stage. Here, in the leakage query stage, A is allowed to query ω policy
functions fi’s such that fi(x

∗) = 1 with each i ∈ [ω]. Recall that x∗ is the
challenge attribute.

Hybrid H1: This hybrid is almost identical to the H0, except that for positive
integer ω, the challenger chooses the random subsets Γi = {ri,1, . . . , ri,t+1} ⊆ [n]
with each i ∈ [ω] in advance, and put them as parts of the master secret key,
i.e., msk := ({mskΠi }i∈[n], {Γi}i∈[ω]). When the adversary requests the leakage
queries on the challenge secret keys skfi for i ∈ [w], the challenger directly uses
the pre-selected subset Γi to respond. Clearly, H0 to H1 are identical from the
view of the adversary.

Hybrid H2: This hybrid is almost identical to the H1, except the challenge
ciphertext is computed in the following way:

Given the subsets Γi = {ri,j}j∈[t+1] for i ∈ [ω], the challenger computes the
union of Γi for i ∈ [ω], i.e., Γ̄ =

⋃
i∈[n] Γi ⊆ [n], and then partitions [n] into two

disjoint sets Γ̄ and [n] \ Γ̄ . Then for each ri,j ∈ Γ̄ , the challenger computes

(ctri,j , kri,j )← Π.Encap(mpkri,j ,x
∗), k′ri,j = Π.Decap(sk

(ri,j)
fi

, ctri,j ),

ctn+ri,j = µb,ri,j + Ext(k′ri,j , s).

For other indices ri,j ∈ [n] \ Γ̄ , the ciphertexts are computed in the same way
as that of Γ̄ . Therefore, the only difference between H0 and H1 is the usage of
kri,j and k′ri,j in the computation of ctn+ri,j for all ri,j ∈ [n]. In fact, kri,j = k′ri,j
according to the correctness of the underlying AB-wHPS Π. Hence, H1 and H2

are identical.

Hybrid H3: This hybrid is almost same to H2, except the challenge ciphertext
is computed in the following way:

The challenger first computes the subset Γ0 containing all elements ri,j that
are included in more than one subset Γi for i ∈ [ω], such that Γ0 ⊆ Γ̄ ⊆ [n].
Then for each ri,j ∈ [n] \ Γ0 = ([n] \ Γ̄ ) ∪ (Γ̄ \ Γ0), the challenger computes

ct′ri,j
$←− Π.Encap∗(mpkri,j ,x

∗), k′ri,j = Π.Decap(sk
(ri,j)
fi

, ct′ri,j ),
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ct′n+ri,j = µb,ri,j + Ext(k′ri,j , sri,j ).

On the other hand, for each ri,j ∈ Γ0, the challenger computes

(ctri,j , kri,j )
$←− Π.Encap(mpkri,j ,x

∗), k′ri,j = Π.Decap(sk
(ri,j)
fi

, ctri,j ),

ctn+ri,j = µb,ri,j + Ext(k′ri,j , sri,j ).

The only difference between H2 and H3 is the computation and usage of ctri,j
and ct′ri,j for each ri,j ∈ [n] \ Γ0 = ([n] \ Γ̄ ) ∪ (Γ̄ \ Γ0).

Notice that, according to the ciphertext indistinguishability of the underlying
AB-wHPS Π, {ctri,j}ri,j∈Γ̄\Γ0

and {ct′ri,j}ri,j∈Γ̄\Γ0
are computationally indistin-

guishable even for the adversary holding the challenge secret keys {skfi}i∈[ω] :=

{sk(ri,j)
fi
}i∈[ω],j∈[t+1] such that fi(x

∗) = 1. This is because in this case, each in-

valid ciphertext ct′ri,j can be decapsulated by only one secret key in {sk(ri,j)
fi
}i∈[ω],j∈[t+1].

Furthermore, {ctri,j}ri,j∈[n]\Γ̄ and {ct′ri,j}ri,j∈[n]\Γ̄ are trivially computational
indistinguishability, since the adversary even does not possess any secret key
that could decapsulate these ciphertexts. Hence, through combining two parts
together, H2 and H3 are indistinguishable for the adversary having the leakage
information {hi(skfi)}i∈[ω].

Notice that, in the real scenarios of ABE, the system always issues many
secret keys satisfying the specific attributes, which will be used in the following
decryption computation. Therefore, it is more general for us to consider polyno-
mially bounded ω policy function fi such that fi(x

∗) = 1 in the leakage query
stage.

Hybrid H4: This hybrid is almost same to H3, except that the challenge ci-
phertext is computed in the following way:

Then for each ri,j ∈ Γ̄ \ Γ0, the challenger computes

ct′ri,j
$←− Π.Encap∗(mpkri,j ,x

∗), r̃ri,j
$←−M,

ct′n+ri,j = µb,ri,j + r̃ri,j .

Essentially, mpkri,j , ct
′
ri,j , k

′
ri,j = Π.Decap(sk

(ri,j)
fi

, ct′ri,j ) and block leakage

hi(sk
(ri,1)
fi

, . . . , sk
(ri,t+1)
fi

) are correlated variables. According to the universality
of underlying AB-wHPS, we know that k′ri,j is uniform over K even given mpkri,j
and ct′ri,j , i.e.,

H∞(k′ri,j |mpkri,j , ct
′
ri,j ) = log(|K|).

Furthermore, since the bit-length of leakage information hi(skfi) = hi(sk
(ri,1)
fi

, . . . , sk
(ri,t+1)
fi

)
is `, we have

H∞(k′ri,j |mpkri,j , ct
′
ri,j , hi(skfi)) ≥ log(|K|)− `.

Then, for a random sri,j
$←− S, Ext(k′ri,j , sri,j ) is ε-close to the uniform distri-

bution over M even given mpkri,j , ct
′
ri,j , hi(skfi), since Ext is assumed to be a

strong (log(|K|)− `, ε)-extractor for ε = negl(λ).
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On the other hand, for each ri,j ∈ [n] \ Γ̄ , the challenge ciphertext can be
computed in the same way as that of ri,j ∈ Γ̄ \ Γ0. The outputs of the cor-
responding extractor indeed satisfy the statistical closeness property, following
from the universality of the underlying AB-wHPSΠ. This is because in this case,
the adversary even does not possess any information on the related secret keys.

As a result, combining the above two parts of arguments, H3 and H4 are
statistically close.

Our parameter setting ensures that the number of indexes in subset Γ0 is at
most t with an overwhelming probability. Therefore, the view of the adversary
(for the challenge ciphertext) in H4 consists of at most t shares of the challenge
message and n−t random values. Due to the perfect hiding property of the secret
sharing scheme, the adversary’s view is completely independent of µb and b. As
a result, the advantage of A in H4 is 0. Finally, combining all the above hybrids
together, we conclude that the advantage of A in Hybrid 0 is also negligible in
λ. Thus the ABE scheme ΠF is `-leakage-resilient for F . ut
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