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Abstract. In the problem of two-party private function evaluation (PFE),
one party Pa holds a private function f and (optionally) a private input
x4, while the other party Pg possesses a private input xg. Their goal
is to evaluate f on x4 and xp, and one or both parties may obtain the
evaluation result f(x 4,z p) while no other information beyond f(za,zg)
is revealed.

In this paper, we revisit the two-party PFE problem and provide several
enhancements. We propose the first constant-round actively secure PFE
protocol with linear complexity. Based on this result, we further provide
the first constant-round publicly verifiable covertly (PVC) secure PFE
protocol with linear complexity to gain better efficiency. For instance,
when the deterrence factor is € = 1/2, compared to the passively secure
protocol, its communication cost is very close and its computation cost is
around 2.6x. In our constructions, as a by-product, we design a specific
protocol for proving that a list of ElGamal ciphertexts is derived from an
extended permutation performed on a given list of elements. It should be
noted that this protocol greatly improves the previous result and may be
of independent interest. In addition, a reusability property is added to our
two PFE protocols. Namely, if the same function f is involved in multiple
executions of the protocol between Pa and Pg, then the protocol could
be executed more efficiently from the second execution. Moreover, we
further extend this property to be global, such that it supports multiple
executions for the same f in a reusable fashion between Pa and arbitrary
parties playing the role of Pg.

Keywords: Extended permutation - Private function evaluation - Pub-
licly verifiable covert security - Secure two-party computation.



1 Introduction

The two-party private function evaluation (PFE) problem considers the scenario
where a party Pa holds a private function f and (optionally) a private input x4
while the other party Pg has another private input x 5. These two parties intend
to compute f(x4,xp) without the existence of a third party. Finally, one or both
parties may obtain f(z4,zpg), while they cannot deduce any other information
beyond their specified outputs during the interaction. As a special case of secure
computation, note that PFE is different from the notion of standard secure
function evaluation (SFE). The key difference is that the function f is commonly
known by participants in SFE, while f should remain private in PFE, in the sense
that everything about the function, except an upper bound on its size and the
lengths of both input and output, is hidden.

Both data and algorithms are valuable in numerous real-world scenarios, such
as medical and commercial applications. For instance, we consider the follow-
ing business scenario between a traditional enterprise and an algorithm-driven
company. The traditional enterprise has a dataset, while the algorithm-driven
company holds a powerful data mining algorithm that can process this dataset.
On the one hand, the algorithm-driven company does not intend to disclose the
algorithm. On the other hand, since the dataset may contain sensitive data,
the traditional enterprise is unwilling to reveal the dataset to others. We note
that this dilemma can be solved by a PFE protocol that allows the traditional
enterprise to receive the result of privately running the algorithm on the dataset.

It is trivial to design a PFE protocol based on fully homomorphic encryption
(FHE) schemes [18]. However, the efficiency of FHE schemes is still prohibitive,
and researchers attempted to design PFE in the setting of traditional multi-
party computation (MPC). In the literature, some PFE protocols specify a lim-
ited set of functions, such as polynomials [13, 36, 33] and low-depth circuits [39],
while others are genmeral-purpose, focusing on functions implemented by arbi-
trary (polynomial-size) circuits [1]. In this paper, we work on general-purpose
PFE protocols, and thus the PFE protocols mentioned in the rest of this paper
are assumed to be general-purpose.

To construct general-purpose PFE protocols, there exist two main approaches.
The first approach reduces the PFE problem to the problem of secure compu-
tation for universal circuits (UC) (see [42, 28,26, 31, 20,44, 2, 32]). UC refers to a
sequence of circuits U = {U,, } ,en, each of which can take as input (the descrip-
tion of) a circuit C of size n and a valid input z, and output C(z) <+ U, (C, z).
Therefore, we can combine UC with traditional MPC techniques, such as Yao’s
garbled circuits [43, 30], to obtain PFE protocols. The major goal of this line of
work is to reduce the size of UC and improve the traditional MPC techniques.
However, a noted barrier of UC-based PFE protocol is that a (Boolean) UC has
(optimal) size |U,| = ©(nlogn) [42], where the constant factor (more than 12
for the state-of-the-art result [32]) and the low-order terms are significant. Hence,
when the size of a circuit used for evaluation is relatively large, the considerable
expansion of its size caused by the use of UC makes UC-based PFE prohibitive.



The second approach avoids the usage of UC. In 2011, Katz and Malka [24]
proposed a constant-round passively secure two-party PFE protocol applied on
Boolean circuits, and the protocol achieves linear complexity in circuit size.
This linear-complexity PFE protocol has asymptotically less computation and
communication complexity than UC-based PFE protocols that have complexity
O (nlogn). Very recently, an implementation [22] of the passively secure PFE
protocol [24] showed that this protocol outperforms the state-of-the-art UC-based
PFE protocol not only in communication but also in total running time, e.gq., it
is ~ 3.3x faster in a LAN and ~ 7.0x faster in a WAN for private circuits of size
108. Subsequently, the work [34] introduced a general framework for designing
PFE protocols. This general framework captures the idea of [24] and provides a
slight improvement in communication cost. In addition, a PFE protocol based on
oblivious evaluation of switching networks (OSN) was provided in [34] and was
later improved in [9]. However, it is shown [2, 8] that OSN-based PFE protocols
have ©(nlogn) computation and communication complexities limit their usage
when the size of circuits is considerable. More recently, a passively secure re-
executable PFE protocol with linear complexity was proposed in [8]. With this
reusability property, it is shown [8] that this protocol has significantly better
performance than the PFE protocol in [24] and [34] when the protocol is executed
any number (more than one) of times for the same function by the same two
parties.

Since parties may deviate from the protocol to gain more advantages, such
as learning the other party’s input and affecting the output of the protocol,
it is more realistic to consider PFE protocols that are secure under stronger
security models. Unfortunately, even though the line of work for PFE protocols
with linear complexity has better performance theoretically and experimentally,
existing protocols are mainly focused on the semi-honest model, and very few
results managed to provide protocols in stronger security models.

To the best of our knowledge, only two papers considered PFE protocols
with linear complexity that are secure against malicious adversaries. The seminal
work [24] introduced how to compile their passively secure PFE protocol to be
secure against malicious Pg, i.e., the party that provides the private input z g, via
specific efficient zero-knowledge protocols. However, the security of the compiled
protocol is not full-fledged, and the function provider Pp is required to be semi-
honest. The subsequent work [35] proposed an actively secure PFE framework
with linear complexity based on the results in [34]. However, the number of
rounds in this protocol is equal to the number of gates for the evaluated circuit.
This will simply become a bottleneck when the size of the circuit is considerable.

Besides the malicious model, there is no PFE protocol with linear complex-
ity in other security models. We notice that the publicly verifiable covert (PVC)
model is particularly useful for many scenarios that PFE protocols may ap-
ply to. Covert security was introduced by Aumann and Lindell [4]. It serves
as a compromise between semi-honest and malicious security definitions, and
thereby provides a more realistic security guarantee than semi-honest security
and has significantly less overhead than malicious security. Informally, a mali-



cious party is still allowed to covertly deviate from the protocol execution in
this model. However, this misbehavior will be detected by honest parties with a
certain probability €, which is called deterrence factor. The fear of being caught
will deter participants from acting maliciously and deviating from the protocol.
The PVC security notion that enhances the covert security model was intro-
duced by Asharov and Orlandi in 2012 [3]. PVC security guarantees that once
the misbehavior of a malicious party is caught, honest parties could generate a
publicly verifiable certificate to persuade others, including those outside the pro-
tocol, that the malicious party is cheating. Meanwhile, it should be guaranteed
that this malicious party learns no information about the inputs of honest par-
ties even when the certificate is given. This notion significantly strengthens the
covert security model especially when parties’ reputations are important. A gen-
eral PVC-secure two-party computation protocol was proposed in [3] based on
garbled circuits and the Signed-OT technique. Then the Signed-OT protocol was
improved in [27] to obtain a more efficient PVC-secure protocol. Subsequently,
an elegant protocol [23] using a derandomized approach was proposed in 2019.
Avoiding the use of costly Signed-OT, this protocol is more efficient than the
previous protocols. In the meantime, another protocol [45] introduced a notion
called financially secure computation that combines a PVC-secure protocol with
blockchain. Very recently, compilers that can transform a two-party passively
secure protocol to a PVC-secure protocol were introduced [15, 16, 40]. It is easy
to see that PVC security is useful for two-party PFE protocols in many realistic
scenarios. Note that all existing results for two-party PVC security [3,27, 23,
15,16, 40] are only designed for SFE, i.e., the function f is publicly known. Al-
though UC can be integrated into these frameworks to derive a PVC-secure PFE
protocol, so far there is no PVC-secure PFE protocol with linear complexity.
Therefore, the following question is open so far:

Can we construct a constant-round actively secure and a constant-round
PVC(C-secure PFE protocols with linear complexity in the two-party setting
while avoiding strong primitives such as FHE?

In this paper, we answer this question. In addition, we borrow the idea of [8]
to realize a reusability property for our protocols and further extend it globally.
A comparison of main properties for all PFE protocols with linear complezity is
summarized in Table 1.

1.1 Our Results
We summarize our results and main contributions in this paper as follows.

Active security. We provide the first constant-round actively secure PFE pro-
tocol with linear complexity in the two-party setting. More precisely, we
design a constant-round two-party PFE protocol that is secure against mali-
cious function owner Pa and semi-honest private input provider Pg. Then by
leveraging classical MPC results for security against malicious Pg providing
private input values, such as the approach used in [24], we can automatically



Table 1: Comparison of the main properties for all PFE protocols with linear com-
plexity.

Paper Security # Round Reusable?

[24] Passive Constant No.

[34] Passive  Constant No.

[35] Active  # Gates No.

[8] Passive Constant Yes, for two parties.

This paper Active  Constant Yes, global reusability.
This paper PVC Constant Yes, global reusability.

obtain the desirable actively secure protocol. Our protocol is composed of
an initiation phase and an evaluation phase.

PVC security. Based on the techniques of our actively secure PFE protocol, we
design the first constant-round PVC-secure PFE protocol with linear com-
plexity in the two-party setting to gain much better efficiency. This protocol
inherits the two-phase structure. It is noted that the additional overhead
to achieve PVC security is very light from both computation and commu-
nication aspects, e.g., when the deterrence factor is € = 1/2, compared to
the passively secure protocol, its communication cost is very close and its
computation cost is around 2.6x.

Efficiency improvement. We provide the sub-protocol ITE"EP as a core com-
ponent for our actively secure and PVC-secure protocols. This protocol is
designed for proving that a list of ElGamal [17] ciphertexts is derived from
an extended permutation (see Definition 3) performed on a given list of ele-
ments. A generic construction for such a purpose was originally given in [35],
and it is left open whether it is possible to construct such a protocol in a spe-
cific approach to gaining better performance. Our protocol answers this open
problem, and improves the generic construction [35] significantly: the com-
munication cost of our protocol is less than 1/56 of the generic construction,
and the computation cost is less than 36%.

Reusability (simplified follow-up executions). The reusability property is
added to both of our two PFE protocols. When two specified parties intend
to evaluate the same private function f on different private inputs, they only
need to go through the initiation phase at one time and then execute the
evaluation phase multiple times with different inputs. Moreover, we extend
this property globally. Namely, once an initiation for a private f is performed
by the function owner Pa, arbitrary private input providers playing the role
of Pg can benefit from the reusability property for f.

2 Preliminaries

We use |S| to denotes the size of a set S and ||S|| to denote the number of bits
required to represent elements in the set .S. We write x .S for uniformly sam-



pling an element z from the set S. For a positive integer n, let [n] = {1,...,n}.
For a bit string x, we use x[i] to represent the ith bit of x. We write a vector
named a as @ = (a1, ..., a,), and use 0 and T to denote a vector where all entries
are equal to 0 and 1 when its dimension is clear in the context, respectively. Let
ab = (a1b1,...,anb,) denote the Hadamard product of two vectors @ and l_;,
@ob=(a1,...,an,,b,...,by,) the concatenation of vectors, aTh = >, aib; the
inner product, and §% = L, g7 the multi-exponentiation. For a scalar ¢ and a
vector @, the scalar product is ¢d = (caq, ..., can).

Let x be the computational security parameter, and « is written in unary as
input to all algorithms. A function f in a variable k mapping natural numbers
to [0,1] is negligible if f(k) = O(k™°) for every constant ¢ > 0. We say that
1 — f is overwhelming if f is negligible.

Given a seed € {0, 1}", we can use a pseudorandom function with seed as the
key in the CTR mode to derive sufficiently many pseudorandom numbers and
use them as random coins for operations in protocols.

We use Com to denote the (non-interactive) commitment scheme. We write
decom as the random coins for a commitment, which can be used to open this
commitment. The commitment scheme Com achieves (computationally) bind-
ing and hiding properties. We will use a signature scheme (KGen, Sig, Vf) that
is existentially unforgeable under chosen-message attacks (EUF-CMA) for our
PVC-secure protocol in Section 4.

The oblivious transfer (OT) functionality Fot is presented below. Let ITot
be the protocol that securely realizes a parallel version of For.

Functionality For

Private inputs: Pa has input z € {0, 1}A and Pg has input {(Ai0, Ai1)}ien)-

Upon receiving z € {0, 1}A from Pa and {(As0, Ai,1)}icpy from Pg, the function-
ality sends {A; [ }iein) to Pa.

The security of our protocol relies on the decisional Diffie-Hellman (DDH)
assumption as follows.

Definition 1. The decisional Diffie-Hellman (DDH) assumption in a cyclic
group G = (g) of prime order q € ©(2%) is that given (g%, g°) for a,b<sZ,, g*
18 computationally indistinguishable from a random element in G.

Under the DDH assumption, we have the following lemma.

Lemma 1 ([37]). Under the DDH assumption for the cyclic group G of prime

order q € ©(2%), for any positive integer n = poly (k), given g1,...,gn <G, we
have that (g7, ...,9%™) is computationally indistinguishable from (gf,...,q%)
fora,aq, ..., an <sZq.

It is well-known that the DDH assumption implies the discrete logarithm as-
sumption, which is equivalent to the following assumption.

Definition 2. The discrete logarithm relation assumption in a cyclic group G
of prime order q € ©(2%) is that for any positive integer n = poly(k), given



g1,---,9n <G, it is computationally hard to find ai1,...,a, € Zq, such that
Ja; #0 € ZeATT, gf" = 1. We call [T}, g{" = 1 a nontrivial discrete logarithm
relation.

We use the ElGamal encryption scheme in our protocol. This encryption
scheme is over the cyclic group G = (g) of prime order ¢, and it is indistinguish-
able under chosen plaintext attack (IND-CPA) under the DDH assumption for
G. We provide the description of algorithms for the scheme as follows.

Key Generation. This algorithm takes as input the security parameter 17,
picks s <= Zq, and sets h <= g°. Then the algorithm outputs the public key
pk < (G, q, g, h) and the private key sk + s.

Encryption. This algorithm takes as input a message m € G and a public key
pk, and returns the ciphertext ¢ « (c¢(®) = g", (V) = mA") for r < Zyq.

Decryption. This algorithm takes as input a ciphertext ¢ = (c(o), c(l)) and a
key pair (pk,sk), and returns m « ¢ /(c(9)s.

The ElGamal encryption scheme is multiplicatively homomorphic, such that the
multiplication result of two ciphertexts is the ciphertext of the multiplication
result of the two corresponding plaintexts. Computing the power of a ciphertext
¢ also derives the ciphertext for the power of the corresponding plaintext of c.

2.1 Circuit Representation and Extended Permutation

Here, we introduce an approach to describing Boolean circuits with arbitrary fan-
out (see an example circuit C'y in Fig. 1). For a circuit, we call a wire outgoing
wire (denoted by OW) if it is an input wire of the circuit or output wire of
a gate. Meanwhile, a wire is called incoming wire (denoted by IW) if it is the
input wire of a gate. Outgoing wires are connected with incoming wires, in the
sense that each incoming wire connects with exactly one outgoing wire while an
outgoing wire may connect with an arbitrary number (including 0) of incoming
wires. Suppose that a circuit consists of 6 gates, n input bits, and m output bits.
Then this circuit has n + 6 outgoing wires and 26 incoming wires. For a gate
G, its output wire is the outgoing wire OW,,1,; and its two input wires are the
incoming wires IWo;_1 and IWs;. The last m gates are the output gates of the
circuit. Fig. 1(b) lists all gates (G;); inside the circuit C;. A formal description of
the connections between incoming wires and outgoing wires is captured by [34]
via extended permutation.

Definition 3 ([34]). For positive integers N and M, a mapping 7 : [N] — [M]
is an extended permutation (EP) if for every x € [N], there exists one y € [M],
such that y = m(x).

Given an index of an incoming wire, 7 maps it to the index of the outgoing wire
that connects with this incoming wire (see example in Fig. 1(c)). Note that differ-
ent from the one-to-one correspondence mapping of the standard permutation,
EP allows to replicate or omit elements during the mapping.
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(a) Circuit C assembled by (G:)ico

(c) Wire connections and EP 7

Fig.1: A circuit Cy and the illustration of its wire connections and EP 7y.

Given a set of gates (G);e[g], the circuit owner Pa holding the description of
a circuit Cy can follow the (randomized) procedure below to assign (G;);c[g to
positions of gates in Cy and derive an EP 7y from the resulting circuit assembled
by this set of gates.

1. Sort indices for non-output gate positions of Cy in a topological order, such
that if the output wire of the ith gate is connected with the input wire of
the jth gate, then ¢ must be smaller than j. The indices of output gates are
from 6 —m + 1 to 6.

2. Pick a random standard permutation 7. For non-output gates with indices
i € [0 —m)], the position for the ith gate of C is assigned to gate Gr ).

3. For all output gates with indices i =60 —m +1,...,0, assign gate G; to the
position of the ith gate.

4. Extract the EP 7 for connections of outgoing wires and incoming wires
from the resulting circuit.

When we consider a circuit that only includes one type of gates, e.g., NAND
gates, the circuit can be exactly described by the corresponding EP. Now given
Ty, it is easy to derive the description of the circuit. Our protocol indeed leverages
this idea and assumes that circuits only consist of NAND gates for simplicity.

2.2 Building Blocks

In Table 2, we present two zero-knowledge ideal functionalities .FZ'?(H and FZEk"CEP
associated with the relations Rpy and Rgngp for the cyclic group G = (g) of
prime order ¢ as building blocks for our protocols. We will introduce how to
instantiate them in Section 3.

3 PFE Protocol for Active Security

In this section, we introduce our constant-round two-party PFE protocol. This
protocol is secure against malicious Pa and semi-honest Pg. Note that it is



Table 2: Relations and their zero-knowledge ideal functionalities.

Relation Functionality

Ron ={(G, ¢, {gi }ieivys {hitievy) | Fo, 5.6 Ny ny(hi = 7))} T

REncEP = {(G7 q,9, h7 {gi}iE[JW]7 {(650)7 C'(Ll))}ZE[N]) | El{rl}ZG[N] y Ty s.t. ]_—EncEP
(0) (1) 7k
c) =

i i

g ANep = gr@h™ Amis an EP. }

straightforward to obtain a constant-round actively secure PFE protocol with
linear complexity by leveraging classical MPC results, such as the approach used
in [24], to compile the protocol to be secure against malicious (circuit grabler)
Pg providing private input values.

In PFE, a party Pa has a private Boolean circuit input Cy (implementing
a function f) and private input x4 € {0,1}"4, whereas the other party Pg has
private input zp € {0,1}"8. We present the ideal functionality Fictivepre for
our protocol in the following. Here we consider the more general case that the
circuit holder Pa has an input x4 € {0,1}"4, and it is not difficult to modify
the protocols to the case that P has the private input C only. For the sake of
simplicity, we assume that only one party will receive the evaluation result. It is
also possible to modify the protocol such that both parties can receive the final
result (see [21, Section 2.5.2]).

Functionality Fictiverre

Pre-agreement: The circuit consists of 6 gates, m output wires, and n(=na +
ng) input wires.

Private inputs: Pa has a Boolean circuit input Cy and input za4 € {0,1}"4,
whereas the other party Pg has input zp € {0,1}"5.

1. If an input of the form abort; from the party P; for ¢ € {A, B} is received,
the ideal functionality sends | to both parties and terminates.
2. If an input circuit C satisfying the pre-agreement from Pa is received, store

Cy.

3. If x4 € {0,1}"4 from Pa and zp € {0,1}"® from Pg are received and an
input circuit Cy is stored, the ideal functionality computes Cy(za,zB).

(a) If P; (which is corrupted by A) is allowed to learn Cf(xa,xp), then it
sends Cf(za,zRB) to P;.

(b) Otherwise, the ideal functionality sends nothing to the corrupted P;. Then
if the message continue from A is received, the ideal functionality sends
Cy(x1,z2) to the honest party. Otherwise, if abort; is received from A on
behalf of the corrupted P;, it sends L to the honest party.

3.1 Full Description of the Protocol

We now give a full description of our protocol I1,ctivepre- Our protocol consists
of two phases: initiation and evaluation. In the initiation phase, two parties
prepare required data for later evaluations of C't. Then given the preprocessed



data from the initiation phase, Po and Pg evaluate C'y on their inputs x4 and
xp in the evaluation phase. At the end of the protocol, parties obtain their
outputs specified by Fictivepre, @-€., the evaluation result Cy(z4,2p) or nothing.
For the first execution of the protocol, Pa and Pg together execute the initiation
phase and evaluation phase sequentially. Then, if the two parties would like to
evaluate the same circuit C; on different inputs, they now only need to execute
the evaluation phase using the information previously generated in the initiation
phase. This reusability property will be further extended to global reusability
(see Remark 2). Note that in our protocols, we consider the Boolean circuit C
only consists of NAND gates for simplicity. We use the cyclic group G = (g) of
prime order ¢ as above.

Here, we briefly present the main flow of the protocol. In the initiation phase,
Pa derives an EP from her private circuit C't and establishes connections of wire
labels between incoming and outgoing wires, while Pg’s tasks are to assist Pa
and ensure that Pa honestly follows the protocol. Then in the evaluation phase,
different from the standard paradigm of garbled circuits, we let Pg obliviously
garble (all gates of) the circuit for Pao. Then Pa can evaluate the corresponding
garbled circuit, since she knows the topology of her circuit and the connections
of wire labels established in the initiation phase.

In this initiation phase, Pg first chooses a list G of M = n + 8 — m different
elements from G and sends G to Pa. This list G will be used to derive the
labels of outgoing wires except those that are output wires of the circuit. After
receiving the list G, Pp generates an ElGamal encryption key pair. Then Pa
derives the EP 7y from the circuit Cy following the procedure in Section 2.1.
Now Pa performs the EP 7y on G and encrypts all elements of the resulting
list to obtain the list @, where the ith encrypted elements in @ are of the form
gr(i)- The list @ is then sent to Pg. The EP here is to establish the connections
between the outgoing wires (except output wires of the circuit since they do not
connect with other wires) and the incoming wires for the further generation of
wire labels, and the resulting list is encrypted to hide the EP from Pg. Then
Pa picks a list T = [t1,...,tn] for ¢; € Z, as the blinding factors. Using the
homomorphic property, Pa can compute the ¢;th power of the plaintext of ¢;
for all ¢;’s in @ and obtain the resulting list &', where the ith element is the
encryption of gf;‘f(i). We note that here ¢; is used to blind the encrypted values

in @, such that Pg still does not know the base g ,(;) when the element gf;‘ ) is
given later, and thus 7y and Cj are hidden. Finally, Pa helps Pg to decrypt all
elements of ¢’ to derive P = [p1,...,pn], where p; = gf:f(i). In Fig. 2, we give
an illustration of the procedure that the circuit owner Pa will go through in the
initiation phase for the previous example (Fig. 1).

During this procedure, to gain active security, it is important that Pa should
prove in zero-knowledge that her operations are valid using the building blocks
in Section 2.2. After the initiation phase, Pg holds the two lists G and P, while
Pa holds the list T, together with lists G and P.

At the beginning of the evaluation phase, Pg generates labels for all wires. For
the output wires of the circuit, Pg randomly generates wire labels representing 0

10
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Fig. 2: Procedure of the circuit owner Pa in the initiation phase. The values in the
dotted-line box are encrypted values that are hidden from Pg.

and 1 from G. For labels of other wires, Pg first picks randomly two values g €
Zq and ay € Zg4. Then, all incoming-wire and outgoing-wire labels, except the
outgoing wires that are output wires of the circuit (whose have been generated),
are generated via computing the values in the lists P and G to the power of ag
and a1, respectively, for values 0 and 1. Here, each element p; in P is for an
incoming wire IW;, and the pair of its wire labels is computed via (v{,v}) +
(pso, pt), dee., (v9,0}) = (gfjfa(g),giifaé)). Similarly, for an outgoing wire OW;,
the pair of wire labels (w?, w}) + (¢5°, gi"*) is computed using g; in G. Pg now
can garble all § gates of the circuit that are composed solely of NAND gates for
Pa one by one using these labels via a classical approach for garbling gates as
we will introduce later. Then Pg sends these garbled gates to Pa. Note that Pg
is unaware of the EP 7/ (and the topology of Ct). An illustration for wire labels
with respect to garbled gates for the previous example (Fig. 1) is given in Fig. 3.
Note that all input-wire labels of the circuit are generated and possessed by Pg,
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Fig. 3: Wire labels with respect to garbled gates for the circuit Cf.

and thus Pg picks out the input-wire labels corresponding to his input xp and
sends his garbled inputs to Pa. Meanwhile, P could retrieve the garbled inputs
corresponding to her input x4 from Pg through OT. This approach inherits from
the standard approach of gabled circuits. Now since Pa knows the topology of the

11



circuit, the list of blinding factors T', and input-wire labels, she can re-construct
the garbled circuit assembled by the received garbled gates and evaluate the
garbled circuit using both parties’ input-wire labels {x; }ic[n]-

We now introduce the approach to garbling gates and evaluating the garbled
circuit assembled by garbled gates. Two algorithms (Gb, Eval) are involved here.

The algorithm Gb is invoked by Pg to generate garbled gates (in a one-
by-one manner) for Pa. According to the circuit representation approach in
Section 2.1, a gate G; consists of two input wires, i.e., incoming wires, with
indices 2¢ — 1 and 2¢, and one output wire, i.e., an outgoing wire, with index
n~+ 1. For such a gate Gb takes as input the gate index i, the two pairs of input-
wire labels (v9;,_;,vd, ;) and (v3;,v3,), together W1th the pair of output-wire

labels (wn_H7 n+i)v and prepares four ciphertexts: ¢’ b EncT a b b (W n_H) for

a,b € {0,1} for a dual-key cipher Enc. Gb outputs the set of garbled gates
{GG;}ic[g)- Here GG; = {C?’b}mbe{o,i}, where c?’b are randomly permuted.

Eval is invoked by Pa to evaluate the garbled circuit that consists of garbled
gates generated by Pg. It takes as input a set of garbled gates {GG;}cjg), a set
of input-wire labels {x; };c[n], the list of blinding factors T' = {t; };c[n}, and an
EP m¢. This algorithm first derives the description of the corresponding circuit
Cy from 7. Now starting from (outgoing-wire) labels {x;};c[,), Eval computes
incoming-wire labels from the corresponding outgoing-wire labels and evaluates
garbled gates one by one following the topographical order of the circuit to
obtain the final output-wire labels. Without loss of generality, for an outgoing
wire OW;, we denote its label in hand by w?, where b € {0,1}. Note that each
outgoing wire may connect with some 1ncom1ng wires that are the input wires
of some gates. Assume that an incoming wire IW; is connected with OW;, i.e.,
i= 7Tf( ). Pa can obtain the wire label of IW; by computing the t ith power

of w?, i.e., (w Z) . It is easy to verify that (w ) = gl — Pyt =0}, ie., the
result is the input-wire (incoming wire) label we want. When having two mput—
wire (incoming-wire) labels (v3; ,,v5;), where b, b’ € {0,1}, for a garbled gate
GG;, the algorithm can decrypt GG; using these two labels as keys (via a simple
reverse approach of Enc) and obtain the non- L resulting output-wire (outgoing-
wire) label w?Y;. It is easy to see that the values of the wire b and b are hidden
from Pp during this procedure. Since Eval follows the topology of the circuit,
input-wire labels of a gate are always ready when we proceed to evaluate that
gate. Finally, Eval returns the decrypted output-wire labels of the output gates.

The dual-key cipher Enc here can be constructed based on the random oracle

(denoted by H: GxG x {0 1}* — {0, 1}I%1>7) in a standard way to garble a gate

with index i, we let Encvzv 1’02‘(wa_{{1) = H(vg;_1,v5;,1) ® we?t,, * and further

optimizations exist, e.g., a variant of the point-and-permute optimization [6]
(see [8]). This garbling scheme is secure under the random oracle model, and we
refer readers to see more information in Appendix A.

We provide the formal descriptions of the protocol below.

4 The operator @ here is applied on the bit-representation of the right group element,
and 7 specifies the length of proper padding to ensure the check of correct decryption.
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Protocol Il,iverrE

Pre-agreement: Both parties agree on a cyclic group G = (g) of prime order g,
where DDH assumption holds. They also have the pre-agreement that Cy consists
of 0 gates, m output wires, and n(= na +ng) input wires. We denote the number
of incoming wires by N <« 26 and the number of outgoing wires except those that
are output wires of the circuit by M < n+ 60 —m.

Private inputs: Pa has a Boolean circuit input Cy and input za4 € {0,1}"4,
whereas the other party Pg has input zp € {0,1}"5.

Initiation Phase

In this phase, Pa has private circuit input C, while Pg has no input.

1. Pg picks g; <G for i € [M], such that all g;’s are different, and collects them
as a list G = [g1,...,gm]. Then, Pg sends G to Pa.

2. Pa picks s <—sZ4 and computes h <— ¢g°. The public key and private key of
the ElGamal encryption then is denoted by pk = (G,q,g,h) and sk = s,

respectively.
Pa derives an EP 7¢ from C. Then Pa performs 7y on the elements of G and
encrypts all resulting elements using pk to derive the list & = [c1, c2,. .., cn],

where ¢; is the encryption of Gr y (i) for i € [N].

Pa picks t; <sZq for i € [N], such that all ¢;’s are different, and stores the
list T' = [t1,...,tn] for the evaluation phase. Pg computes the ¢;th power of
each plaintext g, £ of ¢; via the multiplicatively homomorphic property of
the ElGamal encryption to obtain c;. Let the resulting list &' = [c], ..., c]-
Pa computes the information for decryption of all ciphertexts c; (remember
that ¢; = (c;(o),c;(l))), i.e., Pa computes d; + (c;(o))s for ¢ € [N].

Pa sends h, @, @', and {di}ic(n] to Ps. Then Pa uses the functionalities
FEEP t6 prove to Pg that she has performed a valid EP on G to obtain &.
Meanwhile, Pa uses F2! to prove to Pg her knowledge of s, i.e., the private
key, for (g, {c;(o)}ie[N]) and (h, {di}ic[n]), together with her knowledge of ¢;

for the two-tuple ciphertexts ¢; and c; for all i € [N].
/(1)

3. Pg decrypts all ¢i’s to obtain the plaintexts p; < ¢, - d;l, and stores a list

P = [p1,...,pn] for the evaluation phase.

Evaluation phase

In this phase, Pa has private input m; (for Cy) and x4, and Pg has private
input xp. Pg holds the two lists G and P derived in the initiation phase, while
Pa holds the lists T', G, and P. This phase could be executed multiple times for
different input x4 and xp once the two parties finish the initiation phase.

1. For output wires of the circuit, Pg picks w{,w} «sG fori = M+1,..., M+m
as the wire labels. Then Pg picks ag, a1 <—sZ,. For input wires of the circuit
and output wires of non-output gates, i.e., all outgoing wires except output
wires of the circuit, Pg computes labels w{ < g and w} < g2* for i € [M].
For all incoming wires, Pg computes labels v) + p$® and v} « p$* fori € [N].

Pg computes {GGi}iejo) < Gb({1, (Ugiflvvgifl)a (Ugi,?}%i)a (w2+i7 wiJri)}iE[@])'

Here, for a gate with index i, (v5;_1,v3;_1) and (v3;,v3;) are the labels of the

two input wires, and (w?,H, w,lH_i) are the labels of the output wire.
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2. Pa and Pg execute Fort. Pg uses as input {(w?,w})}ie[nA], while Pa uses as
input all bits of x4 € {0,1}"4. At the end, Pa receives her garbled inputs

{Xi _ w;'EA[Z]}iG[nA]' |

3. Pg derives Xy, 4i wiﬁ[ﬁi for i € [np] as his garbled inputs. Then Pg sends
GC = {GG:}icip) and {xn 4 +i}ie[ny) to Pa. If Pa is allowed to know the evalu-
ation result, Pg also sends the garbled output mapping {(wf; s, wis4s)bicn)
to Pa.

4. Pa computes the garbled output: {y:};c[m] < Eval(GC, {x:}icino4ng], T>7r)-
If Pa is allowed to know the evaluation result y € {0,1}™, Pa can derive and
output y from the garbled output mapping he has received. If Pg is allowed to
know the evaluation result, Pa sends {yi}ie[m] to Pg so that Pg could derive
and output the final result. If the output-wire labels are not consistent with
those Pg generated, Pg outputs L.

We present the theorem for the security of the protocol IT,ctivepre below.

Theorem 1. If the dual-key cipher is constructed based on the random oracle
as above and the DDH assumption of G holds, the protocol Il,civepre Securely
realizes FactivePFE N the presence of malicious Pa and semi-honest Pg in the
(For, .7-"ZEk"CEP7 ]—"Z'iH)—hybm'd world.

The proof of this theorem can be found in Appendix B.

We note that there exist protocols that securely realize For (e.g., [12,25]),
such that these protocols can be executed in parallel with constant-round and
have linear complexity in the number of Pg’s input wires n4(< n < ). Mean-
while, there exist protocols (e.g., [14] that can be compiled by Fiat-Shamir heuris-
tic to be non-interactive) that securely realizes .7-"2'?(”, such that the complexity of
the total execution of the protocols is linear in N (= 26), i.e., linear in the num-
ber of gates 0. In Section 3.2, we will give a realization of FE"EP that can also be
compiled to be non-interactive and has linear complexity. Therefore, the protocol
I1,ivepFe can be instantiated as a constant-round PFE protocol with linear com-
plexity. By leveraging classical MPC results, such as the approach used in [24],
our protocol can be compiled to be secure against malicious Pg and still pre-
serves constant-round and linear complexity. Hence, we obtain a constant-round
actively secure PFE protocol in the two-party setting with linear complexity.

Remark 1. The approach in [24] consider the case that Pa only provides a circuit
C¢, while in some scenarios, Pao may also provide a private input z4. For this
case, we could simply use standard techniques, such as XOR-tree [29], to prevent
malicious Pg launching selective-failure attacks.

In the following theorem, we show that executing the evaluation phase mul-
tiple times when the protocol involves the same circuit C; (and EP 7) does not
sacrifice the security of the protocol Il ctivepre. The proof of this theorem is put
in Appendix C.

Theorem 2. The evaluation phase of Il civepre can be securely executed multi-
ple times for a fized circuit C'y. In other words, the protocol that executes one
initiation phase and multiple evaluation phases is secure against malicious Pp
and semi-honest Pg.
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We note that every execution of the evaluation phase in the view of Pg is to
generate a set of new garbled gates, and the efforts to achieve reusability are
mainly devoted to preventing Pa from learning additional information. There-
fore, when we use classical MPC results, such as the approach used in [24], for
the protocol, it is obvious that this reusability property still holds.

Remark 2. It is important that all messages from Pg in the initiation phase,
including those from Pg in the protocols that securely realize .FZ'?(H and fZEk”CEP
(in Section 3.2) are all random. Meanwhile, after the initiation phase, Pg does
not possess any private information. Therefore, we can make the initiation phase
non-interactive via borrowing the idea of Fiat-Shamir heuristic. Now Pa can use
the random oracle to generate messages of Pg (using all previous messages),
simulate the interaction, and publish her messages in this simulated interaction
at one time. Via this approach, the protocol is globally reusable for the same
circuit Cy. This means that all parties playing the role of Pg can retrieve Pa’s
messages and verify the correctness of these published messages. Then it is suffi-
cient for them to directly start the evaluation phase with Pa for the fixed private
circuit Cy multiple times using P and G derived in this simulated interaction.
No interaction for initiation phase is needed between P and a potential party
playing the role of Pg. This is a new feature, since the reusability of previous
PFE protocols with linear complexity [8] is locally reusable, such that Pa needs
to interactively perform a setup for a fixed circuit with a specified Pg, and the
reusability only works for the two parties that perform such a setup together.

3.2 Realization of Functionality TZEk“CEP

In this section, we introduce an approach securely realizing the functionality
fi“CEP. We would like to note that although EP is a generalization of permu-
tation (shuffle), it seems that its corresponding zero-knowledge protocol cannot
be constructed by simply modifying or invoking a shuffle protocol, e.g., [5, 10].
That may be the main reason why [35] failed to provide such a specific protocol
for EP by extending shuffle protocols (see Appendix B of [35] for their thoughts
on failed attempts) and they only provided a protocol in a generic approach. In
what follows, we provide an efficient and specific protocol for FENEP.

We firstly introduce the basic idea of our protocol. The job of the prover
in FEMEP is to convince the verifier that the plaintexts of a list of ciphertexts
® = [c1,...,cn] is derived from an EP that performs on a list of elements
G =g1,--.,9um]- In other words, the plaintext of each ciphertext in @ is one of
the elements in G. Notice that this is equivalent to saying that the plaintext of
a ciphertext ¢; is §% = Hj\il g;“, where the vector &; = (e;1,...,e;r) is of the
form that exact one entry is 1 and all other entries are 0, i.e.,

1 if ¢; encrypts g;,
Cis —
K 0 otherwise.

The vector €; satisfies such a condition if and only if 1T¢, = 1 and é;€; = &;. The
condition 17¢€; = 1 implies that the sum of all entries of € is equal to 1. The
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condition €;€; = €; implies that &;(&; — T) =0, i.e., each entry of the vector is
either 0 or 1. These two conditions conclude that €; is of the form that exact one
entry is 1 and all other entries are 0. In addition, the corresponding ciphertext
¢; is of the form (g", g°*h"*), which is reminiscent of ElGamal or Pedersen [38]
commitment schemes and can be regarded as a commitment to the vector €.
Therefore, the prover’s goal is to prove that each “committed” vector €; satisfies
1T¢, =1 and €;€; = &;, in a zero-knowledge manner. We note that it is possible
for the prover to simultaneously prove the conditions for all €;’s.

For the proof of the condition 1T&; = 1, let the verifier pick a challenge
w ¢—sZg. Then using the homomorphic property, both parties compute C' =

(vazl(cgo))wi,Hﬁl(cgl))“i), which can be regarded as a commitment to the
vector € = Ef\il w'e€;. Since w is random, if vazl Wi(1TE) = Ef\;l w® holds,
then 17¢ = 1 holds for all i € [M] with an overwhelming probability. Let
2+ Zi\; w'. Since vazl w'(1T€) = 17¢ and € is committed in C, it is enough
for the prover to prove that IT¢ = (2 holds if the prover is computationally
bounded.

We could follow a similar approach for the proof of the condition €;¢; = €.
Let the verifier pick a random challenge z € Z,. Then, using the homomor-

N [ (0)\zi TN gt .
= (T, (™)™ T (")), which
can be regarded as a commitment to d = Zfil 2'€;. Since x is randomly
chosen, if Zilxie}é} —-d=10 holds, then é;é; = ¢é; holds for all i € [N]

1
with an overwhelming probability. Moreover, let the verifier pick another ran-

dom challenge y € Z, and define a bilinear map * : Zé‘/[ X Zéw — Zgq by

phic property, both parties compute cjz

(a1,...,apnr) * (b1, ...,byr) = Zjle a;jbjyl. Similarly, if € % & — Tx¢& =0, then
€;€; = €; holds with an overwhelming probability. Hence, since the vectors €;’s
and d have been committed in ¢;’s and c, it is enough for the prover to prove
that Ef\il zie; x & — 1% d = 0 holds if the prover is computationally bounded.

It is important to note that all g;’s are generated by Pg, and thus a compu-
tationally bounded Pa cannot find a non-trivial discrete logarithm relation for
{gi}ician except a negligible probability. This guarantees the soundness of the
protocols. Now we present the protocol ka"CEP between a prover P and a verifier
V below. Two sub-protocols IT3'™ and IT%¢ then follow respectively. In these
protocols, V always verifies whether the received messages are of correct form,
and rejects once they are not. These protocols are all public-coin honest-verifier
zero-knowledge, and we can compile them to be non-interactive and secure via
Fiat-Shamir heuristic to obtain the protocols we want.

Protocol IT5EP

Public Inputs: A cyclic group G = (g) of prime order ¢, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, ¢, g, h). A list of
elements G = [g1,...,9m]. A list of ElGamal ciphertexts ® = [ci,...,cn], where
¢ = (CEO), cgl)). Elements in G and @ all belong to the group G.
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Witness: P has an EP 7 and a list R = [r1,...,7n] that are random coins of
ciphertexts in @, where r; € Z,.

1. For i € [N], P derives a vector & = (ei1,...,eim) € Z)" from 7, such that
the encrypted value of ¢; can be represented by . For the EP 7, this vector
is of the form where exact one entry is 1 and all other entries are all 0.

2. V picks an element w <—sZ, and sends it to P. Both parties compute C <«

(Cc©® = Hﬁil(.cgo))wi,C(l) = Hﬁil(cgn)“i). P computes €« Zf\;l w'e; and
T Efvzl w'r;. Both parties compute 2 <« Zivzl w'. P proves to V the

following relation Rsum for 7 = 1 via the protocol IT5'™:

{(G,q,9,h,G,C,02,9) | 3Erz) : CV =g e nCW = Fhe ng'e = 02}

3. V picks two elements z,y <—sZ, and sends them to P. Both parties compute
cg — (cfi.q) = (CEO))ITV,CE; = (ci”)‘"”l) for i € [N] and also c; (cila0> =

vazl(c(.o))xi,cg) = Hﬁvzl(c(l))’“'i) and c¢_1 « (TTM, g; ', 1). P computes d;

@ i

z'€; and rj < z'r; for i € [N], d Zﬁilcﬂ, and ry; = sy

i=1 T, Define a

bilinear map * : Z) x Z) — Zq by (a1, ...,anm)* (b1, ..., by) = Z;Vil a;by’.

P proves to V the following relation Rzero via the protocol szkem:

{(qu79:h7G7¢: {C@}iE[N]>CJ7 Cff) ‘ 3({€i7ri7diardi}iE[N]7da TJ :
(Vi e [N],CEO) =g" /\cil) =gGoh" /\cg) =g'd /\c;}i) = ﬁihrii)

N2

N
/\cfi_o) :gTi/\cg) = "th'f/\Zé}*cz;—T*cz’:O}.
i=1

Theorem 3. The protocol HZEk"CEP s an honest-verifier zero-knowledge argument
of knowledge for Rgncep.

The proof of this theorem can be found in Appendix D.

The protocol stk”m between a prover P and a verifier V below uses the idea
mentioned in [11] for recursing the protocol and halving the statement in each
recursion. Thus, IT5"™ has logarithmic communication cost. Throughout this
protocol, we assume that the parameter M is a power of 2. If needed, one can

easily pad the inputs to ensure that this holds as in [11].

Protocol II53"™

Public Inputs: A cyclic group G = (g) of prime order ¢, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q,g,h). An
ElGamal ciphertexts C' = (C©,C™). An element 2 € Z,. Two vectors § =
(91,---,9m) and ¥ = (y1,...,ym) of length M. Denote the length of vectors §
and 7 by £ = M. Let cz < C. Both parties initiate an element e g%,
Witness: The prover P has witness €, rz.

Statement: There exist € and rg, such that C(© = ¢"¢ A cz = GEh™e A = gng.

— V picks u <G and sends u to P. P initiates pz = 0, and p> = 0. Then two
parties engage in the procedure below to prove the statement:
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There exist €, Tz, pe, and p, such that C0 = g"¢ A cz = GEuPTh™@ A
ch= gnguplé.

— If £ = 1, we denote the only element in €, g, and % by €, g, and 7, respectively.
Let v + ¢¥. Now ¢z, s, and C© are of the form cz = géuPeh’e, ¢ = y°ule,
and C© = g"?, respectively. P and V follow the procedure as follows.

1. P picks z1, 22,23, 24 <$Zq, and sends a1 <+ g“'u"?h"3, az + ¥y u’,
asz < g“% to V.

2. V sends a <—sZg4 to P.

3. P sends z1 < 1 + @€, 22 < x2 + ape, 23 < T3+ are, and z4 < T4+ ap;«
to V.

4. V verifies whether equations §*'u*2h*® = aicg, Y u** = az(ck)®, and
g*3 = ag(C(O))D‘ hold. If they all hold, V outputs accept. Otherwise, V
outputs reject.

— If £ # 1, P and V follow the following procedure.

1. We write € = €L o€r, § = gr © gr, and § = % o §r. P computes
v GHEuP vR — FRUPR, v gTReLyPL | and v — gULeRuPR,
where pr, pr, pL, Pr <$7Z4. Then P sends vr, vr, v}, and v to V.

2. V sends a +sZ4 to P.

3. P computes & = aér + a~'er of length ¢ = £/2, and also computes
pe  pz+pr +a %pr and pl — pt 4 o?ph + o 2plz. Both parties
compute cg v vj"{Q and ¢ + cs(vp)* (vR)® ~, and two vectors
g « g‘filg}% and § ¢+ o '§r + air of length ¢ = £/2. Tt is easy to
verify that cz = ¢'* u”e'h'¢ and ¢l = gy/Télu"/é’.

4. Both parties recurse on IIS'™ for the same CV, (G, ¢, g, h), u but using
cery Cory G, i in place of cz, ¢, g, §. P in the recursion uses the same rz,
but uses pg, p, € in place of pz, p%, € We use £/ = /2 in place of £ to
denote the length of vector §’, ¥, and €.

Theorem 4. The protocol stk“"‘ is an honest-verifier zero-knowledge argument
of knowledge for the relation Rsym.

The proof of this theorem can be found in Appendix E.
The protocol IT4¥° between a prover P and a verifier V below borrows the
idea of the zero argument in [5]. We tailor the protocol to support the ElGamal

encryption scheme and introduce how to further reduce the communication cost

in Remark 3.

Protocol 75

Public Inputs: A cyclic group G = (g) of prime order ¢, where DDH assumption
holds. The public key of the ElGamal encryption scheme pk = (G, q, g, h). A list
G = [g1,...,9um]. Two lists of ElGamal ciphertexts {cff,), 01(11‘)}1-6[4], {cg), c%l,)}iem.
The description of the bilinear map * for a variable y.l ' ' '
Witness: The prover P has witness {i@:, 7z, Yicjg, {¥, 75, Yiclg-

Statement: There exist {;, g, }icq and {¥i, 7, }ic[q, such that ng) = g%,

cgi) = GUhTa, cgj) =g, 01(711-) = g"h"% for all i € [¢], and S¢_, @ % v; = 0.
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1. P picks o, p41 <sZ)" and Titg, T5ey 5 2Zq. Then P computes cg, <+ (01(100) =
g7, cq) =GR and eyg, = (e = 97T e = GUHAT). P

computes for ¢ =0,...,2¢

d¢ E Wy * Uj .
0<i<l,1<j<f+1
=1 ¢+i

P picks 74, s Zq for ¢ € {0,...,20}\{¢+1} and computes cq, < g**h"* for
¢ €40,...,20}\{£+1}. For ¢ = £+1, both parties set 74,,, < 0and ca,,, +
1, After the computation, P sends cg,, ¢z, ,, and {ca, }¢e{o,....2¢}\{e41} tO V.
2. V sends z <—sZ4 to P. _ _ _
3. P computes 4 <+ Zf:o ', Ty — Zf:o z'ra;, U Zfii oI g
Zf:i :v“l_]rgj, and t + Zif:o az"’rdd), and sends #, rz, U, rg, t to V.
. : ¢ 0)yz® rg 0 1)ya? iy ry
4. V outputs accept if all equations Hi:o(cfzi)) =g't, Hi:o(c%i)) = g'h"e,
+1 0 (0)\att1—d rg 41, (1)\gtT1—d ST Ty 20 a® TxT
555 e = g"7, TI75 () = §"h'7, and [}, ¢, = g™ "h!
hold. Otherwise, V outputs reject.

Theorem 5. The protocol szkem s an honest-verifier zero-knowledge argument
of knowledge for the relation Rzero-

The proof of this theorem can be found in Appendix F.

Remark 8. We can further reduce the communication cost of szkem. Notice that
in Step 1, P needs to commit to all elements in {dg}¢=0,.. 20. We could in-
clude a list of 2¢ + 1 random elements of G, e.g., H = {hg}¢=0,...2¢, in the
common reference string. P can thus commit to {d¢}¢:0,m722 by computing
cy+ (9", Z?f:o hj;” h'a) for ry<sZq. P now only needs to send c; to verifier
instead of {cq, }¢e{2,... 203\ {¢+1}, and does not need to send ¢ to V in Step 3. Al-
ternatively, P proves to V the following statement for ¢ = [2°, ..., 2% 0, 2¢+2 2%/
and D = @ * ¥/ via the protocol HZSk“m in Step 4:

{(Ga,9.h Hyc, D) | Adrg) : ) = g p el = R7a A" = D}
Following this approach, we reduce the linear communication cost of send-
ing d4’s to the logarithmic communication cost of using stk“m. Similarly, P
can avoid directly sending ¢ and ry, i.e., the opening for cz = (cfjo),cg)) =
(Hﬁg (cg))xulﬂ : Hﬁi (c%))”zﬂﬂ). Now P only sends @ and 7 in Step 3, and
V only verifies the two equations related to « and rz in Step 4. Then, P sends
D = @ to V and proves the following statement for 7 = [yluy, ..., yMuy/] via

the protocol IT3'™ in Step 4:
{(G,q,g,h,G,C{;,D,g) ‘ EI({)"Tﬁ) . cfyO) — gTﬁ A C(l) _ gﬁhrﬁ A g*TQ—]»: D} )

v

19



4 PFE Protocol for PVC Security

In this section, we introduce the first constant-round PVC-secure PFE protocol
with linear complexity in the two-party setting based on the results in Section 3.
The corresponding ideal functionality Feovertpre is given in the following.

Functionality Feovertpre

Pre-agreement: The circuit C; consists of 6 gates, m output wires, and n(=
na + np) input wires.

Private inputs: Pa has a Boolean circuit input Cy and input za4 € {0,1}"4,
whereas the other party Pg has input zp € {0,1}"5.

1. If an input of the form abort; from the party P; for some i = {A, B} is re-
ceived, the ideal functionality sends L to both parties and the ideal execution
terminates.
2. If a circuit C} satisfying the pre-agreement from Pa is received, store C.
3. If an input of the form blatantCheat from Pg is received, the ideal functionality
sends corrupted to both parties and terminates.
4. If an input of the form cheat from Pg is received and Pa’s inputs Cy and x4
were received previously:
— With probability e, the ideal functionality sends corrupted to both parties
and terminates.
— With probability 1 — e, the ideal functionality sends (undetected, z4,C})
to Pg. If Pa is allowed to receive the output, the ideal functionality waits
for y € {0,1}™ from the adversary A, sends y to Pa, and terminates.
5. If input x4 € {0,1}"4 from Pa and zp € {0,1}"7 from Pg are received and
an input circuit Cy is stored, the ideal functionality computes Cf(za,zB).
(a) If Pa (when she is corrupted by .A) is allowed to learn Cf(xa,xp5), then
it sends Cy(za,zRB) to Pa.

(b) Otherwise, the ideal functionality sends nothing to Pa. Then if continue
from A is received, the ideal functionality sends Cy(x1,z2) to the honest
Pg. Otherwise, if aborta is received from A on behalf of the corrupted
Pa, it sends L to the honest Pg.

We give the PVC-security definition for our PFE protocol I1.oenpre as follows.

Definition 4. A two-party PFE protocol Ileoyertpre along with algorithms Blame
and Judge is publicly verifiable covert secure with e-deterrent if the following
conditions hold.

PVC security The protocol Il.overtpre, which might output cert if the honest
party detects covert cheating, securely realizes FeovertPre With e-deterrent.
Public verifiability If the honest party outputs cert during the protocol execu-
tion, then the output of the algorithm Judge for cert is 1, except a negligible
probability.

Defamation freeness If one party is honest, the probability that the other mali-
cious party generates a certificate cert for which Judge outputs 1 is negligible.
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4.1 Full Description of the Protocol

In the two-party case, active security implies covert security with public verifia-
bility, since we could regard attempts to cheat as abortions. Therefore, techniques
for dealing with malicious Pa are workable for the PVC-secure setting.

Here we briefly introduce the main idea of our PVC-secure protocol I overtprE-
Recall that in Remark 2, we describe how to make the initiation phase non-
interactive. This approach can also be adopted here in Il.overtpre. Thus, we now
do not need to consider malicious Pg in the initiation phase. We can reuse the
initiation phase of Il ctivepre for Icovertpre, With the exception that we include G
in the common reference string to simplify the proof of security. Note that this
small change does not hinder the protocol from achieving global reusability.

In the evaluation phase of Il,civepre, Pa receives the garbled circuit and
garbled inputs, evaluates the garbled circuit, and derives the resulting outputs
or sends garbled outputs back to Pg. It is easy to see that Ps has no chance
to cheat in the protocol. Even if P sends incorrect garbled outputs to Pg, the
incorrect garbled outputs will still be rejected by Pg due to the authenticity of
the garbling. Hence, we only need to focus on the security against covert Pg.

To achieve covert security, we follow the same paradigm of all existing work,
i.e., parties generate \ instances of a passively secure protocol, check the correct-
ness of A—1 randomly chosen instances, and take the result of the unopened one.
In addition, we use a derandomized approach to supporting efficient correctness
check in our protocol. More concretely, Pg needs to pick for each instance a
seed to generate random coins during the execution of that instance (including
the circuit garbling and OT protocol). P then uses OT protocol to retrieve all
but one of the seeds, such that Pg is unaware of which instances are checked.
Now given the seeds, P can easily check the correctness of the corresponding
instances. To prevent Pg leaking inputs, Pg commits to his pairs of input-wire
labels in random order with randomness derived from the seed and send these
two commitments to Pp for each instance. Hence, Pa can effectively check the
correctness of these commitments using the seed for opened instance, while Pg’s
inputs are preserved. After the check, Pa points out the unopened instance, and
now one of the two commitments for her input wires needs to be opened by Pg
as his garbled input to enable Pp to evaluate the unopened garbled circuit.

To add public verifiability to the approach above, we let Pg sign all transcripts
that have been produced before the time when Pa reveals the index of the
unopened instance. In addition, for each instance, let P commit to a random
seed at the beginning of the protocol and uses this seed to derived random
coins during her execution of the instance. This commitment will be included
in Pg’s transcript and signed by Pg, such that it can prevent Pa from defaming
honest Pg. If Pg deviates from an instance checked by Pa, Pa can generate a
certificate that includes related transcripts and Pg’s signature on them for that
instance, such that it allows a third party to verify this proof of misbehavior.
Since Pg cannot realize in time that the instance in which he deviates from the
protocol has been checked by Pa, he cannot abort before Pa has collected enough
materials to generate the certificate.
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Our protocol Icoertpre 18 given in the following. Since parties need to commit
to transcripts of the OT executions in the protocol, the description directly uses
the protocol IIpT that securely realizes a parallel version of FoT.

Protocol 1 overpre

Pre-agreement: Both parties agree on a cyclic group G = (g) of prime order
¢, where DDH assumption holds. They also have the pre-agreement about C: 0
gates, m output wires, n(= na + np) input wires, N = 20 incoming wires, and
M = n + 0 — m outgoing wires except output wires of the circuit. The common
reference string includes a list G = [g1, ..., gm] € GM, where all g;’s are different.
Private inputs: Pa has a Boolean circuit input Cy and input z4 € {0,1}"4,
whereas the other party Pg has input zp € {0,1}"# and keys (vk,sigk) for a
signature scheme. Pa knows the verification key vk.

Initiation Phase

1. Pa picks s <—sZ, and computes h < g°. Denote the public and private keys
of the ElGamal encryption by pk = (G, q, g, h) and sk = s, respectively.
Pa derives an EP 7 from Cy. Then Pa permutes elements of G according
to 7y and encrypts all resulting elements using pk to derive the list & =

[c1,c2,...,cn], where ¢; is the encryption of G,y fori € [N].
Pa picks t; <—sZq for i € [N}, such that all ¢;’s are different, and stores the
list T' = [t1,...,tn] for the evaluation phase. Pg computes the ¢;th power of

each plaintext g, +(0) of ¢; via the multiplicatively homomorphic property of
the ElGamal encryption (using pk) to obtain c;. Let the resulting list &' =
[¢l,...,cN]. Pa computes the information for decryption of all ciphertexts c;

c;(o),c;m)), i.e., Pa computes d; < (c/-(o))S for i € [N].

(remember that ¢} = ( i
Pa sends h, &, &, and {di}ic(n] to Pg. Then Pa uses the functionality F5""
to prove to Pg that she has performed a valid EP on G to obtain the list of
ciphertexts @. Meanwhile, Pa uses F2"' to prove to Pg her knowledge of s,
i.e., sk, for (g, {C:,'(O)}ie[N]) and (h, {di};cn), together with her knowledge of
t; for the two-tuple ciphertexts ¢; and ¢ for all i € [N].

2. Pp decrypts all ¢}’s to obtain the plaintexts via p; ¢+ c;(l) . d;l. Pg stores a

list P = [p1,...,pn] for the evaluation phase.

Evaluation phase

A
0. Pa chooses uniform r-bit strings {seed?'} ;¢ (5], computes c**% < Com(seed')

and sends {cswj?4 Yie to Ps.
Pg chooses uniform s-bit strings {seed?, witness; }c(»], while Pa picks j <= [\]
and sets b; = 1 and b; = 0 for j # j. Pg and Pa run A executions of IToT.
In the jth execution, Pg uses as input (seedf,witnessj) and Pa uses as input
b; with randomness derived from seed?'. At the end, Pa has {seed?},.; and
witness;. Let us denote the transcript of the jth execution by trans;.
1. For j € [A], using the randomness derived from seedf, Pg picks wio’j, wilyj +—sG
fori = M+1,...,M +m and ao,j,o1,; $sZq. Pg also computes wire la-
bels and produces garbled gates as in Il.ctverre. At the end, Pg obtains
the resulting collection of garbled gates GC; = {GG; ;}ic[g], Pa’s input-wire
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labels {(ng,wil,]-)}ie[m], Pg’s input-wire labels {(ng_H’j,w,llAH,]-)}ig[nB],
. o 0 1
and output-wire labels of the garbled circuit {(whsy; ;j, Warti ;) i=1,..m
2. Pa and Pg are involved in A executions of Ilor. In the jth execution, Pg
uses as input (w?yj,wil, )icina]» While Pa uses as input x4 if j = j and 0"4
otherwise, and random coins of Pp and Pg are derived from seed and seed
respectively. At the end, Pa obtains her garbled input {x; = w }ze [nal-
Let h?T denote the hash value of the transcript for the jth executlon of IloT.
3. (a) For all j € [)], Pg computes c;7, «+ Com(w, , 1 ;) for all i € [np]
and b € {0,1}. Let b9 be the hash value of {(Wlrpijs Whrsig) bimt,m
Pg then computes c; <« Com(GCj,{ci“f’b}ie[nB],be{o,lhh?), where two
elements in each pair (c;7,,c;%,) are permuted in random order. The
random coins of commitments and permutations are derived from seed }B .
,trans;, h9T, ¢ ) for j € [A].

seed

(b) Pg generates 0; + Sigg, (G, P, j,c
Then Pg sends {c;,0;};e[n to Pa.

4. Pa verifies that whether all o;’s are valid. If not, Pa halts and outputs L.
Then Pa calls Blame({hS", c;},can 57)- If the output is cert, Pg sends cert to
Pg, outputs corrupted, and halts. Otherwise, Pa sends (j, {seed}’ };..;, witness;)
to Pg. Pg verifies that these values are all consistent with those he has sent
in Step 0 and aborts if not.

5. Pg assigns xn ,+i < wfj[ﬂl ;

{ci % Yiemplve(o. (m the same order as Step 3a), and hO together with

for i € [ng]. Then Pg sends GCj, {Xn 4 +i}ic[np

decom® and {decom i3 zpi] }16 [ng]> t0 Pa. If Pa is allowed to know the evalu-
ation result, Pg also sends the garbled output mapping {(wfy s, Wisyi) bicm)
to Pa.

6. Pa outputs L and aborts if Com(GC;, {c ,J,b}ze[ng 1,640, 1},hJ ;decom?) # c;,

for some i € [np], Com(xn,+i; decom® i5epl 1) ¢ {c;5o,ciZ.}, or h is not
consistent (if it is verifiable).

Pa computes {yi}icim) <= Eval(GCy, {x:}icin), T, my). If Pa is allowed to know
the evaluation result Pa can thereby derlve the output. If y; ¢ {w, w;}
for some ¢ € {M +1,...,M + m}, Pa outputs L. If Pg is allowed to know
the evaluation result, Pa sends {yi}ie[m] to Pg so that Pg could derive the
result. If the output-wire labels are not consistent with those Pg generated,
Pg outputs L.

In the following, we provide the algorithms Blame and Judge used in IlcovertpFe-

Algorithm Blame

A
seedj

Specified parameters: G, P, {transj,oj,seedf,decom ,seedf}je[/\]\{j}.

Inputs: {h9",c;}ien -

1. For all j ;é ], simulate Pg’s computation in steps 1, 2, and 3a, and particularly
compute h and ¢;. Let J be the set of indices, such that for j € J, (hoT ¢j) #
(hoT, <),

2. (a) If |J| = 0, the algorithm returns accept.

(b) If |J| > 1, the algorithm picks j <—sJ and outputs a certificate cert =

(P7 j’ trans]7 hOT7

) seed}-4 ) )

A
cj,04,seed; , decom
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Algorithm Judge

Inputs: A verification key vk for the signature scheme, a certificate cert =

(P, j, trans;, hOT ¢;, o, seed?, decom=; f tring G

,J,trans;, h?' cj, 05, seed?, decom ), common reference string G.
A A

1. Compute c***% < Com(seed?'; decom***%}").

A

2. If VF((G, P, j,c**% ,trans;, h$T, ¢ ), 0;) = 0, output 0.

3. Simulate the execution of ITor that involves trans; (Step 0 of the evaluation
phase). In this simulation, the input of Pa is 0, random coins are derived from
seedf, and the incoming messages of Pg are those included in trans;. Check
whether messages sent by Pa are consistent with that of trans; and output 0
if not. Otherwise, denote Pa’s output of this simulation of ITot by seedJB.

4. Use seedf and seedf to simulate the execution of Steps 1, 2, and 3a of the
evaluation phase, and particularly compute H?T and ¢;.

5. (a) If (h97,¢;) = (h%7,c;), output 0.

(b) If ¢; # c;, output 1.
(¢) If the first message for which H?T #* h?T corresponds to Pa, output 0.
Otherwise, output 1.

We present the theorem for the security of the protocol Ilcovertpre as follows.

Theorem 6. If the commitment algorithm Com is computationally binding and
hiding, the hash function is modeled as a random oracle, the garbling scheme is
secure under the random oracle model, the DDH assumption of G holds, perfectly
correct protocol Ilor UC-realizes Fot, and the signature scheme (KGen, Sig, Vf)
is EUF-CMA, then the protocol Ilcovertpre along with Blame and Judge is publicly
verifiable covert secure with deterrence factor € = 1 — 1 in the (F5EF, FH)-
hybrid world.

The proof of this theorem can be found in Appendix G. Following the same
discussion as Il ctivepFE, it is easy to see that Il.overtpre could be instantiated as
a constant-round PVC-secure PFE protocol with linear complexity. Similarly,
it is straightforward that we have the theorem below, and Remark 2 is also
applicable to Il.overtpre to achieve global reusability.

Theorem 7. Once the initiation phase for a private circuit C'y is evecuted, every
subsequent execution of the evaluation phase of Il overtpre does not degenerate the
security of IecovertPFE-

5 Analysis

5.1 Performance of IT5"EP

In Table 3, we provide from two directions the communication cost of each part
of HZEk”CEP for one execution of HZEk“CEP with parameters M and N in the honest-
verifier zero-knowledge setting. Note that IT5°" is the optimized protocol of
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IT15%° according to the idea introduced in Remark 3. The row of remaining is
for the communication cost of II5"EP excluding the cost of sub-protocols. Since
messages sent from V to P are random messages in all protocols, we can leverage
the random oracle and compile these protocols to be non-interactive via the
Fiat-Shamir heuristic. Using this approach, the communication cost now only
takes into account the cost from P to V.

Table 3: Communication cost of each part of ITE"EP with parameters M and N.

Protocols  Bits from P to V Bits from V to P

Hz}“m (4[logy M + 3)||G|| + 4/ Z | Gl + ([logy M + 1)||Zq]|

I (2N +4)[[G[| + (2M + 3)||Z4 |l [1Zq |l

2o+ (4[logy(2N + 3)] + 4flog, M| 4+ 2||G|[+([logy (2N +3)+ [log, M+
12)[|G]l + (M + 10)[|Z | 3Z|l

Remaining 0 3| Zq |l

We give comparisons between the previous generic work [35] and our protocol
IIEMEP (using the optimized protocol szke'”) in Tables 4 and 5. From Table 4,

Table 4: Communication cost comparison between the previous generic work [35] and
ITEMEP in this paper with parameters M and N.

Protocols  Bits from P to V Bits from V to P

(35] ~ (32N|G| + 12N|[Z4][) ~ (NG| + 10N||Z4[)
This paper ~ (4[logy(N)]+8[log, M1)||G||+M||Zg|| ~ ([logy, N+ 2[logy, M1)||Z||

we can see that the (non-interactive) communication cost of our protocol is
around M||Z,||. In comparison, the protocol in [35] cannot be compiled to be non-
interactive. Its total communication cost is around (34N ||G|| + 22N||Z,||) bits.
For a regular circuit, we always have M < N. Meanwhile, we have ||G|| > ||Z,].
Hence, the number of the transmitted bits of the previous generic protocol is at
least 56 larger than ours.

Table 5: Computation cost comparison between the previous generic work [35] and
ITE"EP in this paper with parameters M and N.

Protocols  Time P Expos  Time V Expos

[35] ~ 59N ~ 52N
This paper ~ (16N + 11M) ~ (10N + 3M)

In Table 5, we count the total number of exponentiations that P and V need
to perform in these two protocols. It is easy to see that the execution of our
protocol should be much faster than the protocol in [35].

5.2 Performance of Our PFE Protocols
In this paper, we provide the first constant-round actively secure PFE protocol

with linear complexity and the first constant-round PVC-secure PFE protocol
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with linear complexity in the two-party setting. Furthermore, our constructions
have comparably good performance with existing passively secure PFE protocols.

The same initiation phase of the two protocols can be compiled to be non-
interactive, and the resulting non-interactive information for the initiation phase
is around (8N||G|| + 2M||Z,]|) bits. The linear constant-round passively secure
PFE protocols in [24] and [34] do not achieve reusability, but we can still divide
them into the same two phases, such that the phase for preprocessing the circuit
Cy is the initiation phase, and the phase for generating, sending the garbled
circuit, and evaluating that circuit is the evaluation phase. The communication
cost of the initiation phase of the optimized protocol in [24], the protocol in [34],
and the protocol in [8] are (2M + 6N)||G|| bits, (2M + 4N)||G|| bits, and (M +
N)||GJ| bits, respectively. We can see that our protocol is competitive, even if it
is actively secure. We also remark that since the protocols in [24] and [34] do
not achieve reusability. Their initiation phases require to be executed every time
when the same circuit C is involved, while the cost of the initiation phase can be
amortized to multiple executions if a protocol achieves reusability. Meanwhile,
the initiation phase of the protocol in [8] is interactive, and it does not achieve
global reusability. In comparison, the initiation phase of our protocol could be
non-interactive, and it achieves global reusability.

It is shown that the linear passively secure PFE protocol in [8] outperforms
the protocols in [24] and [34] when it is executed any number (more than one)
of time for a fixed private circuit. Here, we reason that our PVC-secure protocol
does not have too much overhead compared with the passively secure protocol
in [8] in the evaluation phase. The additional communication cost of ITcovertPFE
compared with the passively secure protocol in [8] mainly includes the following.

1. The X executions of IIoT in Step 0 for seed transmission.
2. The extra A — 1 executions of IIoT for input-wire labels retrieval in Step 2.
3. The X tuples of {c;,0;} sent in Step 3.
. B
4. The messages {Ci?,b}ie[ng],be{o,l}a h?, decom®, and {decomc%HBM}ie[nB]
sent in Step 5.
Let us analyze the cost of Ieoverrpre for the deterrence factor e = 1/2, i.e.,

A = 2. The additional communication cost of Step 1 and Step 3 is constant now.
Meanwhile, the additional communication cost of Step 2 and Step 4 now only
depends on the input length n of the circuit. For most regular circuits, this cost
is significantly smaller than the dominant communication cost of transmitting
the garbled gates, which is bounded by O(0) for circuit size . The additional
computation cost for both parties is mainly from the cost of generating the
corresponding GC;’s to compute the commitments c;’s for checked instances.
Therefore, for the evaluation phase, the computation cost of both parties in our
PVC-secure PFE protocol with e = 1/2 is only around 2.6x that of the passively
secure PFE protocol [8], and thus it is acceptable.

Finally, let us see the size of the certificate in our PVC-secure PFE protocol.
Note that all elements other than the list P inside a certificate do not depend
on the size of the private circuit C'y. If the initiation phase is compiled to be
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non-interactive, we can assume that all parties have already held the messages
generated in the initiation phase, including P. Now we do not need to include
P in the certificate, and the size of the certificate is constant.
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A Garbling Scheme

In this section, we present a garbling scheme for the standard SFE (rather than
PFE) setting. This scheme is related to the garbling scheme used in our protocols.
It aims to help readers understand our protocols in a more comprehensive way,
and this also assists our security proof of Theorem 1, Theorem 6, etc. We stress
that this garbling scheme is conceptually different from the one we use in our
PFE protocols. The main difference is due to the fact that the garbling scheme in
our PFE protocols should be coupled with other parts of the protocols, whereas
the garbling scheme here is independent, in the sense that it can only be used in
traditional garbled circuits approach when two parties commonly agree with the
same list T and EP 7y (and thus the circuit Cy). For instance, wire labels are
generated by the two parties together in our PFE protocols, while these labels
are simply generated by an algorithm Init in the present scheme. In addition, the
generated labels are not the same in these two scenarios.

This garbling scheme consists of algorithms (Init, Gb, Eval) based on a cyclic
group G = (g) of prime order ¢. It is used for a circuit Cy that consists solely of
0 NAND gates, with m output wires and n input wires. We denote the number
of incoming wires by N = 20 and the number of outgoing wires except those
that are output wires of the circuit by M = n 4+ 6 — m. These parameters are
implicitly taken as input by the three algorithms of the scheme. These three
algorithms are presented below.

— Init takes as input an EP 7 derived from a circuit Cy (see Section 2.1) and
alist T = [t1,...,tn], where t; € Z,. For each outgoing wire OW; with index
i € [M + m], the algorithm picks the label w? <—sZ, for b € {0,1}. For each
incoming wire IW; with index i € [N] (connecting with the outgoing wire

OWo . (s)), it picks t; <—sZ, and computes the label v (wfrf(i))ti for b €

{0,1}. Finally, the algorithm outputs ({(w,w})}ic(pr4m)» {09, v}) Fiern))-
— Gb is invoked to generate garbled gates. According to the circuit represen-
tation approach in Section 2.1, a gate G; consists of two input wires, i.e.,
incoming wires, with indices 2¢ — 1 and 2¢, and one output wire, i.e., an out-
going wire, with index n—+14. For such a gate, Gb takes as input the gate index
i, the two pairs of input-wire labels (v9;, _;, v, ;) and (v9;, v,), together with
the pair of output-wire labels (w? _H,w,lL +i), and prepares four ciphertexts:
¢ E”Cigi ok, (we?,) for a,b € {0,1} for a dual-key cipher Enc. Gb out-

puts the set of garbled gates {GG;};c[g). Here GG; = {C?’b}a,be{o,1}7 where

c;-l’b are randomly permuted.

— Eval takes as input a set of garbled gates {GG;};c[g], a set of input-wire labels
{Xi}iem), a list T = {t;};c;n), and an EP 7y. This algorithm first derives
the description of the corresponding circuit C'¢ from 7. Now starting from
(outgoing-wire) labels {x;};c[n], Eval computes incoming-wire labels from
outgoing-wire labels and evaluates garbled gates one by one following the
topographical order of the circuit to obtain the final output-wire labels.
Without loss of generality, for an outgoing wire OW;, we denote its label in
hand by w?, where b € {0, 1}. Note that each outgoing wire may connect with
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some incoming wires that are the input wires of some gates. Assume that an
incoming wire IW; is connected with OW;. Pa can compute the corresponding
wire label of IW; by computing the ¢;th power of w?, i.e., (wﬁ?)tj. Since we
have (wf)tj = v} the result is the input-wire (incoming-wire) label as we
want. When having two input-wire (incoming-wire) labels (v5;_;, vg;), where
b,b' € {0,1}, for a garbled gate GG;, the algorithm can decrypt GG; using
these two labels as keys (via a simple reverse approach of Enc) and obtain
the non- L resulting output-wire (outgoing-wire) label w?;. It is easy to see
that the values of the wire b and b’ are hidden from P during this procedure.
Since Eval follows the topology of the circuit, input-wire labels of a gate are
always ready when we proceed to evaluate that gate. Finally, Eval returns
the decrypted output-wire labels of the output gates.

To simplify our description, we could use a standard dual-key cipher Enc
in the random oracle model. Let the random oracle be H: G x G x {0,1}* —
{0, 1}”6” X7 where 7 is an integer specifying length of redundant bits that ensures
correct decryption. We define the dual-key cipher as

¢i + Encle  (wf®) = H(v], 0}, 1) @ ([wf]]]07),

where [w$?]||07 denote the bit string that is the concatenation of the bit-
representation of w¢® and the string of 7 zeros. The decryption algorithm Dec for
this dual-key cipher takes as input the two keys (v;, vy ), the index ¢ and cipher-
text ¢; corresponding to the dual-key cipher Enc, and computes H(v¢, vé?, 1) D
If the last 7 bits of the result are all 0, it outputs the group element of G that
represented by the first |G| bits of H(v{,v?, i) ® ¢;. Otherwise, it outputs L.
Note that this scheme could be further optimized, e.g., via using a variant of the
point-and-permute optimization [6] (see [8] for more information).

In the following, we briefly present definitions for the garbling scheme that
follows the approach of [7].

Correctness For any EP 7, (for the circuit C) and list T as above, and any
input = € {0,1}", we follow the steps below.

1. Run ({(wio’wil)}ie[Mer]a{(Uz(')7vil)}i€[N]) « Init(my, T).

2. Compute {G_Gi}z‘e[e] + Gb({, (Ugiflav%ifl)v (Ugivv%i)v (wngivwrlLJri)}ie[e])-
3. Let x; = wf[l] for i € [n].

4. Execute {y;}iepm) < Eval({GG}icio), {xi}ien, T 7y).

Then this garbling scheme is correct if for all y € [m], it holds that y; = w?\/[[ii,

where y = Cy(x).

Privacy We say that the garbling scheme achieves privacy if for any EP y,
list T', and input z, where the format/length of 7" and « satisfy the circuit Cf
corresponding to 7y, there exists a PPT simulator &, such that the output distri-
butions of the following two procedures are computationally indistinguishable.
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= L ({(wi, w})}ierm, {( vf,v}) Yierny) < Init(my, T).
2. {GG; }76[9] + Gb({1, (U2z 17051 1)7(Ugivv%i)’(wg-i-ivwvlz—i-i)}iew])'
3.xl<—w fOI‘ZG[]
4. Output ({Xz}ze ,{1GG; }ze[e {(w?\/[Jri?w]l\/[Jri)}iE[m])'
: ({Xz}ie[n]a {GGZ}ZE G]J(wMﬁ-ival\/I-&-i)}iE[m]) — S(Of(x)vﬂfvT)'
. Output ({Xi }icpn) {GGiYicpoy { (@840 Whr i) Yieimi)-

\
[N R

Obliviousness We say that the garbling scheme achieves obliviousness if for
any EP ¢, list T, and input z, where the format/length of T' and z satisfy
the circuit Cy corresponding to 7y, there exists a PPT simulator S, such that
the output distributions of the following two procedures are computationally
indistinguishable.

= L ({(wi,w]) Ve my, {07, Z)}le 1) « Init(my, T).

{GG; }ze[o] « Gb({7, (v9;_1,v3;— 1)7(vgi7v%i)>(wg+i7w%+i)}i€[9])-
x“—wiH for i € [n].

Output ({Xi}iefn], {GGi}icio))-

({Xi}iem), {GGi}ic 9]) « S(my, T).

Output ({X; }ieqn)» {GGi}icfe)-

D

Authenticity We say that the garbling scheme achieves authenticity if for
all PPT adversaries A, the following procedure outputs true with a negligible
probability.

1. (mf, T, x) < A(L"%).

2. If the EP 7y, list T', and input x satisfy the pre-agreement of the circuit CY,
continue the procedure. Otherwise, return L.

: ({(w w; )}zE[M-‘rm} {(vz » U )}ZG[N]) Init(ﬂ—fv T)

- {GG; }ze < Gb({4, (v3;_1,vd;_1), (v9;, v3;), (w2+i’ w711+i)}i€[9])'

Xi < w; M for i € [n].

- Yitiemm) < A({Xi}icn)» {GGitico))-

.y Cr(x). _

. Return (Vi € [m],y; € {wl,;, wi; 1) A (Fi € [m],y; # wg/_[;_]m)

It is straightforward to see that the garbling scheme above is correct. For
its security, we present the following theorem. The proof of the theorem simply
follows the approach used in [30]. We refer readers to [30] and [8] for more
information and details.

0 N U AW

Theorem 8. The garbling scheme (Init, Gb, Eval) associated with the dual-key
cipher Enc in the random oracle model above achieves privacy, obliviousness,
and authenticity.

Proof (Sketch). We first prove the privacy of the scheme. Let us define the simu-
lator S as follows. S takes as input (y, 7¢,T'), where y = C¢(x), and goes through
the following steps.
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1. & picks labels w; <G for outgoing wires OW, with indices i € [M + m]. Let
X; < w; for ¢ € [n]. S also sets @j{}” ; — w4 and @Jl\ﬂr’y] +sG for i € [m].

2. S computes v; (ﬁﬂf(i))ti for i € [N]. S picks v} <G for i € [N].

3. S produces {C—Téi}ie[g] ~ Gb({i, (V2i—1,05;_1), (V2i, 0;), (Wnti, Wnti) })-

4. S outputs ({X;}icpn), {GGiticio) {01 Why i bicim])-

We can see that {x;}c[n) in the real execution and {X;};c[,) in the simulation
are randomly generated from G and have identical distributions. Then we could
simply follow the proof in [30] to design a sequence of hybrid games for the
remain proof.

For the garbled gates, starting from the real execution, we could design a
sequence of hybrid games. According to the topological order of gates, in each
subsequent game, a garbled gate generated as in the real execution is replaced by
a garbled gate generated as in the simulation. For two adjacent games, the four
ciphertexts (ignoring their order) are computed from the four values generated
by the random oracle:

H(vgi—lavgivz) H(vgi—lavéiai) H(U%i—lvvgivi) H(U%i—lav%i,i)
in the real execution and
H(Vgi—1,02i,7) H(V2i—1,05;,9) H(0;_y,02i,1) H(Uy_y,0s;,1)

in the simulation. Since the inactive keys, i.e., the incoming-wire labels of the
gate that the circuit evaluator does not obtain (see more in [30]), is derived
from the corresponding randomly generated outgoing-wire labels and a fixed
t;’s, the keys themselves are totally random. Hence, the four ciphertexts are
computationally indistinguishable with respect to the random oracle.

To show that the output mapping in the real execution is computationally
indistinguishable from that in the simulation, we could also construct a sequence
of hybrid games similar to the approach above to prove the result. Therefore,
we can see that the garbling scheme achieves privacy. Following a very similar
approach, we can also prove that the garbling scheme achieves obliviousness.

Finally, we prove that the garbling scheme achieves authenticity. Assume
that there exists a garbled output y; from A that satisfies y; € {wf; ., wji;,;}
and y; # wg/[ﬂﬂ According to the analysis of the privacy for the garbling scheme,
the (inactive) keys to encrypt wjl\/;fl[z] are randomly generated and hidden from
A. Hence, the usage of the random oracle ensures that A can only successfully
derive w}\/l_fl[l] with a negligible probability. 0

Based on the definition of the garbling scheme (Init, Gb, Eval) introduced
above, we can restate Theorem 1 as follows.

Theorem 9. If the garbling scheme (Init, Gb, Eval) with respect to the dual-key
cipher Enc achieves privacy, obliviousness, and authenticity, and the DDH as-
sumption of G holds, the protocol Il,ivepre Securely realizes Factivepre 0 the
presence of malicious Pp and semi-honest Pg in the (.FOT,.FZEk“CEP,fZ'?(H)-hbed
world.
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B Proof of Theorem 1 and Theorem 9

Proof. Firstly, we focus on the case that Pa is malicious. For an adversary A
corrupting Pp in the (fOT,fZEk“CEP,fZ'iH)—hybrid world, we construct a simulator
S that runs A as a subroutine and plays the role of Pg in the ideal world. We
present the simulation procedures for both the initiation and evaluation phases

(denoted by Gamey). The simulator S simulates the initiation phase as follows.

1. 8§ picks G = [g1, ..., gm] as in the protocol. Then S sends G to A.

2. S receives h, @, &', and {d;};cn] from A. Then S receives the EP 7 (and
corresponding random coins) that .4 sends to ]—'ZEk”CEP. S verifies whether 7
and the corresponding random coins are correct. If not, S sends abort4 to
FactiverFE and simulates the termination of Pg. S also receives s and {ti}ie[ N
from A for F2H and verifies them following a similar procedure as for F5"EP.

3. S computes P = [py,...,pn] as in the protocol.

S derives the evaluated circuit C'y from the EP 7y. Then S sends Cf to FactivePFE
and proceeds to simulate the evaluation phase.

1. First, S chooses «; ¢—sZ, for i € [M] and computes w; < g7 for ¢ € [M].
Then S picks w; <G for i = M +1,..., M + m for output-wire labels of
output gates. S also computes v; = (wq,(;))" for i € [N] and picks vj <G
for i € [N].

S computes {GG; }icg) <= Gb({4, (v2i—1,v9;_1), (V2i, V5;)s (Wntis Wnti) Ficlo))-

2. S obtains x4 from A’s input to Fot and sends {w; };¢[n ,) as output of For to
A. S sends z 4 to the ideal functionality Faciivepre and receives the evaluation
result y € {0,1}™ or nothing depending on whether Pj is allowed to receive
the evaluation result.

3. § sends GC = {GG;}icpe) and {wn 44 bicmp) to A.

— If Pp is allowed to know the evaluation result, S also sends the mapping
{(wly 45> Wiris) Yicim) to A, where w?w[l-]s-i = wps4; and wjl\ﬁ_’z[l] +sG. Then
S outputs what A outputs to conclude the simulation.

— If Pa is not allowed to know the evaluation result, S continues to the
next step.

4. S receives from A the output-wire labels {wWar4}icm)- If all elements of
{Wnr1i}iepm) are consistent with those of {was44}iem], S sends continue to
Factivepre. Otherwise, S sends abort 4 to FactivePFE-

Note that the messages that A receives include G, {w;}ic[n), GC, and (possi-
bly) {(wS;4s, whs4i)biepm)- It remains to show that the joint distribution of the
view of A simulated by S and the output of Pg in the ideal world is indistin-
guishable from the joint distribution of the view of A and the output of Pg in
the real world. We define the following games and let the output of each game
be the view of A and output of Pg.

Game; We modify the evaluation phase of Gameg as follows.
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1. S chooses ; g, ;1 s Zg for i € [M]. S computes w) + g;"° and w} «
g; """ for i € [M]. Then S picks w), w} <G fori = M+1,...,M+m for
output-wire labels of output gates as in the protocol. S also computes
v (w?rf(i))t'i and v} < (w}rf(i))t'i for i € [N].

S produces {GGi}_ie[e}  Gb({1, (v3;_1,v3;-1), (v3;,v3), (Wi i, Wi y3) Yielo))-

2. § returns {wa[Z]}ie[nA] as the output of For to A. The rest of the
procedure in this step is the same as Gamey.

3. S sends GC = {GG;}icjg) and {w? P!} icpy to A.

— If Py is allowed to know the evaluation result, S also sends the map-
ping {(wh, ;s wis ;) biepm) to A, and then S outputs what A outputs
to conclude the simulation.

— If Pp is not allowed to know the evaluation result, S continues to the
next step. _

4. S receives from A the output-wire labels {@Was 4 }ie[m]. Now {wﬁ/[[ii}ie[m]
is used for the consistency check. The rest of the procedure in this step
is the same as Gamey.

The security (privacy or obliviousness depending on whether Pa obtains the
evaluation result) of the garbling scheme presented in Appendix A guarantees
that the output of Game; is computationally indistinguishable from the
output of Gamey.

Game; We now modify Step 4 of the evaluation phase for the consistency check.

4. S receives from A the output-wire labels {was 1 }ic[m]- S checks whether
Wi € {(why 4, wiy,)} for all i € [m] as in the protocol. The rest of
the procedure in this step is the same as the previous game.

Due to the security (authenticity) of the garbling scheme presented in Ap-
pendix A, A can only derive w}y\/[lli ;, from GC. Hence, A cannot deduce infor-

mation about w}w_i’z[l], and the output of Game, is computationally indis-

tinguishable from the output of Gamej.
Games We modify the first step in the evaluation phase of the previous game
as follows.
1. 8 chooses ag <sZ, and «; 1 ¢sZ, for i € [M]. S computes w) + g
and w} « g;"" for i € [M]. Then S picks w?,w} G for i = M +
1,..., M + m for output-wire labels of output gates as in the protocol.
The rest of the procedure in this step is the same as the previous game.
The difference between Game, and Game;s is that S fixes one aq instead of
generating a set of a;¢’s. In this setting, a subset of elements in {w} };e
that received or derived by A are involved. Let us denote the index set for this
subset by S, and thus the subset in Game, by W = {19}ies and in Games
by W = {w’ ?}ie& The difference between W and W’ is that the elements
in W is of the form @Y = g;*" for random ag,; while the elements in W’ is
of the form w’ ? = ¢;"° for random but fixed ap. According to Lemma 1, W is
computationally indistinguishable from W’ , and thus the output of Games
is computationally indistinguishable from the output of Games;.
Game, The first step in the evaluation phase of the previous game is modified
in the following.
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1. 8 chooses ag, aq < Zg for i € [M]. S computes w) + ¢ and w; + g5*
for i € [M]. Then S picks w?, w} <G for i = M +1,..., M + m for
output-wire labels of output gates as in the protocol. The rest of the
procedure in this step is the same as the previous game.

Following the same argument as Gamegs, the output of Game, is compu-
tationally indistinguishable from the output of Games.

Game; We continue to modify the first step in the evaluation phase of the
previous game. S now computes v? and v} via v) + (p;)* and v} + (p;)™
for i € [N].

Since we have p; = gfr"’(i) in the initiation phase, we know vf = (p;)* =
tiay

(i) (wfrf(i))ti for b € {0, 1}. Therefore, the output of Gamesy is perfectly
indistinguishable from the output of Game;,.

Note that Games corresponds to a real execution of the protocol, and the out-
put in Games is computationally indistinguishable from the output of Gamey.
Thus, we complete the proof for malicious Pa.

Now we focus on the case that Pg is semi-honest. For an adversary A cor-
rupting Pg in the real world, we construct a simulator S that simulates Pg’s
view. Now we present the simulation procedures for the initiation phase and
evaluation phase (denoted by Gamey). The simulator S simulates the initiation
phase as follows.

1. S picks g; <G to generate the list G as in the protocol.

2. S picks h <—sG. Then S generates ¢; +—s G2, ¢; s G?, and d; <G for i € [N].
S generates accept’s as the outputs of A from ]-"ZEk“CEP and ]-"ZI?(H.

3. S computes the list P as in the protocol.

Then in the evaluation phase, S follows the simulation procedure below.

1. 8 randomly picks g, a1, and derives {w, w} };c(ar4m) as in the protocol. S
then generates garbled gates {GG;};c[g) as in the protocol.

2. S simulates the executions of Fo1 as specified in the protocol.

S follows the instructions of Pg in this step as in the protocol.

4. If Pg is allowed to know the evaluation result y € {0,1}™, S sets {wg/[jii}ie[m]
as the messages sent from Paj.

@

It remains to show that the distribution of the view of A simulated by S in the
ideal world is indistinguishable from the distribution of the view of A in the real
world. We first prove the following lemma.

Lemma 2. If the ElGamal encryption scheme with pk = (G, q, g, h) is IND-CPA
secure for security parameter k under the DDH assumption for G, given g <G,
(pk, g, co, b, do) is computationally indistinguishable from (pk, g, c1, ¢}, d1), where
co +sG?, ¢ +sG?, dy <G, c1 < (g7, gh"), ¢} + (g7, 9'h™) and dy + §* for
r<=slq and t <—sZ,.

Proof. We consider a hybrid distribution (pk, §, ¢z, ¢4, d2) generated as follows:

§e3G; tesZy G e () (SN dae gt
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It is straightforward to see that (pk, g, ca,ch, d2) and (pk, g, co, (), do) are com-
putationally indistinguishable according to Lemma 1. We can also see that
(pk, g, ce, ch,d2) and (pk, g, c1, ¢}, dq) are computationally indistinguishable. For
the IND-CPA experiment of the ElGamal encryption scheme, we pick §+sG
and t <—sZ,. Then we send § and a random element s € G to the encryption
oracle. We receive a ciphertext ¢ from the oracle. Let ¢/ < ((c¢(9), (¢)?) and
a = (pk,g,c,c,g). If ¢ encrypts g, the distribution of a is identical to that
of (pk,g,c1,c},d1). If ¢ encrypts s, the distribution of a is identical to that of
(pk, g, ca, ch, ds). If (pk, g, ¢2, ¢h, d2) and (pk, g, c1, ¢}, d1) are not computationally
indistinguishable, the IND-CPA security of the ElGamal encryption scheme is
broken. Therefore, we complete our proof. |

For convenience of presentation, let the list D = [dy,...,dy]. We define the
following game and let the output of the game be the view of A.

Game; The list ¢ is generated as in the protocol according to 7y, where 7y is
the EP derived from Cj. Then ¢’ and d; are computed as in the protocol.
According to Lemma 2, the output of Game; is computationally indistin-
guishable from the output of Gamey. More concretely, we define a sequence
of hybrids. In the kth hybrid, the first k elements of @, &', and D are com-
puted as in Game;, while other elements of these two lists are generated
as in Gamey. Then we can use the hybrid tuple from the experiment of
Lemma 2 in the place of ¢y, ¢}, and di. Now we can easily simulate a hybrid
which may be either the (k — 1)th hybrid or the kth hybrid. Therefore, it is
straightforward to see that the output of Game; and the output of Gamey
should be computationally indistinguishable.

It is easy to see that Game; is corresponding to the real execution, and thus the
distribution of the view of A simulated by S in the ideal world is indistinguishable
from the distribution of the view of A in the real world. The proof is thus
completed. a

C Proof of Theorem 2

Proof. We prove the scenario where one initiation phase and two evaluation
phases are executed. The case that more than two evaluation phases are involved
can be proved following a similar flow. Here Pp in the ideal world submits the
circuit C to the ideal functionality F,ctivepre, and then both parties can submit
their private inputs to Factivepre and get the output (the evaluation results or
nothing) twice.

The simulator S follows the strategy used in the proof of Theorem 1 to
simulate the view of the adversary A controlling Pa in the initiation phase and
two evaluation phases sequentially. We use a sequence of games as in the proof
of Theorem 1 to show that the view of A and the output of Pg in the ideal
world is computationally indistinguishable from those in the real world. We can
follow the same argument as in the proof of Theorem 1 except for the following
difference.
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The difference between this proof and the proof of Theorem 1 are the com-
parisons between Game; and Games and between Games and Game,. Let us
focus on the comparison between Games and Games, and the same approach
can be used for the comparison between Games and Game,. Different from the
proof of Theorem 1, elements of {wg,i}ie[M} in the two executions, i.e., b= 1,2,
are derived from the same list G = [g1,...,gm], and thus we need to consider
their joint distributions. More concretely, there exists a set .S, such that in the
two executions 1 and 2, elements of {w{;}ics and {w);}ies are both received
or derived by A. We denote the set of {w{;}ics and {wd,;}ics in Game, by
Wy = {@};}ies and Wy = {9 ;}ies, and in Games by W = {U}’?J‘}ies and
W = {1[1’;1-},-65. The difference between (Wi, Ws) and (W/{,W}) is that ele-
ments in (W, W) are of the form ({g;"
and s ;0’s, while elements in (W], W3) are of the form ({gi"°}ics, {g7*° }ies)

for random but fixed aq and ag . Let m « |S|, §; < g; for i € S, B+ a0,
ﬂ/ — (20, and ﬂ7 <~ Q14,05 ﬂm+i <~ (240 for ¢ € [m] Our goal now is to

B0%ies, {950 Yies) for random oy ;0s

prove that ({g: }ieim, {ng iem)s {QZB "' }iemm)) is computationally indistinguish-
able from ({gi }ie[m), {gf}ie[m], {gf'}ie[m]). We first prove the following lemma.

Lemma 3. Under the DDH assumption for the cyclic group G of prime order
q € ©(27), for any positive integer m = poly (k), given elements g1, ..., Jm <3G,

({94 }iepm) {gfi}ie[m], {gf"”“}ie[m]), where Bi,. .., Pam sZq, is computation-
ally indistinguishable from ({gi}icqm), {9} Yieim) {37 Yicim), where B, B’ s Z,.
Proof. We define the following games.

Gamey This game is for the distribution of ({g: }ie[m] {g;@ Yieim)» {g{’* Fieim))s

where §1,...,0m <G and Bi,..., Bom 5Z,.

Game; In this game, we let 3 <—sZ,. The distribution of in the previous game

is modified to be ({gi}icim), {gf}ie[m], {gf’"L“}ie[m]). We now show that the
distribution of Game; and Gameg is computationally indistinguishable by
constructing a distinguisher D attacking the corresponding experiment of
Lemma 1 using an adversary A that can distinguish the distribution in
Game; and the distribution in Game.
The distinguisher D runs A internally. When receiving ({g; }ic[m]» {Pi }icim))s
D picks v; s Z, and computes h} = g;* for i € [m]. Then D sends to A the
message ({gi }iem]» 1P tieim), {7i biepm)) and outputs what A outputs. We
note that if {h;};c(m) is of the form {g;"* };c[n), the message sent to A is iden-
tical to the distribution in Gamey, otherwise if it is of the form {g*}ic(n),
the message sent to A is identical to the distribution in Game;. If A can
distinguish Gamey and Game; with a non-negligible probability, the distin-
guisher D can successfully attack the corresponding experiment of Lemma 1,
which contradict to the DDH assumption. Hence, the distribution in Game;
is computationally indistinguishable from the distribution in Gamey.

Game; In this game, we let 8’ <—sZ,;. We modify the distribution in the previ-

ous game t0 be (G }ic(un)s {97 icim)s {97 Viepm))- Using the same argument,
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we can easily prove that the distribution in Game, is computationally in-
distinguishable from the distribution in Game;.

Therefore, the distribution in Games is computationally indistinguishable from
the distribution in Gamey, and the proof is completed. |

From the lemma, we have that ({gi}ie[m},{gfi}ie[m],{gf’"”}ie[m]) is compu-

tationally indistinguishable from ({g; }ie[m] {gf Yieim)» {gf l}ie[m})- For elements
not in the set S, we can simply follow the same argument in the proof of The-
orem 1. Thus, we prove that the output of Gamesy and the output of Games
(and also the output of Games and the output of Game,) are computationally
indistinguishable.

Then following the same procedure as in the proof of Theorem 1, we complete
the proof for Pa.

Now we focus on the case that Pg is semi-honest. For an adversary A cor-
rupting Pg in the real world, we construct a simulator S that simulates Pg’s
view. Now we present the simulation procedures for the initiation phase and
evaluation phase (denoted by Gamey). The simulator S simulates the initiation
phase as follows.

1. & picks g; <G to generate the list G as in the protocol.

2. S picks h <sG and generates ¢; <—sG?, c; «+sG?, and d; <G for i € [N].
Then S generates accept’s as the outputs from .FZEk"CEP and .FZ'?(H.

3. § computes the list P as in the protocol.

Then in the two evaluation phases, S follows the simulation procedure below for
both of them.

1. 8 randomly picks g, a1, and derives {w, w} };car4m) as in the protocol. S
then generates garbled gates {GG;};c[g) as in the protocol.

2. S simulates the executions of Fot as specified in the protocol.

S follows the instructions of Pg in this step as in the protocol.

@

4. If Pg is allowed to know the evaluation result y € {0,1}™, S sets {wgﬂ_i}ie[m]
as the messages sent from Pj.

It remains to show that the distribution of the view of A simulated by S in the
ideal world is indistinguishable from the distribution of the view of A in the
real world. We can follow the same procedure in the proof of Theorem 1 for the
initiation phase. For the two evaluation phases, it is easy to see that they are
independent, and thus we follow again the proof of Theorem 1 for the evaluation
phase. The proof is thus completed. a

D Proof of Theorem 3

Proof. We first focus on the completeness of the protocol. Note that for i € [IV],
€; is of the form that exact one entry is 1 and other entries are all 0 if and only
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if €,¢; = & and 17¢€;, = 1. Then for s Zq, we have

N N
E xle?@?-=§ €.
=1 i=1

—

Since ci; = 2'€; and d= va ci;, we can rewrite the above equation as Zi\il d;€;—
d = 0. Moreover, given y for the bilinear mapping *, we have

ZCZ*gZ_T*J:

i=1

For w <—sZg, we have

N N
E WwiiTe, = E w'.
i=1

=1

Let 2 = Zil w' and € = va L w'é. We can also rewrite the above equation
as Zfil w'iTe = TT(Z L wi@) = IT¢ = 2. Now it is easy to see that the
protocol is complete when sub-protocols IT4¢° and II5"™ are complete.

For the honest-verifier zero-knowledge property, we construct a simulator
S as follows. S picks the challenges x,y <—sZq, computes cg for i € [N], ¢z
c_7, C, and {2 as in the protocol, and sets i = I. Then S runs the honest-
verifier zero-knowledge simulators for both of the underlying protocols szkem and
1T sum - Since the underlying protocols 1145 Zero and I3 Sum are both honest-verifier
Z€ero- knowledge, it is obvious that this snnulatlon is mdistinguishable from the
transcript of real executions.

Finally, we focus on the soundness of the protocol. It remains to prove that
the protocol has witness-extended emulation. The emulator £ runs the protocol
and if the transcript is accepted, £ has to extract a witness.

& runs the witness-extended emulator for H Zero t get the extracted witness
({&;, 4, d;, rd Yieln d T T), where T satisfies g7 va 1 gz_1 We claim that we

have d; = 2'¢; and ry =a' ‘r;. Otherwise, we have two opening for c- 7,» Which
allows us to derive a nontrivial discrete logarithm relation, and this contradicts
to the discrete logarithm relation assumption. Using the same argument, we have
5 N N | -

=3 di,ry=>,_ir;,and T = —1. Hence, we have

N

N N

Z:vié}*é;-— T*(iné}) =0 < Zmi(é’i*é;-— f*é’i) =0

i=1 i=1 i=1
N

. M . M
<~ Zl‘l(z eijeijyj - Zeikyk) =
i=1 =1 k=1

N

M
= > (D v (eseiy —ey) =0,
i=1  j=1
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Since z,y s Zq, with an overwhelming probability, we have e;je;; = e;; for
i € [N],j €[M], ie., €¢€; =¢; forie [N].

& also runs the witness-extended emulator for ITS'™ to get (€,7z). Similarly,
we can claim that € = Ziv=1 w'e;. Thus, we have

N N N
Te=0 — F(Zwié}) = Zwi = Zwi(fré;—) = Zwi.
i=1 i=1 i=1 ‘

Since w <—sZ4, with an overwhelming probability, we have 1T, =1foric [N].

From {€;};cn], we can derive the EP 7. Therefore, we obtain the extracted
witness {r;};c(n) and 7 for the protocol, and the protocol has witness-extended
emulation. a

E Proof of Theorem 4

Proof. The completeness of the protocol is clear. For the round that £ = 1, the
following equations are satisfied:

gzluzz h?3 = gwﬁ-ae $2+Oépeh$3+0t7”€
_ (g uZL’QhZL’g)( Qe apehare)
=aicy,
’YZ uZ4 _ ,ymlJrae x4+ape
= (771" (77 )
= asz (c/é’)a )
and
923 — ga:g-i-arg — gwggarg _ ad(c(O))a
For the round that £ # 1, the computed ¢z, €, ¢, pe, and rz satisfy the following
relation:
(g/)é”upa/ Bre — (g goy(e€rtaT er), (petaprta pr) pre
)(a GR)U(P€+Q2PL+04_2PR)}LT€
L)(g*% eRg»Ie%R)u(pa+a2pL+a’2pR)hra

¢ ~a’ e —'%7251? (pg+a2pL+a72pR)h7‘€

= (§Tu ) (G u ) (g e )
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Meanwhile, ¢, €, and ¥ satisfy the following equation:

g(ﬁ’)Taquy — g(afl?7L+G§R)T(@€L+a*1€R)u(pé+a2pi+a*2pk)

T - 2 ST o —2 T = T - ’ 2 7 —2 /7
— A4YLEL O YREL 4, “YLER JYRER, (Peta”pp+a “p
=g L g R g L g R 'LL( e L R

g e a’gRer

=gY g g
= (g7 Fure) (g TRfLy L) (g TECRy T PR)

= cu(v}) (vp)®

=C

a"?GLeR, (Peta’pl+a”?ph)

-2

~

E/.

Therefore, an honest prover P following the protocol could generate all the mes-
sages that pass the verification conducted by the verifier V.

For the honest-verifier zero-knowledge property, we construct a simulator S.
S firstly pick u +sG.

When ¢ = 1, the simulator S picks a +—s Z, as the challenge. S also generates
21,22, 23,24 <3 Lq. Then S computes a1 < g7 u®h*c;”, ag < v u* ()™,
and a3 + ¢*3 (C’(O))*O‘. It is obvious that the generated (a1, as, as, «, 21, 22, 23, 24)
is perfectly indistinguishable from the distribution of the real execution.

For the cases that ¢ # 1, the simulator S firstly picks a <—sZ, as the chal-
lenge. S then chooses vy, vg, v}, v <G, and computes ce, ¢, §', ¥ as in the
real execution. We note that since vr,vg, v}, v can be regarded as Pedersen
commitments that are perfectly hiding, the generated transcript is perfectly in-
distinguishable from the transcripts of real executions.

Hence, the simulator S produces a simulated proof that is indistinguishable
from valid proofs generated by an honest prover interacting with an honest
verifier.

Finally, we focus on the soundness of the protocol. It remains to prove that
the protocol has witness-extended emulation. The emulator £ runs the protocol,
and if the transcript is accepted, £ has to extract a witness. We will use an
inductive argument to show that in each step, £ can efficiently extract a witness.
& first forks the execution with challenges w and «’, such that u # u’. We then
focus on the case with u.

When ¢ = 1, after receiving aj, ag, and as, the emulator £ obtains two
accepting transcripts with two challenge o and o’ such that o’ # « by rewinding
the prover. From the two transcripts, £ derives two pairs (z1, 29, 23, 24) and
(21,25, 2%, z}), such that

921u22h23 = alcg ) ’yzluZ4 = G’Q(C:?)a ) gZS = a3(c(0))a )

and

’

A o’ 22 I\« z! 0)\o'
Jruzh® = aicg , YUt = ag(ch)” g3:a3(C’( )) .

Therefore, we can derive
’ ’
23—Z3 __ O\a—a
g=7% = (C7) .

Let rz = (23 — 24)/(¢/ — @), and then we have

g7e = glma—)/(e' =) _ (0)
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Hence, we extract the discrete logarithm of C'(©). Similarly, the emulator can
compute

!

e (- —a), pee(zm—B)/( —a), phe (z—)/(@ —a),

These extracted values are the corresponding discrete logarithms of ¢z, ¢, and
Cc©,

For the case that £ # 1, £ runs the prover and receives vy, vg, v;, and v/.
Then &£ obtains three accepting transcripts with challenge o, such that o; # o
for 1 < i < j < 3 by rewinding the prover. From the three transcripts, £ derives
pairs (€}, par, pir) for i = 1,2, 3, such that

a? 0‘1’_2 —ait anel per re
cavrivg = (dp, gR’) uh (1)

clg(vlL)af (v;{)a,ﬁ — g(aflﬁL+aiﬁR)T€§uPéi (2)

We can easily find vy, 19, v3, such that

3 3 3
E ViOZ?:O, E v,=1, E I/Z-a;2:0
i=1 i=1 i=1

This follows from the fact that the matrix below is full rank:

2 -2
1 og Qaq ,
1 a3 o

1 o a3_2

Then we take the linear combination (to the power) of the three equalities (for

i=1,...,3) in (1) with vy, 15,3 as the coefficients and obtain
3 a2
| (G
i=1
> —1 Pd 3 3
= (H(@‘z’ ﬁgi)e‘)yi)uz’i=1 viPe] h’"ézizl v;
i=1

3
(5—7*21 1 Vo P gZL 1 Vi€ )UZ@:1 ViPa;hra.

We can compute

3

3 3
Z gz GZn pg(—zw 5§€Zq,

i=1

such that cz = §°uP* h™#. Similarly, we can repeat this process for (2) and obtain

3 —2
o= H vR)™ )"

3
— gzizl vi(a; Y +aigr)T Pluzq‘,:1 Vipi?i

_gyL(Z@ 1”10‘714)"‘ R(21 1”7‘16) Zz 1V’Lp€ .
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3

1> = n
€Y i Viy€)) € Zy and can compute

We here derive the same € = (23:1 Vo
P = Zle vipy, € Zg, such that ¢ = g7 €uPe. Thus, the emulator € extracts
the witness €, pg, and p for this round.

Following this procedure, the emulator £ can go from the leaves of the tran-
script tree to the root of that tree and finally extract the witness of original
relation. Note that the extracted witness for the first statement should satisfy
that §T€ = 2 and pl = 0. If it is not, since we have

P 2 _  gTe pb
ce=9g" =g “ue,

we can easily compute a nontrivial discrete logarithm relation, and this contra-
dicts to the discrete logarithm relation assumption. Similarly, we should have
pe =0 and ce = §°h"=. If pz # 0, let us consider the other forking flow with w'.
Denote the corresponding extracted witness in this flow by (€, 7z, pz). Here we
have identical 7z because rz is fixed for C©), Since u # u' and pg # 0, we have
(€, pz) # (€, pz). Hence, we have

co = g‘@upghw — f(u/)ﬁahrf7

from which we can easily compute a nontrivial discrete logarithm relation, and
this contradicts to the discrete logarithm relation assumption. Thus, the emula-
tor £ successfully extracts the witness.

During the extraction, € uses 4 x 3°2(M) transcripts, and thus runs in ex-
pected polynomial time in M.% Therefore, the protocol has witness-extended
emulation. O

F Proof of Theorem 5

Proof. For completeness, if the statement is valid, the equation below holds:

dg+1: E ﬁl*ﬁj: E ﬁl*ﬁlz
0<i<e,1<j<t+1 =1
J=u

Hence, cq,4+1 = g%+ h"*+1 =1 given rq, , = 0. Meanwhile, we have

{41

4 20
i =()_atd;)« (Y« ) =) ady.
i=0 j=1 k=0

Hence, the perfect completeness of the protocol directly follows from the verifi-
cation conducted by V.

For the honest-verifier zero-knowledge property, we construct a simulator S
as follows.

® More information for the analysis of the expected running time could be found in [10]
or [41, Section 13.1.3].
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For the challenge x <-sZy, S picks Ta,75,Tdg, > Tde> Tdesos -+ -+ Tday <824
and @, 7 s Z)'. Then S sets r4,,, = 0 and computes

£ L
(0) g (Cg))fﬂ , (1) Gehra H( (1) , b Zm Tdy »
=1 1=1
¢ 13 ¢ L4+1—j
0 0 —J 1 5 rg 1\ —z —3J o
5223—1 H ( ) ) 07(7@1_1 g h H(CE‘;‘])) y Cdy < G h"o ’
j=1 j=1

and cq, < h"% for ¢ € {1,...,20}\{¢ + 1}. The simulated transcript is

(01(1(1)7 021())7 C1(LO4)+1 5 T(ile)+1 s {Cd¢ }¢ 0,...,2¢, T, ﬁ, 17, T, T3, t) .
Note that this simulated transcript is perfectly indistinguishable from the tran-
scripts of real executions. This is due to the fact that elements of {cq, }¢=1.....2¢
are all perfectly hiding commitments, and u, v, rz, 3, t are uniformly random
both in the real protocol and the simulation. In addition, 0(0)7 cq(jlo), 01(1(21 , c%ll , Cd
are all uniquely determined by the verification equations. Hence, the honest-
verifier zero-knowledge property follows.

Finally, we focus on the soundness of the protocol. It remains to prove that
the protocol has witness-extended emulation. The emulator £ runs the protocol,
and if the transcript is accepted, £ has to extract a witness. After receiving
Citys Cigsy» a0d {Cq, eqo,... 200\ {¢+1}, € obtains 2¢ 4+ 1 accepting transcripts with
different challenges {x;};cj2¢+1] by rewinding the prover. On average £ will be
making 2¢ + 1 arguments, and thus it runs in expected polynomial time. Now

we have for k € [2¢ + 1]

L
i (k) i itk
(@) =g’ LDy = g we g, =1,

—.

1=0 =0
ol 41—j (k) el £+1 (k) L 7(k)
(0)\zbtt=d U (1)\gttt=d r fk _ PR g gk
(Cﬁj)k =g° , H(ng)k h d<f>_g h
j=1 j=1 ¢ 0

We can easily solve the discrete logarithms {rz, };=o,... ¢ via a system of equations
from arbitrary £ + 1 accepting transcripts, such as:
(1)

0 ¢
Tgy®y + - +7q,2 =Ty

0 4 (e+1)
TagTop1 t T TaTopy =Ty

when {2 }repeq1) and {rék>}ke[g+1] are known. We can always solve this system

of equations since the corresponding Vandermonde matrix of x;’s has full rank.
Then given extracted {rg, }i=o,... ¢, We can extract {u; };=o,... ¢ from the following
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system of equations via the same approach.

0~ 0= —(1
IE1U0+"'+I1U[:’LL<>

& grlo + -+ wpyy iy = T
Similarly, we can extract {v}};j=1,.. 41 and {rg, };=1,.. ¢+1. Meanwhile, we can
extract {dy}g=o,....2¢ and {rq, }g—o,...2¢ from the systems of equations

doxl + -+ + daex}’ = Dy

0 20
doTapyq + -+ d2ersp ) = Dagyr
and

20 1
Tdox(l) +o AT, = t< )

0 20 20+1
TdoTops1 4+ -+ Ty Topq1 = t( +1)
where Dy « @) % 7%} We claim that the extracted deyq and rq,,, satisfying
dey1 =0 and 74, , = 0. Otherwise, we have

1 — gd£+1h’r‘1{+1 — g()I/LO7

from which we can easily compute a nontrivial discrete logarithm relation, and
this contradicts to the discrete logarithm relation assumption. Thus, the emu-
lator £ successfully extracts the witness such that Zle u; * U; = 0, and the
protocol has witness-extended emulation. a

G Proof of Theorem 6

Proof. We first focus on the case that P4 is malicious. The analysis for malicious
Pa is very similar to the proof of Theorem 1. For an adversary A corrupting Pa
in the real world, we construct a simulator S holding (vk, sigk) that runs A as a
subroutine and plays the role of Pg in the ideal world. S first picks the common
reference string g; <—s G for i € [N], where all g;’s are different. Now we present
the simulation procedure for the initiation phase and evaluation phase (denoted
by Gameg). The simulator simulates the initiation phase as follows.

1. S receives h, @, &', and {d;};c[n) from A. Then S receives the EP 7y (and
corresponding random coins) that A sends to F5"EP. S verifies whether 7¢
and the corresponding random coins are correct. If not, S sends abort4 to
Factivepre and simulates the termination of Pg. S also receives s and {t; };e[n]

from A for F2H and verifies them following a similar procedure as for F5"EP.
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2. S computes P = [p1,...,pn] as in the protocol.

S can derive the evaluated circuit Cy from the EP 7f. Then S sends Cf to
Factiverre and proceeds to simulate the evaluation phase.

0. Upon receiving {cseedf }iepy from A, S, as in the protocol, picks uniform
k-bit strings {seedf, witness; } ey Then S uses the simulator Sot for IToTt
to extract A’s inputs {b;};cp\). Let sets Jeeed = {j : bj = 0} and Juitness =
{j : b; = 1}. Let Sot return seed;3 for j € Jseed and witness; for j € Jyitness
to A.

1. For j € Jseed, S acts as an honest Pg and follows the protocol to run this
step. For j € Juitness, S does the following.

— If | Jwitness| = 1, we let j be the unique index in Jyitness- S chooses a; <—s Z,
for i € [M]. S computes w; < g;* for ¢ € [M]. Then S picks w; G
fori=M+1,..., M+ m for output-wire labels of output gates. S also
computes v; < (wy,(;))" and picks vj <G for i € [N].

S computes {GG; }iepg) = Gb({7, (vai—1,v%;_1), (V2i,vY;), (Wntis Wnti) biefo))-
Let GC; = {GGi}ie[g].

— If | Jwitness| > 2, S acts as an honest Pa but uses true randomness in this
step.

2. For j € Jseeq, S acts as an honest Pg and follows the protocol to run this
step. For j € Juitness, S does the following.

— If |Jyitness] = 1, S uses the simulator Sot for IloT to extract A’s input
za. Sot returns {w;}iep,] to A. S sends x4 to the ideal functional-
ity FeovertpFE, and receives the evaluation result y € {0,1}™ or nothing
depending on the scenario.

— If | Jwitness| > 2, S acts as an honest Pa but uses true randomness in this
step.

3. For j € Jseed, S acts as an honest Pg and follows the protocol to run this
step. For j € Juitness, S does the following.

— If | Jwitness) = 1, S computes Cf,?,o + Com(wy ,+i) and c%?’l + Com(0)
for i € [ng].

If y is known, we let th denotes the hash value of the output-wire

labels {(wl;,;, wisy)}iepm), Where wﬁ/[[zl_l = wp4i and wjl\/[_f_’l[z] +—sG.

Otherwise, we let h? denotes the hash value of the output-wire labels
{(war4s, w/I\/I+i)}i€[m]a where w§\4+i +sG.
S then computes ¢; — Com(GC;, {Ci?,b}iE[TLB],bE{O,l}’ hJQ), where two el-
ements in each pair (Cf,?,o» cf?l) are permuted in random order.
— If |Juitness] > 2, S acts as an honest Pg except for computing c; using
true randomness in this step.
Then S computes signature ;s as in the protocol, and sends {c;, 7} ;e
to A.
4. Tf | Jwitness| # 1, S aborts. Otherwise, S receives (7, {seedf}j#, witness;) from
A. S verifies that these values are all consistent with those that have been
sent and aborts if not.
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5. S sends GCj, {wWn .44 }icmp]s {Cz?,b}ie[nB],be{o,l} (in the same order as be-
fore), and h9, together with decom® and {decomcjla‘%0 Yiemng]s to A
— If Py is allowed to know the evaluation result, S also sends the mapping
{(wly 45> wisii) Yiepm) to A. Then S outputs what A outputs to conclude
the simulation.
— If Pp is not allowed to know the evaluation result, S continues to the

next step.
6. S receives from A the output-wire labels {wWary;}icm)- If all elements of

{Waryi}iepm) are consistent with those of {waryi}icm), S sends continue to
FeovertPFE- Otherwise, S sends abort 4 to FeovertPFE-

It remains to show that the joint distribution of the view of A simulated by
S and the output of Pg in the ideal world is indistinguishable from the joint
distribution of the view of A and the output of Pg in the real world. We define
the following games and let the output of each game be the view of A and output
of PB.

Game; We modify the evaluation phase of the previous game as follows.

0. Upon receiving {csee";l }iep from A, k-bit strings {seedf,witnessj bien
are picked as in the protocol. Then S uses the simulator Sot for IIot to
extract A’s inputs {b;};e[x. Let sets Jeed = {7 : bj = 0} and Juitness =
{j : bj = 1}. Let Sor return seedf for j € Jseed and witness; for j €
Jwitness to A.

1. For j € Jseed, S acts as an honest Pg and follows the protocol to run this
step. For j € Juitness, S does the following.

— If |Jwitness) = 1, we let j be the unique index in Jyitness- S chooses
g, <sZ, for i € [M]. S computes wi < ¢ and w;} < g{"* for
i € [M]. Then S picks w,w} <G for i = M +1,..., M + m for
output-wire labels of output gates. S also computes v? < (p;)* and
v}« (p;)* for i € [N].
S computes {GG; }iejo) < Gb({, (v3;_1,v3;_1), (v3;, v3,), (W) i Wy ) Yiepo))-
Let GCj = {GGi}ie[0]~
— If | Jwitness| = 2, S acts as an honest Pa but uses true randomness in
this step.
2. For j € Jseed, S acts as an honest Pg and follows the protocol to run this
step. For j € Jyitness, S does the following.
— If |Jwitness]| = 1, S uses the simulator Sot for Ilot to extract A’s
input 4. SoT returns {wa[Z]}ie[nA] to A.
— If |Jwitness| > 2, S acts as an honest Pa but uses true randomness in

this step.
3. For j € Jeeed, S acts as an honest Pg and follows the protocol to run this

step. For j € Juitness, S does the following.

— If [Juitness] = 1, S computes ¢;%, « Com(wy, ;) and ¢;%, <«
Com(w}, ;) for i € [np]. Let b denotes the hash value of the

output-wire labels {(wf,,;, wi;4:) }iem)-
S computes ¢; < Com(GC;, {Cf?b}ie[ns],be{o,l}v h?)7 where two ele-

ments in each pair (cf?o, cfj‘?l) are permuted in random order.
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— If | Jwitness| > 2, S acts as an honest Pg except for computing c; using
true randomness in this step.
Then S generates signatures o;’s as in the protocol, and sends {c;, 7 } e[
to A.
4. If | Jyitness| # 1, S aborts. Otherwise, S receives (7, {seedf}#j,witnessj)
from A. S verifies that these messages are all consistent with those that
have been sent and aborts if not.

5. S sends GCj, {wif[ﬂi}ie[w], {ci% icmplbe(o1y (in the same order as

before), and h?, together with decom® and {decomciv?za[“}ie[nB], to A.
— If Pa is allowed to know the evaluation result, S also sends the map-
ping {(w9\4+ivw]1bf+i)}i€[7rL] to A.
— If Pa is not allowed to know the evaluation result, S continues to the
next step.

6. S receives from A the output-wire labels {@Was4}iepm). Then S ver-
ify whether all elements of {wWasyi}icim) are consistent with those of
{wl; i wis i }iepm) as in the protocol.

Based on the analysis in the proof of Theorem 1, the security of the hash

function, and the hiding property of the commitment scheme, we can easily

see that the output of Game; is computationally indistinguishable from the
output of Gamey.

Game, In this game, IIoT in Step 2 of the evaluation phase is executed honestly
when |Jyitness)] = 1. It follows from the security of ITor that the output of
Game; is computationally indistinguishable from the output of Game;.

Games Steps 1-3 of the previous game is modified, such that random coins
for j € Juyitness are derived from seed;»B instead of using true randomness. It
is obvious that the output of Games is computationally indistinguishable
from the output of Games,.

Game,; We modify the previous game as follows. In Step 4, S continues to run
the protocol as an honest Pg even when |witness| # 1. Due to the security
of IloT, it is easy to see that the output of Game, is computationally
indistinguishable from the output of Games.

Game; In the game, the executions of IloT in Step 0 are executed honestly.
According to the security of IloT, the output of Games is computationally
indistinguishable from the output of Game;,.

Note that Games corresponds to the real execution of the protocol where Pg
holds input z g and interacts with P, while Gameg corresponds to the simulated
execution in the ideal world. Hence, we complete the proof for malicious Pa.

We now focus on the case that Pg is malicious (in a covert sense). For an
adversary A corrupting Pg in the real world, we construct a simulator S holding
vk that runs A as a subroutine and plays the role of P in the ideal world. S first
computes the common reference string g; = g**, where w; <=2, for i € [N].
It is easy to see that this common reference string has an identical distribution
to that in the real world. Now we present the simulation procedures for the
initiation phase and evaluation phase (denoted by Gameg). The simulator S
simulates the initiation phase as follows.
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1. S picks h<sG. Then S generates ¢; +sG?, cg(o) +—sG, cg(l) « ¢ and

d; + g%, where pi s Zy and pf <—sZ,, for i € [N]. Let p; < p} — p} mod q.
Note that now we have p; = g°i. Then & acts as F5"EP and FRH to convince
A

2. S does nothing.

Then in the evaluation phase, S follows the simulation procedure below.
0. S chooses uniform k-bit strings {seed;‘}jep\], computes ¢4} ’s as in the

seedf } )
J

protocol, and sends {c e[y to A. For all A execution of IloT, S interacts

with A using the input 0 with randomness derived from seedf, and retrieves
{seedf }iep at the end. Let us denote the transcript of the jth execution by
trans;.

1. & does nothing.

2. S uses as input 04 for all execution of IToT with randomness derived from
seedf. Let h?T denote the hash value of the transcript for the jth execution
of HOT~

3. S receives {cj,0;} ey from A

4. If any signature o; are invalid, S sends abortp to Feovertrre and simulates
the termination of Pa. For j € [A], S simulates Pg’s execution in Steps 1, 2,
and 3a, and particularly computes H?T and ¢;. Let J be the set of indices,
such that (H?T,éj) # (h9T, ¢)).

— If |J| = 0, S sets caught = nothing and continues below.

— If |J| = 1, S sends cheat to Feovertpre. If corrupted is received, S sets
caught = true. Otherwise if (undetected, Cy, z 4) is received, S sets caught =
false. Then S continues below.

— If |J| > 2, S sends blatantCheat to Feovertpre, sends the certificate cert =
(P, j,trans;, h9T, c;, oj, seedj—l7 decomseEd;‘)
simulates the termination of Pa.

to A for uniform j € J, and

Then S rewinds A and runs Steps 0’ — 4’ below until® |J’| = |J| and caught’ =
caught:

0’. S picks j<s[A] and computes cseedi’ Com(0™). S chooses a uniform k-

A
A ] ’

{cseed; }iep to A. For the jth (j # j) execution of Ilot, S interacts with

4

j )

{seedj—B }ieln).j#; at the end. For the j execution of IToT, S uses the simulator

A
seedj

bit string seed’’, computes ¢ as in the protocol for j # 7, and sends

A using the input 0 with randomness derived from seed?, and retrieves

SoT for Ilpt and extracts seedf and witness;. Let us denote the transcript
of the jth execution by trans;.
1. S does nothing.

5 Standard techniques [19,21] can be used to ensure that S runs in expected polyno-
mial time.
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2'.

3.
4.

For j # j, S uses as input 04 in the execution of Ilot with randomness
derived from seedf. In the jth execution of IIoT, S uses the simulator Sot
for IIoT and extracts {(w?,j,wij)}ie[m]. Let hJQT denote the hash value of
the transcript for the jth execution of IloT.

S receives {c;,0;};epy from A.
If any signature o; are invalid, S returns to Step 0’. For j € [\], S simulates
Pg’s execution in Steps 1, 2, and 3a, and particularly computes h?T and ¢;.

Let J' be the set of indices, such that (F\?T, ¢j) # (h?T,cj).
If |[J/| =1and 7 ¢ J', S set caught’ = true. If |J'| = 1 and j € J’, S set
caught’ = false. If |J/| = 0, S set caught’ = nothing.

Then S follows the procedure below.

4" If |J'| = 1 and caught’ = true, S generates for the unique index j € J’

A
a certificate cert = (P, j,trans;,h%7, c;, aj,seed?, decom®**%7'), sends it to A

J
and halts. Otherwise, S sends (j, {seed? } .5, witness;) to A.
S receives GC;, {anH}Ze msl> 1€ is b}ze mslbefo,1} (in the same order as

B
Step 3a), and h? together with decom® and {decom® wreplil e o1 If Pa
is allowed to know the evaluation result, S also receives the garbled output
mapping {(wg\)/[—i-w w%/[-i—i)}ie[m] .
If commitments Com(GCj,{cg.”?b}ie[nB] be {0, 1},h§?;decomcﬂ’) # c;, for some

i € [np], Com(x, ,+i; decom <idenl ) ¢ {cifoci5 s or hA is not consistent (if
it is verifiable), S sends abortp to FeovertprE and snnulates Pa’s termination.
Otherwise, S follows the options below.
—If |J']| =0, S uses seedf and the received information to derive Pg’s
input xp. Then S sends zp to Feovertpre. If Pg is allowed to receive the
evaluation result, S will receive y € {0, 1} from Feovertpre. Using seedf

to derive the output mapping and sends {wy ]}z M+1,... M+m to A.

— If |J'| =1 and caught = false S derives 7y from Cy as in the protocol.
Then S computes t; + p;-w (1 mod ¢ for i € [N]. Note that g; = g** in
the common reference strmg, and we have p; = gPi. Let T = [t1,...,tN].
S uses {(w! i3 %’j)}ie[m} and x4 from Feovertpre, together with T, GC;,
and {anH}le[nB] to compute the output {y;};c[m). If Pa is allowed to
know the evaluation result, S can derive the output y € {0,1}" from
the output mapping as in the protocol and sends y to Feovertpre to finish
the simulation. If Pg is allowed to know the evaluation result, S sends
{Yi}ieim) to A and halts.

It remains to show that the joint distribution of the view of A simulated by

S and the output of Pa in the ideal world is indistinguishable from the joint

distribution of the view of A and the output of Pp in the real world. We define

the following games and let the output of each game be the view of A and output

of P/_\.

Game; We modify Step 1 of the initiation phase in this game. The EP 7y de-

rived from Cf is used here. Then the list T', @ is generated as in the protocol.
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Corresponding &', ¢}’s, and d;’s are also computed as in the protocol. The
ideal functionality ]—"ZEk"CEP and }“Z':f(H are simulated as in the protocol. Then in
Step 6 of the evaluation phase, the list T is directly used for garbled circuit
execution. Since the ElGamal encryption scheme is IND-CPA secure, using
the same approach as in the proof of Theorem 1, we can prove that the
output of Game; are computationally indistinguishable from the output of
Gameyg.

Game, We pick a uniform j <s [A] at the outset of the game. Then we modify
the part of the conditional judgment branch in Step 4 of the evaluation phase
as follows.

— If |J| = 0, S does the same as in Gamey.
— If |J| =1, S sets caught = trueif j ¢ |J|. Otherwise, S sets caught = false.

seedf) to

— If |J| > 2, S sends cert = (P,j7transj,h?T,cj,aj,seedf7decom
A for uniform j € J\{j}, and simulates the termination of Pa.
When |J| = 1, we have j ¢ |J| with the same probability e. Meanwhile,
if |J| > 2, the probability that an index j is chosen to generate a certifi-
cate is |—f\| -(1- ﬁ) . |J|171 +(1- I—i‘) . ﬁ = ﬁ, which is the same as in
Gamey. Therefore, the output of Games is perfectly indistinguishable from
the output of Game;.

Gamez We modify the previous game as follows. In Step 0 of the evaluation
phase, the simulator does not pick seed]f‘. It computes cseed? Com(0"%)
alternatively. Then true random coins are used in Steps 0 and 2. It is obvious
that the output of Games is computationally indistinguishable from the
output of Games.

Game, The previous game is modified, such that S uses the simulator Spt for
the jth execution of IIot in Steps 0 and 2 of the evaluation phase, and all
A’s inputs are extracted. According to the security of IIot, the output of
Game, is computationally indistinguishable from the output of Games.

Games Because now Steps 0-3 are identical to Steps 0/-3’ in the simulated
evaluation phase, we can “collapse” the rewinding and obtain the following
Game; that is statistically indistinguishable from Game,, and the only
difference is in the case of an aborted rewinding in the latter game.

seedf! Com(0%). For j # j, choose uni-
form x-bit strings seed;‘, compute {csew? } as in the protocol, and send

{cseedf }iep to A. For the jth (j # 7) execution of ITot, interact with
A
J )
{seedf}je[,\])#j at the end. For the jth execution of IIgT, use the sim-

0. Pick j<-s[\] and compute ¢

A using the input 0 with randomness derived from seed’’, and retrieve

ulator Sot for IIot and extract seed ;3 and witness;. Let us denote the
transcript of the jth execution by trans;.

1. Do nothing.

2. For j # j, use as input 04 for in the execution of IIot with randomness
derived from seedf. In the jth execution of IIgt, use the simulator Sot
for IToT and extract {(ng,w},j)}ie[m]. Let h?T denote the hash value
of the transcript for the jth execution of IlgT.
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3. Receive {cj,0;}jep from A.

4. If any signature o are invalid, output L and halt. For j € [A], emulate
Pg’s execution in Steps 1, 2, and 3a, and particularly compute h?T and
¢;. Let J' be the set of indices, such that (F\?T, ¢j) # (h?T,cj).

— If |J| =0, send (3, {seedf}j#,witnessj) to A and continue below.

—If |J| =1and j ¢ |J| or |J| > 2, send for uniform j € J\{j}
a certificate cert = (P, j,trans;, h?T,
Then output corrupted and halt.

— If|J|=1and j € |J|, send (j, {seedf}j#,witnessj) to A and continue
below.

5. Receive GCj, {Xn,+iticing]s {C”b}ze[ns 1.be{0,1} (in the same order as

A
cj,aj,seedf,decomseedf ) to A.

Step 3a), and hO together with decom® and {decom “d IBM}ZG CIf
Pa is allowed to know the evaluation result, S also receives the garbled
output mapping {(w?w_H, w]l\/[ﬂ)},e[m]

6. If commitments Com(GC;, {cl 5 bricins],be{0,1}> hj ; decom®) # c;, for some

i € [ng], Com(xy ,1i;decom® Sl ) & {ci5o:Ci5) or h is not consis-
tent (if it is verifiable), output L and abort.
Otherwise, follow the options below.

— If |J| = 0, use seedﬁz3 and the received information to derive Pg’s
input 2. Then compute y <— Cy(xa,zp). If Pa is allowed to learn
the evaluation result, output y and halt. If Pg is allowed to receive
the evaluation result, use seedfg to derive the output mapping and
send {wy[i]}l M1, M+m to A and halt.

—If |J| = 1, use {( wy 5, ”)}le ma) and x4, together with 7', GCj,
and {anH}ze[nB] to compute the output {y;}ic(m). If Pa is allowed
to know the evaluation result, derive the output from the output
mapping as in the protocol, and then output the result and halt. If
Pg is allowed to know the evaluation result, send {y; };c[m] to A and
halts.

Gameg We modify Step 6 of the evaluation phase in the previous game. If |.J| =
0, use {wf;‘ [Z]}ie[nﬂ, together with T', GC;, and {Xy,+i}ic[n,] to compute
the output {y;}icim)- If Pa is allowed to know the evaluation result, derive
the output y from the output mapping as in the protocol, and then output
y and halt. If Pg is allowed to know the evaluation result, send {yi}ie[m] to
A and halts.

Because |J| = 0, we know that the commitment c; commits to a correctly
computed garbled circuit, input-wire labels {Ci?,b}ie[ng],be{O,l} (in correct
order), and the hash value of the output-wire labels. According to the binding
property of the commitment scheme and the collision-resistance property
of the hash function, GCj, {ci’5}}ieinp)befo,1}, and h? (may also together
with the output mapping {(w,;, wi,; ;) }iepm)) sent by A are all correct. In
addition, since |J| = 0, the collision-resistance property of the hash function
ensures that Pa’s input-wire labels sent in IToT are correct. Therefore, using
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{w; ] [l]}ie[nA], together with T, GC;, and {Xy ,4i}ic[n,) for the execution of
garbled circuit will derive the correct result.

Hence, the output of Gameg is computationally indistinguishable from the
output of Games.

Game; Here Step 4 in the evaluation phase of the previous game is changed in
the following. Pg’s executions are emulated for j € [A\]\{j}. Let J be the set
of indices, such that (H?T,éj) # (hJQT, ;).

— If [J| = 0, send (j, {seed? },..;, witness;) to A and continue below.

— If |J| # 0, send cert = (P, j, trans;, hoT
form j € J to A. Then output corrupted and halt.
Let the set J as defined before. Note that the condition that |J| = 0 or
|J| =1Aje|J]is equal to the condition |J| = 0. Meanwhile, the condition
that [J| = 1Aj ¢ |J] or [J| > 2 is the same as the condition |.J| # 0.
Thus, the output of Gamey; is perfectly indistinguishable from the output
of Gameg.

Gameg In this game, the jth execution of Ilot in Step 0 and Step 2 are exe-
cuted honestly, i.e., use input 1 to the protocol in Step 0 and x 4 in Step 2.
Following the security of IIot, the output of Gameg is computationally
indistinguishable from the output of Gamey.

Gameyg We modify Step 0 of the previous game by choosing seed}f‘ and comput-

A
,Cj, 05, seed?, decom®*%}") for uni-

ing {cseed? } as in the protocol. Then for the jth execution of ITot in Step 0
and Step 2, use the random coins derived from seed;f‘. It is easy to see that
the output of Gamey is computationally indistinguishable from the output
of Gamesg.

Note that Gameg corresponds to an execution of the protocol for P holding
input Cf and x4 in the real world, while Gameg corresponds to the simulated
execution in the ideal world. We also note that the certificate is for an index
j € J\{j}, while only the jth execution involves Pg’s input. Therefore, even if
A receives cert, A cannot derive any information about Pa’s input. Hence, we
complete the proof for malicious Pg.

We now describe how the protocol achieves public verifiability. From the
protocol, it is easy to see that once an honest P5 outputs corrupted 3, she is able to
output a certificate cert to blame Pg’s misbehavior. If Pg intends to deviate from
the protocol covertly, he might deviate in Steps 1, 2, or 3a, i.e., Pg does not follow
the execution specified by the protocol and the corresponding seed. Hence, there
exists a message from Pg that is not consistent with the message he should send
according to the protocol and the seed. If an honest Pa publishes a certificate
cert, then Pa has obtained Pg’s seed for the derandomized execution and detects
Pg’s covert cheating in this execution. Since the corresponding transcript is
signed by Pg, everyone is able to verify the inconsistency. More precisely, given
the verification key vk, a certificate cert, and a common reference string G,
anyone can execute the algorithm Judge to check whether the messages from
Pg are consistent with an honest execution. More importantly, thanks to the
OT protocol, Pg does not know whether his misbehavior is detected until Pa
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publishes the certificate cert. Thus, Pg cannot abort before the time that Pa can
generate the certificate.

Finally, we show that the protocol achieves defamation freeness. Assume
that a malicious Pp intends to break the defamation freeness of the protocol
and blames an honest Pg. According to the description of the algorithm Judge,
the algorithm will output 1 only if (h?T,cj) #+ (H?T,éj). If ¢; is inconsistent, it
means that the garbled circuit is not correctly generated using the random coins
derived from seed;3 . However, since Pg is honest and corresponding material for

generating the garbled circuit, i.e., G and P, is signed by Pg, we know that seedf
derived from the simulation of IloT is incorrect, or the signature is forged. On
the one hand, the signature scheme is EUF-CMA, a computationally bounded
Pa cannot forge the signature except for a negligible probability. On the other
hand, for the simulation of IloT, the transcript trans; is already verified and
signed by Pg, this means that if the output of IloT is not the correct seedﬁz3 ,
this incorrect output seedj—Ee imputes to the random coins used by Pa. Since the

commitment ¢ is signed by Pg and IloT is perfectly correct, the output of the

simulation of IIo7 cannot be equivocated unless Pa breaks the binding property
of the commitment scheme. Hence, malicious P cannot incur an inconsistent c;
except for a negligible probability. For the hash value h?T, a malicious Pp can

incur an inconsistent h?T only if seedf and seed;3 produces an incorrect h?T.

Similar to c;, a malicious Po cannot make IloT output an incorrect seed§B , and
thus incur the algorithm Judge to output 1, except for a negligible probability.
Therefore, the protocol achieves defamation freeness. a
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