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Abstract. Verifiable encryption (VE) is a protocol where one can provide assurance that an en-
crypted plaintext satisfies certain properties. It is an important buiding block in cryptography with
many useful applications, such as key escrow, group signatures, optimistic fair exchange, etc. How-
ever, a majority of previous VE schemes are restricted to instantiation with specific public-key
encryption schemes or relations.

In this work, we propose a novel framework that realizes VE protocols using the MPC-in-the-head
zero-knowledge proof systems (Ishai et al. STOC 2007). Our generic compiler can turn a large class
of MPC-in-the-head ZK proofs into secure VE protocols for any CPA secure public-key encryption
(PKE) schemes with the undeniability property, a notion that essentially guarantees binding of
encryption when used as a commitment scheme.

Our framework is versatile: because the circuit proven by the MPC-in-the-head prover is decoupled
from a complex encryption function, the prover’s work can be focused on proving properties (i.e.
relation) about the encrypted data, not the proof of plaintext knowledge. Hence, our approach allows
for instantiation with various combinations of properties about encrypted data and encryption
functions. As concrete applications we describe new approaches to verifiably encrypting discrete
logarithms in any prime order group and AES private keys.
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1 Introduction

A verifiable encryption (VE) scheme is a public-key encryption scheme where one party (called a prover
P) can encrypt data w with a public key pk (of which the corresponding decryption key sk is owned by
the receiver R), and convince a third party (called the verifier V) that the data satisfies some relation, i.e.,
R(x,w) = 1 with respect to some public statement x. At a very high-level, an (interactive) VE scheme
should satisfy the following security properties [CD00]:
– Completeness: If P, V and R are honest, V accepts after interacting with P and R with knowledge

of sk obtains a plaintext w satisfying R(x,w) = 1.
– Zero knowledge: V without decryption key sk learns nothing about the plaintext.
– Validity: If V accepts after interacting with potentially malicious P∗, R is guaranteed to obtain a

correct plaintext w such that R(x,w) = 1.

Our motivating example for verifiable encryption is the verifiable backup problem, where a crypto-
graphic device (such as a hardware security module (HSM)) that is entrusted to store key material must
securely export it for backup in case of hardware failure. These backups must be encrypted with the
public key of another device, so that the plaintext keys are never exposed outside of the secure hardware.
The adminsitrator of the device, responsible for creating backups, does not get assurance that the backup
is well-formed, and will import successfully on the new device. She could try the import operation, but
this may be expensive (e.g., if the backup device is in a separate facility), or risky (as it spreads the
key around more than necessary). This latter risk is well illustrated in the case of cloud-based HSMs,
where testing a backup by importing a key into a different (backup) cloud provider greatly expands the
trust boundary. Then even if the import operation succeeds, the admin must still test the imported key
somehow, which typically requires using it to create a test signature or decryption, adding to use of the
key requiring logging to enable auditing. Ideally, the exporting device could prove to the administrator
that the ciphertext is a well-formed encryption under the receiving device’s public key, and further, that
the plaintext is a private key corresponding to a particular public key, e.g., the device claims “I encrypted
an ECDSA signing key x for a public verification key y” and the administrator should be convinced as
long as y = gx without access to the plaintext x. If the exported key is a symmetric key, then the device
should prove that the plaintext is a key consistent with a commitment to the key, or a ciphertext or
MAC created with the key. Verifiable encryption is a natural solution to this problem (and others that
we review below).
Verifiable Encryption Despite being introduced more than two decades ago by Stadler [Sta96] and
becoming a well-defined primitive with a relatively general solution in the work of Camenisch and
Damgård [CD00], constructions suitable for the verifiable backup problem are limitied. There are multiple
challenges. We need generality, to allow multiple types of relation to be supported, not only a single one
(as in [CS03,NRSW20,LN17]). We also want to minimize the additional assumptions required, ideally not
requiring any new assumptions; for example if an AES key is to be exported, encrypted under an RSA key,
we should not need to make assumptions in elliptic curve groups (perhaps with a pairing), as might be
the case if certain SNARK proof systems were used for verifiability [Gro16,MBKM19,BBB+18,LCKO19].
We also want flexibility in the reciever’s PKE, again to minimize new assumptions, but also to support
security goals like threshold decryption or post-quantum security, rather than have a VE scheme dictate
the PKE the receiver must use (as in [CS03,NRSW20,LN17]). Finally, performance must be good enough
for use in practice, which excludes using fully general proof systems (e.g., [Mic00,GMW87,GOS06]). In
summary, we desire a construction that is as general as possible, introduces no new assumptions, and is
performant enough to be practical.

There are multiple applications of verifiable encryption in the literature. Some early examples are
publicly verifiable secret sharing [Sta96], and verifiable encryption of signatures for optimistic fair ex-
change [ASW98,Ate99]. Key escrow [YY98,PS00], where parties encrypt their private key to a trusted
escrow authority, can be achieved with verifiable encryption, since it becomes possible for other parties
on the network to ensure that the correct key has been escrowed. A common theme is identity escrow
(or revokable anonymity) in privacy systems and group signatures, where an anonymous party encrypts
their identity for an authority, who can de-anonymize them under certain circumstances. In cryptographic
voting systems, voters often encrypt their votes and prove that their selection is in a set of valid choices
(e.g., in {0, 1} to encode a “yes” or ”no” vote). The earliest paper with this idea predates the litera-
ture on verifiable encryption [CF85] and is still present in cryptographic voting systems today, see for
example [EG2,CCFG16].
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ZK fromMPC The MPC-in-the-head (MPCitH) paradigm [IKOS07] is a way to create a zero-knowledge
(ZK) proof for a relation R, given a secure multiparty computation protocol (MPC) to compute R. Some
of the advantages of this approach make it well suited to our verifiable encryption problem. First, MPC
protocols are very flexible, so that we can instantiate ZK proofs for many R, typically expressed as binary
or arithmetic circuits. We also give an MPCitH protocol to prove knowledge of a discrete logarithm (and
use our results to verifiably encrypt discrete logs), showing that the paradigm extends beyond circuits as
well. Second, if the MPC protocol is information theoretically secure, converting it to a ZK proof only
requires a secure commitment scheme, which can be instantiated with a cryptographic hash function, so
that the proof system requires minimal assumptions, and is post-quantum secure. Finally, the performance
of MPCitH proof systems in terms of prover and verification costs and proof sizes are practical, and
have been steadily improving as has been demonstrated in the area of post-quantum signatures. To
use the AES-128 circuit as an example, proof sizes went from 209 KB [GCZ16] to 32 KB [dDOS19] to
13 KB [BdK+21] in the past five years, and the running time of the prover and verifier is roughly 50ms
(see the implementation benchmarks in [BdK+21]). Taken together, these properties will allow us to
construct verifiable encryption schemes that are very general, make minimal assumptions, achieve PQ
security and are efficient enough for practical use.

1.1 Our contributions

Our results apply to a broad class of MPCitH proofs: those that can be viewed as an interactive oracle
proof (IOP). This class captures the original class from [IKOS07] as well as many more recent MPCitH
proofs aimed at concrete efficiency, such as [GMO16,KKW18,BdK+21,BN20, dSGOT21,Bd20,Beu20].
The IOP framework [BCS16] allows a modular design, and comes with definitions of zero-knowledge, and
straight-line extractability that we need to prove our results.
Generic compiler for MPC-in-the-head-based verifiable encryption In Section 3 we give a
compiler that takes a proof protocol from the MPCitH-IOP class and converts it into a verifiable en-
cryption scheme, denoted MPCitH-VE. We describe MPCitH-VE as a public-coin three-round interactive
protocol, which can be made non-interactive using the standard Fiat-Shamir transform [FS87]. An ab-
stract protocol MPCitH-IOP captures several three-round protocols, including [IKOS07], ZKBoo [GMO16],
ZKB++ [CDG+17], and our new DKG-in-the-head protocol described below. We also discuss how to com-
pile KKW-IOP and Banquet-IOP (IOP versions of [KKW18] and [BdK+21], respectively) using essentially
the same idea.

The other input to the compiler is a public key encryption (PKE) scheme, such as Elgamal, RSA-
OAEP or PQ options like Frodo or Kyber. We define and prove the requirements the PKE must have
to ensure MPCitH-VE is secure. In short, ciphertexts created by the PKE must be a secure commitment
(both hiding and binding) to the plaintext. Hiding is provided by CPA security, and for binding, we define
a new property called undeniability, which is trivial for PKE schemes with perfect correctness, but may be
absent otherwise. Notably, lattice-based PQC schemes are usually not perfectly correct. In Appendix C
we prove that existing variants of the Fujisaki-Okamoto transform [FO99, FO13, HHK17] can upgrade
any statistically correct PKE schemes to obtain undeniability, making our construction compatible with
many existing schemes. It implies FO-transformed encryption schemes can be used as secure commitments
without any modification, which might be of independent interest.

Our framework is versatile: because the circuit proven by the MPC-in-the-head prover is decoupled
from a complex encryption function, the prover’s work can be focused on proving properties (i.e. relation
R) about the encrypted data, not the proof of plaintext knowledge. Hence, our approach allows for
instantiation with various combinations of properties about encrypted data and encryption functions.
To illustrate the core idea of our transform, Fig. 1 describes an example VE scheme constructed from
ZKBoo. Essentially, we replace commitments in the original proof system with public-key encryption
functions. The verifier still learns nothing about the encrypted data w since one of its additive shares
is kept encrypted. By contrast, the receiver R with knowledge of the decryption key sk can decrypt the
unopened ciphertext (or commitment) to obtain the remaining share, from which the plaintext w can be
recovered using revealed shares in the public transcript.
Methods for compressing ciphertext In our compiler, essentially the transcript itself is output as
a ciphertext, after the prover P and verifier V interact in MPCitH-VE. While the size of transcript is
proportional to the number of parallel repetitions τ guaranteeing negligible soundness error, the receiver
R only needs one of them in case the prover behaves honestly. To close this gap, in Section 4 we give
two methods to compress the VE ciphertexts. The first, called the random subset method, is very simple,
incurs no computational overhead, and can reduce ciphertext size by a factor of three when τ is large. If
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τ is already small, it is also possible to trade ciphertext size for τ , which might be desirable depending
on the application. The second approach, the equality proof method, is optimal as it achieves constant
size ciphertexts, O(|w|) (provided PKE has constant ciphertext expansion). However, it requires special
properties of PKE, increases proof size, prover and verifier computational costs significantly, so it is more
of a possibility result rather than a practical construction. We highlight improving compression as an
interesting direction for future work.
Concrete instantiations In Section 5 we describe concrete approaches to verifiably encrypting discrete
logarithms in any prime order group and AES private keys.

The former is realized by our new non-interactive ZK protocol for relation R =
{

(y, x) : y = gx
}
,

called distributed key generation in the head (DKG-in-the-head). In this protocol, the prover emulates “in
the head” a protocol where parties perform DKG to obtain y = gx. Since the DKG protocol only needs
to have passive security and a broadcast channel is available for free in the MPC-in-the-head setting, our
proposed protocol is extremely simple, requiring only a single round of interaction between MPC parties.

The latter, verifiable encryption of AES private keys, is derived from the underlying interactive ZK pro-
tocol of Banquet [BdK+21], where the prover proves knowledge of AES private key used for generating an
AES ciphertext from some public plaintext, i.e., it is specialized for relationR =

{
((ct, pt),K) : ct = AESK(pt)

}
.

Prior to this work, there has been no VE scheme for verifiably encrypting AES private keys, while it
may find interesting applications in the post-quantum setting when instantiated with quantum-resilient
public-key encryption functions.
Revisiting the Camenisch-Damgård verifiable encryption As a separate contribution, we revisit
the existing verifiable encryption of Camanisch and Damgård [CD00] in Section 6 and show that it fails
to retain the validity property when instantiated with statistically correct IND-CPA PKE schemes. We
describe concrete attacks in which a malicious prover can convince the verifier, while the output ciphertext
does not correctly decrypt to the data satisfying a claimed property. Finally, we show that by additionally
assuming the undeniability property their construction can also be securely instantiated with statistically
correct PKE schemes.

1.2 Comparison with previous verifiable encryption schemes

Camenisch–Damgård transform Although our generic transform is similar in spirit to that of [CD00],
there are some differences. Our starting point is any MPC-in-the-head IOP with straight-line extractable
property, while [CD00] is focused on 2-special sound Σ-protocols with 1-bit challenge space (though it
seems possible to generalize their transform to k-special sound protocols for any k as well). Although one
can naïvely apply [CD00] to some MPC-in-the-head protocols with k-special soundness, such as ZKBoo
and IKOS, our method directly modifies the committing function and thus leads to better communication
complexity. Moreover, [CD00] does not apply to more modern MPC-in-the-head constructions, including
KKW and Banquet: because the challenge spaces of these protocols are not limited to party indices the
notion of special soundness is not well-defined. In contrast, our transform indeed allows instantiating
verifiable encryption from KKW and Banquet.
Camenisch–Shoup scheme Camenisch and Shoup [CS03] proposes protocols for efficient verifiable
encryption and decryption of discrete logarithms. However, it only works for discrete logarithms in a
group where Paillier’s decision composite residuosity (DCR) assumption holds, and the PKE is fixed to
(a variant of) Paillier’s scheme as well. The scheme is not suitable for encrypting an ECDSA private key,
one of our motivating examples.
SNARK-based constructions Lee et al. [LCKO19] gives a construction of a verifiable encryption
scheme that is tailored to use in voting schemes as it is additively homomorphic and supports reran-
domization. The construction is pairing-based, Elgamal-like and thus integrates well with SNARK proof
systems. Just like our framework, theirs also decouples an encryption function from the circuit describ-
ing properties about the encrypted data, using the commit-and-prove SNARK of [CFQ19]. It requires
a trusted setup assumption due to the use of CRS-based SNARK, while ours is naturally transparent
thanks to the underlying MPC-in-the-head paradigm.

Nick et al. [NRSW20] gives a construction, which can encrypt a discrete logarithm in an elliptic curve
group, using a special PRF called Purify. The scheme does allow, e.g., encryption of an ECDSA private
key without any trusted setup assumption thanks to the use of Bulletproofs [BBB+18], but requires that
encryption be done with an Elgamal-like PKE. As we compare in Table 1, their ciphertext and proof
are more compact than those of our DKG-in-the-head VE scheme, while ours has shorter prover time. A
complication related to implementation of the Purify PRF is that one must choose an additional pair of
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P(w, x, pk) V(x, pk)

1. Generate random shares w1, w2, w3

such that w = w1 ⊕ w2 ⊕ w3

2. Run MPC for R(x,w)
to get view1, view2, view3

3. Sample encryption randomness r1, r2, r3

4. comi := Enc(pk, viewi; ri) for all i ∈ [3] com1, com2, com3

e ∈ [3]

viewe, re, viewe+1, re+1

Check come
?= Enc(pk, viewe; re).

Check come+1
?= Enc(pk, viewe+1; re+1).

Check viewe and viewe+1 are consistent.
Check viewe and viewe+1 output 1.
Compute w̃ := we ⊕ we+1.
If check passes output C := (come+2, w̃)
as ciphertext.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R(come+2, w̃, sk)
Get viewe+2 := Dec(sk, come+2).
Extract we+2 from viewe+2.
Recover w := w̃ ⊕ we+2.

Fig. 1: High-level overview of our transform, applied to ZKBoo

elliptic curves, related to the group order of the curve where the discrete logarithm is defined, such that
the DDH assumption holds. In contrast, our framework does not introduce any additional assumption
other than IND-CPA and undeniability of PKE (already satisfied by perfectly correct schemes and many
statistical ones as we analyze).
Lattice-based construction Lyubashevsky and Neven [LN17] presents a verifiable encryption scheme
for lattices, based on the hardness of the ring learning with errors (RLWE) problem. They give a proof of
plaintext knowledge, secure in the ROM that does not use parallel repetition to boost soundness. Their
scheme can be further extended to support CCA security. Our VE construction is only proven secure
under the security definition of [CD00] and it is not “one-shot” as MPC-in-the-head proofs usually rely
on parallel repetition or cut-and-choose unlike [LN17]. Their construction comes with multiple caveats.
A malicious prover may create a ciphertext that takes variable time to decrypt. In particular decryption
requires O(q) time to decrypt, where q is the number of hash queries made by the prover. A receiver in our
construction only needs O(τ) time to decrypt or even less if the compression techniques of Section 4 are
applied, where τ is the number of parallel repetitions. Note that in both schemes decryption only takes
O(1) time if the prover is honest. Moreover, their VE prover can only prove “relaxed” linear relations about
the encrypted data, while our framework naturally supports any NP relation as a corollary of [IKOS07].

1.3 Other related work

We briefly survey some of the many existing MPCitH-based proof systems, optimized for different rela-
tions, as these immediately give verifiable encryption schemes by applying our transform. [Beu20] gives an
MPCitH-based proof of a solution of an SIS (short integer solution) instance. We can apply our transform
to construct a verifiable encryption of SIS witnesses (here the witness is exact, not relaxed as in [LN17]).
The other proof protocols in [Beu20] for other relations, such as the PKP and MQ problems, are also
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compatible with our transform. [BN20] also gives multiple MPCitH-based proofs for lattice problems
(SIS), which are also ameable to our transform, but are outperformed by the proofs of [Beu20]. Gjøs-
teen et al. [GHM+21] present verifiable decryption protocols from MPCitH proofs, by designing suitable
distributed decryption protocols for Elgamal and BGV lattice-based encryption schemes.

Aurora [BCR+19] and Ligero [AHIV17] are non-interactive proof systems for R1CS that are con-
structed by defining an IOP, then making it non-interactive using the transform in [BCS16]. Both have
short proofs for relations involving lattices, and Aurora has the shortest proofs for SIS, about 10x shorter
than [Beu20,BN20].
Connection between straight-line extraction and verifiable encryption Straight-line extractabil-
ity (SLE) (or sometimes called online extractability) is a special type of extractability, specialized to
proof systems in the ROM or in the CRS model. The prover commits to witness-dependent strings via
extractable commitments instantiated with the RO or PKE, and the extractor is given the statement,
the transcript, and the prover’s query history (in the ROM) or a secret trapdoor (in the CRS model)
to extract a witness. In particular the straight-line extractor does not get any access to the prover, or
ability to rewind them. SLE is especially crucial for security in the QROM, since rewinding techniques are
generally prohibitively expensive in that setting. Numerous works achieve SLE of commit-and-open-type
proof systems (including MPC-in-the-head) [Pas03, KKW18, DFMS21, HLR21], lattice-based ZK proof
systems [Kat21], and straight-line extractable alternatives to the Fiat-Shamir transform [Fis05,Unr15].
A receiver R of our MPCitH-VE essentially behaves like a straight-line extractor for the MPC-in-the-head
proof systems whose commitments are replaced with PKE. In this work, we formally draw a connection
between the validity property of VE and SLE of IOP, a setting where commitments are idealized and
thus SLE holds very naturally.
Committing EncryptionMost natural public key encryption schemes are committing, and constructing
a non-committing one (a deniable scheme) is challenging. Therefore, our attack on [CD00] is mostly
academic. Further, the assumption required by [CD00] and our new construction is mild and satisfied by
common encryption schemes.

[GH03] defines committing public-key encryption, but defines the verification algorithm in a more
generic way than what is used in our verifiable encryption scheme and the one of [CD00]. Rather than
having the verifier recompute the ciphertext as we do, given the purported (message, randomness) pair,
the verify algorithm could be anything, and takes as input the message, and an hint produces by the
decommitment function.

[GLR17,DGRW18] looks at committing encryption for symmetric-key AEAD schemes, to support
an analysis of a primitive called message franking, where participants in a messaging platform can report
abusive messages to the service provider. The name encryptment is also used, a portmanteau of the terms
encryption and commitment. The schemes support many additional features beyond what is required for
verifiable encryption in our setting, and the definitions are consequently more complicated than those
of [GH03].

[BDD20] recently proved that Pointcheval’s IND-CCA PKE [Poi00] can be used as a secure com-
mitment scheme as is, and it is thus plausible that their analysis can be adapted to show undeniability
of the scheme as well. Our analysis of the FO transform also suggests that several CCA conversions are
useful for obtaining undeniability and thus binding. It is an interesting follow-up question whether CCA
security in general is sufficient for PKE to be committing and/or undeniable.

The opposite of what we need is called deniable encryption [CDNO97]. Here the scheme is carefully
constructed so that the encryption is not a binding commitment to the message and randomness, allowing
a sender of a ciphertext to later claim they sent a different message (hence denying the original message).
After sending a ciphertext c = Enc(m; r) then sender can later claim they sent (m′, r′), and anyone can
check that c = Enc(m′; r′) as well. In the terminology of [CDNO97], a malicious prover in the [CD00]
scheme could cheat using a public-key, sender deniable encyrption scheme, where the sender decides on
the real and fake messages at the time of encryption. Constructing such a scheme appears to be an epic
challenge, the construction in [CDNO97] is only secure when the messages are very long, and only much
later, using indistinguishability obfuscation was one succeessfully constructed [SW14]. Neither are at all
practical, and their complexity can be viewed as evidence that most practical encryption schemes we use
today (or will use in the future) will not be deniable.

2 Preliminaries

First we introduce some notation and conventions used throughout the paper. The security parameter is
denoted λ, and for an integer x, [x] is short for the set {1, . . . , x}. Whenever we have a two-part adversary,
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written as a pair, e.g, (A∗,P∗), we assume that A∗ and P∗ share state, and do not explicitly write it as
an output of A∗ and an input to P∗. For a set S, we denote by x←$S sampling an element x from S
uniformly at random.

2.1 Public key encryption

A public key encryption scheme PKE is a tuple of three algorithms (Gen,Enc,Dec). Let Sm be a message
space and Sr be a set from which randomness is sampled.
– Gen(1λ) outputs a key pair (sk, pk).
– Enc(pk,m; r) outputs a ciphertext c on public key pk, message m ∈ Sm and randomness r ∈ Sr as

inputs.
– Dec(sk, c) outputs a plaintext m or ⊥ on decryption key sk and ciphertext c as inputs.

Definition 1. PKE is εcpa-IND-CPA secure if for any PPT adversary (A1,A2)∣∣∣∣Pr
[
b = b′ : (pk, sk)← Gen(1λ); (m0,m1)← A1(pk); b←$ {0, 1};

r←$Sr; c := Enc(pk,mb; r); b′ ← A2(c);

]
− 1

2

∣∣∣∣ ≤ εcpa(λ)

Throughout we assume PKE satisfies IND-CPA security.
Following [HHK17], we define statistical correctness relative to a random oracle G : {0, 1}∗ → Sr.

Definition 2. [HHK17] Let qG be the number of queries to G made by an adversary. We say that PKE
is δ(qG)-correct if for all (possibly unbounded) adversaries A

Pr
[
m 6= m′ : (pk, sk)← Gen(1λ);m← AG(·)(pk, sk); r←$Sr; c := Enc(pk,m; r);m′ := Dec(sk, c);

]
≤ δ(qG)

Note that statistical correctness in the standard model can be defined as a special case of the above
definition, where qG = 0 and therefore δ doesn’t rely on qG.

2.2 Extractable commitment

An extractable commitment scheme ECOM is a tuple of algorithms (CGen,Commit,CExt).
– CGen(1λ) outputs a commitment key pk and an extraction key sk.
– Commit(pk,m; r) outputs a commitment c on commitment key pk, message m ∈ Sm and randomness
r ∈ Sr as inputs.

– CExt(sk, c) outputs a message m on an extraction key sk and a commitment c as inputs.
We require ECOM to satisfy hiding, binding and extractability.

Hiding ECOM is statistically (resp. computationally) εhide-hiding, if for any adversary (resp. any PPT
adversary) (A1,A2)∣∣∣∣Pr

[
b = b′ : (pk, sk)← CGen(1λ); (m0,m1)← A1(pk); b←$ {0, 1};

r←$Sr; c := Commit(pk,mb; r); b′ ← A2(c);

]
− 1

2

∣∣∣∣ ≤ εhide(λ)

Binding ECOM is statistically (resp. computationally) εbind-binding if for any adversary (resp. any PPT
adversary) A

Pr

 m 6= m′

∧ c = Commit(pk,m; r)
∧ c = Commit(pk,m′; r′)

:
(pk, sk)← CGen(1λ)

(c,m, r,m′, r′)← A(pk, sk)

 ≤ εbind(λ)

In particular, statistically binding implies that the following probability is also negligible in λ, since
otherwise a computationally unbounded adversary could simply check all possible values of (c,m, r,m′, r′)
to find a tuple that breaks binding.

Pr

∃(c,m, r,m
′, r′) : m 6= m′

∧ c = Commit(pk,m; r)
∧ c = Commit(pk,m′; r′)

: (pk, sk)← CGen(1λ)
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Extractability ECOM is statistically (resp. computationally) εcext-extractable if for any adversary (resp.
any PPT adversary) A

Pr

 m 6= m′

∧ c = Commit(pk,m; r)
:

(pk, sk)← CGen(1λ)
(c,m, r)← A(pk, sk)

m′ := CExt(sk, c)

 ≤ εcext(λ)

Note that without CExt and the extractable property, it is a usual commitment scheme COM.

2.2.1 Extractable commitment from perfectly correct public-key encryption In the fol-
lowing we show that most commonly used public-key encryption schemes give rise to perfectly bind-
ing and computationally hiding commitment schemes. A similar construction appears in [GH03], and
is somewhat folklore, below we describe the exact construction we will use, and analyze its security.
Let PKE = (Gen,Enc,Dec) be a public key encryption scheme. We construct a commitment scheme
ECOM = (CGen,Commit,CExt) as follows. For simplicity we assume throughout that the message space
Sm and random space Sr of the commitment schemes are identical to those of the encryption schemes.
– CGen(1λ) runs PKE.Gen(1λ) and outputs pk as the commitment key.
– Commit(pk,m; r) outputs c = PKE.Enc(pk,m; r).
– The opening of the commitment c is (m, r), and the verifier checks (m, r) against c by computing
c′ = Enc(pk,m, r); the opening is accepted iff c′ = c, m ∈ Sm and r ∈ Sr.

– CExt(sk, c) outputs m = PKE.Dec(sk, c).
We now show this is a secure commitment scheme for perfectly correct, IND-CPA secure encryption

schemes. The two most commonly used choices of PKE, RSA and Elgamal, both meet these requirements,
and can be used as commitment schemes.

Lemma 1. If PKE is perfectly correct and εcpa-IND-CPA secure, the above commitment scheme is per-
fectly extractable, perfectly binding and εhide-computationally hiding with εhide ≤ εcpa.

Proof. Extractability follows from perfect correctness, since we are guaranteed that for every honestly
generated key pair (pk, sk) and for every (m, r) ∈ Sm × Sr, m = Dec(sk,Enc(pk,m, r)).
Binding follows from perfect correctness. Suppose there exits a tuple (m, r,m′, r′, c) such that m 6= m′

and c = Enc(pk,m; r) = Enc(pk,m′; r′). Recall that perfect correctness guarantees thatm = Dec(sk,Enc(pk,m; r)).
If binding is not perfect, there exsits c = Enc(pk,m; r) = Enc(pk,m′; r′), and c cannot be decrypted cor-
rectly for both of m and m′, which contradicts perfect correctness. Hence, COM is perfectly binding.
Hiding follows from the IND-CPA security. Concretely, if there exits a PPT distinguisher for commitment
c = Commit(pk,mb; r) = Enc(pk,mb; r) one can clearly construct a distinguisher for the IND-CPA game.
That is, to break the IND-CPA game, the reduction first receives two messages (m0,m1) from the hiding
adversary. Then by forwarding (m0,m1) to the IND-CPA challenger the reduction obtains the challenge
ciphertext c∗, which can be also seen as a challenge commitment in the hiding game. If the hiding adversary
can distinguish whether c∗ is a commitment to m0 or m1 with advantage εhide, then the reduction can also
distinguish whether c∗ encrypts m0 or m1 with advantage εhide, which is at most εcpa by definition. ut

Note that for encryption schemes that are not perfectly correct, there can exist (m,m′, r, r′) such
that Enc(pk,m; r) = Enc(pk,m′; r′). We will show two examples of such schemes, one based on deci-
sional composite rediduosity (Section 6.2), and one based on the learning with errors (LWE) problem
(Appendix B). In general, the base encryption scheme for of post-quantum latticed-based candidates like
FrodoKEM [NAB+19] and Kyber [SAB+20] are CPA secure, but not perfectly correct.

2.3 Verifiable encryption

We define a secure verifiable encryption scheme by adapting [CD00]. The main difference with [CD00]
is that we additionally consider a compression algorithm C that takes a transcript exchanged between
a prover and a verifier, and outputs a corresponding ciphertext. In practice, a compression algorithm is
also performed by the verifier right after interacting with the prover and obtaining a valid transcript.
We explicitly introduce this because our proposed construction will benefit from different optimization
strategies that postprocess accepting transcripts to produce a highly compressed ciphertext.
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Definition 3 (Verifiable Encryption Scheme). Let R be a relation and LR :=
{
x : ∃w : (x,w) ∈ R

}
.

A secure verifiable encryption scheme VER for a relation R consists of a tuple (G,P,V, C,R):
– G(1λ): A key generation algorithm that outputs a key pair (pk, sk).
– (P,V): A two-party protcol, where both P and V take (x, pk) and P additionally takes a plaintext
w as inputs. We let (b, tr) ← 〈P(w),V〉(pk, x) denote the output pair of V on common input (pk, x)
when interacting with P(w), where b ∈ {0, 1} indicates whether V accepts or rejects, and tr denotes a
transcript exchanged between P and V.

– C(x, tr): A compression algorithm that outputs a compressed ciphertext C.
– R(sk, C): A receiver (or recovery) algorithm that outputs a plaintext w.

We require VE to satisfy completeness, validity and honest verifier zero knowledge.
Completeness VER is εcomp-complete if for all (x,w) ∈ R.

Pr

b 6= 1 ∨ (x,w′) /∈ R :
(pk, sk)← G(1λ);

(b, tr)← 〈P(w),V〉(pk, x);
C ← C(x, tr);w′ ← R(sk, C)

 ≤ εcomp(λ)

Validity VER is εval-valid if for all pairs of PPT adversary (A∗,P∗),

Pr

b = 1 ∧ (x,w′) /∈ R :
(pk, sk)← G(1λ);x← A∗(pk, sk);

(b, tr)← 〈P∗(sk),V〉(pk, x);
C ← C(x, tr);w′ ← R(sk, C)

 ≤ εval(λ)

Computational Honest Verifier Zero-knowledge VER is εzk-HVZK if there exits a PPT simulator
S such that for all PPT distinguishers D, all (x,w) ∈ R,∣∣∣∣∣∣∣∣∣Pr

i = i′ :

(pk, sk)← G(1λ);
(b, tr0)← 〈P(w),V〉(pk, x);

tr1 ← S(pk, x);
i←$ {0, 1}; i′ ← D(pk, x, tri);

− 1
2

∣∣∣∣∣∣∣∣∣ ≤ εzk(λ)

Note that computational HVZK (as opposed to perfect, or statistical) is the best possible in the context
of verifiable encryption, as an unbounded adversary can always try w′ = R(sk, C) with all possible sk,
checking whether (x,w′) ∈ R.

2.4 Interactive oracle proofs

We recall interactive oracle proofs (IOP) originally introduced by [BCS16]. As the MPC-in-the-head rel-
evant to our work have public-coin verifiers that make non-adaptive queries (i.e., queries made by the
verifier are solely determined by the verifier’s randomness and inputs), we consider a slightly restricted
class of IOPs satisfying those properties. This allows us to divide the protocol into three phases similar to
those of the AHP framework [CHM+20] (although we do not require a preprocessing phase). The frame-
work of IOPs allows for a modular design of ZK proof systems and is becoming increasingly common for
constructing efficient SNARKs and MPC-in-the-head ZK proofs (e.g., [dSGOT21,CHM+20,CFF+20]).
As in prior work, we first design an information-theoretically secure protocol in the form of an IOP, where
commitments are idealized in that both hiding and binding hold unconditionally. This is why the security
properties for IOPs are defined w.r.t. unbounded adversaries, and the computational assumptions will
only come into play when we later compile the IOP into a verifiable encryption scheme via a cryptographic
commitment scheme with extractability.

Definition 4 (IOP). Let R be a relation and LR :=
{
x : ∃w : (x,w) ∈ R

}
. A (public-coin) r-round

interactive oracle proof for a relation R consists of a tuple (P,V). The protocol proceeds as follows.
– Committing phase For i ∈ [1, r], the verifier V sends a random message ρi and the prover P

outputs a proof string πi, to which the verifier has oracle access.
– Query phase For i ∈ [1, r], V can query oracle i to access πi with a query string qi. The oracle

returns the corresponding response string si.
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– Decision phase Based on the responses from oracles, V accepts or rejects.

While not present in the general definition, in order to ensure that an IOP is ZK, concrete protocols
define limits on the queries the verifier can make, to ensure that information about w is not leaked. For
many IOPs (as suggested by the next definition), given all proof strings it becomes possible to recover w.

Definition 5 (Straight-line extractability (SLE)). An IOP (P,V) is straight-line extractable with
knowledge error εsle-iop if there exists an efficient extractor E such that for all pairs of unbounded adver-
saries (A∗,P∗)

Pr

b = 1 ∧ (x,w′) /∈ R :
x← A∗(1λ);

b← 〈P∗,V〉(x);
w′ ← E(x, π1, . . . , πr);

 ≤ εsle-iop(λ)

Definition 6 (Honest-verifier zero knowledge (HVZK)). An IOP (P,V) is εzk-iop-statistical honest-
verifier zero knowledge if there exists a PPT simulator S such that for every (x,w) ∈ R, the statistical
distance between S(x) and V’s view of the honest interaction with P on input x and w is at most εzk-iop.

Remark 1 (Security proofs for IOPs). In our security proofs, we assume that an IOP prover P gets to see
the query strings qi. This naturally models all concrete protocols we consider where the verifier queries
are fixed or sent to the prover, and does not affect security because the query phase happens after the
prover has sent all proof strings.

Also, since most protocols realize the oracles by commiting to the proofs strings πi, all πi are available
to the extractor by using extractable commitments (Section 2.2) or reading the query history in the ROM.
For examples of IOPs that follow this paradigm see Marlin [CHM+20] and Lunar [CFF+20].

Remark 2 (Uniqueness of extracted witness). While we are guaranteed that the witness w′ output by
extractor algorithm E of Definition 5 satisfies (x,w′) ∈ R, w′ might not be the same witness used by P
when creating the proof, if there are multiple valid witness per statement. For example, when proving
knowledge of a symmetric key that relates a given plaintext-ciphertext pair (as Banquet does for AES)
it may be easy to find keys k1, k2 such that Ek1(p) = Ek2(p) where p is a fixed plaintext block. In the
context of our verifiable encryption construction, where decryption invokes the IOP extractor, it will be
important that R is such that x is a binding commitment to w.

2.5 MPC-in-the-head

2.5.1 Three-round MPC-in-the-head as an IOP We describe the blueprint of generic MPC-in-
the-head protocols characterized as a single-round IOP. See MPCitH-IOPR in Protocol 1. The prover
proves knowledge of a witness w such that R(x,w) = 1, where Πf is an MPC protocol computing f that
uses additive secret sharing over some finite field F, and R(x,w) := (f(w) ?= x). This protocol is similar
to the one from [IKOS07] relying on the “idealized commitment functionality”, but modified to cover
MPC protocols with a broadcast functionality, so the prover may open 2 < t < N parties’ views instead
of two. We also employ the IOP framework following more recent MPC-in-the-head protocols such as
Ligero [BFH+20] and Limbo [dSGOT21]. As we shall see below, as an IOP protocol it is straightforward
to prove straight-line extractability of MPCitH-IOPR. This will allow a smooth transition to SLE of the
MPCitH proof systems we compile (with suitable commitment schemes), then to the validity of the
resulting verifiable encryption schemes.

Our description also has parallel repetition: a simpler protocol is repeated τ times in parallel to increase
soundness. These changes make presentation consistent with many practical MPCitH proof protocols (e.g.,
ZKB++, KKW and Banquet all use (N − 1)-private MPC protocols with broadcast channels).

The helper function CheckView in MPCitH-IOPR takes the statement and a set of views as input and
returns 1 if:
1. The outputs of the opened parties (determined by their views) are 1, and
2. The opened views are consistent with each other, with respect to x and Πf ,
and returns 0 otherwise. We further define a utility function GetW, which takes a party’s view and extracts
their share of the witness from it.

We also introduce the notion of k-consistency, which essentially guarantees N views correspond to an
honest run of Πf as long as for any k distinct subsets of party indices, the corresponding parties’ views
are consistent with each other. This generalizes the notion of “consistency” introduced for pairwise views
(k = 2) [IKOS07, Def. 2.2].
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Protocol 1: MPCitH-IOPR

Parameters: The number of parties N ; the number of parallel repetitions τ ; the number of opened
parties t; the challenge set Ch =

{
e ⊂ [N ] : |e| = t

}
.

Inputs: prover P receives (x,w); verifier V receives x.
Committing phase The first-round message of V is empty. P proceeds as follows.

1. Choose random w1, . . . , wN such that w =
∑N
i=1 wi.

2. Emulate “in her head” the execution of Πf on input (x,w1, . . . , wN ).
3. Prepare, based on the execution, the share of the witness, and the randomness, the views
V1, . . . , VN of the N players; P outputs the proof string π = (V1, . . . , VN ).

Query phase
1. V chooses a random e ∈ Ch and queries the oracle for π with e.
2. The oracle returns (Vi)i∈e.

Decision phase: V accepts if and only if CheckView(x, (Vi)i∈e) = 1.
P and V execute τ instances of the above procedures in parallel. If V accepts all τ executions, it

outputs b = 1; otherwise it outputs b = 0.

Definition 7 (k-consistency). A single repetition of the protocol MPCitH-IOPR has k-consistency if
for any x, for any set of views (V1, . . . , VN ) and for any subset of the the challenge space S ⊆ Ch such
that |S| ≥ k, the following two conditions are equivalent:
1. for every e ∈ S, CheckView(x, (Vi)i∈e) = 1;
2. (V1, . . . , VN ) form an honest execution of Πf on a public input x and the corresponding per-party

private inputs wi = GetW(Vi) such that f(
∑
i∈[N ] wi) = x.

Remark 3. The above notion captures several different instantiations of MPC-in-the-head protocols. For
example, the original protocol from [IKOS07, §3] opens 2-out-of-N parties (i.e., corresponding to the case
where t = N − 2 in MPCitHR) and satisfies

(
N
2
)
-consistency because their Lemma 2.3 only guarantees

the validity of N views as long as every possible pair of the views is consistent. ZKBoo and ZKB++ are
essentially a special case of that protocol with N = 3 and therefore they have 3-consistency. Looking
ahead, our DKGitH protocol in Section 5.1 works with N parties and the challenge set Ch is all subsets of
[N ] of size N − 1.3 We will show it satisfies 2-consistency thanks to the use of a broadcast functionality.

Definition 8 (Canonical extractor). An extractor E for MPCitH-IOPR is called canonical if on input
x and π = (V1, . . . , VN ), it works as follows: E obtains witness shares via wi = GetW(Vi) for i ∈ [N ] and
then outputs a candidate witness w :=

∑
i∈[N ] wi.

Now we prove knowledge error bounds for generic IOPs with k-consistency.

Lemma 2. If a single repetition of MPCitH-IOPR has k-consistency, then it is SLE with respect to the
canonical extractor E with knowledge error εsle-iop ≤ k−1

|Ch| .

Proof. Let Vi be the views output by a cheating prover P∗ in the committing phase and e ∈ Ch is the
challenge sampled uniformly by the verifier V in the query phase. Further, let w′ =

∑
i∈[N ] GetW(Vi).

Our goal is to bound the probability

Pr
[
CheckView(x, (Vi)i∈e) = 1 ∧ (x,w′) /∈ R

]
. (1)

Define GoodCh :=
{

e ∈ Ch : CheckView(x, (Vi)i∈e) = 1
}
, i.e., a set of challenges that are accepting

with respect to views (Vi)i∈[N ] committed to by P∗. If |GoodCh| ≥ k, then it must be that (x,w′) ∈ R
due to k-consistency, so the canonical extractor always succeeds. If |GoodCh| < k, then since e is sampled
from Ch independently of Vi and thus of GoodCh as well, the probability that all e falls in GoodCh is at
most k−1

|Ch| . ut
3 In practice, it suffices to send a single party index ī whose view is not to be revealed.
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Lemma 3. If one repetition of MPCitH-IOPR has k-consistency, then τ parallel repetitions are SLE with
knowledge error εsle-iop ≤

(
k−1
|Ch|

)τ
with the following extractor Eτ : on receiving (x, (V (j)

1 , . . . , V
(j)
N )j∈[τ ]) it

obtains w(j) = E(x, (V (j)
1 , . . . , V

(j)
N )) for j ∈ [τ ] and outputs w(j) if (x,w(j)) ∈ R for some j. Otherwise

it outputs ⊥.

Proof. This is a straightforward generalization of Lemma 2. For a set of views output by P∗ in each
parallel repetition j ∈ [τ ], one can define GoodCh(j) :=

{
e ∈ Ch : CheckView(x, (V (j)

i )i∈e) = 1
}
. If there

exists j ∈ [τ ] such that |GoodCh(j)| ≥ k, then the extractor Eτ succeeds in extracting a valid witness
w(j) due to k-consistency. If for all j ∈ [τ ] |GoodCh(j)| < k, then the probability that the τ independently
sampled challenges simultaneously fall into GoodCh(j) for j ∈ [τ ] is at most

(
k−1
|Ch|

)τ
. ut

Remark 4. We note that the above knowledge error is equivalent to the soundness error. For example,
for ZKBoo and ZKB++ we have that k = 3 and Ch = {{1, 2} ,{2, 3} ,{3, 1}} and therefore both the SLE
knowledge error and soundness error are (2/3)τ .

Finally, we recall the notion of t-privacy for an MPC protocol from [IKOS07]. We show t-privacy
implies HVZK of the MPC-in-the-head IOP. Although we only consider the case of perfect t-privacy and
HVZK, one can obtain a similar claim for statistical security of the lemma following the result of [IKOS07].

Definition 9 (t-privacy). The protocol Πf is said to be t-private if there exists a PPT simulator Sim
such that for every e ∈ [N ] of size at most t and for every input (x,w1, . . . , wN ), the joint view of parties
in e is distributed ideintically to Sim(e, x, (wi)i∈e, R(x,

∑
i∈[N ] wi)).

Lemma 4. If the MPC protocol Πf is t-private, then MPCitH-IOPR is perfectly HVZK.

Proof. An IOP simulator S takes x as input and proceeds as follows: (1) sample e ⊂ [N ] of size t uniformly
at random, (2) choose uniformly random witness shares wi for i ∈ e, (3) invoke Sim(e, x, (wi)i∈e, 1) to
obtain joint views Vi for i ∈ e, and (4) output (e, (Vi)i∈e). This perfectly simulates the view of V(x) in
the honest interaction with P, since an honest V always queries the oracle with an party index set of the
right size t and thus the t-privacy property guarantees perfect simulation of revealed views in the MPC
execution.

2.5.2 Protocols without k-consistency While the notion of k-consistency has some generality and
gives a convenient way to prove SLE of some three-round protocols, many MPC-in-the-head proof systems
such as KKW and Banquet have challenge spaces not limited to party indices and therefore do not have
k-consistency. However, we remark that they are easily checked to be straight-line extractable since P
outputs per-party views that include the shares of the witness in the first round of the committing phase.
The existing soundness analysis thus implies SLE of the corresponding IOP protocols.
KKW [KKW18] is an MPC-in-the-head proof system that produces much more compact proofs than
[IKOS07] thanks to the proprocessing phase. In this paradigm, the prover first runs an offline protocol
(also “in the head”) to compute correlated randomness. Then it proceeds by executing the corresponding
online phase taking the secret witness as input. For completeness, we present KKW-IOP in Protocol 5.
Notice that in the first message P includes per-party states (sti)i∈[N ] and the masked witness ŵ for each
MPC execution. If the function GetW is defined such that it outputs the ith share of witness mask λwi
on input sti, a witness is recovered by computing w =

∑
i∈[N ] λ

w
i ⊕ ŵ. Hence, an extractor E for a single

repetition similar to the canonical extractor can be defined assuming it takes per-party states and a
masked witness as input. The following claim is implicit in [KKW18].

Lemma 5. KKW-IOP is SLE with knowledge error

εsle-iop(N,M, τ) ≤ max
M−τ≤k≤M

(
k

M−τ
)(

M
M−τ

) · ( 1
N

)k−(M−τ)

where the parameters (N,M, τ) are as defined in Protocol 5 and an extractor EM proceeds as follows:
on receiving x and π = (sd(j), (st(j)

i ,msgs(j)
i )i∈[N ], ŵ

(j))j∈[M ], it outputs w(j) = E(x, (st(j)
i )i∈[N ], ŵ

(j)) if
(x,w(j)) ∈ R for some j ∈ [M ]. Otherwise, it outputs ⊥.
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This is a direct consequence of “Beating parallel repetition” of [KKW18]. Suppose a witness w extracted
from the proof string form “bad inputs” for MPC, i.e., w =

∑
i∈[N ] λ

w
i ⊕ ŵ while f(w) 6= x. In that case,

since the input does not lead to the correct output of the circuit, to pass verification checks it must be
that for every MPC execution either (1) the offline computation is not carried out correctly, or (2) input
and/or circuit has been modified during the online phase. Such cheating behaviors are caught with the
above knowledge error as already analyzed in Theorem 2.2 of [KKW18].
Banquet [BdK+21] is a recent MPC-in-the-head proof system that allows a prover to prove knowledge
of an AES key with a relatively short proof. The base MPC protocol for computing the AES circuit uses
secret-sharings over the field F28 . For completeness, we present Banquet-IOP in Protocol 6. The protocol is
highly optimized for relation R =

{
((ct, pt),K) : ct = AESK(pt)

}
, where (ct, pt) is a public ciphertext-

plaintext pair and K = w is a witness. Notice that in the first message P includes commitments to
per-party random seeds (sdi)i∈[N ] and the offset ∆w. If the function GetW is defined such that it outputs
the ith witness share wi on input sdi, a witness can be easily recovered by computing w =

∑
i∈[N ] wi+∆w.

Hence, an extractor E for a single repetition similar to the canonical extractor can be defined assuming
it takes per-party seeds and the offset as input. The following claim is implicit in [BdK+21].

Lemma 6. Banquet-IOP is SLE with knowledge error

εsle-iop(λ,m2, N, τ) ≤ (p1 + (1− p1)p2 + (1− p1)(1− p2)p3)τ

where p1 = 2−8λ, p2 = 2m2/(28λ−m2), and p3 = 1/N and an extractor Eτ proceeds as follows: on receiv-
ing x and π(j)

1 = ((sd(j)
i , ct(j)

i )i∈[N ], ∆w
(j), (∆t(j)` )`∈[m])j∈[τ ], it outputs w(j) = E(x, (sd(j)

i )i∈[N ], ∆w
(j)) if

(x,w(j)) ∈ R for some j ∈ [τ ]. Otherwise it outputs ⊥.

Likewise, the above probability corresponds to the soundness error of interactive Banquet.4 In case of
“bad inputs”, it must be that the cheating prover guessed at least one of three challenges for each parallel
repetition to pass the verification checks. The p1, p2 and p3 above correspond to the probabilities that
P∗ correctly guesses first, second, and third challenge, respectively.

3 Our Transform

In this section we present our transform, which generically constructs a verifiable encryption scheme
MPCitH-VE from an MPCitH-IOP in the class described in Protocol 1. We start with a simple construction
of extractable commitents from public-key encryption, then come to our compiler in Section 3.2.

3.1 Extractable commitment from undeniable public-key encryption

Given PKE = (Gen,Enc,Dec), we consider the extractable commitment scheme ECOM := (CGen,Commit,CExt)
as defined in Section 2.2.1. As we shall see in later sections, IND-CPA security of PKE is not sufficient for
guaranteeing validity of the resulting verifiable encryption, if the correctness is imperfect. The reason is
that a malicious prover may be able craft a ciphertext c∗ that can be correctly opened to plantextm∗ such
that it passes validity checks performed by a verifier, while c∗ decrypts to junk during the recovery phase.
To prevent this attack, we require an additional property called undeniability. Intuitively, undeniability
forces an adversary to open any ciphertext to the plaintext identical to the result of decryption.

Definition 10 (Undeniability). We say that a public-key encryption scheme PKE = (Gen,Enc,Dec)
is εund-undeniable if for any PPT adversary A:

Pr
[
m 6= m′ ∧ c = Enc(pk,m; r) : (sk, pk)← Gen(1λ); (c,m, r)← A(pk, sk);m′ := Dec(sk, c)

]
≤ εund(λ)

The following utility lemma guarantees that an undeniable IND-CPA encryption scheme can be used
as a secure extractable commitment with the simple construction given in Section 2.2.1.

Lemma 7. If PKE is εund-undeniable and εcpa-IND-CPA secure, then the commitment scheme ECOM
constructed from PKE is εcext-extractable with εcext ≤ εund, εbind-binding with εbind ≤ εund and εhide-hiding
with εhide ≤ εcpa.
4 Technically, soundness error is the probability that the cheating prover convinces the verifier given an invalid
statement x /∈ L, while for knowledge error it might be that x ∈ L. However, the analysis given in §3.2
of [BdK+21] already covers the latter case because it derives the probability that a cheating behavior can go
undetected assuming the input does not satisfy the circuit.
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Proof. We prove the three properties separately.
Extractability follows from undeniability. That is, if the adversary can output a tuple (c,m, r) breaking
the extractability of ECOM, it also holds that c = Enc(pk,m; r) and m 6= Dec(sk, c). Therefore, (c,m, r)
is also an instance breaking undeniability.
Binding follows from undeniability. Suppose there exists an adversary that outputs tuple (m, r,m′, r′, c)
such that it breaks binding with non-negligible probability, i.e., c = Enc(pk,m; r) = Enc(pk,m′; r′) and
m 6= m′.

Given such an efficient adversary A against the binding game, we construct another adversary B that
uses A to break undeniability as follows.
1. On receiving (pk, sk) as input, B forwards it to A.
2. When A outputs (c,m, r,m′, r′) such that c = Enc(pk,m; r) = Enc(pk,m′; r′) and m 6= m′, the B first

decrypts c: m̃ = Dec(sk, c) and proceeds as follows.
(a) If m̃ 6= m, then B outputs (c,m, r) in the undeniability game.
(b) If m̃ 6= m′, then B outputs (c,m′, r′) in the undeniability game.

Note that at least one of 2(a) or 2(b) must occur since m 6= m′. In either case, B successfully wins the
undeniability game as long as A breaks binding. Clearly B succeeds with the same probability as A, and
B’s runtime is the same as A’s plus the cost of one Dec operation.
Hiding follows from the proof for Lemma 1, since it only relies on the IND-CPA security of PKE. ut

3.1.1 How to construct undeniable PKE Validity of our generic compiler described in the next
section heavily relies on extractable commitments. The straightforward construction of ECOM requires
undeniability, which is not necessarily satisfied by public-key encryption schemes with statistical correct-
ness. As we shall see in Section 6.2, this is not just a limitation in a security proof; a lack of undeniability
actually allows cheating provers to break validity entirely. A natural question is whether one can generi-
cally add the undeniable property to any IND-CPA-secure encryption scheme with statistical correctness.
We answer this question in the affirmative by proving that several variants of the Fujisaki–Okamoto trans-
form [FO99,FO13,HHK17] can make a given PKE scheme undeniable in the random oracle model.

For example, suppose we are given an encryption function Enc that takes a public key, message, and
random value as input, and a random oracle G that hashes into the randomness space of Enc. The simplest
FO transform [FO99] defines Enc′ such that

Enc′(pk,m; r) := Enc(pk,m||r; G(m||r)). (2)

A crucial observation is that cheating provers are now forced to derive encryption randomness uni-
formly by querying the random oracle G. This makes it difficult to craft a malicious ciphertext c from
biased randomness, which decrypts to some junk plaintext inconsistent with what she originally encrypted.
Using the same observation we can also prove that well-known FO-based CCA conversion methods em-
ployed by Kyber and FrodoKEM achieve unideniability. Details are deferred to Appendix C.

3.2 Compiling MPCitH-IOP into verifiable encryption with extractable commitments

The following simple observation explains the intuition for our construction MPCitH-VE. The details
are given in Protocol 2. As we observed in Section 2.5, for any MPCitH IOP following the [IKOS07]
paradigm, there exists a (canonical) straight-line extractor that recovers the witness from the committed
values of all parties. Recall that:
– The MPC protocol evaluates R with inputs x and w.
– The input x is public and w is shared amongst the parties.
– The view of each party must include their share of the witness and random tapes in order to allow

verification to check consistency, since some of the outgoing messages of the parties must depend on
both of these values.

Therefore, given the opening of the commitments of all parties (all N views), the extractor can recover
the witness based on the shares of all parties. For constructing ZK proofs or signatures allowing for
straight-line witness extraction, one can compile MPCitH-IOP by letting a prover commit to every per-
party view with random oracle commitments [KKW18,ZCD+20]: the extractor can reconstruct a witness
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Protocol 2: MPCitH-VER

Converts the MPCitH-IOP prover P and verifier V to an MPCitH-VE prover P and verifier V
using the the extratable commitment scheme ECOM = (CGen,Commit,CExt) as constructed in
Section 3.1.

Parameters: The number of parties N ; the number of parallel repetitions τ ; the number of opened
parties t; the challenge set Ch =

{
e ∈ [N ] : |e| = t

}
.

Key Generation G(1λ): It invokes (pk, sk)← CGen(1λ) and outputs (pk, sk).
Two-party protocol 〈P(w),V〉(pk, x):

1. P runs P on input (x,w) to obtain the proof string π = (V1, . . . , VN ).
2. P separately commits to each of these N views to generate per-party commitments

(com1, . . . , comN ) where comi = Commit(pk, Vi; ri) and ri is commitment randomness uni-
formly sampled from Sr.

3. V invokes V on input x to obtain challenge e ∈ Ch, and sends it to P.
4. P opens the commitments of the t parties, by revealing (Vi, ri)i∈e.
5. V sends the views (Vi)i∈e to V as a response to the oracle query. It accepts if and only if:

(a) comi = Commit(pk, Vi; ri) and r ∈ Sr for all i ∈ e, i.e., P opened the views corresponding
to (comi)i∈e successfully, and

(b) V outputs 1.
P and V execute τ instances of the above procedures in parallel. If V accepts in all τ executions,
it outputs b = 1 and a transcript

tr = ((com(j)
i )i∈[N ], e(j), (V (j)

i , r
(j)
i )i∈e(j))j∈[τ ] .

Otherwise, V outputs b = 0 and tr = ⊥.
Compression C(x, tr):

1. For j ∈ [τ ], extract the t witness shares w(j)
i = GetW(V (j)

i ) for i ∈ e(j) and partially
reconstruct the witness w̃(j) =

∑
i∈e(j) w

(j)
i .

2. Output the compressed ciphertext C = (w̃(j), (com(j)
i )i∈e(j))j∈[τ ].

Receiver R(sk, C): To decrypt the ciphertext C, the receiver proceeds as follows.

1. For j ∈ [τ ] and i /∈ e(j), extract the unopened parties’ views V̂ (j)
i = CExt(sk, com(j)

i ) and
computes the corresponding witness shares ŵ(j)

i = GetW(V̂ (j)
i ). Let w(j) = w̃(j)+

∑
i/∈e(j) ŵ

(j)
i

be jth candidate witness.
2. If there exits some j ∈ [τ ] such that (x,w(j)) ∈ R, output w(j). Otherwise, output ⊥.
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by observing the RO query history. However, this does not suffice for instantiating verifiable encryption
because the receiver (i.e., decryptor) in the real-world clearly has no access to the query history.

Our compiler takes an alternative approach which simultaneously realizes a straight-line extractable
ZK proof system and valid verifiable encryption scheme. By replacing the commitment function with an
extractable commitment ECOM (as defined in previous section) where the recipient has the decryption
key sk, the recipient can decrypt the commitments to the unopened view(s) and recover all openings, then
use the extractor algorithm to recover a witness. We remark that our transform naturally generalizes to
other types of MPCitH protocols as well, since all such protocols (we are aware of) allow extraction of
a witness given the opernings of the per-party commitments (and indeed many use this in their security
reductions).

Because our presentation assumes the witness is shared with an additive secret sharing scheme, we
make use of this to compress the ciphertext, by summing the t revealed shares into the single value w̃.
If the secret sharing scheme of Πf does not allow such partial reconstruction, then the ciphertext may
simply include all shares. When generalizing to other types of secret sharing schemes the decryption
operation must also be generalized to reconstruct w from the shares of all parties.

Now we formally prove security of our construction.

Theorem 1. Let MPCitH-IOPR be an MPC-in-the-head-based IOP in the class described by Protocol 1
that is perfectly HVZK and SLE with knowledge error εsle-iop. Let ECOM be an extractable commitment
scheme that has εcext-extractability and is εhide-hiding. Then the compiled protocol, MPCitH-VER described
in Protocol 2, is εval-valid with validity error εval = εsle-iop + εcext and εzk-HVZK with εzk = τ(N − t)εhide.

Proof. We prove both properties separately.

HVZK follows from hiding of the commitment scheme and perfect HVZK of the base protocol MPCitH-IOPR.
The MPCitH-VER simulator S on input (pk, x) proceeds as follows, for each parallel repetition: (1)
invoke the MPCitH-IOPR simulator S on input x to obtain (e, (Vi)i∈e), (2) for each i ∈ e, define
comi = Commit(pk, Vi; ri) and for each i /∈ e, define comi = Commit(pk, 0|V |; ri), where 0|V | is the
zero-string with the length of a view and the commitment randomness ri’s are sampled uniformly, (3)
output ((comi)i∈[N ], e, (Vi)i∈e).

The computational indistinguishability of the simulation follows from a standard hybrid argument.
Since MPCitH-IOP is perfect HVZK, the τ ·t views output by S are distributed identically to views revealed
in the real executions. As the MPCitH-VE simulator S has to generate τ(N − t) unopened commitments
in total, we require τ(N − t) hybrids to replace these commitments to the real views with simulated ones.
For each hop, the distinguisher is able to distinguish two consecutive hybrids with probability at most
εhide. We thus obtain the bound τ(N − t)εhide.

Validity At a high-level, the proof proceeds as follows: if an MPCitH-VE cheating prover P∗ can convince
the verifier V while the receiver fails to decrypt a correct witness, then it must be that either (1) P∗
broke extractability of ECOM, or (2) one can construct a pair of adversaries (A∗,P∗) that break SLE
of MPCitH-IOPR. Adversaries (A∗,P∗) first extract views from the commitments sent by P∗ and then
forward them as a complete set of N views in the SLE-IOP game.

Now let us turn to the formal proof. We give proof for the single repetition case, but the argument
below naturally extends to τ parallel repetitions. We bound the probability that the receiver fails to
decrypt:

fail := Pr

b = 1 ∧ (x,w′) /∈ R :
(pk, sk)← G(1λ);x← A∗(pk, sk);

(b, tr)← 〈P∗(sk),V〉(pk, x);
C ← C(x, tr);w′ ← R(sk, C)



For brevity we omit the variable definitions after the colon in the following. From the description of
MPCitH-VER, the probability fail can be re-stated as follows.
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fail = Pr

CheckView(x, (Vi)i∈e) = 1 ∧ ∀i ∈ e : Commit(pk, Vi; ri) = comi

∧(x,
∑
i∈e

wi +
∑
i/∈e

ŵi) /∈ R

 (3)

= Pr


CheckView(x, (Vi)i∈e) = 1 ∧ ∀i ∈ e : Commit(pk, Vi; ri) = comi

∧(x,
∑
i∈e

wi +
∑
i/∈e

ŵi) /∈ R

∧∃i ∈ e : Vi 6= V̂i

 (4)

+ Pr


CheckView(x, (Vi)i∈e) = 1 ∧ ∀i ∈ e : Commit(pk, Vi; ri) = comi

∧(x,
∑
i∈e

wi +
∑
i/∈e

ŵi) /∈ R

∧∀i ∈ e : Vi = V̂i

 (5)

where for i ∈ [N ], V̂i = CExt(sk, comi) are the views obtained from comi; for i ∈ e, wi = GetW(Vi); for
i /∈ e, ŵi = GetW(V̂i), according to the operations of C and R.

If event (4) happens, then the extractability of ECOM is broken. Hence (4) is bounded by εcext.
We now give an upper bound for (5). First, it can be bounded as follows

(5) = Pr


CheckView(x, (V̂i)i∈e) = 1 ∧ ∀i ∈ e : Commit(pk, V̂i; ri) = comi

∧(x,
∑
i∈e

ŵi +
∑
i/∈e

ŵi) /∈ R

∧∀i ∈ e : Vi = V̂i

 (6)

≤ Pr
[
CheckView(x, (V̂i)i∈e) = 1 ∧ (x,

∑
i∈[N ]

ŵi) /∈ R
]

(7)

because we are guaranteed that V̂i = Vi and thus ŵi = wi for i ∈ e. Given a cheating prover (A∗,P∗)
that causes event (7) to occur, we construct an adversary pair (A∗,P∗) against SLE of MPCitH-IOPR.
1. A∗(1λ) invokes (pk, sk)← G(1λ) and forwards (pk, sk) to A∗.
2. On receiving x from A∗, A∗ forwards x to the IOP-SLE game.
3. P∗(x) runs P∗ on input x and plays an MPCitH-VE verifier V.
4. On receiving (comi)i∈[N ] from P∗, P∗ extracts the views by invoking V̂i = CExt(sk, comi) for i ∈ [N ].

Then P∗ constructs the proof string π = (V̂i)i∈[N ] and outputs in the SLE-IOP game.
5. On receiving an oracle query e from V in the SLE-IOP game, P∗ forwards e to P∗.
Since the canonical extractor E for MPCitH-IOPR (see Definition 8) also constructs a witness candidate
via w =

∑
i∈[N ] GetW(V̂i) =

∑
i∈[N ] ŵi, it must be that E fails to extract a valid witness if and only if

the receiver R fails to decrypt correctly, i.e.,

(7) = Pr
[
CheckView(x, (V̂i)i∈e) = 1 ∧ (x,E(x, (V̂i)i∈[N ]) /∈ R

]
≤ εsle-iop (8)

Overall, we have that fail ≤ εcext + εsle-iop. ut

3.2.1 Optimizations While the prover in our generic compiler MPCitH-VE commits to a complete per-
party view Vi using ECOM, several standard optimization techniques in the literature also are applicable
in our setting for better computational and communication complexities. Notice that R would only need
witness shares (wi)i∈[N ] to be able to recover the plaintext. Hence, it would be sufficient to have the prover
P commit to wi using ECOM, and to the rest of the strings in Vi using the random oracle commitments
as the ZKBoo/ZKB++ prover does [GMO16,CDG+17]. Since ECOM is instantiated with PKE in practice
while the RO is instantiated with cryptographic hash functions, this would significantly reduce the size
of transcripts and save both prover and verifier time for creating/opening commitments.

Moreover, following [KKW18], in case the MPC protocol Πf relies on a broadcast channel and thus
N − 1 out of N vies are revealed, we can decouple broadcast messages (msgsi)i∈[N ] from per-party views
to reduce the communication complexity, where each msgsi consists of messages broadcast by party i.
That is, the prover P first generates a root seed sd∗ to derive per-party seeds (sdi)i∈[N ] with a binary
tree construction. P now only commits to each seed sdi used for deriving a witness share and a random
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tape of party i using ECOM, and sends h = H((msgsi)i∈[N ]). On receiving challenge ī ∈ [N ] from V,
indicating the index of unopened party, P reveals msgsī and dlog2(N)e nodes in the tree, which are
sufficient to compute (sdi)i∈[N ]\{ī}. From such information, V can reconstruct the remaining broadcast
messages, check h against broadcast messages sent by all N parties, and check that N − 1 parties on
input (sdi)i∈[N ]\{ī} lead to a correct output “1” with respect to x and msgsī.

Our DKG-in-the-head protocol in Section 5.1 benefits from these optimizations.

3.3 Compiling Banquet and KKW

Although the IOPs corresponding to KKW and Banquet are not exactly in the class described by
MPCitH-IOP, we can compile them into verifiable encryption schemes using essentially the same idea.

To compile Banquet-IOP, it is sufficient to have the VE prover P commit to the per-party seeds
(sdi)i∈[N ] with an extractable commitment scheme during the first round. The second and third round
operations are identical to the original Banquet-IOP protocol, and the VE verifier V proceeds by following
the decision phase of Banquet-IOP and accepts iff V accepts and the N − 1 per-party commitments are
opened correctly. The compression and receiver algorithms C and R are defined analogously to those
of MPCitH-VE, except that witness offset ∆w is added by C when creating a partially reconstructed
witness w̃. Since the receiver tries to decrypt by using the SLE extractor algorithm defined in Lemma 6,
the compiled protocol has εval-validity with εval = εcext + εsle, assuming εcext-extractability of ECOM and
εsle-SLE of Banquet-IOP.

Likewise, we can compile KKW-IOP by having the VE prover P commit to the offline per-party states
(st(j)

i )i∈[N ] with ECOM. On the other hand, the other commitments in KKW-IOP can be instantiated
with the usual random oracle commitments as in the original KKW protocol. As we only need τ revealed
online executions to recover a witness, the compression algorithm C outputs as a ciphertext w̃(j) =∑
i 6=īj λ

w
i ⊕ ŵ(j) and com(j)

īj
for j ∈ T ⊂ [M ], where each witness mask share λwi is obtained from the

revealed value st(j)
i . Then the receiver R extracts the unopened share of the witness mask from com(j)

īj

and XORs it with ŵ(j) to recover a witness.

3.4 Applying Fiat–Shamir

Following the standard Fiat–Shamir transform [FS87], we can make our verifiable encryption protocol
MPCitH-VE non-interactive in the random oracle model, by hashing the first prover messages together
with x and pk to obtain challenge e ∈ Ch. Since the base interactive protocol has three rounds, the FS
transform introduces a multiplicative factor of q security loss in validity, where q is the number of random
oracle queries made by a non-interactive cheating prover. Note that this loss is well-known in (knowl-
edge) soundness analysis for FS-NIZK and EUF-KOA security of signatures constructed from canonical
identification schemes [KMP16]. Banquet-based verifiable encryption however requires a separate con-
crete analysis dedicated to the non-interactive version, since it has 7 rounds of interaction. Because the
EUF-KOA security analysis of Banquet as a signature scheme [BdK+21, Theorem 2] already evaluates
the probability that the witness (i.e., secret signing key) extraction fails, we expect their analysis can
be reused in large part to derive the concrete validity error of non-interactive Banquet-VE, although a
formal analysis is left for a future version of this work.

4 Methods for Compressing Ciphertexts

Because MPCitH protocols use τ parallel repetition to boost soundness, the ciphertexts output by our
transform can be large. For example, for 128-bit security, τ could range from 20 to 219. Each repetition
outputs one PKE ciphertext and a share of the witness, so the total size is τ(|PKE.Enc|+ |w|). In the post-
quantum case, lattice-based constructions can have relatively large ciphertexts. An interesting question
is whether these can be compressed, since these ciphertexts will usually be very redundant: note that for
an honestly created proof all τ repetitions encrypt the same witness (in different ways), and the receiver
will only need to decrypt one.

In this section we give two methods to compress the verfiable encryption ciphertexts output by
schemes created with our transform. The first, called the random subset method, is very simple, incurs no
computational overhead, and can reduce ciphertext size by a factor of three when τ is large. The second
approach, the equality proof method, is optimal as it acheives constant size ciphertexts, O(|w|) (provided
PKE has constant ciphertext expansion). However, it requires special properties of PKE, increases proof
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size, prover and verifier computational costs significantly, so it is more of a possibility result rather than
a practial construction. We highlight improving compression as an interesting direction for future work.

4.1 The random subset method

Protocol 3: Random subset ciphertext compression

A description of our random subset ciphertext compression method. The differences with
MPCitH-VER are highlighted. G, P, and V are unchanged.

Compression C(x, tr):
1. It samples a subset S ⊂ [τ ] of size n < τ uniformly at random.

2. For j ∈ S, it extracts witness shares w(j)
i = GetW(V (j)

i ) for i ∈ e(j) and computes a partially
reconstructed witness w̃(j) =

∑
i∈e(j) w

(j)
i .

3. It outputs a compressed ciphertext C = (w̃(j), (com(j)
i )i∈e(j))j∈S .

Receiver R(sk, C): To decrypt the ciphertext C, the receiver proceeds as follows.

1. For j ∈ S and i /∈ e(j), it extracts the unopened parties’ views V̂ (j)
i = CExt(sk, com(j)

i ) and
computes the corresponding witness shares ŵ(j)

i = GetW(V̂ (j)
i ). Let w(j) = w̃(j)+

∑
i/∈e(j) ŵ

(j)
i

be jth candidate witness.
2. If there exits some j ∈ S such that (x,w(j)) ∈ R, it outputs w(j). Otherwise, it outputs ⊥.

This compression method is rather simple, but the impact on ciphertext size can be significant, and the
cost to the prover is nothing, and almost nothing to the verifier. Protocol 3 formally describes optimized
compression and receiver algorithms. Upon receiving a verifiable encryption proof with our transform, the
verifier has a set of τ ciphertext components, corresponding to the τ parallel repetitions used to produce
the proof. The verifier chooses a subset of the ciphertexts to keep at random, and discards the others.
The size of the subset is denoted n, and is a parameter of the method.

We stress that soundness of the proof is unchanged, since the entire is proof is communicated to
the verifier. Only the analysis of the validity error must be updated, since the receiver now has only n
ciphertexts.

Let s be the number of ciphertexts in the initial set of size τ that are bad, meaning they do not decrypt
to the witness. For the proof systems we consider, having s > 0 is quite easy, as it only requires guessing
a small part of the challenge. Note that s must be at least n, otherwise the attack against compression
never succeeds, since V ’s output always contains one or more valid ciphertexts.

Below we will choose parameters for the random subset method applied to different proof systems, in
the interactive case. The adversary P∗, is a cheating prover who knows the witness, and tries to create a
verifiable ciphertext where decryption fails. Then the general form of P∗’s success probability is

Pr
[
C selects n of s bad ciphertexts ∧ P∗ convinces V while creating a proof with s bad ciphertexts

]
=#subsets with n bad ciphertexts

# of subsets · Pr
[
P∗ convinces V while creating a proof with s bad ciphertexts

]
=
(
s
n

)(
τ
n

) · (εsle-iop(s) + εcext)

where εsle-iop(s) is the probability that an IOP prover wins the SLE-IOP game with s parallel repetitions.
Formally, the random subset method updates the validity error of Theorem 1 as follows.

Theorem 2. Let MPCitH-IOPR be an MPC-in-the-head-based IOP in the class described by Protocol 1
with SLE knowledge error εsle-iop. Let ECOM be an extractable commitment scheme with εcext-extractability
and εhide-hiding. If the compression algorithm C and the receiver R of MPCitH-VER are replaced with
Protocol 3, then MPCitH-VER is εval-valid with validity error

εval = max
n≤s≤τ

(
s
n

)(
τ
n

) · (εsle-iop(s) + εcext) .

Proof is deferred to Appendix D.
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Fig. 2: Approximate minimum cost of breaking validity of ZKBoo-based VE (left) and DKGitH-based VE
(right) with a random subset of size n. The parameter τ denotes the number of parallel repetitions.
The number of parties N is fixed to 3 for ZKBoo and 64 for DKGitH, respectively. Note that τ = 219
corresponds to the picnic-L1 parameter from the Picnic spec [ZCD+20].

4.1.1 Application to IKOS/ZKBoo/ZKB++ We consider interactive IKOS-style protocols, such
as ZKBoo and ZKB++. For each repetition of the protocol, they have

(
N
2
)
-consistency, where N is the

number of parties. As ZKBoo and ZKB++ have N = 3 and Ch = {1, 2, 3} they have 3-consistency and
thus are SLE with knowledge error εsle-iop(s) ≤ 2/3 from Lemma 2. Hence, if the verifier outputs all τ
ciphertexts, the validity error is εval(τ) ≤ (2/3)τ + εcext. If the random subset optimization is applied,
however, this will give cheating provers an extra strategy to break validity: by breaking soundness only
in s executions and performing the remaining τ − s runs honestly using the genuine witness, the receiver
in the validity game still fails to obtain the right witness if the subset of size n is only selected from s
“bad” instances. Hence, now the validity error can be calculated as

εval(τ, n) = max
n≤s≤τ

(
s
n

)(
τ
n

) · ((2
3

)s
+ εcext

)
.

In Fig. 2 we show the costs of breaking validity for different combinations of τ and n assuming εcext = 0.

4.1.2 Application to DKGitH This is similar to IKOS, except that the default soundness error is
different. Because the corresponding MPC protocol uses a broadcast functionality, the prover reveals
N − 1 parties’ views and thereby the knowledge error is at most 1/N , instead of 1− 1/

(
N
2
)
. Hence, for τ

parallel repetitions we have

εval(τ, n,N) = max
n≤s≤τ

(
s
n

)(
τ
n

) · (( 1
N

)s
+ εcext

)
. (9)

In Fig. 2 we show the costs of breaking validity for different combinations of τ and n assuming εcext = 0.

4.2 The equality proof method

Recall that in a VE scheme created with our compiler, decryption iterates over the component ciphertexts
(from each parallel repetition) until the reconstruction function recovers a witness. It is guaranteed that
at least one of the component ciphertexts will cause decryption to succeed.

In an honestly generated proof, all component ciphertexts are valid, and decryption will always succeed
on the first attempt. Therefore, our transform produces VE ciphertexts that are very redundant. If after
the VE protocol, the prover were able to additionally prove that the receiver would produce the same
witness from all of the component ciphertexts, then the verifier could keep only one of the component
ciphertexts, making the VE ciphertext constant size. This is because either: all values are equal and
correct, or all values are equal and incorrect, but the latter case is equivalent to creating an invalid proof,
which is possible with only negligible probability by soundness of the proof protocol.

Note that the equality proof proves that the receiver function outputs the same value for any com-
ponent ciphertext – and is not requiring that we prove the relation. The crux of the receiver function
for MPCitH protocols is recombining additive shares of the witness, a comparatively simple operation.

21



However one of the shares is encrypted, meaning we are back to proving something about encrypted
data. We describe one instantiation of the idea to show that this is possible without resorting to general
methods, by using PKE in a non-black-box way.

Theorem 3. Let Π be an MPCitH-based IOP in the class given by Protocol 1 with t = N − 1, for a
relation R where |w| = λ. Then there exists a VE scheme Π ′ with a compression algorithm that produces
O(λ) ciphertexts for Π ′, assuming Paillier’s encryption scheme is IND-CPA secure.

Proof (Sketch). We describe the construction of the verifiable encryption scheme Π ′. First we compile
Π to a VE scheme using a slight variant of Protocol 2. Namely, we split the per-party commitments
into two so that the share of the witness and other information in the view are separate. Thus we have
an additional commitment public key pk′ for a second extractable commitment scheme Commit′ (which
may be the same as Commit, or a more efficient hash-based scheme, extractable in the ROM, since
extraction won’t be required for decryption). Then comi = Commit(pk, Vi; ri) is instead computed as
comi = (Commit(pk, wi; ri),Commit′(pk′, vi; si)), where (wlog) each view is assumed to be Vi = wi||vi.

Next, Π ′ is instantiated with extractable commitments constructed from the Paillier encryption
scheme. Paillier is IND-CPA secure under the decisional composite residuosity assumption [Pai99], and
encryption is perfectly correct, so it is a secure commitment scheme by Lemma 1. Further, each bit of
the witness share is encrypted separately which will allow bitwise operations using the homomorphic
properties of Paillier encryption.

The new compression algorithm C′ requires input from P (the equality proof) and V runs it to check
the proof and keep the final ciphertext. The steps for P are:
1. Run the compression algorithm C from Protocol 2, to get C = (w̃(j), ĉom(j))j∈[τ ], where ĉom(j) is the

unopened commitment for jth parallel execution. Since t = N − 1 there is only one commitment per
parallel repetition.

2. Recall that ĉom(j) = Enc(pk, ŵ(j)) and w = ŵ(j)⊕ w̃(j). Using the additive homomomorphic property
of encryption, compute C ′ = (Enc(ŵ(1) ⊕ w̃(1)), . . . ,Enc(ŵ(τ) ⊕ w̃(τ))) as described in Appendix A.
This is possible because w̃(j) are public constants, and there is only one unopened party, so we only
need to compute the XOR of one public and one encrypted value.

3. Convert the set C ′ of bitwise encryptions of w, to the set C ′′ of encryptions of w as described in
Appendix A. This is again possible using the homomorphic property, by computing w =

∑λ
i=0 2iwi

(converting from binary to integer), and choosing paramters such that λ-bit strings fit in the plaintext
space of Enc.

4. Prove all ciphertexts in C ′′ have the same plaintext. This step can be realized, e.g., with a standard
generalization of Schnorr’s proof of knowledge of a discrete logarithm (details in Appendix A). A
non-interactive equality proof π is output by P and sent to V.

The verifier V repeats Steps 1-3 to compute C ′′, then checks that π is valid. If so, V outputs the first
ciphertext in C ′′ as the encryption of w.

Since the output compression is one ciphertext, the resulting VE ciphertext clearly has size O(λ).
In terms of security, the protocol until Step 2 of C′ is secure by Theorem 1, since the modifications

to the commitment scheme maintain the required extractability and hiding properties. For the next part
of C′, we argue that the plaintext transforms in Steps 2 and 3 to compute C ′′ are 1:1 and thus maintain
validity. Because we’re guaranteed by Theorem 1 that the scheme is valid, decryption of C suceeds with
overwhelming probability, which means that at least one component ciphertext is an encryption of w
that is valid, in particular the plaintexts are guaranteed to be single bits. When a ciphertext in C is
an encryption of individual bits, then steps 2 and 3 are reversible, implying that if ciphertext j in C
is valid, then ciphertext j in C ′′ is also valid. Finally, as argued above since C ′′ contains at least one
valid encryption of w, all ciphertexts must encrypt w assuming the equality proof in Step 4 is sound
with overwhelming probability. The assumptions required for the proof in Step 4 can vary, but with an
interactive version of Schnorr’s proof we need only assume that discrete logarithms are hard in the Paillier
group, which is implied by the DCR assumption required for security of Paillier encryption. ut

The construction has drawbacks that keep it from being practical, and it would interesting to address
them. Because we require some (relatively weak) homomorphic properties, we lose the flexibility in the
choice of PKE, and do not know of a PQ-secure instantiation short of FHE. Then the cost of creating and
communicating of the proof soars because we require bitwise encryptions of witness shares, meaning the
prover must compute O(τNλ) individual Paillier encryptions. In practice this cost could be significantly
reduced by using binary Elgamal, however then the final ciphertext would have to remain in the bitwise
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representation (to allow efficient decryption) meaning the ciphertext would have size O(λ2), rather than
O(λ).

5 Concrete Instantiations

5.1 Verifiable encryption of discrete logarithms in any prime order group

Perhaps the most fundamental relation in cryptography is the discrete logarithm in a prime order group
G, i.e., (y, x) such that y = gx where 〈g〉 = G. As an application our transform, we give a new protocol
to verifiably encrypt a discrete logarithm. We construct an MPC protocol to compute y from shares of x,
which naturally gives an MPCitH protocol to prove knowledge of x. When compared to the most efficient
proof of knowledge for discrete logarithms, the Schnorr proof, our new protocol is much less efficient, but
is amenable to our transform, and can therefore be used to verifiably encrypt discrete logs.

As an aside, we remark that our new proof protocol has a tight reduction to the discrete logarithm
problem in the random oracle model. This feature is of theoretical interest as it implies a signature scheme
based on the discrete logarithm problem with a tight security reduction.
Related Work As a baseline for comparison, we use the Camenisch-Damgård protocol [CD00] for a
generic Σ protocol, combined with Schnorr’s Σ-protocol [Sch91] for discrete logs with binary challenges,
to verifiably encrypt a discrete logarithm. This the only verifiable encryption scheme we are aware of that
works for discrete logarithms in any cyclic group, and allows a flexible choice of PKE (as our protocol
does). It also requires the random oracle assumption to make the proof non-interactive.

The second, more efficient, protocol in [CD00] paper has k parallel repetitions, and the verifier selects
a subset to form the output, and audits the encryption step of the k−u other repetitions (and the verifier
checks all repetitions have a valid transcript for the Σ protocol with one challenge). No parameters are
given for concerete, non-interactive security – we found that for λ-bit security, (k, u) must be chosen
so that

(
k
u

)
≥ 2λ. Then there are multiple possible choices for (k, u), which trade ciphertext size for

computation: we can have a small decrease in ciphertext size, for a large increase in comptuation and
proof size. Our comparison in Table 1 gives some of the options.

Another VE scheme we compare to is from [NRSW20], which can encrypt a discrete logarithm in
an elliptic curve group, using a special PRF called Purify. The scheme does allow, e.g., encryption of
an ECDSA private key, but requires that encryption be done with an Elgamal-like PKE. A complication
related to implementation of the Purify PRF is that one must choose an additional pair of elliptic curves,
related to the group order of the curve where the discrete logarithm is defined, such that the DDH
assumption holds. In addition to making these additional parameter choices, we must also make an
assumption beyond the DLP + PKE assumptions in G (as in [CD00] and our scheme).

We omit comparison to [CS03] since it only works for discrete logarithms in a group suitable for
Paillier’s encryption scheme, and the PKE is fixed to Paillier’s scheme as well. The scheme is not suitable
for encrypting an ECDSA private key, one of our motivating examples.

5.1.1 The proof protocol: DKG-in-the-head We first describe the base non-interactive ZK proof
system DKGitH for relation R =

{
(y, x) : y = gx

}
. The core idea of the protocol is based on the additive

homormorphism of private keys, under multiplication of public keys, and may be folklore (an early
reference describing it is [Ped92]). To compute f(x) = gx

?= y in a distributed manner, the prover
P provides shares of x to the N parties such that x =

∑N
i=1 xi (mod p). Then P emulates a simple

distributed key generation (DKG) protocol Πf that proceeds as follows.
1. Each party i computes yi = gxi , and broadcasts yi.

2. Output y ?=
∏N
i=1 yi

The prover commits to the shares of the parties, and the yi values (together these two values makeup
party Pi’s view), then the verifier selects one party to remain unopened, having index ī. In the response,
the prover sends the views of the other N − 1 parties, along with yī, and a commitment to xī. Based on
the revealed values, the verifier V checks that y = yī

∏
i∈[N ],i6=ī g

xi and that each yi is computed correctly.
The protocol Πf is perfectly (N − 1)-private: suppose we are given the index of a party ī, we show

that we can simulate the views of the other N − 1 parties, such that simulated and real transcripts are
perfectly indistinguishable. First the simulator chooses xi at random, for i 6= ī and computes yi = gxi ,
as in the real protocol. Then for party ī, the simulator sets yī = y/(

∏
i 6=ī yi). Note that yī = g

x−
∑

i6=ī
xi ,

and xī = x−
∑
i6=ī xi is distributed exactly as in the real protocol.
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Along with the core idea, the full protocol in Protocol 4 uses two ideas (originating in [KKW18])
that are now standard in protocols of this type. First, the shares of the parties are computed by reading
random values from their tapes, and the first share is corrected with an auxiliary value that depends on
the secret. Second, the tapes are derived from a per-iteration seed with a binary tree construction, so
that the N − 1 revealed seeds can be opened by revealing dlog2(N)e seeds.

Remark 5. Although Protocol 4 already incorporates the optimizations described in Section 3.2.1, the
underlying MPCitH-IOP protocol instantiated with Πf does satisfy the requirements from Section 2.5 so
that our general compiler theorem applies: the challenge space is Ch =

{
e ⊂ [N ] : |e| = N − 1

}
; the party

i’s view Vi consists of (xi, (yi′)i′ 6=i); the function GetW(Vi) outputs xi; the function CheckView(y, (Vi)i∈e)
parses Vi as (xi, (yi′,i)i′ 6=i) and checks y ?= gxi

∏
i′ 6=i yi′,i for all i ∈ e and yi′,i

?= gxi′ for i ∈ e and
i′ ∈ [N ] \ {i, ī}, where ī /∈ e is an index of the unopened party. Proving 2-consistency (Definition 7) and
thus SLE with εsle-iop = 1/N (Lemma 2) is straightforward. Showing 1. from 2. is trivial. To show the
converse, let e, e′ be two distinct challenges. If CheckView outputs 1 w.r.t. both challenges, then for some
i such that i ∈ e∩e′, it must be that y = gxi

∏
i′ 6=i g

xi′ = gx1+...+xN . Hence, (V1, . . . , VN ) form an honest
execution of Πf on y and witness shares (xi)i∈[N ] as inputs.

Remark 6. The idea of DKG-in-the-head can be generalized to proving knowledge of a preimage under a
one-way group homomorphism. For example, if the homomorphism is φ : m 7→ me mod n with n = p · q,
one can design a simple MPCitH protocol for knowledge of an RSA preimage: the parties share m
multiplicatively, m = m1 · · ·mN (mod n) then broadcast φ(mi) = me

i , and then check that c =
∏
me
i

(mod n).

5.1.2 Applying our transform Following Protocol 2, we can directly convert Protocol 4 to a verifiable
encryption scheme for discrete logarithms, using any PKE meeting the requirements of Section 3. In this
section we make a specific choice of PKE that allows some optimizations and comparison to previous work.
We use an instance of the hashed Elgamal scheme in the same group G as our discrete logarithm relation,
where plaintexts are elements of Zp. The scheme uses a hash function Hp : {0, 1}∗ → Zp modelled as a
random oracle. Key pairs are of the form (sk, pk) = (z, gz) and Enc(pk,m) outputs (c1, c2) where c1 = gr

for r←$Zp and c2 = Hp(pkr) +m (mod p).
Creating a VE ciphertext from a transcript is similar to Protocol 2, but we can compress ciphertexts

even further by using the homomorphic property of Elgamal to combine the partially reconstructed
witness with the encrypted share. The compression function C(tr) proceeds as follows:
1. For each execution j ∈ [τ ]

(a) Recompute x(j)
i as in Verify, then compute x̃(j) =

∑
i 6=īj x

(j)
i .

(b) Parse comīj
as the Elgamal ciphertext (c1, c2). Set C(j) = (c1, c2 + x̃(j))

2. Output C = (C(j))j∈[τ ] as the ciphertext.
Decryption is somewhat simpler than in Protocol 2 as C(j) in C now encrypt the witness directly,

rather than encrypting shares. The function R(sk, C) proceeds as follows:
1. For each repetition j ∈ [τ ],

(a) Decrypt C(j) using sk to get x′ ∈ Zp
(b) If y = gx

′ output x′.
As the soundness error of the proof protocol is assumed to be negligible, decryption will succeed in Item 1b
for one of the repetitions with overwhelming probability.

We now point out another optimization that reduces both proof and ciphertext sizes. For each ci-
phertext the prover computes, we use y(j)

i = gx
(j)
i as the c1 component of the Elgamal ciphertext. This

reduces the ciphertext size in the proof to a single element of Zp and saves one exponentiation, reducing
the prover’s total number of exponentiations by τN . The size of the output ciphertext C stays the same
though, since the value gx

(j)
ī must be present for decryption.

Parameter choices As an interactive protocol, it’s easy to see that the soundness error is 1/N . When
executing τ repetitions in parallel, we therefore need to set τ so that (1/N)τ < 2−λ, or equivalently
τ log2(N) ≥ λ. This offers a range of choices for (N, τ) for each choice of λ, with a different balance of
proof size and running time.
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Protocol 4: DKGitH for relation R =
{

(y, x) : y = gx
}

Parameters Let G be a group of prime order p generated by g, written multiplicatively. Let τ
be a parameter for the number of parallel repetitions. N denotes the number of parties. Let
ECOM = (CGen,Commit,CExt) be an extractable commitment scheme.

Key Generation G(1λ) outputs a key pair (pk, sk)← CGen(1λ)
Prover P(pk, x, y):

Commit
1: Sample a random salt salt←$ {0, 1}2λ.
2: for each parallel repetition j do
3: Sample a root seed: sd(j)←$ {0, 1}λ.
4: Compute parties’ seeds sd(j)

1 , . . . , sd(j)
N as leaves of a binary tree with root sd(j).

5: for each party i do
6: Expand seed to witness share tape: x(j)

i ← Expand(salt, j, i, sd(j)
i )

7: Commit to share: com(j)
i ← Commit(pk, salt, j, i, x(j)

i ).
8: end for
9: Compute witness offset: ∆x(j) ← x−

∑
i x

(j)
i .

10: Correct first share: x(j)
1 ← x

(j)
1 +∆x(j).

11: for each party i do
12: Compute and broadcast y(j)

i = gx
(j)
i

13: end for
14: end for
15: Set π1 ← (salt, ((com(j)

i , y
(j)
i )i∈[N ], ∆x

(j))j∈[τ ]).
Challenge

1: Let h = (̄i1, . . . , īτ ) = H(π1, y, pk), where īj ∈ [N ]
Response and output

1: for each parallel repetition j do
2: sds(j) ← {log2(N) nodes needed to compute sd(j)

i for i ∈ [N ] \ {̄ij}}.
3: end for
4: Output tr← (salt, h, (sds(j), com(j)

īj
, ∆x(j))j∈[τ ]).

Verifier V(pk, y, tr):
1: Parse tr as (salt, h, (sds(j), com(j)

īj
, ∆x(j))j∈[τ ]) and h as (̄i1, . . . , īτ )

2: for each paralell repetition j do
3: Use sds(j) to compute sd(j)

i for i ∈ [N ] \ {̄ij}.
4: for each party i ∈ [N ] \ {̄ij} do
5: Recompute x(j)

i ← Expand(salt, j, i, sd(j)
i ), com(j)

i ← Commit(pk, salt, j, i, x(j)
i ) and

y
(j)
i = gx

(j)
i .

6: if i ?= 1 then
7: Correct first share: x(j)

i ← x
(j)
i +∆x(j).

8: end if
9: end for

10: Compute y(j)
īj

= y/(
∏
i6=īj y

(j)
i )

11: end for
12: Set π1 ← (salt, ((com(j)

i , y
(j)
i )i∈[N ], ∆x

(j))j∈[τ ]).
13: Accept if h ?= H(π1, y, pk), otherwise reject.
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Efficiency Starting with the proof, without our transform, when Commit is implemented with a hash
function, the size is

4λ+ τ(λ dlog2Ne+ 2λ+ `p) .

bits where `p is the bitlength of an integer modulo the group order. When our transform is applied, the
term 2λ for com(j)

ī
is replaced with `C , the size of a PKE ciphertext. With our transform, the size of a

VE ciphertext is τ(`p + `C) for any PKE, and τ`p for our choice of hashed Elgamal. With Elgamal, the
computational costs of the protocol can be rougly estimated by counting the exponentiations in G. With
the encryption scheme and optimizations described above, the prover must compute 2τN exponentiations
and the verifier must compute 2τ(N − 1) exponentiations.

Examples and comparison We give some concrete parameters showing various time-speed trade offs,
and compare to related work in Table Table 1. We give three parameter sets, and estimate the size
in bytes of the transcript tr, the VE ciphertext |C| (both with and without the random subset (RS)
optimization), as well as the computational costs of the prover and verifier. For the costs we count the
number of exponentiations, and also give an estimated time in milliseconds (ms) by using the timings
given in [NRSW20] (based on their benchmarks from an Intel i7-7820HQ system pinned to 2.90 GHz).

The options for our scheme offer short ciphertexts (480–640 bytes), at the expense of higher prover
and verifier times, or much lower times, but with larger ciphertexts (1536 bytes) and proof sizes, or
somewhere in the middle.

When comapred to [NRSW20], there the ciphertext size is a regular Elgamal ciphertext, the proof
size is about 1KB, but the prover and verifier times are 943ms and 50ms respectively. Notably, the prover
time is much less, about 10-24x faster with the parameters above.

We also compare to the [CD00] scheme with Schnorr’s Σ-protocol for discrete logs, using the same
hashed Elgamal scheme. It has proof size λ+ k`p + (k − u)λ+ u`C and ciphertext Size: u(`C + `p + 1).
Prover and verifier must compute 4k exponentiations. In terms of proof and VE ciphertext size, our
scheme always outperforms [CD00]. The running time of the prover and verifier are nearly the same.

Scheme N τ n k u |tr| |C| (RS) P exp. (ms) V exp. (ms)
DKGitH 64 48 15 7744 1536 (480) 6144 (239.62) 6048 (235.87)

85 20 20 3584 640 (640) 3400 (132.60) 3360 (131.04)
16 32 30 4160 1024 (960) 1024 (39.94) 960 (37.44)
4 64 48 6208 2048 (1536) 512 (19.97) 384 (14.98)

[CD00] 712 20 35100 1922 2880 (112.32) 2880 (112.32)
250 30 13500 2884 1000 (39.00) 1000 (39.00)
132 64 9424 6152 528 (20.59) 528 (20.59)

[NRSW20] 1100 64 24823 (968.10) 1316 (51.32)
Table 1: Parameters and performance estimates for veriable encryption of a discrete logarithm. Our
scheme is in the first part of the table, followed by the generic scheme from [CD00] (combined with
Schnorr’s proof protocol [Sch91]), followed by the Purify PRF-based construction of [NRSW20]. Sizes are
given in bytes. The ciphertext size for our scheme when the Random Subset Section 4.1 compresssion
method is used is given in parenthesis.

5.2 Verifiable encryption of AES private keys

As a corollary of our transform applied to Banquet-IOP, one can verifiably encrypt an AES private key
used for generating a given public ciphertext. Concretely, since Banquet-IOP is specialized for relation
R =

{
((ct, pt),K) : ct = AESK(pt)

}
, one can verifiably encrypt K with some PKE satisfying the relation

R. To the best of our knowledge, no prior work proposed a verifiable encryption scheme for AES private
keys. Notably, if PKE is instantiated with quantum-resilient schemes, such as lattice-based ones, one can
obtain post-quantum verifiable encryption (in the sense that both the encryption scheme and relation to
be proven about the plaintext may withstand quantum attacks). As we analyze in Appendix C, variants
of the FO transform can be used for achieving undeniability and thus many efficient post-quantum PKE
schemes, including Kyber [SAB+20] and FrodoKEM [NAB+19], are indeed compatible with our framework.
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P(w, x, pk) V(x, pk)

Run Σ-protocol prover on w, x to get a.
Run Σ-protocol prover on input
challenges 0 and 1, respectively.
Obtain responses z0, z1.

ce := Enc(pk, ze; re) for e = 0, 1. a, c0, c1

e ∈ {0, 1}

ze, re

Run Σ-protocol verifier to check (a, e, ze)

Check ce
?= Enc(pk, ze; re)

If check passes output C := (cē, a, e, ze)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R(cē, a, e, ze, sk)
Get zē := Dec(sk, cē)
Recover w by invoking E(a, e, ē, ze, zē)

Fig. 3: Camenisch–Damgård verifiable encryption.

6 Camenisch–Damgård Verifiable Encryption with Imperfect Correctness

6.1 The Camenisch–Damgård framework [CD00]

Σ-protocol A Σ-protocol for relation R is an interactive proof system consisting of three rounds. In a
Σ-protocol, the prover sends a message a, the verifier replies with a random bit string e, and the prover
responds with z. The verifier decides to accept or reject based on the transcript (a, e, z). A Σ-protocol can
be efficiently compiled into a non-interactive zero-knowledge proof of knowledge (in the random oracle
model) through the Fiat-Shamir transform [FS87]. The usual requirements for a Σ-protocol are special
soundness and honest verifier zero knowledge. In particular, special soundness implies existence of an
efficient extractor E that outputs a valid witness, given two accepting transcripts (a, e, z) and (a, e′, z′)
such that e 6= e′.
The transform See Fig. 3. We assume that there exists a Σ-protocol with one-bit challenge for relation
R. On a high-level, the receiver R can obtain a witness by first decrypting the unopened response and
then by invoking the extractor E of the underlying Σ-protocol.

6.2 Committing encryption is required for [CD00]

In the analysis of the VE scheme in Fig. 3, Camenisch and Damgård assume only that Enc is semantically
secure, which means that ciphertexts are indistinguishable against chosen plaintext attacks (also called
IND-CPA security, or CPA security for short). We first note that CPA security does not imply that an
encryption scheme is committing if its correctness is not perfect, so the analysis of [CD00] suggests that
this property is not required for the security of their VE scheme.

We provide two counterexamples to the security analysis of [CD00]. An example with LWE-based
encryption is deferred to Appendix B. We describe encryption schemes that are semantically secure, and
non-committing, in a way that allows a malicious prover, who knows the witness, to compute a proof
and ciphertext guaranteed to decrypt to junk, rather than the witness, breaking the validity property of
Definition 3.

Here we present the scheme that is essentially an instance of the basic construction of [CDNO97], and
is much simpler than a fully deniable encryption scheme, as we only need the prover to be able to open
ciphertexts by flipping bits in one direction. In our attack the unopened/junk encryptions are encyrptions
of the all-ones string, and when we open one to a specific value, we must flip some of the ones to zero, but
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we never need to change a zero to a one bit. In a more general deniable encryption scheme we would need
both one-to-zero and zero-to-one, in order to open one arbitrary message to another arbitrary message.

6.2.1 A secure encryption scheme that is not a commitment We describe the encryption scheme
now. Let λ be a security parameter and for an RSA modulus n, let QRn be the set of quadratic residues
in Z∗n.
Key generation: Generate an RSA modulus n = pq, along with a generator g of a cyclic subgroup of
QRn, of size ρ. Output the secret key sk = (p, q) and public key pk = (n, g)

We leave the details to [Gro05], where this is called an RSA subgroup pair. We note only that when
generating (n, g) there is flexibility for ρ, in particular we can have ρ be cryptographically large (e.g.,
ρ ≈ 22λ), but still only be a negligible part of QRn.
Encryption: To encrypt the n-bit string (m1, . . . ,mn), under the public key (n, g), encryption outputs
the vector (c1, . . . , cn) ∈ QRn, where

ci =
{
gri if mi = 1, or
ri if mi = 0

and ri is a uniformly chosen random integer in QRn.
Decryption: To decrypt the ciphertext (c1, . . . , cn) using secret key (p, q), output (m1, . . . ,mn) where

mi =
{

1 if ci ∈ 〈g〉
0 if ci 6∈ 〈g〉.

Using the secret key, we can efficiently test if ci ∈ 〈g〉, by cheking the order of ci.
Fake opening: We first explain faking for a single-bit ciphertext. The scheme allows an encryption of
one to be opened as if it were an encryption of zero. Let the ciphertext be c = gr, the encryptor outputs
m = 0 and r = c (claiming they they generated c at random, as specificed by the 0 case of encryption).
Note that re-encryption with m = 0, r = c outputs c, as required. For longer ciphertexts, the same step
can be repeated for each bit, and we can open an encryption of the all-ones string to any string.
Corrrectness:When encrypting a one bit, the ciphertext is always in 〈g〉 and will be decrypted correctly.
When the plaintext is a zero, decryption can fail if by chance ri is in 〈g〉. Since key generation ensures that
ρ/|QRn| is negligible, this happens with negligible proability for polynomially bounded message length.
IND-CPA security Security relies on the hardness of the decisional RSA subgroup assumption, de-
scribed by Groth in [Gro05], which states that distinguishing elements in 〈g〉 from elements in QRn is
hard. This is closely related to the prime residuosity assumption introduced by Benaloh and Fisher [CF85]
and later used in other constructions, e.g. [BCP03,NS98]. More generally, our scheme can be constructed
with any subgroup indistinguishability assumption, as defined by Brakerski and Goldwasser [BG10], pro-
vided the size of the subgroup is much smaller than the group (as required for correctness). Other options
for instantiating the subgroup indistinguishability assumption are given in [BG10], in particular the in-
stantiation based on the Damgård-Jurik [DJ01], generalization of the decisional composite residuosity
assumption [Pai99] would be suitable for our construction (because it allows the subgroup to be smaller;
see [BG10, Footnote 8]).

Under the decisional RSA subgroup assumption, IND-CPA security of the the single-bit case follows
directly, by noting that the set of ciphertexts corresponding to an encryption of one is 〈g〉 and the set
of ciphertexts corresponding to an encryption of zero is QRn. Distinguishing 〈g〉 from QRn immediately
breaks CPA security, and we can trivially construct an attacker B for the the decisional RSA subgroup
problem given a CPA attacker (with the same success probability). With n-bit messages, B’s advantage
degrades by a factor 1/n.

6.2.2 An Attack on [CD00] verifiable encryption We now give a simple attack on the Camensich–
Damgård verifiable encryption scheme, given in Fig. 3, when the recipient’s public key encryption algo-
rithm is our semantically secure encryption scheme given above.

In the first message, the two encryptions ce are computed as Enc(pk, 1`; re), i.e., the malicious prover
P∗ replaces the plaintext ze with an encryption of the all-ones string having the same length.5

5 For simplicity we assume here that all ze values are encoded to have the same length.
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After seeing the challenge e, P∗ must open the ciphertext ce, and provide the plaintext and randomness
so that V can check it. P∗ uses the faking algorithm of Enc in order to claim that ce was in fact an
encryption of ze, as required. This ensures that V’s check ce = Enc(pk, ze; re) succeeds. Since ze is
computed honestly (using the witness), V’s check of the transcript (a, e, ze) will also pass.

However, the VE ciphertext output consists of an encryption of 1`, and so the decryption will not
produce a witness with probability 1, breaking the validity property, which was claimed to hold with
probability 1/2 by [CD00, Theorem 2]6.

6.3 Fixing the [CD00] security analysis

By additionally assuming undeniability of PKE (Definition 10) we can prove validity of the scheme de-
scribed in Fig. 3. Recall that a cheating prover P∗ wins the validity game if the receiver R failed to
decrypt a witness while the verifier V accepts. Similar to the validity analysis of Theorem 1, we consider
two cases: (1) ze 6= Dec(sk, Ce) while ce = Enc(pk, ze; re) and (2) ze = Dec(sk, Ce) while (a, e, ze) is an
accepting transcript, where the challenge bit e is chosen uniformly. In the former case, one can break
undeniability of PKE using a cheating prover P∗. In the latter case, due to special soundness, if the ex-
tractor E (internally invoked by R) fails to obtain a valid witness, it must be that the unopened response
zē = Dec(sk, cē) is non-accepting w.r.t. (a, ē). Since ze and zē are determined before a cheating prover
P∗ gets to see the challenge e, the probability that P∗ can correctly guess e is at most 1/2. Overall, the
validity error is εval = εcext + 1/2.
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A Bitwise Commitment and Encryption

Our equality proof method (Section 4.2) to compress ciphertexts requires an extractable commitment
scheme where the messages are bitstrings, and the commitments must be (somewhat) homomorphic with
respect to the XOR operation. For a comitted value c = Commit(a) and a public value b, where a and b
are both bitstrings, we must be able to compute c′ = Commit(a⊕ b). In Section 4.2 our construction uses
Paillier encryption, but what we describe here also applies to Elgamal encryption and can be adapted to
Pedersen commitments. The setup is a group G with generator g and public key h. Encryption is defined
as follows.
Ench(a1, . . . , aλ; r1, . . . rλ) The inputs a1, . . . , aλ are bits, and the inputs r1, . . . , rn are random values
modulo the order of G. The output is c = ((e1, d1), . . . , (eλ, dλ)) ∈ G2n where (ei, di) = (gri , gaihri).
XOR of comitted and public values Given c = Ench(a1, . . . , aλ; r1, . . . , rλ), and b = (b1, . . . , bλ), to
compute c′ = Ench(a⊕b; r′1, . . . , r′λ), first note that, when ai and bi are bits, ai⊕bi = ai+bi−2aibi, and the
latter computation can be done corectly modulo the group order of G since ai and bi are bits. Therefore,
we compute (e′i, d′i) as ((ei · gbi)/(e2bi

i ), (di · gbi)/d2bi
i ), and the prover can compute r′i = ri + bi − 2ribi

(over Z when the group is of unknown order).
Converting from single-bit to bitstring encryptions Once all homomorphic operations have been
performed, we can convert a bitwise encryption to a = (a1, . . . , aλ)2 whenever λ < blog2(|G|)c, by simply
computing an encryption of the integer a =

∑λ
i=1 ai2i, as (

∏
e2i
i ,
∏
d2i
i ), with opening r′ =

∑λ
i=1 ri2i.

Proving equality of committed values It is straightforward to prove two bitwise encrypted values are
the same by proving the individual bits are the same. Once the ciphertext has been converted an integer,
proving equality is standard in the literature. Using a generalization of Schnorr’s proof (called the “general
linear protocol” in [BS20, §19.5.3]), we can prove knowledge of (a, r1, r2) such that e1 = gahr1∧e2 = gahr2

(and this generalizes to multiple commitments in a straightforward way).

B Attacking [CD00] Instantiated with LWE-based Encryption Schemes

In this section we discuss why a plain IND-CPA-secure LWE-based encryption doesn’t satisfy undenia-
bility and how it affects concrete security of [CD00].

B.1 LWE encryption scheme

Below we first recall a construction presented in [Lyu20, §2], a simplified version of the Regev encryp-
tion [Reg05]. The scheme is proven IND-CPA secure under the (decisional) LWE assumption, but we
show that it fails to satisfy the undeniability property.
Key generation. Let q be a prime. Following [Lyu20] let us denote [β] := {−β,−β + 1, . . . , β} with
β � q. The key generation algorithms samples A ∈ Zm×mq , s ∈ [β]m, and e1 ∈ [β]m uniformly at random.
It outputs public key (A, t) and secret decryption key s, where

t = As + e1 mod q.

Encryption. An encryptor is given (A, t) and message µ ∈ {0, 1} as inputs. It first samples r ∈ [β]m,
e2 ∈ [β]m and e3 ∈ [β]m uniformly at random and outputs ciphertext (u, v), where

uT = rTA + eT2 mod q

v = rT t + e3 + q

2 · µ mod q

Decryption. A decryptor is given s and (u, v). It computes v−uT s and outputs 1 if the result is closer
to q/2 than to 0, and outputs 0 otherwise.
Statistical correctness. The above encryption scheme is statistically correct. Note that

v − uT s = rT (As + e1) + e3 + q

2 · µ− rTAs− eT2 s

= rTe1 + e3 − eT2 s + q

2 · µ

33



For decryption to be correct the noise term rTe1 + e3 − eT2 s must have a norm smaller than q/4.
Hence, the parameters (q,m, β) should be chosen such that the following probability is negligible.

δ := Pr
[
|rTe1 + e3 − eT2 s| ≥ q

4 : s, e1, e2, r←$ [β]m; e3←$ [β];
]
.

As |rte1| ≤ mβ2 and |et2s| ≤ mβ2, by setting 2mβ2 + β < q/4 one can actually achieve perfect
correctness. For the sake of efficiency, however, such a parameter choice is unusual. For example, if
(q,m, β) = (3329, 4096, 1) one can achieve the decryption error probability δ ≈ 2−142. In practice, the
lower bits of ciphertext are often truncated, which trades ciphertext size for decryption error, but we
ignore this optimization for simplicity.

B.2 Attacks breaking undeniability

We present three scenarios, depending on the adversarial power.
– Case 1. Adversary generates a key pair (i.e. breaking strong undeniability) If the adversary

has control over key generation then the attack is straightforward: by setting s = (−β, . . . ,−β) and
e1 = (β, . . . , β), they encrypt µ = 1 with randomness r = e2 = (β, . . . , β) and e3 = β. Clearly, the
resulting ciphertext (u, v) decrypts to 0, since the noise term rTe1 + e3 − eT2 s exceeds q/4 for the
example parameter (q,m, β) = (3329, 4096, 1).

– Case 2. Key pair is generated honestly, but the adversary knows the decryption key (i.e.
breaking undeniability as defined in Definition 10) Even if a key pair is generated honestly,
one may observe that the attack succeeds if the adversary sees the secret decryption key (s, e1) as in
Definition 10. To maximize the norm of noise term, the adversary looks at each element of e1 and
adaptively choose the corresponding position of rT . That is, ri = β if e1,i is positive, and ri = −β
otherwise. The e2 is chosen in the same fashion and e3 doesn’t matter as it has little impact on the
resulting norm. For the example parameter (q,m, β) = (3329, 4096, 1) this strategy succeeds with
overwhelming probability (where the probability is taken over random coins used in key generation).

– Case 3. Key pair is generated honestly, and the adversary only receives the public key
(i.e. breaking a variant of undeniability weaker than Definition 10) Even if the adversary
does not get to see the decryption key, which may be the case in some practical scenarios, one can
still significantly increase the chance of decryption failure. If the adversary deterministically uses the
largest possible randomness rT = eT2 = (β, . . . , β) and e3 = β, it amounts to evaluating the following
probability.

δ′ := Pr
[
|rTe1 + e3 − eT2 s| ≥ q

4 : s, e1←$ [β]m; rT = eT2 = (β, . . . , β); e3 = β
]
.

For the example parameter (q,m, β) = (3329, 4096, 1), the decryption error is now δ′ ≈ 2−96, which
is significantly larger than the correctness error in the honest encryption case.

B.3 Attacking validity of [CD00]

The VE scheme described in Fig. 3 can be instantiated with the above LWE-based encryption by having a
prover encrypt the responses bit-by-bit, or with its improvements such as [GPV08,PVW08,LPR10,LPR13]
allowing for packing many bits in the plaintext per one encrypting operation. A cheating prover with
knowledge of a valid witness follows the protocol honestly, except that the encryption randomness is
always chosen to be large as above. In this case, the verifier always gets convinced while the receiver
fails to decrypt the unopened response correctly with some probability, depending on the scenarios. The
original analysis of [CD00] only claims to achieve a weaker variant of validity in which a prover does not
receive sk as inputs (corresponding to Case 3 above) and therefore the probability that decryption fails is
still small with the above simple attack strategy. Although this scenario may not lead to a practical attack
against validity of VE, the example illustrates how it fails to achieve 128-bit security in the validity game,
even though the underlying encryption scheme has 128-bit security in terms of decryption correctness.

Remark 7. We remark that, unlike the counterexample presented in Section 6.2, the randomness sub-
mitted by the adversary when opening the plaintext looks somewhat suspicious: because the norm of
revealed randomness is often large, the verifier may be able to detect that don’t follow correct (uniform)
distributions over the randomness space. However, it still serves as another counterexample to the se-
curity analysis of [CD00], because it does not specify how the verifier should check randomness when
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the plaintext is revealed. Applying the FO transform is one way to circumvent the issue, as we observe
in Appendix C. It would be an interesting follow-up question how the verifier should impose the norm
bound on revealed randomness such that the scheme retains both correctness and binding when used as
a commitment.

C Undeniability and Binding of Fujisaki–Okamoto Transform

As we observed in the previous section it turns out that an IND-CPA-secure PKE does not necessarily
satisfy the undeniability property. The issue is especially critical in the post-quantum scenario, because
typical lattice-based public key encryption schemes allow small probablity of decryption failure, which
can be exploited by a malicious adversary to break undeniability.

Motivated by this we consider simple generic constructions of undeniable encryption from any CPA-
secure scheme with statistical correctness. We analyze two variants of the Fujisaki–Okamoto trans-
form [FO99, FO13, HHK17] and prove that both provide computational undeniability in the random
oracle model. Note that from Lemma 7, binding of PKE when used as a commitment scheme is implied
by undeniability. Hence, the result in this section also implies these variants of the FO transform can be
used to construct a secure commitment scheme, which might be of independent interest. Throughout this
section, we denote the number of queries to a random oracle G by qG.

C.1 PKE1 [HHK17]

We first present a simple transform that forms the basis of both conversions. Let PKE = (Gen,Enc,Dec)
be an IND-CPA secure scheme with statistical correctness, message space Sm = {0, 1}k, and randomness
space Sr = {0, 1}l. Let G : {0, 1}∗ → Sr be a random oracle. Then we define a deterministic encryption
scheme PKE1 = (Gen1,Enc1,Dec1) as follows.
– Gen1 is identical to Gen
– Enc1(pk,M) takes M ∈ Sm and outputs c := Enc(pk,M,G(M)).
– Dec1(sk, c) first obtains M := Dec(sk, c), and
• if M ′ = ⊥ or c 6= Enc(pk,M ′; G(M ′)), outputs ⊥;
• otherwise outputs M ′.

From [HHK17, Theorem 3.1], if PKE is δ-correct, then PKE1 is δ1-correct in the random oracle model
with δ1(qG) = qG · δ. Note that this also implies that PKE1 is undeniable as well albeit not CPA secure,
since it is a deterministic encryption scheme.

C.2 PKE2 [FO99]

As a randomized variant of the previous conversion, we define PKE2 = (Gen2,Enc2,Dec2) parameterized
by bitlength k0 of randomness as follows.
– Gen2 is identical to Gen
– Enc2(pk,m; ρ) takes m ∈ {0, 1}k−k0 and ρ ∈ {0, 1}k0 such that m||ρ ∈ Sm and outputs c :=

Enc1(pk,m||ρ) = Enc(pk,m||ρ,G(m||ρ)).
– Dec2(sk, c) first obtains M ′ := Dec1(sk, c), and
• if M ′ = ⊥, outputs ⊥;
• otherwise parses M ′ as m′||ρ′ and outputs m′.

In [FO99], Fujisaki and Okamoto proved that the above conversion preserves IND-CPA security.
Hence, a commitment scheme constructed from PKE2 is computationally hiding. Moreover, by additionally
assuming γ-uniformity of PKE, they showed that PKE2 is IND-CCA secure, but we omit details in this
paper as we only require IND-CPA security.

Below we prove our new result about PKE2.

Lemma 8. If PKE is δ-correct, then in the random oracle model, PKE2 is εund-undeniable with εund(qG) =
qG · δ.

Proof. Suppose there exists an adversary A that breaks undeniability. We construct a reduction B that
breaks δ1-correctness of PKE1 and thus δ-correctness of PKE.
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1. On receiving (pk, sk) in the correctness game, B forwards (pk, sk) to A.
2. Whenever A makes a query to G, the B forwards the same query to G in the correctness game.
3. When A outputs (c,m, ρ) such that c = Enc2(pk,m; ρ) and m 6= Dec2(sk, c), the B outputsM := m||ρ

in the correctness game w.r.t. PKE1.
Note that the output M of B satisfies c = Enc1(pk,M), because of how Enc2 works internally.

We argue that, as long as m 6= Dec2(sk, c), we have M 6= Dec1(sk, c) in the correctness game w.r.t.
PKE1. There are two cases where A wins the undeniability game w.r.t. PKE2: (1) ⊥ = Dec1(sk, c),
and (2) m′ 6= m, where m′||ρ′ = Dec1(sk, c). In case (1), B clearly breaks correctness of PKE1; in case
(2), Dec1(sk, c) outputs M ′ := m′||ρ′ 6= M . Hence, whenever A successfully breaks undeniability, B
successfully breaks correctness of PKE1. Overall, we have εund = δ1 = qG · δ.

ut

C.3 PKE3 [HHK17]

We now define PKE3 = (Gen3,Enc3,Dec3), a hybrid encryption scheme obtained by applying a variant of
the FO transform to a deterministic public-key encryption scheme PKE1 = (Gen1,Enc1,Dec1) as defined
in Appendix C.1 and a symmetric-key encryption scheme SKE = (SEnc,SDec) with message spaceMsym
and key space K, respectively.

The transform we analyze here corresponds to FO�⊥ (“FO with implicit rejection”) of [HHK17] and
it is used in the Kyber [SAB+20]7 and FrodoKEM [NAB+19] lattice-based encryption schemes. With
slight modification our undeniability analysis below also applies to other similar variants such as FO�⊥

m

of [HHK17] or the original FO transform proposed in [FO13]. We let Sm be the message space of PKE1.
The scheme below relies on two random oracles G : {0, 1}∗ → Sr and H : {0, 1}∗ → K.
– Gen3 first obtains (pk, sk) ← Gen1(1λ) and then samples a secret random seed s←$Sm. It outputs

(pk′, sk′) := (pk, (sk, s)).
– Enc3(pk,m; ρ) takes m ∈ Msym and ρ ∈ Sm. It computes c1 := Enc1(pk, ρ), K := H(ρ, c1), and
c2 := SEnc(K,m). It outputs (c1, c2).

– Dec3((sk, s), (c1, c2)) first obtains ρ′ := Dec1(sk, c1), and
• if ρ′ = ⊥, let K ′ := H(s, c1);
• otherwise let K ′ := H(ρ′, c1).

It finally outputs m′ := SDec(K ′, c2).
Hofheinz, Hövelmanns, and Kiltz proved IND-CCA security of the underlying KEM implicit in the

above construction. From [HHK17, Theorem 3.4], if PKE1 is δ1-correct and SKE is perfectly correct, then
PKE3 is δ1-correct in the random oracle model.

Below we prove our new result about PKE3.

Lemma 9. If PKE1 is δ1-correct and SKE is perfectly correct, then in the random oracle model, PKE3 is
εund-undeniable with εund = δ1.

Proof. Suppose there exists an adversary A that breaks undeniability. We construct a reduction B that
breaks δ1-correctness of PKE1.
1. On receiving (pk, sk) in the correctness game, B samples a random seed s←$Sm and forwards

(pk, (sk, s)) to A.
2. When A outputs ((c1, c2),m, ρ) such that (c1, c2) = Enc3(pk,m; ρ) and m 6= Dec3((sk, s), (c1, c2)), the
B outputs ρ in the correctness game w.r.t. PKE1.

Note that if B outputs ρ, we have that c1 = Enc1(pk, ρ), c2 = SEnc(K,m), and m 6= SDec(K ′, c2),
where K = H(ρ, c1) and K ′ is as defined in Dec3. Hence it must be that K ′ 6= K, since SKE is perfectly
correct. We consider two cases depending on how K ′ is derived in Dec3: (1) ⊥ = Dec1(sk, c1), leading to
K ′ = H(s, c1), (2) ρ′ = Dec1(sk, c1) and ρ′ 6= ⊥, leading to K ′ = H(ρ′, c1). In case (1), B clearly breaks
correctness of PKE1; in case (2), it must be that ρ′ 6= ρ for K ′ 6= K to happen, and thus correctness of
7 We remark that the specification of Kyber slightly deviates from this transformation. Although Grubbs, Maram
and Patterson recently pointed out that this subtle difference makes CCA proof in the QROM challeng-
ing [GMP21], it is not an issue in our setting because we only need CPA security.
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PKE1 is broken. Hence, whenever A successfully breaks undeniability, B successfully breaks δ1-correctness
of PKE1.

ut

D Proof for Theorem 2

Proof. We extend the proof for Theorem 1. From the description of MPCitH-VER and Protocol 3, the
probability fail can be parsed as follows.

fail = Pr

∀j ∈ [τ ] : CheckView(x, (V (j)
i )i∈e(j)) = 1 ∧ ∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V (j)

i ; r(j)
i ) = com(j)

i

∧∀j ∈ S : (x,
∑
i∈e(j)

w
(j)
i +

∑
i/∈e(j)

ŵ
(j)
i ) /∈ R


(10)

= Pr
[
∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1 ∧ ∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V (j)
i ; r(j)

i ) = com(j)
i

∧S ⊂ BadRun

]
(11)

=
τ∑
s=n

Pr
[
∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1 ∧ ∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V (j)
i ; r(j)

i ) = com(j)
i

∧|BadRun| = s ∧ S ⊂ BadRun

]
(12)

=
τ∑
s=n

(
s
n

)(
τ
n

) · Pr
[
∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1 ∧ ∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V (j)
i ; r(j)

i ) = com(j)
i

∧|BadRun| = s

]
(13)

where BadRun :=
{
j ∈ [τ ] : (x,

∑
i∈e(j) w

(j)
i +

∑
i/∈e(j) ŵ

(j)
i ) /∈ R

}
, i.e., a set of “bad” parallel repetitions

from which one fails to decrypt a valid witness. Note that the last equality holds since a random subset
S is sampled independently of BadRun and thus the probability that a subset S is chosen from BadRun
of size s is (sn)

(τn)
.

Now we split (13) into the two cases, depending on whether extractability of ECOM is broken or not.

(13) =
τ∑
s=n

(
s
n

)(
τ
n

) · Pr
[
∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1 ∧ ∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V (j)
i ; r(j)

i ) = com(j)
i

∧|BadRun| = s ∧ ∃j ∈ BadRun,∃i ∈ e(j) : V (j)
i 6= V̂

(j)
i

]
(14)

+
τ∑
s=n

(
s
n

)(
τ
n

) · Pr
[
∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1 ∧ ∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V (j)
i ; r(j)

i ) = com(j)
i

∧|BadRun| = s ∧ ∀j ∈ BadRun,∀i ∈ e(j) : V (j)
i = V̂

(j)
i

]
(15)

where for j ∈ BadRun and i ∈ [N ], V̂ (j)
i = CExt(sk, com(j)

i ) are the views obtained from com(j)
i .

Following the proof for Theorem 1, the former case can be bounded as follows.

(14) =
τ∑
s=n

(
s
n

)(
τ
n

) · Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V (j)
i ; r(j)

i ) = com(j)
i

∧∃j ∈ BadRun,∃i ∈ e(j) : V (j)
i 6= V̂

(j)
i

∣∣∣∣∣∣∣∣ |BadRun| = s

 · Pr
[
|BadRun| = s

]
(16)

≤
τ∑
s=n

(
s
n

)(
τ
n

) · Pr
[
∃j ∈ BadRun,∃i ∈ e(j) : V (j)

i 6= V̂
(j)
i

∣∣∣ |BadRun| = s
]
· Pr

[
|BadRun| = s

]
(17)

≤
τ∑
s=n

(
s
n

)(
τ
n

) · εcext · Pr
[
|BadRun| = s

]
≤ max
n≤s≤τ

(
s
n

)(
τ
n

) · εcext (18)
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Likewise, the latter case can be bounded as follows.

(15) =
τ∑
s=n

(
s
n

)(
τ
n

) · Pr


∀j ∈ [τ ] : CheckView(x, (V (j)

i )i∈e(j)) = 1

∧∀j ∈ [τ ],∀i ∈ e(j) : Commit(pk, V (j)
i ; r(j)

i ) = com(j)
i

∧∀j ∈ BadRun,∀i ∈ e(j) : V (j)
i = V̂

(j)
i

∣∣∣∣∣∣∣∣ |BadRun| = s

 · Pr
[
|BadRun| = s

]
(19)

≤
τ∑
s=n

(
s
n

)(
τ
n

) · Pr


∀j ∈ BadRun : CheckView(x, (V̂ (j)

i )i∈e(j)) = 1

∧∀j ∈ BadRun,∀i ∈ e(j) : Commit(pk, V̂ (j)
i ; r(j)

i ) = com(j)
i

∧∀j ∈ BadRun,∀i ∈ e(j) : V (j)
i = V̂

(j)
i

∣∣∣∣∣∣∣∣ |BadRun| = s

 · Pr
[
|BadRun| = s

]
(20)

≤
τ∑
s=n

(
s
n

)(
τ
n

) · Pr
[
∀j ∈ BadRun : CheckView(x, (V̂ (j)

i )i∈e) = 1 ∧ (x,
∑
i∈[N ]

ŵ
(j)
i ) /∈ R

∣∣∣∣ |BadRun| = s

]
· Pr

[
|BadRun| = s

]
(21)

≤
τ∑
s=n

(
s
n

)(
τ
n

) · εsle-iop(s) · Pr
[
|BadRun| = s

]
≤ max
n≤s≤τ

(
s
n

)(
τ
n

) · εsle-iop(s) (22)

because given a cheating prover P∗ committing to views V̂ (j)
i that do not decode to a valid witness, one

can construct an adversary pair (A∗,P∗) against SLE of MPCitH-IOPR as in the proof for Theorem 1.
However, notice that P∗ here only forwards as an oracle (V̂ (j)

i )i∈[N ] for j ∈ BadRun to the SLE-IOP
game, instead of the extracted views for all τ executions. Therefore, the probability upper bound is
parameterized by the advantage of SLE-IOP prover that only runs s parallel repetitions.

Putting (18) and (22) together, we obtain the desired bound. ut
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E KKW as an IOP

The underlying interactive protocol of KKW can be characterized as a single-round IOP. See Protocol 5.

Protocol 5: KKW-IOPR

Parameters: The number of parties N ; the number of MPC executionsM ; the number of revealed
online phases τ .

Inputs: prover P receives (x,w); verifier V receives x.
Committing phase The first-round message of V is empty. For each j ∈ [M ], P proceeds as

follows.
1. Choose uniform sd(j) and use it to generate per-party seeds (sd(j)

i )i∈[N ]. P computes aux(j)

by running the offline phase of MPC on input (sd(j)
i )i∈[N ]. For each i ∈ [1, N − 1], let

st(j)
i = sd(j)

i and let st(j)
N = sd(j)

N ||aux(j).
2. Compute the masked witness ŵ = λw1 ⊕ . . . ⊕ λwN ⊕ w, where λwi is party i’s random share

to mask the witness in jth MPC execution, and is read out from st(j)
i .

3. Emulate “in her head” the online phase of the N -party protocol for f(w) ?= x by running
the online phase of MPC on input x, ŵ(j) and (st(j)

i )i∈[N ]. As a result the prover obtains
per-party broadcast messages (msgs(j)

i )i∈[N ].

Finally, P outputs the proof string π = (sd(j), (st(j)
i ,msgs(j)

i )i∈[N ], ŵ
(j))j∈[M ].

Query phase
1. V chooses a uniformly random subset T ⊂ [M ] of size τ and party indices (̄ij)j∈T where

each īj ∈ [N ] is uniform. It queries the oracle for π with T and (̄ij)j∈T .

2. The oracle returns sd(j) and (st(j)
i )i∈[N ] for j /∈ T and (st(j)

i )i6=īj , (msgs(j)
i )i∈[N ] and ŵ(j) for

j ∈ T .
Decision phase:

1. For each j /∈ T , V emulates the offline phase using sd(j) to compute (s̃t(j)
i )i∈[N ] as an honest

prover would.

2. For each j ∈ T , V emulates the online phase using (st(j)
i )i6=īj , masked witness ŵ(j) and

msgs(j)
īj

to compute ( ˜msgs(j)
i )i 6=īj and output bit b(j).

3. Accept iff

– For j /∈ T , the offline phases are computed correctly, i.e., (s̃t(j)
i )i∈[N ] = (st(j)

i )i∈[N ].

– For j ∈ T , the online phases are computed correctly, i.e., ( ˜msgs(j)
i )i 6=īj = (msgs(j)

i )i 6=īj
and b(j) = 1.
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F Banquet as an IOP
The underlying interactive protocol of Banquet can be characterized as a 3-round IOP. See Protocol 6.

Protocol 6: Banquet-IOP for relation R =
{

((ct, pt),K) : ct = AESK(pt)
}

Parameters: The number of parties N ; the parameter for field extension λ; the number of S-boxes
m; the number of checking polynomials m1 and the degree m2 such that m = m1 · m2 and
m2 < 8λ.

Inputs: P receives (x,w); V receives x, where x = (ct, pt) and w = K.
Committing phase 1: The first-round message of V is empty. The prover proceeds as follows.

1. The prover picks at random seeds sd1, . . . , sdN .
2. For each party i ∈ [N ]:

(a) Expand sdi into tapei
(b) Sample witness share wi from tapei

3. It computes witness offset ∆w = w −
∑
i wi and adjust first share w1 := wi +∆w.

4. For each S-box `:
(a) For each party i ∈ [N ], compute the local linear operations to obtain the share si,` of

the S-box of input s`.
(b) Compute the S-box output t` = (

∑
i si,`)−1.

(c) For each party i ∈ [N ], sample the share of the output ti,` from tapei
(d) Compute output offset ∆t` = t` −

∑
i ti,`.

(e) Adjust first share t1,` = t1,` +∆t`

5. Broadcast each party’s share cti of the output.
6. Send an oracle π1 = ((sdi, cti)i∈[N ], ∆w, (∆t`)`∈[m])

Committing phase 2: The second-round message of V is (rj)j∈[m1] where rj ∈ F28λ . The prover
proceeds as follows.
1. For each party i ∈ [N ] and S-box ` ∈ [m], lift si,` and ti,` to F28λ .
2. For i ∈ [N ] and j ∈ [m1]:

(a) For k ∈ [0,m2 − 1], set s′i,j,k = rj · si,j+km1 and t′i,j,k = ti,j+km1

(b) Sample masking points s̄i,j and t̄i,j from tapei.
(c) Interpolate degree m2 polynomials S, T ∈ F28λ [X] such that

Si,j(k) = s′i,j,k for k ∈ [0,m2 − 1], Si,j(m2) = s̄i,j (23)
Ti,j(k) = t′i,j,k for k ∈ [0,m2 − 1], Ti,j(m2) = t̄i,j (24)

3. Compute product polynomial P :=
∑
j∈[m1](

∑
i Si,j) · (

∑
i Ti,j)

4. For k ∈ [m2, 2m2], compute offset ∆P (k) = P (k)−
∑
i Sample(tapei)

5. For i ∈ [N ] interpolate ith share of degree 2m2 polynomial Pi ∈ F28λ [X] such that

For k ∈ [0,m2 − 1] : P1(k) =
∑
j

rj , (25)

Pi(k) = 0 for i 6= 1 (26)
For k ∈ [m2, 2m2] : P1(k) = Sample(tape1) +∆P (k), (27)

Pi(k) = Sample(tapei) for i 6= 1 (28)

Send an oracle π2 = (∆P (k))k∈[m2,2m2]

Committing phase 3: The third-round message of V is R ∈ F28λ \ [0,m2 − 1]. The prover
proceeds as follows.
1. For each party i ∈ [N ], compute ai,j = Si,j(R) and bi,j = Ti,j(R) for j ∈ [m1], and
ci = Pi(R).
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2. Send an oracle π3 = ((ai,j , bi,j)j∈[m1], ci)i∈[N ]

Query phase
1. The verifier picks at random ī ∈ [N ] and queries π1 with ī.
2. The oracle π returns ((sdi)i6=ī, ct̄i, ∆w, (∆t`)`∈[m]).
3. The verifier queries π2 and π3 with empty strings
4. The oracle π2 and π3 return (∆P (k))k∈[m2,2m2] and ((ai,j , bi,j)j∈[m1], ci)i∈[N ], respectively.

Decision phase
1. For i 6= ī:

(a) Expand sdi into tapei
(b) Sample witness share wi from tapei
(c) If i = 1, adjust w1 = w1 +∆w

(d) For each S-box `:
i. Compute local linear operations to obtain the share si,`
ii. Sample output share ti,` from tapei
iii. If i = 1 adjust, t1,` = t1,` +∆t`

(e) Recompute output broadcast c̃ti and missing c̃t̄i = ct−
∑
i 6=ī c̃ti

(f) For j ∈ [m1], interpolate polynomials Si,j and Ti,j as the prover would.
(g) Interpolate product polynomial Pi using (∆P (k))k∈[m2,2m2] as the prover would.

(h) For j ∈ [m1], compute ãi,j = Si,j(R) and b̃i,j = Ti,j(R). Compute c̃i = Pi(R).
2. Accept iff

– For i 6= ī, ci = c̃i

– For i 6= ī and j ∈ [m1], ai,j = ãi,j and bi,j = b̃i,j

– ct̄i = c̃t̄i
–
∑
i ci =

∑
j(
∑
i ai,j) · (

∑
i bi,j)

The prover and verifier execute τ instances of the above procedures in parallel. If the verifier accepts
all τ executions, it outputs b = 1; otherwise it outputs b = 0.
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