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Abstract. We study the provable security claims of two NIST Lightweight
Cryptography (LwC) finalists, GIFT-COFB and Photon-Beetle, and
present several attacks whose complexities contradict their claimed bounds
in their final round specification documents. For GIFT-COFB, we show
an attack using qe encryption queries and no decryption query to break
privacy (IND-CPA). The success probability is O(qe/2n/2) for n-bit block
while the claimed bound contains O(q2

e/2n). This positively solves an
open question posed in [Khairallah, ePrint 2021/648 (also accepted at
FSE 2022)]. For Photon-Beetle, we show an attack using qe encryption
queries (using a small number of input blocks) followed by a single decryp-
tion query and no primitive query to break authenticity (INT-CTXT).
The success probability is O(q2

e/2b) for a b-bit block permutation, and it
is significantly larger than what the claimed bound tells, which is inde-
pendent of the number of encryption queries. We also show a simple tag
guessing attack that violates the INT-CTXT bound when the rate r = 32.
Then, we analyze other (improved/modified) bounds of Photon-Beetle
shown in the subsequent papers [Chakraborty et al., ToSC 2020(2) and
Chakraborty et al., ePrint 2019/1475]. As a side result of our security
analysis of Photon-Beetle, we point out that a simple and efficient forgery
attack is possible in the related-key setting.
We emphasize that our results do not contradict the claimed “bit security”
in the LwC specification documents for any of the schemes that we studied.
That is, we do not negate the claims that GIFT-COFB is (n/2− logn)-bit
secure for n = 128, and Photon-Beetle is (b/2 − log b/2)-bit secure for
b = 256 and r = 128, where r is a rate. We also note that the security
against related-key attacks is not included in the security requirements
of NIST LwC, and is not claimed by the designers.

Keywords: Authenticated Encryption · Lightweight Cryptography · Provable
Security · NIST

1 Introduction
NIST Lightweight cryptography3 aims at standardizing authenticated encryption
(AE) schemes for resource-constrained devices. In March 2021, NIST has an-

3 https://csrc.nist.gov/projects/lightweight-cryptography

https://csrc.nist.gov/projects/lightweight-cryptography


nounced ten finalists among the 32 second-round candidates. The finalists include
GIFT-COFB [3] and Photon-Beetle [6]. GIFT-COFB is a block cipher-based AE
that combines a variant of COFB mode [13] and the lightweight 128-bit block
cipher GIFT [5]. Photon-Beetle is a permutation-based AE that combines Beetle
mode [11] and the lightweight cryptographic permutation Photon [19], which is an
ISO standard [1]. This paper studies the provable security bounds of GIFT-COFB
and Photon-Beetle, and shows some attacks whose success probabilities are in-
consistent with the presented security bounds in the final round specification
documents of NIST LwC.

GIFT-COFB. For the original COFB and GIFT-COFB, the security bounds for
the combined AE notion of IND-CPA and INT-CTXT were presented in [3, 13].
Assuming a nonce-respecting attacker and that the underlying block cipher is a
random permutation, GIFT-COFB’s AE bound is roughly σ2/2n + nqd/2n/2 for
σ = σe + σd + qe + qd, where σe (resp. σd) denotes the total queried blocks in
encryption (resp. decryption) queries, and qe (resp. qd) denotes the number of
encryption (resp. decryption) queries. This bound suggests that if (1) σe reaches
2n/2, or (2) σd reaches 2n/2, or (3) qd reaches 2n/2/n, the bound reaches 1 and
hence no security guarantee is possible. The tightness of these conditions has
been studied by Khairallah [21, 22, 23] and Inoue and Minematsu (IM21) [20].
Khairallah [21, 22, 23] showed attacks with qd = 2n/2 with about σe = 2n/2 or
σe = 2n/4, called Weak Key attack and Mask collision attack [21, 22]. Khairallah
finally showed one with qe = 1, σe = O(1) (a few blocks) and qd = 2n/2, called
Mask Presuming attack [23]. The last one implies that the tightness condition
(3) has only the small gap of logn factor. Inoue and Minematsu [20] studied
the tightness of (1) and showed an attack with σe = 2n/2 and qd = 1. As
in the previous attacks, this attack breaks the authenticity and matches the
aforementioned bound. For (2) it remains unsolved, and [20] mentioned that it
might be an artifact in the proofs.

We take a closer look at the condition (1). IM21’s attack with qe encryption
queries and 1 decryption query has success probability roughly q2

e/2n. However, we
found an improved attack that needs qe encryption queries to break privacy (hence
the combined AE notion) success probability roughly qe/2n/2. The existence of
such an attack has been posed as an open problem by Khairallah [23]. We solved
this positively. This implies a contradiction with the bound in the NIST LwC
document although the bit-level security maintains. We give a brief analysis on
the root of this contradiction in Sect. 3.2.

Photon-Beetle. For Photon-Beetle, the security proofs for the original version and
the NIST LwC version have been shown in [6,11,12]. For b-bit block permutation
with b = 256 and rate (which is the length of one message block processed in one
permutation call) r = 128, the security bounds roughly tell b/2− log b/2 = 121-bit
security for both IND-CPA and INT-CTXT. Dobraunig and Mennink commented
on a constant factor related to a key recovery attack [18], and Mège analysed the
security of the hash function [27].
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We focus the authenticity bound shown in the final round NIST LwC submis-
sion document [6], which is roughly qp(q + q′)/2b + rqp/2b/2 + qrp/2(b/2)·(r−1) +
rσ′/2256−r, where qp, q, q′ and σ′ denote the number of primitive queries, the
number of encryption queries, the number of decryption queries, and the total
number of blocks in decryption queries. The rate can be either r = 128 or 32,
where r = 128 is the primary setting. The tag length is 128 bits for both cases.
When r = 128, we observed that if qp = 0, i.e. we do not query the primitive
(permutation), the above authenticity bound reduces to the bound that has
no contribution from encryption queries. We invalidate this by presenting a
simple forgery using 2b/2 encryption queries and a single decryption query. The
success probability is close to 1, while the claimed bound indicates a negligibly
small probability with that complexity. This attack shows inconsistency with
the claimed bound and implies the lack of the birthday term with respect to
the block size, O(q2

e/2b), in the claimed bound. Moreover, when r = 32, the
INT-CTXT bound reduces to the bound that is smaller than q′/2128, which is
impossible to achieve for any AE of 128-bit tags. Thus, a simple tag guessing
attack (i.e., decryption queries with identical nonce, AD, ciphertext, and distinct
tags) invalidates the claimed bound. This implies even the break of bit-level
security suggested by the bound. However, the bit security shown in [6, Table 4.1]
claims 128-bit authenticity. We clarify that we do not break the figure. Moreover,
we study other (improved or modified) security bounds for Photon-Beetle shown
in the subsequent papers [15,16]. In [16], an improved bound AE bound is pre-
sented. The bound claims that the IND-CPA security is maintained beyond 2b/2

encryption queries, but this is not possible to achieve. The same paper presents a
simplified AE bound, and we point out that this cannot be true. We then clarify
that the ePrint version [15] of [16] addresses the issue, while we still see an issue
in simplification.

As a side result of our security analysis of Photon-Beetle for r = 128, we
point out that a simple and efficient forgery attack is possible in the related-key
setting, in which the attacker can modify the key used in the oracle [7, 9, 26]. In
Photon-Beetle, a fixed constant is xor’ed into the secret key when the input (both
AD and a message) is empty, and our forgery makes use of this fact. See [4,17,24]
for examples of related-key attacks on some AE schemes. In the domain of
public-key authenticated encryption, see [25].

Our attacks do not depend on the primitives and do not break the primitives.
The attack against GIFT-COFB does not work against the COFB versions in [13,14]
because of the shorter nonce length than the NIST LwC version. Our attacks
show some inconsistencies in the claimed security bounds of GIFT-COFB and
Photon-Beetle. At the same time, we would like to emphasize that these results
do not negate the claimed bit security levels of GIFT-COFB and Photon-Beetle.
We also note that the security against related-key attacks is not included in the
security requirements of NIST LwC, and is not claimed by the designers.

2 Preliminaries
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2.1 Notations
Our notations largely follow the specifications of GIFT-COFB and Photon-Beetle [3,
6]. Let [i] := {1, . . . , i} and JiK := {0, 1, . . . , i}. Let {0, 1}∗ denote the set of all
bit strings. The set of bit strings whose length is a multiple of n is denoted as
({0, 1}n)∗. For X ∈ {0, 1}∗, |X| denotes its bit length. An empty string ε is a bit
string of length zero; we have |ε| = 0. The block length of X ∈ {0, 1}∗ in n-bit
blocks is denoted as |X|n := d|X|/ne. A concatenation of two bit strings X and
Y is written as X ‖Y or simply XY . Let Trunct(X) denote the first t ∈ J|X|K bits
of X, where Trunc0(X) = ε. For two integers a and b, we write a|b if a divides b.
For a bit string X, X � c denotes the left-shift of X by c bits. Bit rotation of X
by c bits to the left (right) is denoted by X ≪ c (X ≫ c).

For X ∈ {0, 1}∗, the parsing operation of X into n-bit blocks is denoted
by (X[1], . . . , X[x]) n←− X. Here, if X 6= ε, X[1] ‖X[2] ‖ . . . ‖X[x] = X and
|X[i]| = n for i < |X|n and |X[x]| ∈ [n] for x = |X|n. By writingX1 ‖X2

a1,a2←−−− X
we mean the parsing such that X1 ‖X2 = X and |X1| = a1 and |X2| = a2. If
X = ε, x = 1 and |X[x]| = 0 (i.e., the parsing yields the same empty string). The
sequence of i zeros is denoted by 0i. We may use an integer i ∈ {0, 1, . . . , 2n − 1}
to mean an element of {0, 1}n, assuming the standard encoding, e.g., for n = 4,
3 denotes 0011.

Galois field of 2n elements. An element a in the Galois extension field GF(2n)
will be interchangeably denoted as an n-bit string an−1 . . . a1a0 or an integer∑n−1

i=0 ai2i. Hence, by writing 2 · a or 2a when no confusion is possible, we mean
the multiplication of a by 2 = x. This operation is called doubling and has been
frequently used by various modes for the “domain separation” task. See [28] for
example. For n = 64 (that will be used for GIFT-COFB), we use the primitive
polynomial x64 + x4 + x3 + x + 1 to define the field GF(2n). In this case, the
doubling 2 · a is (a� 1) if msb1(a) = 0 and (a� 1)⊕ (05911011) if msb1(a) = 1,
and the tripling 3 · a means 2 · a⊕ a. Combined expressions such as 2i · 3j · a are
defined analogously, namely i doublings and j triplings of a.

2.2 Cryptographic components
A keyed function with key space K, domain X , and range Y is a function
F : K × X → Y. We may write FK(X) for F (K,X). If Mode is a mode of
operation for F using a single key K ∈ K for F , we write Mode[FK ] instead of
Mode[F ]K . A block cipher is a keyed function E : K × T ×M→M such that
for each K ∈ K, E(K, ·) is a permutation overM. A cryptographic permutation
P :M→M is simply a (keyless) permutation. GIFT-COFB is based on a block
cipher, while Photon-Beetle is based on a cryptographic permutation.

Let A be an adversary that queries c oracles, O1, . . . , Oc in an arbitrarily
order and outputs a certain final output. By writing AO1,O2,..., we mean the final
output of A. Let Perm(n) be the set of all permutations over {0, 1}n. For block
cipher E : K ×M→M, the PRP advantage is defined as

Advprp
E (A) := Pr

[
K

$← K : AEK (∗) ⇒ 1
]
− Pr

[
π

$← Perm(n) : Aπ(∗) ⇒ 1
]
.
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The PRP advantage represents the indistinguishability of EK from the uniform
random permutation of the same message space for adversaries performing queries
to encryption oracles (either EK(∗) or π(∗)).

2.3 Authenticated encryption

We briefly describe the syntax and security notions about authenticated en-
cryption (AE). Our targets are both nonce-based AEs [8, 29], which requires
nonce to be unique for each encryption. Let Π denote a nonce-based AE scheme
consisting of an encryption function Π.EK and a decryption function Π.DK ,
for key K $← K. For plaintext M with nonce N and associated data (AD) A,
Π.EK takes (N,A,M) and returns ciphertext C (typically |C| = |M |) and tag T .
Here, AD is a part of the input that is not encrypted but must be authenticated
(e.g., a protocol header). The tuple (N,A,C, T ) will be sent to the receiver. For
decryption, Π.DK takes (N,A,C, T ) and returns a decrypted plaintext M if the
authentication check is successful, and otherwise an error symbol, ⊥.

Security notions. The security of AEs can be defined by two notions. The
privacy4 notion is the indistinguishability of encryption oracle Π.EK from the
random-bit oracle $ which returns random |M |+ τ bits for any query (N,A,M).
The adversary is assumed to be nonce-respecting, i.e., nonces can be arbitrarily
chosen but must be distinct for encryption queries. The privacy advantage is
defined as

Advpriv
Π (A) := Pr

[
K

$← K : AΠ.EK (·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·) ⇒ 1

]
,

which measures the hardness of breaking the privacy notion for A. This notion
corresponds to IND-CPA [8].

The authenticity notion is the probability of successful forgery via queries to
Π.EK and Π.DK oracles. We define the authenticity advantage as

Advauth
Π (A) := Pr

[
K

$← K : AΠ.EK(·,·,·),Π.DK(·,·,·,·) forges
]
,

where A forges if it receives a value M ′ 6= ⊥ from Π.DK . Here, to prevent trivial
wins, if (C, T )← Π.EK(N,A,M) is obtained earlier, A cannot query (N,A,C, T )
to Π.DK . The adversary must be nonce-respecting for encryption queries, but
has no restriction on decryption queries. It corresponds to INT-CTXT notion [8].

It is also common to use a combined notion, sometimes called AE advantage,
define as

Advae
Π (A) := Pr

[
K

$← K : AΠ.EK(·,·,·),Π.DK(·,·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·),⊥ ⇒ 1

]
,

where ⊥ oracle denotes the oracle that always returns the rejection symbol. It
is know that the sum of Privacy and Authenticity advantages is a bound of AE
advantage [30], thus it compactly represents the security of an AE scheme as a
whole.
4 Following the literature (e.g., [28]), we conventionally refer to it as privacy, but in
practice, it may be more intuitive to call it confidentiality.
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3 Analysis of GIFT-COFB

Specification. For reference, the specification of GIFT-COFB is shown in Ap-
pendix A (Figs. 4 and 5). The padding function pad : {0, 1}∗ → ({0, 1}n)∗ is a
variant of so-called one-zero padding and defined as pad(X) = X if X 6= ε and
|X| mod n = 0, and otherwise pad(X) = X ‖ 10(n−(|X| mod n)−1). The G in Fig. 4
denotes a matrix such that G · X := (X[2], X[1] ≪ 1) for X[1], X[2] n/2←−− X,
X ∈ {0, 1}n. We also write G(X) to mean G ·X.

We show our attack against GIFT-COFB that contradicts the claimed security
bound. As mentioned earlier, this does not invalidate the claimed bit security
levels, namely 64-bit IND-CPA security and 58-bit INT-CTXT security in the
specification document.

3.1 Our attack

The security bound shown in the latest NIST LwC specification document is as
follows (with minor changes in notations):
Theorem 1 (Chapter 4 in [3]).

Advae
GIFT-COFB(A) ≤Advprp

GIFT(q′, t′) +
(
q′

2
)

2n + 1
2n/2 + qd(n+ 4)

2n/2+1

+ 3σ2
e + qd + 2(qe + σe + σd) · σd

2n ,

where q′ = qe+qd+σe+σd, which corresponds to the total number of block cipher
calls through the game, and t′ = t + O(q′). Note that the advantage has been
taken by the maximum advantage over all the adversaries making qe encryption
queries, qd decryption queries and running in time t, such σe, σd are the total
number of blocks queried in the encryption and decryption queries, respectively.
The term Advprp

GIFT(q′, t′) denotes the maximum of PRP advantage for any adver-
sary of q′ queries and t′ time complexity. When we only use encryption queries,
the above bound effectively reduces to about σ2

e/2n and hence about q2
e/2n if each

message is short. We present an attack using qe encryption queries (where each
message is short) with success probability about qe/2n/2. This contradicts the
bound of Theorem 1, since q2

e/2n ≤ qe/2n/2 necessarily holds when 1 ≤ qe ≤ 2n/2.
The attack proceeds as follows.

1. The attacker makes a query (N,A,M) to the encryption oracle such that
|A| = n, |M | = 2n and M = M [1] ‖M [2] (for arbitrarily chosen N , single-
block A and two-block M), and it obtains corresponding (C, T ), where
C = C[1] ‖C[2], as shown in Fig. 1.

2. The attacker computes Y [1], Y [2], and lsbn/2(X[2]) = lsbn/2(G(Y [1]) ⊕
M [1]). Note that msbn/2(X[2]) is unknown; nevertheless, the attacker can
mount a privacy attack by using the guessed X[2] as the nonce of the next
encryption query.
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Fig. 1: The first encryption query of the attack against GIFT-COFB.

3. For 0 ≤ i ≤ 2n/2−1, the attacker queries (Ni, Ai,Mi), where |Ai| = |Mi| = n,
to the encryption oracle such that

Ni = (i)n/2 ‖ lsbn/2(X[2]), Li := Truncn/2(Y [2]),
Ai = Ni ⊕G(Y [2])⊕ 3Li ‖ 0n/2,

Mi = Ni ⊕G(Y [2])⊕ 32Li ‖ 0n/2,

where (i)n/2 denotes n/2-bit string of a binary representation of i. The
attacker obtains corresponding (Ci, Ti). In the real world, there always exists
i such thatMi⊕Ci = Y [2] and Ti = Truncτ (Y [2]), where i fulfilling Ni = X[2].
In the ideal world, Pr[Mi ⊕ Ci = Y [2], Ti = Truncτ (Y [2])] = 1/2n+τ holds
for all i, and thus the attacker can find i such that Mi ⊕ Ci = Y [2] and
Ti = Truncτ (Y [2]) holds with a negligibly small probability, 1/2n/2+τ .

In the real world, the above attack fails when N = X[2] accidentally holds
because it prevents the attacker from using X[2] for the next nonce. To prevent
such a case, the attacker can query a longer plaintext in Step 1, and it can find
X[·] s.t. lsbn/2(X[·]) 6= lsbn/2(N) with a sufficiently high probability.

We remark that this attack does not work against versions of COFB in TCHES
2017 [13] and Journal of Cryptology [14] because the nonce length of these versions
is n/2 bits.

3.2 Brief analysis on security proof

As we mentioned in the previous section, the security bound shown in [3, Chap-
ter 4] does not include the term O(qe/2n/2) nor O(σe/2n/2). However, in [3,
Sect. 4.2], the authors provide INT-CTXT bound, which includes the term
3σe/264 assuming n = 128. This term is somehow missing in the final bound of
the AE advantage that combines privacy and authenticity. Still, in any case, since
our attack uses only encryption queries, the terms O(qe/2n/2) or O(σe/2n/2)
should appear in the IND-CPA security bound, originally presented in [3, Sect. 4.1].
Let us look into [2] which shows the full proof of GIFT-COFB. The authors define
the following two events as the bad events.

B1: Xi1 [j1] = Xi2 [j2] for some (i1, j1) 6= (i2, j2) where j1, j2 > 0.
B2: Yi1 [j1] = Yi2 [j2] for some (i1, j1) 6= (i2, j2) where j1, j2 > 0.
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Here, Xi[j] and Yi[j] denote input and output of the j-th underlying block cipher
call in the i-th encryption query. Also, Xi[0] := Ni, where Ni is the nonce value
in the i-th encryption query. As our attack shows, the attacker can produce a
collision between Xi[0] and X1[2] with probability qe/2n/2. One can speculate
that this inconsistency could be fixed by setting j1, j2 ≥ 0 in the above events
(then it covers the presented attack), rather than j1, j2 > 0.

4 Analysis of Photon-Beetle

Specification. For reference, we present the AEAD specification of Photon-Beetle
almost verbatim in Appendix A (Figs. 6 and 7). In the specification, ozsr(X)
for any X such that |X| < r, is another variant of one-zero padding, defined as
ozsr(X) = X ‖ 10r−|X|−1. The expression E?a : b evaluates to a if E holds and b
otherwise. Similarly, (E1 and E2?a : b : c : d) evaluates to a if E1 ∧E2 holds, b if
E1∧E2 holds, c if E1∧E2, and d otherwise. The Shuffle in the ρ and ρ−1 functions
is a function: {0, 1}r → {0, 1}r. It is defined as Shuffle(S) = (S[2] ‖S[1] ≫ 1),
where (S[1], S[2]) r/2←−− S.

We show our attacks against Photon-Beetle that violate its claimed security
bound in NIST LwC documentation [6]. We emphasize that our attacks do
not violate the claimed “bit security” levels of Photon-Beetle, which are 121-bit
IND-CPA and INT-CTXT security when r = 128, and 128-bit IND-CPA and
INT-CTXT security when r = 32.

4.1 Claimed security bound and our attack

In [6], Photon-Beetle is claimed to be provably secure, with the security bound of

O

(
σ2

2256 + qp
2256−r + q · qp

2256 + rqp
2128 + σre

2128(r−1)

)
for privacy (IND-CPA), where σ is the total number of blocks in encryption
queries, qp is the number of offline queries, r is the rate (r = 32 or 128), q is the
number of encryption queries, and σe is the total number of blocks in encryption
queries [6, Sect. 4.1]5. For authenticity (INT-CTXT), the claimed bound is

O

(
qp(q + q′)

2256 + rqp
2128 +

qrp
2128(r−1) + rσ′

2256−r

)
, (1)

where qp is the number of offline queries, q is the number of encryption queries,
q′ is the number of decryption queries, r is the rate (r = 32 or 128), and σ′ is
the total number of blocks in decryption queries [6, Sect. 4.2].

We present two attacks that invalidate the bound in (1). The observation is
that, when qp = 0, i.e., when the attacker does not make offline queries, then the
5 We do not know the difference between σ and σe.
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bound (1) is simplified into

O

(
rσ′

2256−r

)
. (2)

We observe that the bound (2) claims that the authenticity security is maintained
even if the attacker makes an unlimited number of encryption queries and that
the success probability is smaller than σ′/2128 when r = 32. In what follows, we
present attacks based on these observations.

Birthday forgery against Photon-Beetle. The attack is as follows.

1. Let q = 2b/2, and fix q distinct nonces N1, . . . , Nq, q distinct AD A1, . . . , Aq
with |Ai| = b, and q distinct messages M1, . . . ,Mq with |Mi| = b + r. The
attacker chooses M1, . . . ,Mq of the form Mi = M ′ ‖M ′i , where |M ′| = b,
|M ′i | = r, and M ′1, . . . ,M

′
q take q distinct values. That is, the first b bits

of M1, . . . ,Mq take the same value M ′, and the corresponding portions of
ciphertexts are used to detect a full-state collision.

2. Make q encryption queries (N1, A1,M1), . . . , (Nq, Aq,Mq) and obtain (C1, T1),
. . . , (Cq, Tq), where |Ci| = b+ r.

3. Find (i, j) such that C ′i = C ′j , where C ′i is the first b bits of Ci, and the same
for C ′j .

4. Output (Ni, Ai, Cj , Tj) (or (Nj , Aj , Ci, Ti)) as the forgery.

See Fig. 2 for the process of (Ni, Ai,Mi) and (Nj , Aj ,Mj) when r = 128. With
a high probability, we have a full-state collision, i.e., we have (i, j) such that
Si = Sj in the figure. The collision can be detected from C ′i and C ′j , which are
the first b bits of Ci and Cj . If this happens, we see that the forgery in Step 4
succeeds.

The bound (2) claims that the success probability of the attack is negligibly
small and at most O(7r/2256−r) when r = 128 (or at most O(6r/2256−r) depend-
ing on the interpretation of σ′), while the attack succeeds with an overwhelming
probability. Therefore, the bound (1) is invalidated.

Tag guessing attack against Photon-Beetle with r = 32. When r = 32,
the above setting of qp = 0 makes the INT-CTXT bound (1) reduces to
32σ′/2256−32 = σ′/2219 which is smaller than σ′/2128. When σ′ is close to
q′, this implies a bound that is not possible to achieve with 128-bit tags. A
simple tag guessing attack invalidates this bound, that is, q′ decryption queries
using identical (nonce, AD, ciphertext) tuple with distinct tags will succeed with
probability about q′/2128.

Discussion and implication. In [6, Sect. 4.2], the designers outline the proof
of the bound (1). To quote:

Also, if an adversary can obtain a state collision among the input/output
of a permutation query with the state of an encryption query or decryption
query, it can use the fact to mount an forgery attack.
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Fig. 2: Two encryption queries (Ni, Ai,Mi) and (Nj , Aj ,Mj) when r = 128.
Here, Ai = Ai[1] ‖Ai[2] and Mi = M ′[1] ‖M ′[2] ‖M ′i .

The argument here ignores a full-state collision among encryption queries, resulted
in the first attack. Here is another quote from the same document:

The trivial solution for forging is to guess the key or the tag which can
be bounded by q+q′

2128 .

We do not find an issue here, while for r = 32, the bound (1) makes a stronger
security claim than this argument.

We note that the above two attacks need 2128 complexity, and thus do not
violate the claimed 121-bit security (when r = 128) or 128-bit security (when
r = 32). However, our attacks show that the theoretical reasoning for the bit
security in the NIST LwC document [6] is inaccurately mentioned.

4.2 Analysis of the bound in [16]

There are various provable security claims related to Beetle [6, 11,12, 15,16]. We
do not consider the bound in [11,12] for the difference in the specification.

For Photon-Beetle, we write the combined AE advantage as Advae
Photon-Beetle,

which is the same as the case of combined AE notion defined in Sect. 2, except that
the attacker has additional oracles to compute the forward and inverse directions
of the permutation that is modeled as a public random permutation. In [16],
improved provable security bounds of Photon-Beetle are presented. Corollary 1
in [16] claims that, in the combined AE notion, the success probability of the

10



attacker for the case r = 128 is

Advae
Photon-Beetle(A) ≤ 4τσd

2c + 4rσd
2c + 4bσd

2c + qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b

+ 6σeqp
2b + 8rqp

2c + 4τqp
2b−τ + σe + qp

2b + 4rqpσd
22c , (3)

where τ is the tag length, c is the capacity, r is the rate, b = r + c, κ is the key
length, qe is the number of encryption queries, qd is the number of decryption
queries, σe is the total number of blocks in encryption queries, σd is the total
number of blocks in decryption queries, qp is the number of offline queries, and
σ = σe + σd.

When qp = 0 and qd = σd = 0, the bound (3) is

Advae
Photon-Beetle(A) ≤ σe

2b ,

i.e., it claims IND-CPA security up to σe = 2b, which is flawed as we show below.
We note that the birthday forgery attack in Sect. 4.1 implies a distinguishing

attack with a comparable complexity as follows:

1. Let qe = 2b/2, and fix qe distinct noncesN1, . . . , Nqe , qe distinct ADA1, . . . , Aqe

with |Ai| = b. We also fix a message M with |M | = b.
2. Make qe encryption queries (N1, A1,M), . . . , (Nqe , Aqe ,M) and obtain (C1, T1),
. . . , (Cqe

, Tqe
), where |Ci| = b.

3. If there exists (i, j) such that (Ci, Ti) = (Cj , Tj), then output 1 (real world).
Otherwise, output 0 (ideal world).

Since the b-bit state collision can be expected in the real world, the attacker finds
(i, j) in Step 3 with a high probability. The attack makes qe = 2b/2 encryption
queries, no primitive query (qp = 0), and no decryption query (qd = σd = 0),
violating the bound (3).

In [16, Sect. 7.2], the following AE bound is claimed for r = 128:

Advae
Photon-Beetle(A) ≤ qp

2κ + 13rqp
2c (4)

When qp = 0, the bound claims perfect security both in IND-CPA and INT-
CTXT. Even the ideal AE scheme cannot have a perfect security bound in
authenticity, and our birthday forgery in Sect. 4.1 invalidates the INT-CTXT
claim, and the above distinguishing attack invalidates the IND-CPA claim.

The bound (4) is obtained from the bound (3) by using the relation

σ ≤ qp , (5)

which is not the case in our attacks. We do not see how the relation (5) can be
ensured, as our attacks demonstrate that there are attackers with qp = 0.
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We clarify that the ePrint version [15] of [16] addresses the issue in the
bound (3) with the following revised bound for r = 128:

Advae
Photon-Beetle(A) ≤ 8rσd

2c +
8b3q2

pσd

2b+c + qp
2κ + 2qd

2r + 2σ(2σ + qp)
2b

+
q2
p

2b + 6σeqp
2b + 12rqp

2c + σe + qp
2b + 4rqpσd

22c , (6)

i.e., the revised bound contains a term σ2/2b. A full-state collision in encryption
queries is covered in the analysis of [16], and the above attack no longer applies.
The source of the gap seems to be an error in the final step of the proof in [16] to
take the summation of various terms, where a term 2σ2

e/2b has been somewhat
missing.

In the ePrint version [15, Sect. 7.3.1], a simplified bound is presented. For
r = 128, the bound is

Advae
Photon-Beetle(A) ≤ qp

2κ + 2σ
2r +

10b2q2
p

2b + 24rqp
2c + 12σqp

2b ,

which is obtained from the bound (6) by using the relation (5). We do not have
an attack for this, but we do not know its correctness, as there are attackers
outside of the relation (5).

On SCHWAEMM. A NIST LwC finalist Sparkle [10] adopts Beetle. More specif-
ically, the AE member of Sparkle, SCHWAEMM, uses Beetle with minor modi-
fications. The specification document [10] does not present security bounds of
SCHWAEMM nor mention the relationship with the original bounds of Beetle.
Thus our analysis above does not have any implications to SCHWAEMM beyond
the fact that it is based on Beetle. Moreover, as with the case of Photon-Beetle,
we do not negate the bit security claims of SCHWAEMM.

4.3 Related-key attack

We present an efficient forgery attack against Photon-Beetle for r = 128 in the
related-key setting [7, 9, 26]. In this setting, we consider the security notion as in
Sect. 2, where we additionally assume that the adversary can modify the secret
key. The encryption oracle Π.EK(·, ·, ·) takes (N,A,M) and returns (C, T ) =
Π.EK(N,A,M). In the related-key setting, it additionally takes ∆ ∈ {0, 1}k,
where k is the bit length of the secret key K. The related-key encryption oracle
returns (C, T ) = Π.EK⊕∆(N,A,M) for a query (∆,N,A,M). The decryption
oracle can also be defined to take additional input to modify the key, but we do
not use this in our attack.

Our attack goes as follows:

1. Fix (∆,N,A,M), where ∆ = 1, N can be any nonce, A is empty, and M
can be any message such that |M | ≥ r.
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f
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Fig. 3: The adversary makes a single encryption query with key K ⊕ 1. This
immediately allows a forgery for empty message and AD.

2. Make a related-key encryption query (∆,N,A,M) and obtain (C, T ). Let
M [1] be the first r bits of M , and C[1] be the first r bits of C.

3. Return (N,A′, C ′, T ′) as the forgery, where A′ and C ′ are empty, and T ′ =
Shuffle−1(M [1]⊕ C[1]).

See Fig. 3. We see that the encryption query with key K ⊕ 1 simulates the
process for the empty message and AD, and the forgery in Step 3 succeeds with
probability 1. The attack makes one related-key encryption query, one decryption
query, and the success probability is 1.

We remark that the impact is limited, as the attack only forges the empty
AD and message. We also remark that the security against related-key attacks is
not included in the security requirements of NIST LwC, and is not claimed by
the designers. However, this type of weakness is avoided, e.g., in SCHWAEMM.

5 Conclusions

We have investigated the provable security bounds in the specification documents
of two NIST LwC finalists, GIFT-COFB and Photon-Beetle, and reported some
attacks whose success probabilities are higher that what their bounds tell. We
have also analyzed other bounds of Photon-Beetle shown in the subsequent papers
and shown some attacks. As a side result, we presented a simple forgery attack
against Photon-Beetle when r = 128. We remark that our attacks do not invalidate
the claimed bit security levels of them, and the related-key security is not claimed
by the designers.
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A Specifications of GIFT-COFB and Photon-Beetle

Algorithm GIFT-COFB-EK(N,A,M)

1. Y [0]← EK(N), L← Truncn/2(Y [0])
2. (A[1], . . . , A[a]) n←− pad(A)
3. if M 6= ε then
4. (M [1], . . . ,M [m]) n←− pad(M)
5. for i = 1 to a− 1
6. L← 2 · L
7. X[i]← A[i]⊕G · Y [i− 1]⊕ L‖0n/2

8. Y [i]← EK(X[i])
9. if |A| mod n = 0 and A 6= ε then L← 3 · L

10. else L← 32 · L
11. if M = ε then L← 32 · L
12. X[a]← A[a]⊕G · Y [a− 1]⊕ L‖0n/2

13. Y [a]← EK(X[a])
14. for i = 1 to m− 1
15. L← 2 · L
16. C[i]←M [i]⊕ Y [i+ a− 1]
17. X[i+ a]←M [i]⊕G · Y [i+ a− 1]⊕ L‖0n/2

18. Y [i+ a]← EK(X[i+ a])
19. if M 6= ε then
20. if |M | mod n = 0 then L← 3 · L
21. else L← 32 · L
22. C[m]←M [m]⊕ Y [a+m− 1]
23. X[a+m]←M [m]⊕G · Y [a+m− 1]⊕ L‖0n/2

24. Y [a+m]← EK(X[a+m])
25. C ← Trunc|M|(C[1]|| . . . ||C[m])
26. T ← Truncτ (Y [a+m])
27. else C ← ε, T ← Truncτ (Y [a])
28. return (C, T )

Algorithm GIFT-COFB-DK(N,A,C, T )

1. Y [0]← EK(N), L← Truncn/2(Y [0])
2. (A[1], . . . , A[a]) n←− pad(A)
3. if C 6= ε then
4. (C[1], . . . , C[c]) n←− pad(C)
5. for i = 1 to a− 1
6. L← 2 · L
7. X[i]← A[i]⊕G · Y [i− 1]⊕ L‖0n/2

8. Y [i]← EK(X[i])
9. if |A| mod n = 0 and A 6= ε then L← 3 · L

10. else L← 32 · L
11. if C = ε then L← 32 · L
12. X[a]← A[a]⊕G · Y [a− 1]⊕ L‖0n/2

13. Y [a]← EK(X[a])
14. for i = 1 to c− 1
15. L← 2 · L
16. M [i]← Y [i+ a− 1]⊕ C[i]
17. X[i+ a]←M [i]⊕G · Y [i+ a− 1]⊕ L‖0n/2

18. Y [i+ a]← EK(X[i+ a])
19. if C 6= ε then
20. if |C| mod n = 0 then
21. L← 3 · L
22. M [c]← Y [a+ c− 1]⊕ C[c]
23. else
24. L← 32 · L, c′ ← |C| mod n
25. M [c]← Truncc′ (Y [a+ c− 1]⊕ C[c])‖10n−c

′−1

26. X[a+ c]←M [c]⊕G · Y [a+ c− 1]⊕ L‖0n/2

27. Y [a+ c]← EK(X[a+ c])
28. M ← Trunc|C|(M [1]|| . . . ||M [c])
29. T ′ ← Truncτ (Y [a+ c])
30. else M ← ε, T ′ ← Truncτ (Y [a])
31. if T ′ = T then return M , else return ⊥

Fig. 4: Algorithms of GIFT-COFB [3, Fig. 2.3]
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Algorithm Photon-Beetle-E [r]K(N,A,M)

1. IV← N ‖K; C ← ε
2. if (A = ε) ∧ (M = ε)
3. T ← TAG128(IV⊕ 1); return(ε, T )
4. c0 ← ((M 6= ε) ∧ (r| |A|))? 1 : 2 : 3 : 4)
5. c1 ← ((A 6= ε) ∧ (r| |M |))? 1 : 2 : 5 : 6)
6. if A 6= ε
7. IV← HASHr(IV, A, c0)
8. if M 6= ε
9. (M [1], . . . ,M [m]) r←−M
10. for i = 1 to m
11. (Y,Z) r,256−r←−−−−− Photon256(IV)
12. (W,C[i])← ρ(Y,M [i])
13. IV←W ‖Z
14. IV← IV⊕ c1
15. C ← (C[1] ‖ . . . ‖C[m])
16. T ← TAG128(IV)
17. return (C, T )

Algorithm Photon-Beetle-D[r]K(N,A,C, T )

1. IV← N ‖K; M ← ε
2. if (A = ε) ∧ (C = ε)
3. T ∗ ← TAG128(IV⊕ 1)
4. return(T = T ∗)? ε : ⊥
5. c0 ← ((C 6= ε) ∧ (r| |A|))? 1 : 2 : 3 : 4)
6. c1 ← ((A 6= ε) ∧ (r| |C|))? 1 : 2 : 5 : 6)
7. if A 6= ε
8. IV← HASHr(IV, A, c0)
9. if C 6= ε

10. (C[1], . . . , C[m]) r←− C
11. for i = 1 to m
12. (Y,Z) r,256−r←−−−−− Photon256(IV)
13. (W,M [i])← ρ−1(Y,C[i])
14. IV←W ‖Z
15. IV← IV⊕ c1
16. M ← (M [1] ‖ . . . ‖M [m])
17. T ∗ ← TAG128(IV)
18. return (T = T ∗)? M : ⊥

Algorithm HASHr(IV, D, c0)

1. D[1] ‖ . . . ‖D[d] r←− ozsr(D)
2. for i = 1 to d
3. (Y,Z) r,256−r←−−−−− Photon256(IV)
4. W ← Y ⊕D[i]
5. IV←W ‖Z
6. IV← IV⊕ c0
7. return IV

Algorithm TAGτ (T [0])

1. for i = 1 to dτ/128e
2. T [i]← Photon256(T [i− 1])
3. T ← Trunc128(T [1]) ‖ . . . ‖Trunc128(T [τ/128])
4. return T

Algorithm ρ(S,U)

1. V ← Trunc|U|(Shuffle(S))⊕ U
2. S ← S ⊕ ozsr(U)
3. return (S, V )

Algorithm ρ−1(S, V )

1. U ← Trunc|V |(Shuffle(S))⊕ V
2. S ← S ⊕ ozsr(U)
3. return (S,U)

Fig. 6: Algorithms of Photon-Beetle [6, Fig. 3.6]
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