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Abstract. The side-channel cryptanalysis of Post-Quantum (PQ) key
encapsulation schemes has been a topic of intense activity over the last
years. Many attacks have been put forward: Simple Power Analysis
(SPAs) against the re-encryption of schemes using the Fujisaki-Okamoto
(FO) transform are known to be very powerful; Differential Power
Analysis (DPAs) against the decryption are also possible. Yet, to the
best of our knowledge, a systematic and quantitative investigation of
their impact for designers is still missing. In this paper, we propose to
capture these attacks with shortcut formulas in order to compare their
respective strength in function of the noise level. Taking the case of
Kyber for illustration, we then evaluate the (high) cost of preventing
them with masking and the extent to which different parts of an
implementation could benefit from varying security levels. We finally
discuss tweaks to improve the situation and enable a better leveling of
the countermeasures. Our conclusions confirm that current solutions for
side-channel secure PQ key encapsulation schemes like Kyber are unlikely
to be efficient in low-noise settings without (design or countermeasures)
improvements.

1 Introduction

Many Post-Quantum (PQ) Key Encapsulation Mechanisms (KEMs), including
third-round finalists of the NIST post-quantum standardization effort, rely
on the Fujisaki-Okamoto (FO) transform [15]. It allows building a Chosen-
Ciphertext (CCA) secure scheme from a Chosen-Plaintext (CPA) secure Public-
Key Encryption (PKE) scheme. This transform first decrypts the ciphertext
c with the underlying CPA-secure PKE to retrieve the message m. Then,
it re-encrypts (in a deterministic manner) m to obtain a ciphertext c′. By
construction, any ciphertext c that has not been generated by the CPA-secure
encryption scheme will result in a case where c′ ̸= c (up to a negligible
probability). In such a case, the CCA-secure KEM returns a random message
which cannot be exploited by the adversary. Yet, while the FO transform is
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well suited to reach mathematical security, several recent works showed that the
situation strongly differs when physical attacks are considered [29, 34, 32, 25].
In such a context, leakage about intermediate computations makes it possible
to circumvent mathematical security guarantees. Roughly, an adversary can
then use a chosen-ciphertext attack against the part of the scheme that is only
CPA secure. For example in [29], the adversary carefully crafts ciphertexts such
that the decrypted message m leaks a bit of a secret key coefficient. Since this
message m is used as input for the deterministic re-encryption, the adversary
then only has to distinguish between an encryption of 0 or 1 given leakage of
the computation. To do so, she can target all the intermediate computations
within the (long) deterministic re-encryption jointly, which can include hundreds,
thousands or even millions of intermediate bytes/words. Furthermore, this
leakage is easy to exploit, whether being via standard techniques (e.g., template
attacks with dimensionality reduction) or machine learning based cryptanalysis.

Echoing the situation in symmetric cryptography, such an attack actually
corresponds to the strongest (state comparison) one in the taxonomy of [30,
Slide 1.7]. In terms of design, [30] also recalls that symmetric decryption ensuring
CCA security with leakage requires a two-pass design where the validity of the
ciphertexts is verified before being decrypted (e.g., thanks to a MAC).

In addition to these attacks targeting the re-encryption, Differential Power
Analysis attacks (DPAs) that target the leakage in the first (guessable) parts of
a secret computation are also possible. In the case of PQ KEMs, such attacks
naturally apply to the part of the decryption that takes place before the re-
encryption. As usual, they can be extended from a standard DPA to analytical
attacks exploiting even the hard-to-guess parts of the computation thanks to
belief propagation, leading to strong key recoveries [27, 26].

In parallel to the efforts regarding the identification of attack vectors,
countermeasures against side-channel attacks have also been adapted to the
PQ setting. As one of the leading protections, masking has received particular
attention and, for example, first- and higher-order masked implementations
of Saber and Kyber have been proposed [4, 7, 19, 14]. To the best of our
knowledge, masked implementations of PQ schemes so far mostly considered
an uniform protection level, where all the parts of the computations embed the
same number of shares. Again echoing the situation in symmetric cryptography,
these works naturally question the possibility to consider so-called leveled
implementations, where different parts of the computations have different
security levels, for example based on the number of operations exploitable via
side-channel leakage [5].

Based on this state-of-the-art, the objectives of the paper are threefold:

First, we propose a model for both (i.e., SPA and DPA) attack paths.
For each of them, we derive a shortcut formula (i.e., a generic expression for
the minimal number of traces needed for a successful attack) that takes as
parameters the number of shares in the masking scheme, the level of noise in
the leakage (measured as the mutual information between the shares and the
leakage λ) and the (cipher-specific) amount of operations for which the leakage
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is exploitable. These shortcut formulas enable a first (simplified) approximation
of attack complexities to compare side-channel attacks according to the above
parameters.

Second, we illustrate these formulas at the example of CRYSTALS-Kyber [2].
This specific choice of KEM is motivated by the already large literature
dedicated to its side-channel analysis and countermeasures. We derive our model
parameters based on state-of-the-art implementation results from [7] and, in
order to enable a comparative study of the attack paths, additionally express
the cost needed to protect the different subparts of the Kyber computations.

Third, we use our results to discuss masked implementations of Kyber and
the possibility to leverage the leveled implementation concept for PQ KEMs.
We show that for unmasked implementations, the re-encryption becomes the
preferred attack vector as the noise level increases (since it enables very strong
horizontal attacks). But somewhat surprisingly, we also show that as the number
of shares (hence, the target security level) increases, the impact of the re-
encryption in the overall security vs. efficiency tradeoff tends to vanish, which
significantly limits the interest of leveled implementations.

As a conclusion, we first recall that getting rid of the FO-transform in a PQ
KEM such as Kyber would require a way to identify “well structured ciphertexts”
without re-encryption, as performed in the symmetric cryptographic setting
thanks to a leakage-resilient MAC. We note that this is a hard problem in
itself. At this stage, it is not clear whether simple filtering heuristics can be
sufficient [34], and the more formal solution of relying in a zero-knowledge proof
(which we briefly discuss in Section 6) is quite expensive. In this respect, our
results show that the performance margin available to (heuristically or formally)
get rid of the FO-transform is quite limited. This conclusion derives from the
observation that as the number of shares increases, the cost of protecting the
(CPA-secure) decryption and the re-encryption becomes increasingly balanced
in Kyber. In other words, improving the efficiency of side-channel secure Kyber
implementations would not only require to get rid of the FO-transform, but also
to increase the performance gap between its protected (CPA-secure) decryption
and re-encryption. Candidates for this purpose include improving the efficiency
of this decryption (especially the compression part), reducing the complexity of
its masking and taking advantage of hardware tweaks (e.g., exploiting different
noise levels in the decryption and re-encryption). We believe a similar challenge
appears in related PQ KEMs relying on the FO-transform (e.g., Saber [3]).

2 Background

We next recall the necessary background for the rest of the paper. We
first describe shortcut formulas for side-channel attacks based on Information
Theoretic (IT) metrics. We continue with a short description of CRYSTALS-
Kyber [2].
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2.1 Information Theory for Side-Channel Attacks

Side-channel attacks allow recovering cryptographic secrets by observing the
leakages L from an implementation. All side-channel attacks (whether based on
a divide-and-conquer or analytical strategy) include an extraction phase where
they collect information about guessable intermediate computations. A standard
strategy to estimate the number of traces required to recover leaking target
intermediate values with confidence is to use information theoretic metrics such
as the Mutual Information (MI) [31, 13, 11]. Next, we recall the simple relations
that we are going to leverage in order to derive shortcut formulas. We start with
unprotected variables, continue with masked variables and finally discuss the
impact of attacks exploiting multiple intermediate computations.

Unprotected variables. In order to evaluate the number of independent leakages
N required to recover a (sub)-secret X, one can use the relation:

N ≈ c

MI(X;L)
, (1)

where c is a small constant that depends on the size of the intermediate variable
and the target success rate (we will set it to the Shannon’s entropy such that
c = H(X) for simplicity), and MI(X;L) is the Mutual Information between the
target variable X and the leakage vector L.

Roughly, the attack complexity is inversely proportional to the MI, which
is itself inversely proportional to the noise variance of the leakages [24]. In the
following, we will use the MI between target intermediate computations and
their leakage as a parameter of our evaluations, and denote it as λ.

Masked variables. In order to protect implementations against SCA, masking is
a countermeasure that has been extensively studied. It consists in representing
a sensitive variable X as d shares (X0, X1, . . . , Xd−1) such that any set of d− 1
shares remains independent of X. The operations are then applied to the shares
ofX instead of onX directly. When implemented securely (i.e., under some noise
and independence conditions), it guarantees an exponential security increase at
the cost of quadratic performance overheads [9, 22, 28, 12, 13]. Concretely, this
security amplification is reflected by a reduction of the MI:

MI(X;L) ≈
d−1∏
i=0

MI(Xi;L) = λd, (2)

leading to an increased attack data complexity captured by:

N ≈ c

λd
. (3)

Targeting multiple (independent) operations. Side-channel attacks are not
limited to the exploitation of a single intermediate computation and its
corresponding leakage. Multiple operations can be exploited jointly. The simplest
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way to do so is when multiple intermediate computations relate to the same
guessable secret. In this case, a natural abstraction is to model their leakages as
providing independent information on the secret, as captured by the Independent
Operations’ Leakages (IOL) proposed in [17]. It leads to the approximation:

MI(X;L) ≈
∑
j

MI(varj(X);L) ≈ #var · λd, (4)

where varj(X) is one of the #var variables depending only on X.
For example in the case of block-ciphers, an attack can be performed by

exploiting leakage (e.g., with Gaussian templates) at the input of the Sbox
and at its output and combining information from both. This will double the
information aboutX (hence #var = 2) compared to an attack exploiting only its
output (with #var = 1). It turns out this simple setting will be quite frequently
observed (and generalized) in our following investigations.

Cautionary notes. The above formulas are admittedly simplified and may ignore
a part of the leakages. First, it is also possible to exploit the leakages of
operations that are not exploitable via a divide-and-conquer DPA, for example
using analytical strategies [33], as considered by [27, 26] in the PQ setting.
Second, masked multiplications with d shares imply quadratic overheads, e.g.,
they require computing d2 partial products which may leak as well. Yet, as
modeled in [18], the leakage of intermediate values that do not relate to the same
guessable secret does not simply add up as in the previous IOL case and rather
implies a constant gain in the attacks; and the leakage of partial products in
masked multiplication is dominated by the leakage of the tuples as the noise level
of the implementation increases. So simply stated, while the following shortcut
formulas could be refined to take into account advanced attacks, they are a
convenient first step to study the large design space of masked PQ KEMs up to
small constants.

2.2 CRYSTALS-Kyber

Arithmetic & notations. We denote the polynomial ring Zq[X]/(Xn + 1) as
Rq. We denote polynomials with lower case such that f ∈ Rq. As a result, the
polynomials are of the form:

f = f0 + f1 ·X1 + . . .+ fn−1 · fn−1, (5)

where fi ∈ Zq is the i-th coefficient of the polynomial. We denote vectors and
matrices with bold letters. For example, v ∈ Rk

q is a vector of k polynomials such
that v[i] ∈ Rq for all 0 ≤ i < k. Hence, v[i]j refers to the j-th coefficient of the
i-th polynomial in v. Additionally, A ∈ Rk×k

q is a matrix of polynomials with
size k × k. For CRYSTALS-Kyber, the prime q is chosen such that polynomial
multiplications can be performed very efficiently via the Number-Theoretic
Transform (NTT). Concretely, the NTT is first applied to the polynomials such
that:

f̂ = NTT(f) = f̂0 + f̂1 ·X1 + . . .+ f̂n−1 ·Xn−1, (6)
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where f̂ (resp., f̂0) denotes the NTT domain representation of f (resp.,
f0). NTT(·) is efficiently applied with a butterfly algorithm [10, 16]. The
multiplication between two polynomials can then leverage their representations
in the NTT domain such that:

c = a · b = NTT−1(â ◦ b̂), (7)

where ◦ is the coefficient-wise multiplication.

CRYSTALS-Kyber PKE. We first detail the underlying CPA-secure PKE scheme
denoted as Kyber.CPAPKE, which relies on the hardness of Module-LWE [23].
Kyber.CPAPKE encryption and decryption are recalled in Algorithm 1 and
Algorithm 2, respectively. There, ŝ denotes a secret key, pk a public key
containing a vector of polynomials t̂ and a random matrix of polynomials Â,
m the 256-bit message, σ a 256-bit random seed used to derive deterministically
the randomness from a pseudo-random generator and CBDη denotes the
sampling, from a uniform random string, of a centered binomial distribution
with parameter η. Compq and Decompq are respectively compression and
decompression functions such that Decompq(Compq(x, dx), dx) ≈ x. Both PRF,
KDF, G and H are hash functions with various output lengths based on the
Keccak permutation. For more details about these algorithms, we refer to their
specifications in [2].

Algorithm 1
Kyber.CPAPKE.Enc(pk,m,σ)

Input: Public key pk := (t̂, Â) with t̂ ∈ Rk
q

and Â ∈ Rk×k
q , message m ∈ {0, 1}n,

random coin σ ∈ {0, 1}256.
Output: Ciphertext c := (c1, c2).

1: for i in [0, . . . , k − 1] do
2: r[i] := CBDη1

(PRF(σ, i))

3: e1[i] := CBDη2
(PRF(σ, i + k))

4: e2 := CBDη2
(PRF(σ, 2 · k))

5: r̂ := NTT(r)

6: u := NTT−1(ÂT ◦ r̂) + e1

7: v := NTT−1(t̂T ◦r̂)+e2+Decompq(m, 1)

8: c1 := Compq(u, du)

9: c2 := Compq(v, dv)

10: return (c1, c2)

Algorithm 2
Kyber.CPAPKE.Dec(ŝ,c)

Input: Secret key ŝ ∈ Rk
q , ciphertext c :=

(c1, c2).
Output: Message m.

1: u := Decompq(c1, du)

2: v := Decompq(c2, dv)

3: ẑ = ŝT ◦ NTT(u)

4: w := v − NTT−1(ẑ)
5: m := Compq(w, 1)

6: return m

CRYSTALS-Kyber KEM & FO-transform. CRYSTALS-Kyber leverages the
FO-transform [15, 20] to build a CCA-secure KEM from a CPA-secure PKE.
The resulting Kyber.CCAKEM encapsulation and decapsulation algorithms
are described respectively in Algorithm 3 and Algorithm 4. More precisely,
Kyber.CCA KEM.Dec first retrieves a message candidate m′ by decrypting
the ciphertext c thanks to Kyber.CPAPKE.Dec and the secret key.
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Then, it computes c′ by re-encrypting m′ using the encryption c′ =
Kyber.CPAPKE.Enc(pk,m′, σ′). It then only outputs the correct symmetric key
materialK if c is equal to c′. As a result, the resulting scheme is protected against
chosen-ciphertext attacks: as soon as an adversary attempts to use a forged
ciphertext, the resulting re-encrypted c′ will differ from c (up to a negligible
probability).

We note that for such a construction to be correct, the randomness used
during the (re)-encryption should be deterministically generated from a random
coin associated with the plaintext. Otherwise, the ciphertexts c and c′ could
differ even though they are both correct ciphertexts of the same message m.

Algorithm 3
Kyber.CCAKEM.Enc(pk)

Input: Public key pk := (t̂, Â)
Output: Ciphertext c, encap. secret K.

1: m← {0, 1}256
2: m := H(m)
3: (K̄, σ) := G(m||H(pk))
4: c := Kyber.CPAPKE.Enc(pk,m, σ)
5: K := KDF(K̄||H(c))
6: return (c,K)

Algorithm 4
Kyber.CCAKEM.Dec(c, sk)

Input: Ciphertext c := (c1, c2), secret key
sk := (ŝ, pk,H(pk), z).

Output: Decap. secret K.

1: m′ := Kyber.CPAPKE.Dec(ŝ, c)
2: (K̄′, σ′) := G(m′||H(pk))
3: c′ := Kyber.CPAPKE.Enc(pk,m′, σ′)
4: if c = c′ then
5: return K := KDF(K̄′||H(c))
6: else
7: return K := KDF(z||H(c))

Concrete parameters. Finally, we give the parameters used by CRYSTALS-
Kyber for the third round of the NIST PQC standardization process [2]
in Table 1, for the different versions corresponding to different security levels.3

n k q η1 η2 du dv
Kyber512 256 2 3329 3 2 10 4
Kyber768 256 3 3329 2 2 10 4
Kyber1024 256 4 3329 2 2 11 5

Table 1: Summary of Kyber parameters (from [2]).

3 Shortcut formulas for SPA and DPA

As stated in the introduction, there exists two main attack paths against PQ
KEMs based on the FO-transform. In this section, we derive shortcut formulas
for their data complexity. For this purpose, we use the illustration of Figure 1,
which is a simplified graphical representation of Algorithm 4.

3 Namely, NIST security levels 1, 3 and 5 for which any attack requires comparable
computational resources to attacks against AES-128,AES-196 and AES-256 [1, 2].
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Fig. 1: Attack paths against Kyber.CCAKEM.Dec(c, sk) (Algorithm 4).

3.1 Ask
DPA: DPA against CPAPKE.Dec

Description. A DPA attack against PQ KEMs can be performed in a similar way
as classical (divide-and-conquer) DPA against block-ciphers. In this case, Ask

DPA

targets directly each of the secret key coefficients ŝi independently. To do so,
she asks for the decryption of legit ciphertexts c’s and records the corresponding
traces. She then exploits every operations that directly involve ŝi, as she would
target the Sbox’s input and output in the case of a block-cipher.

For illustration, in the case of CRYSTALS-Kyber, this adversary targets each
ŝi independently by observing the leakage of ŝT ◦ NTT(u) (see Algorithm 2,
line 3) where u is known and random. Indeed, she obtains leakage of the
coefficient-wise operations ŝi ◦ ûi as detailed in Equation 7.

Shortcut formula. Because this attack targets each of the coefficients
independently, the resulting shortcut formula can leverage the approximations
given in Subsection 2.1. Namely, we can estimate the data complexity of Ask

DPA

with:
NDec ≈

αDec

λdDec

, (8)

where dDec is the amount (#) of shares used to protect the CPAPKE.Dec and
αDec =

c
#var is the cipher-dependent constant reflecting the # of operations that

can be exploited via DPA (and the constant c), discussed for Kyber in Section 5.

Other DPA attacks. As already mentioned in Subsection 2.1, advanced
adversaries could additionally exploit the leakages in NTT−1 thanks to belief-
propagation [27, 26]. By exploiting the leakage of hard to guess intermediate
variables, such advanced attacks can reduce the data complexity by additional
constant factors, which could be reflected by adapting αDec [18].

3.2 Ask
SPA: SPA against re-encryption

Description. The SPA adversary Ask
SPA targets leakages from all operations that

directly depend on the decrypted message m′ [29, 34, 32, 25]. In short, these
attacks are chosen-ciphertext attacks against the part of the KEMs that are
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only CPA-secure. This is made possible despite the FO-transform by exploiting
the leakage of m′ as a plaintext-checking oracle. This can be done simply by
observing whether m′ is equal or not equal to a reference message. In order to
recover the full secret key sk, multiple forged ciphertexts (and corresponding
oracle accesses) are required. We denote their number as #O.

Shortcut formula. In order to predict the data complexity of such an SPA
adversary, we first observe that by targeting the leakage of the re-encryption,
it is possible to exploit multiple independent variables that directly depend on
m′. We denote the number of these operations as #var. Again leveraging the
approximations of Subsection 2.1, the number of traces required to succeed in
detecting whether m′ is equal to the reference is then estimated as:

NEnc ≈
αEnc

λdEnc

, (9)

with αEnc = c′· #O
#var . Here again, the number of exploitable operations #var is

cipher-specific. The same holds for the number of required oracle accesses #O.
Those values will be specified for the case of Kyber in the next section.

4 Generic intuitions

In this section, we discuss the case of masked implementations of PQ KEMs.
We assume a designer aiming at an implementation that can resist attacks of
complexity γ (which therefore corresponds to the security level) on a platform
with physical security parameter λ (which, as outlined in Section Subsection 2.1,
can be viewed as a measure of the implementation’s noise level). More precisely,
we first study the case where a designer selects the same number of shares to
protect the decryption and the re-encryption, and show that such a strategy
requires a large number of shares. Then, we quantify the effect of using different
number of shares for decryption and re-encryption and discuss its impact
regarding the relative cost of the re-encryption in the overall implementation.

4.1 Masking can be (very) expensive

Next, we estimate the number of shares required to protect against both
decryption and re-encryption attacks such that d = dEnc = dDec. To do so,
the target security level γ should be smaller than the attack complexities N
derived in Section 3 such that:

γ ≤ α · 1

λd
, (10)
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with α = min(αEnc, αDec). As a result, the required number of shares to protect
the entire implementation is defined by:

d ≥ logλ

(
α

γ

)
(11)

≥ log10(α)− log10(γ)

log10(λ)
, (12)

up to ⌈·⌉ to ensure that d is an integer (for readability, we omit the rounding for
the rest of the section). Based on this equation, we report the number of shares
for various settings in Figure 2. As expected from Equation 12, the parameter
that has the strongest influence on the number of shares is the noise λ, which
corresponds to the slope of the curves. For example, moving from λ = 0.1 to
λ = 0.01 reduces the number of shares by a factor 2 since | log10(λ)| is increased
similarly. The number of shares also depends on the attack parameter α, but to
a lower extent (since this factor is constant in d). For example, reducing α by a
factor 10 implies the need for 1/ log10(λ) additional shares to compensate.

216 227 238 249 260 271 282 293
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20
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30
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= 10 3; = 10 3; 

Fig. 2: Impact of the attack parameters α and the noise level λ on the number
of shares d in function of the target security level γ.

The combination of these two effects is at the basis of the somewhat
paradoxical conclusions in the following sections. On the one hand, large number
of operations (which are observed for PQ KEMs) make side-channel attacks very
strong in the absence of countermeasures. On the other hand, the impact of
reducing this number of leaking operations vanishes as the target security level
(and number of shares) increases, since it is then increasingly dominated by the
amplified noise. For the rest, the figure also recalls that with low-noise devices,
the number of shares needed to reach high security against side-channel attacks,
and therefore the implementation overheads, can be prohibitive [8].

4.2 Leveling moderately helps

State-of-the-art analyses of PQ KEMs indicate that SPA attacks targeting re-
encryption are very powerful. This is for exampled witnessed by the “curse of
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re-encryption” discussed in [32]. Concretely, the origin of this curse mainly lies in
the different number of exploitable operations that decryption and re-encryption
may have. A natural target to mitigate this issue is to use a different number
of shares for these two parts of a KEM. By doing so, we could expect to reduce
the overall cost of an implementation by protecting less its stronger (i.e., CPA
decryption) part. In order to model such a leveling, we assume that masking
leads to overheads that are quadratic in d and express the cost of protecting
one component as ζ = β · d2, where β is the cycle count of an unprotected
implementation. Note that the quadratic cost overheads are naturally dependent
on the fraction of linear and non-linear operations in the algorithm to protect.
But concrete results recalled in Appendix A show that this trend is observed even
for low number of shares in the case of Kyber.4 More precisely, we are interested
in the proportion ζEnc/ζDec of time that is spent to protect re-encryption and
decryption. A large ratio means that the re-encryption is the dominating the
overall cost. Hence, removing re-encryption would lead to significant performance
improvements in this case. A small ratio means the opposite. Next, we study
this ratio according to attack parameter α, target security level γ as well as the
implementation complexity β.5 This proportion can be given by:

ζEnc/ζDec =
βEnc

βDec
· d

2
Enc

d2Dec

(13)

=
βEnc

βDec
· (log10(αEnc)− log10(γ))

2

(log10(αDec)− log10(γ))
2
, (14)

thanks to the expression of the number of shares in Equation 12. For increasing
security target γ, this ratio converges such that:

lim
γ→∞

ζEnc/ζDec =
βEnc

βDec

. (15)

We observe that as γ increases, the proportion of time spent between the two
blocks converges towards the ratio of their performances when implemented
without side-channel protections. In other words, the gap between the number of
shares needed to compensate different number of exploitable operations vanishes
with the security level. This equation is illustrated in Figure 3. For low security,
the re-encryption dominates the overall cost of the secure implementation. By
contrast, it is no more the case for large security levels.

Interestingly, even if the idea of leveling we analyze in this work looks quite
similar to the one leveraged in symmetric cryptography [5], its impact is much

4 For both CPAPKE.Enc and CPAPKE.Dec, lattice arithmetic can be efficiently
masked with linear complexity. However, both include polynomial comparison,
polynomial compression and binomial noise sampling which require boolean-to-
arithmetic and/or arithmetic-to-boolean masking conversions implying quadratic
overheads. In the case of Kyber, these conversions dominate the overall cost of
protected implementations even for small masking order.

5 β is strongly connected to α in the case of PQ KEMs where the leakage of most
operations can be exploited. Yet, it could be more different in other cases.
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Fig. 3: Ratio between the cost of decryption and re-encryption (βEnc/βDec = 10).

lower. The best factor that a designer could hope to gain in the case of a PQ
KEM that is strongly protected against side-channel attacks is ≈ 1+βEnc/βDec.
But in fact, the explanation is also quite natural. The main factor making the
leveling process very effective in the symmetric case is the possibility to amortize
the cost of a highly masked implementation for long messages. In the case of a
PQ KEM, the size of the messages is fixed. Admittedly again, these conclusions
are based on generic formulas that may be over simplifying and their concrete
impact depends on the exact complexity of concrete PQ KEMs. We next show
that a specialization to Kyber leads to these conclusions as well.

5 Applications to CRYSTALS-Kyber

We now aim to characterize the parameters of the SPA and DPA attack paths
more concretely. For this purpose, we first introduce a slightly finer-grain analysis
than the shortcut formulas in the previous section. Its goal is to enable a
discussion of how stable our conclusions are in front of technology-dependent
variations. We next quantify the operation counts in the specific case study
of a software CRYSTALS-Kyber implementation from [7]. We finally use these
concrete values to revisit the generic intuitions of the previous section.

Preliminaries. Before these discussions, we mention two preliminary steps
towards specializing our shortcut formulas to Kyber. The first one is to observe
that the c constant in Section 3 will be different for the two attack paths.
In the Ask

DPA case, one aims to recover 12-bit values (key coefficients in NTT
domain), leading to c = 12. In the Ask

SPA case, one only wants to recover a 1-bit
value (i.e., to distinguish the leakage of a message from the leakage of another
message), leading to c′ = 1. The second step is to determine the number of oracle
accesses #O required for the SPA to succeed. For Kyber, this number is worth
#O = k · n · 3, as given in Table 3 of [32], based on the analysis in [21].6

6 The basic Ask
SPA aims to recover a single coefficient of s per oracle access. But it can

be extended to target b coefficients of the secret at once, which essentially works by
targeting b bits of the decrypted message rather than a single one.
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5.1 Finer grain analysis

Equations 8 and 9 in the previous section implicitly assume that all the
intermediate variables they target leak the same amount of information λ.
However, it may not be the case in practice, for different (implementation-
specific) reasons. The simplest one, that we will characterize next, is that the
operations may not all manipulate the same amount of bits per cycle. For
example, in a software implementation of Kyber, an efficient implementation
of the hash function Keccak will typically be obtained by bitslicing. In this
case 32 bits would be manipulated per cycle. By contrast, the 12-bit arithmetic
operations will generally lead to 12 bits manipulated by cycle. Assuming a
Hamming weight leakage model, where one can roughly approximate MI(X;L)
by log2(n) when X is an n-bit value, it means that the leakage of 32-bit

operations will be f = log2(32)
log2(12)

time larger than the one of 12-bit operations. A

completely accurate fine-grain characterization of how the different operations
of an implementation of Kyber leak is outside the scope of this work (and
would go against the simplicity goal of shortcut formulas). Yet, in order to
assess the potential impact of such a characterization, we will next consider
two leakage parameters: λ32 for 32-bit operations and λ12 for 12-bit operations.

By default, we will further assume that λ32 = f · λ12 with f = log2(32)
log2(12)

. As a

result, Equations 8 and 9 will be updated as:

NDec ≈
12

#varDec · λdDec
12

, (16)

since there are no Keccak instances in Kyber.CPAKEM.Dec, and:

NEnc ≈
3 · k · n

#var12Enc · λ
d12
Enc

12 +#var32Enc · λ
d32
Enc

32

. (17)

In the next subsection, we therefore focus on evaluating the number of 12-bit
and 32-bit operations that can be exploited in the different sub-computations
that are found in the Kyber decryption and re-encryption algorithms.

5.2 Concrete attack parameters

DPA against decryption. The Ask
DPA adversary exploits the leakage generated by

the first few operations in the decryption involving the private key ŝ (Algorithm 2
- Line 3). It aims to recover the NTT representation of the private key s. More
precisely, Ask

DPA exploits leakage from the product between the two vectors of
polynomials û ∈ Rk

q and ŝ ∈ Rk
q where û is known by the adversary (since

derived from the ciphertext). In the specific case of Kyber, the polynomial-
wise base multiplications û[i] ◦ ŝ[i] is performed by computing coefficient-wise
operations û[i]2j · ŝ[i]2j , û[i]2j · ŝ[i]2j+1, û[i]2j+1 · ŝ[i]2j and û[i]2j+1 · ŝ[i]2j+1 for
0 ≤ i < k and 0 ≤ j < n/2. As a result by requesting one single decryption,
Ask

DPA can directly exploit, thanks to dedicated attacks such as [8], the leakage
from the multiplication of every coefficient in ŝ with two know coefficients in û.
Hence in this case #varDec = 2.
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SPA against re-encryption. As mentioned above, the Ask
SPA adversary exploits

the leakage of the deterministic re-encryption to gain knowledge on the message
m′ decrypted by Kyber.CPAPKE.Enc [29]. Next, we evaluate the number of
operations in Kyber of which the leakage can be jointly exploited to gain
information on m′ during the re-encryption. We first estimate the number
of operations performed on 32-bit words (i.e., for hash functions). Then, we
estimate the number of operations on 12-bit words (i.e., arithmetic operations).

– #var32Enc. The re-encryption involves many calls to hash functions depending
directly on the decrypted message m′. The first call to a hash function
depending on m′ is G in G(m′||H(pk)) (see Algorithm 4 - Line 2). The others
are made within the re-encryption with Kyber.CPAKEM.Enc (Algorithm 1).
There, (1 + 2 · k) calls to PRF(·, ·) are performed in order to sample e1, r
and e2 with CBDη(·). As a result, (2 + 2 · k) calls to hash functions can be
exploited by the Ask

SPA adversary. All of them are based on the Keccak[1600]
permutation [6].7 For each of the calls to the hash functions, because of
the input and output length, one single call to Keccak[1600] is performed.8

Keccak[1600] requires 24 rounds alternating between linear and Sbox layers.
Each rounds implies about 320 operations on 32-bit words. As a result, Ask

SPA

exploits jointly the leakage of #var32Enc ≈ (2 + 2 · k) · 24 · 320.
– #var12Enc. To model the information that can be extracted from the NTT and

NTT−1 operations, we assume that each of the intermediate stages in the
butterfly algorithm provides independent leakages. As a result, the adversary
can exploit the leakage of n · log2 n operations for each of the calls to NTT
or its inverse. Kyber.CPAPKE.Enc includes 2 + k NTT calls, leading to a
total of n · log2 n · (2 + k) operations on 12-bits from the NTT.
Besides, Kyber.CPAPKE.Enc also uses 12-bit element-wise operations such
as the base multiplication (◦) and additions. The base multiplication implies
2 · n operations and the polynomial addition only n. In Algorithm 1, the
variable u is computed thanks to k2 base multiplications and k2 vector
additions since Â ∈ Rk×k

q and r̂ ∈ Rk
q . Similarly, k base multiplications and

k + 2 additions are needed to derive v. Kyber.CPAPKE.Enc also includes
(2k + 1) · n calls to CBD, (k + 1) · n calls to Comp. The final comparison
consists in (k + 1) · n coefficient-wise operations. Overall, the adversary can
exploit a total of (3k2 + 8k + 5) · n leaking element-wise operations.
Hence in the following, we take #var12Enc ≈ n · (3k2+8k+5+log2 n · (2+k)).

5.3 A look at unprotected implementations

In Figure 4, we report the data complexity of attacks against an unprotected
(d = 1) implementation of Kyber768. The x-axis corresponds to physical noise

7 Expect for the Kyber 90s versions.
8 The only exception is for its call in CBDη(PRF(·, ·)) of Algorithm 1 if η = 3 (for
Kyber512). Indeed, in such a case, CBD3(·) requires 1526 random bits. This requires
two executions of Keccak[1600] since 1526 is larger than the rate of PRF(·, ·).
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parameter λ. The y-axis reports the data complexity N which is derived from
Equation 8 for the Ask

DPA adversary and from Equation 9 for the Ask
SPA adversary,

with the concrete parameters estimated above. We can observe that for low noise
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Fig. 4: Data complexity of attacks against unprotected Kyber768.

levels (i.e., large λ values), the DPA attack path leads to stronger attacks. But as
the noise increases, the SPA becomes the preferred attack path. Its complexity
remains constant for a wide range of noise levels (up to λ values of 10−5 per
leakage sample), as reflected by the plateau region of the curve. This is because
a single oracle access is then sufficient to recover the key, leading to a successful
attack in #O = 3 ·n · k traces. Concretely, for small λ values, the Ask

SPA requires
(#var32Enc · f + #var12Enc) · 12/(#varDec · #O) ≈ 2.8 · 102 less traces than the
Ask

DPA, providing a quantitative view on the “curse of re-encryption”.

5.4 Generic intuition revisited

In this subsection, we finally revisit the intuitions put forward in Section 4 with
concrete parameters corresponding to a software implementation of Kyber. We
aim to derive the implementation cost needed to reach a given security level γ.
Concretely, this requires to optimize the number of shares dDec, d

12
Enc and d32Enc

in Equations 16 and 17 based on the numbers given in Appendix A. We used a
grid search for this purpose, considering only integer number of shares.

Masking is (very) expensive. The cycle counts of a protected implementation
of Kyber768 is reported in Figure 5. It confirms the large overheads needed to
reach high physical security, especially in case of low noise levels. For example,
109 cycles are required to reach a 232 security for a noise λ = 0.1. With a
larger noise λ = 0.01, similar overheads would lead to a security level γ = 274.
Our results consolidate and quantify the intuition that masking PQ KEMs like
Kyber can only be done at realistic cost under sufficient noise levels. Those
may not be directly available in low-end embedded microcontrollers (where



16 Azouaoui, Bronchain, Hoffmann, Kuzovkova, Schneider, Standaert

222 232 242 252 262 272 282 292

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

 [k
cy

cl
es

]

= 10 1

= 10 2

= 10 3

Fig. 5: Cost (kcycles) of Kyber768 for noise parameter λ and security level γ.

λ = 0.1 is a typical value, see [8] Fig.10), and therefore suggest relying on
secure microcontrollers with noise engines or hardware implementations for this
purpose.

Levelling still moderately helps. Figure 6 contains the estimated ratio
between the cost of encryption and decryption for the minimal dEnc and dDec

leading to a given security level γ. The steps on the curves are due to the
grid search on dEnc and dDec which only considers integer number of shares.
Overall Figure 6 also confirms that the impact of the re-encryption in the overall
implementation cost decreases as the security level increases. For example, for
high security levels, the protected re-encryption is about 12 times slower than
the protected decryption for Kyber 768.
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6 Discussion & challenges

The generic analysis in this work enables clarifying the challenges for improving
the side-channel security of PQ KEMs. It first confirms that the re-encryption
used in the FO transform is an important and hard-to-contain source of leakage.
For an unprotected implementation, it gives rise to a very large amount of easy-
to-exploit leakage samples. As a result, an SPA against this part of a PQ KEM
becomes the best attack as soon as the noise in the implementation increases. Our
results also show that the direct application of higher-order masking to prevent
such attacks can lead to very expensive implementations. We are unaware of a
CPA to CCA FO-like transform that would avoid this (or a similar) issue.

An intuitive design goal following these observations would be to limit the
use or even to get rid of the FO transform. Heuristic solutions for this purpose,
such as rejecting certain easy-to-exploit ciphertext structures (e.g., with low
Hamming weight) or adding redundancy in the plaintext or the key are unlikely
to solve the problem in a generic manner [34]. The standard solution used to
obtain CCA security with leakage in symmetric cryptography (i.e., to MAC
the ciphertext with a careful verification mechanism [5]) is not applicable in the
public-key setting. A generic replacement of this solution would be to rely on zero
knowledge proof techniques on top of the CPA encryption, in order to avoid using
the secret key before verifying the validity of the resulting ciphertext during its
decapsulation. By quantifying the performance gap between the decryption and
re-encryption parts of a masked KEM, our results clarify the limited budget that
such a zero-knowledge proof can use to beat the security vs. performance tradeoff
of a uniformly masked implementation. For Kyber, it roughly corresponds to a
factor 10 in clock cycles (which ignores the increase of ciphertext size).

Overall, we therefore put forward the paradoxical observation that the FO
transform leads to very strong attack vectors agains unprotected PQ KEMs, but
that the impact of getting rid of this transform in order to leverage a leveled
implementation vanishes as the security level increases. The latter is mostly
due to the eventually comparable complexities of a protected decryption and re-
encryption, which cannot be amplified by an amortization over long messages like
in the symmetric encryption setting. Hence, improving the side-channel security
vs. efficiency tradeoff of PQ KEMs like Kyber will not only require to mitigate
the leakages due to re-encryption, but also to find a way to make the protected
decryption significantly more efficient. Our shortcut formulas directly indicate
optimizations that could play a role in this direction, for example reducing the
number of exploitable operations reflected by the α parameters in our formulas
or leveraging different noise levels in decryption and re-encryption (i.e., playing
with the f parameters of Subsection 5.1). Alternatively, finding solutions to
optimize the masking complexity of the decryption would also be beneficial. In
absence of such advances, ensuring a sufficient noise level in order to limit the
number of shares in PQ KEMs appears as the only practical option.

Eventually, while the interest of shortcut formulas lies in their ability
to identify design trends, the counterpart of this genericity naturally lies
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in the limited details they provide about fine-grain implementation-specific
issues. Evaluating the impact of the previous optimizations based on concrete
case studies and experiments is therefore an interesting scope for further
investigations.
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A Masked Kyber.CCAKEM.Dec

In Table 2, we show the performance values for masked Kyber.CCAKEM.Dec
for different masking orders based on [7] but with an optimized comparison.
These values are provided for the STM32F407G (ARM Cortex-M4) MCU and
up to order 6, since the maximum stack size on the target MCU is 112 KiB (for
SRAM1). Starting from 2nd order, the implementation requires more than 13.5
KiB of stack size for each subsequent order. The 7th order masked code requires
at least 114 KiB of stack.

Operation Order

1st 2nd 3rd 4th 5th 6th

crypto kem dec 3 178 57 141 97 294 174 220 258 437 350 529

indcpa dec 200 4 203 7 047 13 542 20 323 27 230
unpack 24 30 36 43 50 56
poly arith 89 119 148 598 713 790
compression 87 4 054 6 863 12 901 19 561 26 384

indcpa enc 2 024 18 879 32 594 53 298 75 692 104 191
decompression 118 291 537 889 1 267 1 745
gen at 391 391 391 391 391 391
poly getnoise 1 217 17 727 31 069 49 390 70 856 98 435

prf 706 11 483 19 577 30 318 43 541 60 640
cbd 510 6,243 11 492 19 071 27 314 37 794

poly arith 302 453 603 2 627 3 172 3 643
ntt 66 99 131 585 670 817
invntt 70 105 140 1 008 1 274 1 410

comparison 693 32 293 54 725 102 922 156 075 210 518
hashg (SHA3-512) 98 1 639 2 801 4 489 6 456 8 794
hashh (SHA3-256) 113 113 113 113 113 113
kdf 13 13 13 13 13 13

Table 2: Performance numbers for masked Kyber.CCAKEM.Dec and its
subroutines (values are in kCycles).
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