
Near-optimal Balanced Reliable Broadcast and Asynchronous
Verifiable Information Dispersal

Sourav Das, Ling Ren, Zhuolun Xiang

University of Illinois at Urbana-Champaign
{souravd2, renling, xiangzl}@illinois.edu

Abstract

In this paper, we present near-optimal asynchronous Byzantine reliable broadcast (RBC) proto-
cols with balanced costs and an improved asynchronous verifiable information dispersal (AVID) pro-
tocol. Assuming the existence of collision-resistant hash functions, our RBC protocol broadcasts a
message M among n nodes with total communication cost O(n|M |+κn2) and per-node communication
cost O(|M |+κn). In contrast, the state-of-the-art reliable broadcast protocol either has per-node cost
O(|M |+κ logn), or has imbalanced costs where the broadcaster incurs O(n|M |) while other nodes in-
cur a communication cost of O(|M |+κn). We also present an error-free RBC protocol that makes no
computational assumption and has total communication cost O(n|M |+n2 logn) and per-node commu-
nication cost O(|M |+n logn). In contrast, the state-of-the-art error-free RBC protocol has total cost
of O(n|M |+n3 logn), and the broadcaster has imbalanced cost of O(n|M |+n2 logn). We then use our
new balanced RBC and additional techniques to design an asynchronous verifiable information disper-
sal (AVID) protocol with total dispersal cost O(|M |+κn2), retrieval cost O(|M |+κn), and no trusted
setup. In our AVID protocol, the client incurs a communication cost of O(|M |+κn) in comparison
to O(|M |+κn logn) of prior best. Moreover, each node in our AVID protocol incurs a storage cost of
O(|M |/n+κ) bits, in comparison to O(|M |/n+κ logn) bits of prior best. Finally, we present lower bound
results on communication cost and show that our balanced RBC and AVID protocols have near-optimal
communication costs – only an factor of O(κ) or O(logn) gap from the lower bounds.

1 Introduction
Reliable broadcast (RBC) is a fundamental primitive in distributed computing [8], and has many applications
such as fault-tolerant consensus and replication [25, 15, 18, 23], secure multiparty computation [22, 31],
verifiable secret sharing [12], and distributed key generation [1, 21, 13]. The goal of RBC is to have a
designated broadcaster send its input message and to have all nodes output the same message. Verifiable
information dispersal (VID), introduced by Cachin and Tessaro [9], is another related primitive with emerging
applications in fault-tolerant replication [15, 30]. VID lets a client, here on referred to as the dispersing client,
disperse a message among a set of nodes during the dispersal phase, such that during the retrieval phase the
message can be later retrieved by any node or any other client, which we refer to as the retrieving client. A
VID protocol immediately implies a RBC protocol, where the broadcaster acts as the dispersing client and
each node retrieves the data by acting as a retrieving client.

In this paper, we consider these two problems in asynchronous networks and we assume Byzantine faults
that may deviate arbitrarily from the protocols. We consider the unauthenticated setting where the protocol
does not use digital signatures. One of our RBC protocol is error-free and secure against any computationally
unbounded adversary in all executions, while the other RBC protocol and the AVID assume collision resistant
hash function.
Existing works on RBC. The first RBC protocol due to Bracha [8] has a total communication cost
of O(n2|M |), where n is the number of protocol nodes and |M | is the size of the broadcaster’s message

1

Table 1: Comparison with existing RBC protocols. The following acronyms are used in the table; q-SDH: q-Strong
Diffie-Hellman, DBDH: Decisional Bilinear Diffie-Hellman.

Scheme Communication
Cost (broadcaster)

Communication
Cost (other node)

Communication
Cost (total) Rounds Cryptographic

Assumption Setup

Bracha [8] O(n|M |) O(n|M |) O(n2|M |) 4 None (error-free) None
Patra [27] O(n|M |+n3 logn) O(|M |+n3 logn) O(n|M |+n4 logn) 11 None (error-free) None

Nayak et al. [26] O(n|M |+n2 logn) O(|M |+n2 logn) O(n|M |+n3 logn) 7 None (error-free) None
This work O(|M |+n logn) O(|M |+n logn) O(n|M |+n2 logn) 10 None (error-free) None

Cachin-Tessaro [9] O(|M |+κn logn) O(|M |+κn logn) O(n|M |+κn2 logn) 4 Hash None
Nayak et al. [26] O(|M |+κn) O(|M |+κn) O(n|M |+κn2) 7 q-SDH+DBDH Trusted
Das et al. [12] O(n|M |) O(|M |+κn) O(n|M |+κn2) 4 Hash None
This work O(|M |+κn) O(|M |+κn) O(n|M |+κn2) 5 Hash None

Lower bound Ω(|M |+n) Ω(|M |+n) Ω(n|M |+n2) 2 [2] — —

Table 2: Comparison with existing AVID protocols. The following accronyms are used in the table; DL: Discrete
Logarithm, CRS: Common Reference String, q-SDH: q-Strong Diffie-Hellman.

Scheme Dispersal
Cost (client)

Dispersal
Cost (total)

Retrieval
Cost (total)

Storage
Cost (total)

Cryptographic
Assumption Setup

Cachin-Tessaro [9] O(|M |+κn logn) O(n|M |+κn2 logn) O(|M |+κn logn) O(|M |+κn logn) Hash None
Hendricks et al. [19] O(|M |+κn2) O(|M |+κn3) O(|M |+κn2) O(|M |+κn2) Hash None
Alhaddad et al. [3] O(|M |+κn logn) O(|M |+κn2) O(|M |+κn logn) O(|M |+κn logn) DL CRS
Alhaddad et al. [3] O(|M |+κn) O(|M |+κn2) O(|M |+κn) O(|M |+κn) q-SDH+Hash Trusted
DisperseLedger [30] O(|M |+κn logn) O(|M |+κn2) O(|M |+κn logn) O(|M |+κn logn) Hash None

This work O(|M |+κn) O(|M |+κn2) O(|M |+κn) O(|M |+κn) Hash None

Lower bound Ω(|M |+n) Ω(|M |+n2) Ω(|M |+n) Ω(|M |) — —

in bits. Two decades later, it is improved by Cachin and Tessaro [9] to O(n|M |+κn2 log n), assuming a
collision resistant hash function of output size O(κ). In both of these RBC protocols, every node, including
the broadcaster, incurs the same asymptotic communication cost. Here on, we say such a RBC protocol
has a balanced communication cost. The state-of-the-art asynchronous RBC protocol in terms of total
communication cost is due to Das et al. [12], which has a total communication cost of O(n|M |+κn2) and
requires no trusted setup. However, it has an unbalanced communication cost. The cost of the broadcaster
is approximately n times higher than that of other nodes, leading to a bottleneck at the broadcaster. The
state-of-the-art error-free RBC protocol [26] has a total communication cost of O(n|M |+n3 log n) and is also
unbalanced. We provide a detailed comparison in Table 1 and discuss other related work in detail in §6.
Existing works on Asynchronous VID (AVID). Cachin and Tessaro [9] presented the first AVID proto-
col, with a total communication cost of O(n|M |+κn2 log n) during the dispersal phase and O(|M |+κn log n)
during the retrieval phase. It is then improved by Hendricks et al. [19], and very recently, by Alhaddad et
al and Yang et al. [30, 3] to O(|M |+κn2) for dispersal and O(|M |+κn log n) for retrieval phase. In their
protocols, both the dispersing client and the retrieving client incur a cost of O(|M |+κn log n), and each node
incurs O(|M |/n+ κ log n) storage cost. We summarize the existing works on AVID in Table 2 and describe
them in more detail in §6.
Our contributions. Our first contribution is two balanced RBC protocols. The first protocol assumes
collision resistant hash function, has the same total communication cost of O(n|M |+κn2) as the state-of-
the-art [12], but additionally achieves balanced communication cost of O(|M |+κn) at every node, including
the broadcaster. Our main technique to achieve balanced communication cost is to use an additional round
to interaction between nodes to help them reconstruct the potential input of the broadcaster without having
the broadcaster to directly send the input to all nodes. Our second RBC protocol is error-free, balanced,
and has total communication cost to O(n|M |+n2 log n), compared to O(n|M |+n3 log n) communication of

2

current art [26]. Our error-free RBC protocol builds on top of the recent synchronous error-free Byzantine
agreement (BA) protocol of Chen [11]. We make several subtle and important modifications to their BA
protocol to accommodate asynchrony and achieve balanced cost (see §A).

Our second contribution is an AVID protocol that does not require any trusted setup and has a communi-
cation cost of O(|M |+κn2) during the dispersal phase. Moreover, in our AVID protocol, both dispersing and
retrieving clients incur a communication cost of O(|M |+κn). Similar to existing AVID protocols [9, 19, 30, 3],
during the dispersal phase, the dispersing client uses error correction code to encode the message into n sym-
bols and send a symbol to each node. Unlike existing protocols, we do not use a Merkle tree for verification;
instead, the dispersing client reliably broadcasts hashes of all symbols that the nodes use for verification. As
a result, the dispersing client in our AVID protocol incurs a communication cost of O(|M |+κn). We also
reduce the per node storage to O(|M |/n + κ) from O(|M |/n + κ log n), and the communication cost of the
retrieval phase to O(|M |+κn) from O(|M |+κn log n), by designing a novel retrieval phase.

Our third contribution is two lower bound results. We prove that for any deterministic RBC protocol,
each node incurs a communication cost of Ω(|M |+n). We also prove that in any deterministic AVID protocol,
the dispersal phase has a communication cost of Ω(|M |+n2) and the retrieval phase has a communication
cost of Ω(|M |+n). Hence, all of our protocols above have near-optimal communication costs – only an factor
of O(log n) or O(κ) gap from the lower bounds.
Paper organizations. The rest of the paper is organized as follows. In §2 we provide the necessary
background. In §3 we discuss our balanced RBC protocols where the broadcaster has the same bandwidth
cost as other nodes. In §4 we describe our improved AVID protocol. In §5 we show lower bounds on the
communication cost of RBC and AVID. We discuss related work in §6 and conclude in §7. We provide
detailed description of our error-free RBC and its analysis in Appendix A.

2 System Model and Preliminaries

2.1 System Model
We consider a network of n nodes where every pair of nodes is connected via a pairwise authenticated
channel. We consider the presence of a malicious adversary A that can corrupt up to t nodes in the network.
The corrupted nodes can behave arbitrarily, and we call a node honest if it remains non-faulty for the entire
protocol execution. We assume the network is asynchronous, i.e., A can arbitrarily delay any message but
must eventually deliver all messages sent between honest nodes. A protocol is error-free if it is secure against
any computationally unbounded adversary in all executions.

We use |S| to denote the size of a set S. Let F be a finite field. For any integer a, we use [a] to denote the
set {1, 2, . . . , a}. We use κ to denote the size of the output of the collision-resistant hash function. Naturally,
we assume that κ > log n.

2.2 Problem Formulations
Definition 1 (Reliable Broadcast [8]). A protocol for a set of nodes {1, . . . , n}, where a designated broad-
caster holds an input M , is a reliable broadcast (RBC) protocol, if the following properties hold

• Agreement: If an honest node outputs a message M ′ and another honest node outputs M ′′, then M ′ = M ′′.

• Validity: If the broadcaster is honest, all honest nodes eventually output the message M .

• Totality: If an honest node outputs a message, then every honest node eventually outputs a message.

A VID protocol has two functions: DISPERSE(M), which a client invokes to disperse a message M to n
nodes, and RETRIEVE, which a (possibly different) client invokes to retrieve the message M . Clients invoke
DISPERSE and RETRIEVE for a particular instance of VID, identified by an instance tag. For simplicity, in
the paper we will focus on a single instance of an VID and omit the instance tag.

3

Definition 2 (Verifiable Information Dispersal [9]). A verifiable information dispersal (VID) scheme for a
message M consists of a pair of protocols DISPERSE and RETRIEVE which satisfy the following requirements:

• Termination: If an honest client invokes DISPERSE(M) and no other client invokes DISPERSE on the same
instance, then every honest node eventually finishes the dispersal phase.

• Agreement : If any honest node finishes the dispersal phase, all honest nodes eventually finish the dispersal
phase.

• Availability : If an honest node has finished the dispersal phase, and some honest client initiates RETRIEVE,
then the client eventually reconstructs some message M ′.

• Correctness: If an honest node has finished the dispersal phase, then honest clients always reconstruct the
same message M ′ when invoking RETRIEVE. Furthermore, if an honest client invoked DISPERSE(M) and
no other client invokes DISPERSE on the same instance, then M ′ = M .

In this paper, we will propose protocols solving these two problems under asynchronous networks, and
also prove corresponding lower bounds for deterministic protocols.

Definition 3 (Communication Cost). The (total) communication cost of a protocol measures the total
number of bits sent by all honest protocol nodes during the execution of the protocol.

In addition to the standard communication cost above which measures the total cost of a protocol, we
also measure the cost for each honest protocol node, as the per-node communication cost defined below.

Definition 4 (Per-node Communication Cost). The communication cost of any honest protocol node p
running a protocol measures the number of bits sent by p, and the number of bits p received from any other
honest node, during the execution of the protocol. We say the protocol has per-node communication cost of
C, if every honest node has communication cost at most C asymptotically.

For instance, in the RBC protocol of Das, Xiang and Ren [12], the broadcaster incurs cost O(n|M |)
and any other node incurs cost O(|M |+κn), therefore the per-node communication cost of the protocol is
O(n|M |). Note that the total communication cost of a protocol equals the sum of communication costs of
all honest nodes asymptotically.

Definition 5 (Balanced Protocol). We say a protocol is balanced, if the per-node communication cost is
O(C/n) where C is the total communication cost of the protocol; otherwise, the protocol is unbalanced.

For instance, in the RBC protocol of Das, Xiang and Ren [12] is unbalanced, since the per-node commu-
nication cost of the protocol is O(n|M |) and the total communication cost of the protocol is O(n|M |+κn2).
In contrast, our RBC protocol in §3.1 is balanced, as it has per-node communication cost O(|M |+κn) and
total communication cost O(n|M |+κn2).

2.3 Primitives

Error Correcting Code. We use error correcting codes. For concreteness, we will use the standard Reed-
Solomon (RS) codes [28]. A (m, k) RS code in Galois Field F = GF(2a) with m ≤ 2a − 1, encodes k data
symbols from GF(2a) into a codeword of m symbols from GF(2a). Let RSEnc(M,m, k) be the encoding
algorithm. Briefly, the RSEnc takes as input a message M consisting of k symbols, treats it as a polynomial
of degree k − 1 and outputs m evaluations of the corresponding polynomial.

Let RSDec(k, r, T) be the RS decoding procedure. RSDec takes as input a set of symbols T (some of
which may be incorrect), and outputs a degree k−1 polynomial, i.e., k symbols, by correcting up to r errors
(incorrect symbols) in T . It is well-known that RSDec can correct up to r errors in T and output the original
message provided that |T |≥ k + 2r [24]. Concrete instantiations of RS codes include the Berlekamp-Welch
algorithm [29] and the Gao algorithm [17].

4

Online Error Correction. Both of our RBC protocols and AVID protocol use the Online-Error-Correction (OEC)
protocol introduced by Ben-Or [4]. The OEC takes a set T consisting of tuples (j, aj) where j is an index
j ∈ [n] and aj is a symbol of a Reed-Solomon codeword. The OEC algorithm then tries to decode a message
M such that Reed-Solomon encoding of M matches with at least 2t + 1 elements in T . More specifically,
the OEC algorithm performs up to t trials of reconstruction, and during the r-th trial, it uses 2t + r + 1
elements in T to decode. If the reconstructed message M ′ has the matches with at least 2t + 1 tuples in
T , the OEC algorithm successfully outputs the message; otherwise, it waits for one more symbol and tries
again. We summarize the OEC algorithm in Algorithm 1. The OEC algorithm is error-free and information-
theoretically secure against any adversary that corrupts up to t symbols among a total of n ≥ 3t+1 symbols.

Algorithm 1 Information Theoretic Online Error-correcting (IT-OEC) protocol

1: Input: T
2: for 0 ≤ r ≤ t do // online Error Correction
3: Wait till |T |≥ 2t+ r + 1
4: Let pr(·) := RSDec(t+ 1, r, T)
5: if 2t+ 1 elements (j, a) ∈ T satisfy pr(j) = a then
6: let M be the coefficients of pr(·)
7: return M

Collision-resistant Hash Function. We use a cryptographic collision-resistant hash function hash, which
guarantees that a computationally bounded adversary cannot come up with two inputs that hash to the
same value, except for a negligible probability.

3 Near-optimal Balanced Reliable Broadcast
In this section, we present our balanced reliable broadcast protocols. We first present a hash-based balanced
reliable broadcast protocol named BalRBC in Algorithm 2 and describe it in §3.1. We then briefly introduce
our balanced error-free RBC protocol named BalEFRBC in §3.2, and leave its details to Appendix A. We
only discuss the hash-based RBC protocol in the main paper due to its simplicity and space restrictions.
Both protocols are balanced as per definition 4. Our BalEFRBC protocol achieves better total and per-
node communication cost than state-of-the-art [26], while our BalRBC protocol matches the state-of-the-art
unbalanced RBC protocol in terms of total cost [12].

3.1 Balanced Hash-based Reliable Broadcast

Challenges and our approaches. The state-of-the-art RBC protocol of Das, Xiang, and Ren [12] crucially
uses the fact that the broadcaster sends its input message to all nodes at the start of the protocol. In their
protocol, roughly speaking, nodes run Bracha’s RBC on the hash digest of their message received from
the broadcaster, and only exchange coded symbols of the message to reduce the communication cost to
O(n|M |+κn2). To ensure correctness, a node should RBC the digest and exchange the coded symbols of the
same message. It is straightforward in the protocol of Das, Xiang, and Ren [12] since nodes directly receive
the message from the broadcaster, which however incurs a cost of O(n|M |) at the broadcaster. To reduce the
cost, a natural idea would be let the broadcaster only send coded symbols of its message. Then, some kinds
of proof would be necessary to convince the nodes that the coded symbols are consistent with each other,
otherwise the nodes can no longer run the erasure decoding protocol to recover the message. In fact, Cachin
and Tessaro [9] obviates the need for the broadcaster to send its input to all via this approach. Specifically,
the broadcaster encodes its input using an Error Correcting Code, computes a Merkle tree on the encoded
symbol, and to each node, sends one encoded symbol and the corresponding Merkle path. A consequence of
using a Merkle tree is that the resulting protocol has a communication cost of O(n|M |+κn2 log n), since the

5

Algorithm 2 BalRBC protocol for long messages

1: // only broadcaster node
2: input M
3: Let h := hash(M)
4: Let [m1,m2, . . . ,mn] := RSEnc(M,n, t+ 1)
5: send ⟨PROPOSE,mj⟩ to node j for each j ∈ [n]

// each node i
6: Let M := ⊥
7: upon receiving the first ⟨PROPOSE,mi⟩ from the broadcaster do
8: send ⟨SHARE,mi⟩ to all nodes

9: For the first ⟨SHARE,m∗
j ⟩ received from node j, add (j,m∗

j) to T // T initialized as {}
10: Run IT-OEC on the set T
11: Let M ′ be the output of IT-OEC(T)

12: if P (M ′) = true then // P (·) is an external predicate that returns true or false. See protocol description
for more details.

13: Let h := hash(M ′)
14: send ⟨ECHO,mj , h⟩ to node j for each j ∈ [n] where mj is the j-th symbol of RSEnc(M ′, n, t+ 1)

15: upon receiving 2t+ 1 ⟨ECHO,mi, h⟩ for the same mi, h and not having sent a READY message do
16: send ⟨READY,mi, h⟩ to all

17: upon receiving t+ 1 ⟨READY, ∗, h⟩ for the same h and not having sent a READY message do
18: Wait for t+ 1 matching ⟨ECHO,m′

i, h⟩
19: send ⟨READY,m′

i, h⟩ to all

20: For the first ⟨READY,m∗
j , h⟩ received from node j, add (j,m∗

j) to Th // Th initialized as {}
21: Run IT-OEC on the set Th

22: Let M ′′ be the output of IT-OEC(Th)
23: output M ′′ and return

size of the Merkle path is O(κ log n) and there are all-to-all message exchanges with Merkle path attached.
Similarly, Alhaddad et al. [3] uses a trusted setup-based constant size polynomial commitment scheme where
the proof has size O(κ) instead of the Merkle tree, to design a balanced RBC with a total communication cost
of O(n|M |+κn2). Omitting the Merkle tree or the polynomial commitment in a naive manner introduces
the challenge that we can no longer run the erasure decoding protocol used by [9, 3] as there does not exist
a way to distinguish between an incorrect symbol from a correct one.

Our observation is that, there is a simple way to balance the cost without attaching proofs with the coded
symbols. The idea is to add one more communication round for the nodes to exchange their symbols received
from the broadcaster, and try Information Theoretic Online Error Correction (IT-OEC) to reconstruct the
broadcaster’s message. If the broadcaster is honest, then IT-OEC can always recover the broadcaster’s
message. In case of a malicious broadcaster, an honest node may not recover the message from IT-OEC in
the beginning; but rest of our protocol guarantees that if any honest node output for the RBC, then there
are enough honest nodes holding correct symbols that will send the symbols to all nodes for reconstruction.
In fact, this simple idea turns out to be very useful, as we can also apply it to our error-free RBC in §3.2 for
balancing the cost.
Protocol description. In order to reduce the cost of the broadcaster node, our protocol BalRBC first
lets the broadcaster encode its message M into n symbols using a (n, t + 1) Reed-Solomon code (line 4)
and only send the i-th symbol to node i together with the hash digest of the message M . In particular, let
[m1,m2, . . . ,mn] = RSEnc(M,n, t) be the RS encoding of M . Then, to node i, the broadcaster sends the

6

message ⟨PROPOSE,mi⟩ (line 5). Note that due to properties RS code, each symbol has size |M |/(t+1), and
therefore the cost of the broadcaster is reduced to O(n · (|M |/(t+1)+ κ)) = O(|M |+κn) where κ is the size
of the hash digest.

Next, each node i upon receiving the ⟨PROPOSE,mi⟩ message from the broadcaster sends the ⟨SHARE,mi⟩
to all nodes (line 7-8). When a node receives a SHARE message from other nodes, it adds the corresponding
symbol to the set T . Once enough symbols are collected, nodes use the Online Error Correcting (OEC)
algorithm (line 10-11) to decode the message. As described in 2, intuitively, the OEC algorithm performs
up to t trials of reconstruction, and during the r-th trial, a node uses 2t + r + 1 symbols to decode. If the
reconstructed message M ′ has the matches with at least 2t+ 1 tuples in T , a node successfully reconstructs
the message; otherwise, it waits for one more symbol and tries again.

Once a node successfully reconstructs the message M ′, the rest of the protocol is similar to the four-round
RBC of Das, Xiang and Ren [12, Algorithm 4]. Similar to Das et al., we also add an external predicate P (·)
(line 12) to strengthen the validity guarantee of our BalRBC, so that any honest node only output M such
that P (M) = true. This external validity check is useful for many application of RBC, including verifiable
secret sharing [12] and AVID. In fact, our AVID protocol in §4 will use such RBC with external validity
check. For standard RBC, P (·) always returns true.

Briefly, after checking the predicate P (·), nodes send ECHO messages with their symbols and the hash
digest to all nodes (line 14). Also, nodes send READY messages once 2t + 1 matching ECHO messages are
collected (line 15-16) or upon receiving t + 1 READY messages (line 17). Note that each node needs to wait
for t + 1 matching ECHO messages to learn the symbol to be attached in the READY message (line 18-19).
Finally, nodes use the OEC algorithm to reconstruct the broadcaster’s message once receiving enough READY
messages of the same hash digest.

We next analyze the properties of our BalRBC protocol and its performance.

Lemma 1. Assuming a collision resistant hash function, if an honest node sends ⟨READY,mi, h⟩ where
h = hash(M), then mi is the ith symbol of RSEnc(M,n, t + 1), and furthermore, no honest node sends a
READY message for a different hash h′ ̸= h.

Proof. First, no two honest nodes send READY messages for different hash digests, due to quorum intersection
of the ECHO messages same as the Bracha’s RBC. Now we show if an honest node sends ⟨READY,mi, h⟩ where
h = hash(M), then mi is the ith symbol of RSEnc(M,n, t+1). Note that an honest node i sends ⟨READY,mi, h⟩
for h = hash(M) only upon receiving at least t+1 matching ⟨ECHO,mi, h⟩. At least one of these ECHO message
is from an honest node h. Before the honest node h sends the ECHO message, it successfully reconstructed
the message M ′ whose hash digest equals h. Then, by the collision resistance property of the underlying
hash function, M ′ = M and mi is the ith symbol of RSEnc(M,n, t+ 1).

Lemma 2. If an honest node i receives t + 1 READY messages with a matching hash h, then node i will
eventually receive t+ 1 matching ⟨ECHO,mi, h⟩ messages and hence send ⟨READY,mi, h⟩.

Proof. Let j be the first honest node that sends ⟨READY, ∗, h⟩ message to all. Then, node j must have received
at least 2t + 1 ECHO messages with matching h, among which at least t + 1 are from honest nodes. Hence,
node i will eventually receive t+ 1 ⟨ECHO,mi, h⟩ messages from these honest nodes.

Theorem 1 (Totality and Agreement). If an honest node outputs a message, then every honest node even-
tually outputs a message. If an honest node outputs a message M ′ and another honest node outputs M ′′,
then M ′ = M ′′.

Proof. An honest node outputs a message M only upon receiving at least 2t + 1 READY messages with a
matching hash h = hash(M). At least t + 1 of them are sent by an honest node. Hence, all honest nodes
will receive at least t + 1 READY messages with hash h. By lemma 2, eventually all honest nodes will send
READY messages with hash h. Hence, all honest nodes will receive READY messages from all other honest
nodes. Furthermore, due to Lemma 1, all these READY message contain correct symbols from the codeword
RSEnc(M,n, t+ 1). Thus, every honest node will eventually output M such that h = hash(M).

7

Theorem 2 (Validity). If the broadcaster node is honest, has an input M , and P (M) = true, then all
honest nodes eventually output the message M .

Proof. When the broadcaster is honest and has input M , it sends the correct symbols and hash to all nodes.
Then, all honest nodes send the SHARE messages with the correct symbols. Thus, after receiving all SHARE
message from honest nodes, any honest node can reconstruct M due to OEC and collision resistance of the
hash. Also, the predicate P (M) = true at all honest nodes, so at least 2t + 1 honest nodes will send ECHO

messages with identical h = hash(M). Hence, all honest nodes will eventually send READY messages for h.
By lemma 1 no honest node will send READY message for h′ ̸= h. As a result, all honest node will receive at
least 2t+ 1 READY message for h with valid symbols in it, which is sufficient to recover M .

Next, we will analyze the communication complexity of the protocol.

Theorem 3 (Performance). Assuming existence of a collision resistant hash function whose outputs are κ
bits long, Algorithm 2 solves RBC with total communication cost of O(n|M |+κn2), and per-node communi-
cation cost of O(|M |+κn).

Proof. In algorithm 2 the broadcaster sends a single PROPOSE to all other nodes. Moreover, each honest node
sends a single SHARE, ECHO and READY message. Each message in Algorithm 2 is O(|M |/n+κ) bits long, since
|mi|= |M |/(t+1) and hash outputs are κ bits long. Hence, each node incurs a per-node communication cost
of O(|M |+nκ). Hence, the total communication cost is O(n|M |+κn2).

3.2 Balanced Error-Free Reliable Broadcast
In this section, we will only briefly introduce our BalEFRBC protocol for brevity. Our protocol is heavily
inspired by the recent error-free synchronous Byzantine agreement protocol named COOL [11]. We extend
the COOL protocol [11] to obtain an error-free asynchronous RBC protocol with per-node communication
cost O(|M |+n log n). The full protocol and correctness proofs are presented in Appendix A. We make the
following three major changes to obtain our BalEFRBC protocol.

1. Triggering the next message upon receiving sufficient messages asynchronously, instead of receiving all
messages from the previous synchronous round. The COOL protocol is a synchronous protocol that
proceeds in lock-step rounds, so it contains several steps where nodes wait for all messages from the
previous round before taking their next step. For instance, a node will send an indicator message for 1 if
it receives n− t 1-indicators in the previous round; otherwise it sends an indicator for 0. However, under
asynchrony, the node cannot expect to receive all messages, since a slow honest node is indistinguishable
from a Byzantine node. Therefore, we need to change the triggering event to receiving enough messages
asynchronously. For instance, the above example is changed to the following: a node sends 1-indicator
upon receiving n− t 1-indicators and sends 0-indicator upon receiving t+1 0-indicators. Since there are n
nodes in total and each node can send one indicator, the above two conditions will not hold simultaneously.
Moreover, if the original synchronous protocol relies on the fact that a node receives enough indicators,
then the new asynchronous protocol preserves the same property since the node only triggers the message
event after receiving enough indicators.

2. Replacing the 1-bit asynchronous BA with 1-bit Bracha’s RBC. The COOL protocol uses a synchronous
binary BA protocol for all the nodes to agree on whether there are enough honest nodes holding the
correct coded message symbols in order to recover the message. Our BalEFRBC also requires a similar
step under asynchrony. However, we cannot use an asynchronous binary BA to construct an error-free
RBC, because any asynchronous BA has to be randomized due to the FLP impossibility result [16].
Instead, we use the 1-bit Bracha’s RBC [8], which is error-free, as follows. When a node inputs 1 (or 0) to
the synchronous BA in the COOL protocol, we let the node send an ECHO message for 1 (or 0) in the 1-bit
Bracha’s RBC. As a result, the 1-bit Bracha’s RBC guarantees agreement among the nodes on whether
they should reconstruct the message or simply output a default message ⊥. Moreover, as we will explain
in Appendix A, if one honest node outputs 1 in the 1-bit Bracha’s RBC, then every honest node will be
able to reconstruct and output the same message.

8

3. Balancing the broadcaster’s cost by the technique of §3.1. The RBC protocol obtained after the above two
changes is still not balanced, since the straightforward transformation from agreement to broadcast asks
the broadcaster to send the entire message in the first step of the protocol, leading to a cost of at least
Ω(n|M |) at the broadcaster. Therefore, we apply the technique of §3.1, which ensures that broadcaster
incurs a communication cost of O(|M |+n log n).

4 Improved Asynchronous Verifiable Information Dispersal
We next describe our improved AVID protocol and summarize it in Algorithm 3. As mentioned in §2, the
protocol consists of two phases: dispersal phase, invoked by the dispersing client who wants to reliably store
its message M among n protocol nodes; and retrieval phase, invoked by any retrieving client (need not be
the one who initiated the dispersal phase), who wants to retrieve the message M .

4.1 Challenges and Our Approaches.
In the state-of-the-art AVID protocol that does not rely on a trusted setup, both the dispersing and retrieving
clients incur a communication cost of O(|M |+κn log n). This is because the dispersing client sends a Merkle
path to each node and an encoded symbol of its input message. Nodes use the Merkle path to check the
consistency of the encoded symbol they receive from the dispersing client and also prove the consistency
of the symbol to a retrieving client during the retrieval phase. As a result, each node needs to store the
Merkle path throughout, thus incurs a storage cost of O(|M |/n + κ log n). Alhaddad et al. [3] improves
the communication and storage cost to O(|M |+κn) and O(|M |/n + κn), respectively, using trusted setup
phase polynomial commitments. Omitting the Merkle tree or the polynomial commitment in a naive manner
introduces the challenge that, during the dispersal phase, nodes can not check the consistency of the symbol
received from the dispersing client. Moreover, the non-existence of a consistency proof allows Byzantine
nodes to equivocate to different retrieving clients. As a result, different retrieving clients may output different
messages, hence violating the Correctness property.

Briefly, we address these challenges with the following ideas. First, we replace the Merkle tree with a
vector of hashes of the encoded symbols and then let the dispersing client reliably broadcast the entire vector
of hashes to every node. The nodes then use this vector to check the consistency of the symbols they receive
from the dispersing client. Since the size of the vector is O(κn), using the BalRBC protocol with balanced
cost from §3, the total communication of all nodes and the dispersing client during the RBC protocol is
O(κn2) and O(κn), respectively. Note that, during the retrieval phase, the retrieving client does not have
the vector of hashes thus can not directly validate the symbols it receives from other nodes. Furthermore,
asking each sender to send the entire vector would result in O(κn2) communication cost. We address this by
first letting the client retrieve the vector of hashes using the Online Error Correcting (OEC) protocol. The
client then uses the retrieved vector for the rest of the retrieval phase. As we discuss next, our approach,
in addition to reducing the communication cost of the retrieval phase to O(|M |+κn), also reduces the per
node storage cost to O(|M |/n+ κ) bits.

4.2 Design of AVID
In the dispersal phase, first, the dispersing client encodes the message M using a (n, t + 1) Reed-Solomon
code (line 2). Let M ′ = [m1,m2, . . . ,mn] be the encoded message with n symbols. The dispersing client
then computes a vector H = [h1, h2, . . . , hn] where the i-th element hi = hash(mi) (line 3). The dispersing
client then sends the i-th symbol mi to the i-th node. Additionally, the dispersing client reliably broadcasts
H using our BalRBC protocol from §3 (line 4). During the BalRBC, as per the predicate, the i-th node
checks whether the i-th element of the hash vector that is being reliably broadcast, is equal to the hash of
the symbol it received from the dispersing client (line 5-7). Let H be the output of the validated RBC. Each
node then encodes H using a (n, t + 1) Reed-Solomon code; let H ′ = [h′

1, h
′
2, . . . , h

′
n] be the output of the

9

Algorithm 3 Pseudocode for AVID

// the dispersing client invokes DISPERSE(M)
1: input M
2: Let M ′ := [m1,m2, . . . ,mn] := RSEnc(M,n, t+ 1)
3: Let H := [h1, h2, . . . , hn] := [hash(m1), hash(m2), . . . , hash(mn)]
4: Send mi to node i for each i ∈ [n], and invoke BalRBC(H) with predicate P (·) described below

// additional predicate P (·) for node i to check in line 12 of BalRBC
5: procedure P (H)
6: upon receiving mi from the dispersing client do
7: return true iff hash(mi) = H[i]

// code for node i during the dispersal phase
8: Wait till BalRBC(·) terminate
9: Let H = [h1, h2, . . . , hn] be the output of BalRBC(·)

10: Let h = hash(H)
11: [h′

1, h
′
2, . . . , h

′
n] := RSEnc(H,n, t+ 1)

12: Output and store ⟨mi, h
′
i, h⟩ for the dispersal phase // Use mi = ⊥ if it does not receive mi such that

hi = hash(mi) from the client.

// the retrieving client invokes RETRIEVE
13: send ⟨RETRIEVE⟩ to all nodes

// retrieving H
14: Let Th := {} and TM := {}
15: For every ⟨HASH, h′

j , h⟩ received from node j, add (j, h′
j) to Th

16: For every ⟨SYMBOL,mj⟩ received from node j, add (j,mj) to TM

17: Run IT-OEC using Th

18: Let H := IT-OEC(Th)

// retrieving M after retrieving H
19: for each (j, a) ∈ TM do
20: if hash(a) = H[j] then
21: add (j, a) to T

22: Wait till |T |= t+ 1
23: Interpolate T as a degree-t polynomial
24: Let M ′ be the interpolated polynomial evaluated at every element in [n]
25: if ∃j ∈ [n] such that hash(M ′[j]) ̸= H[j] then
26: output ⊥ and return
27: else
28: output RSDec(t+ 1, 0,M ′) and return

// code for node i during the retrieval phase
29: upon receiving ⟨RETRIEVE⟩ from the retrieving client do
30: Wait till the dispersal phase outputs ⟨mi, h

′
i, h⟩

31: send ⟨HASH, h′
i, h⟩ to the retrieving client

32: if mi ̸= ⊥ then
33: send ⟨SYMBOL,mi⟩ to the retrieving client

Reed-Solomon encoding (line 11). Also, let h = hash(H). At the end of the dispersal phase, the i-th node
outputs ⟨mi, h

′
i, h⟩ where mi = ⊥ if the i-th node did not receive a valid symbol from the dispersing client.

The main idea of the retrieval phase is to let the retrieving client first recover the vector H and then use
it to validate symbols sent by nodes. More specifically, during the retrieval phase, the retrieving client sends

10

RETRIEVE request to all nodes (line 13). Upon receiving RETRIEVE request from the retrieving client, each
node waits till the dispersal phase terminates (line 30). The i-th node then sends the message ⟨HASH, h′

i, h⟩
to the retrieving client (line 31). Additionally, if node i received a symbol mi during the dispersal phase
such that hash(mi) = H[i], it sends a ⟨SYMBOL,mi⟩ to the retrieving client (line 32-33).

The retrieving client upon receiving a message ⟨HASH, hj , h⟩ from node j adds them to a set Th (line
15). Additionally, for every ⟨SYMBOL,mj⟩ message it receives, it adds it to the set TM . The retrieving client
then uses Th and the standard online error correction to recover H (line 17-18). After recovering H, the
retrieving client uses it to retrieve the message. In particular, for every tuple (j, a) ∈ TM , it first checks
whether hash(a) = H[j] and adds the tuple (j, a) to the set T (line 19-21).

The retrieving client waits till |T |= t+1 and then interpolates the tuples in T into a polynomial of degree
at most t (line 22-23). Let M ′ be the interpolated polynomial. The client then checks if there exists any
j ∈ [n] such that hash(M [j]) ̸= H[j]. If such j exists, then the client outputs ⊥ and returns. Otherwise, the
client outputs the Reed-Solomon decoding of M ′ (line 28).

4.3 Analysis of AVID
We next analyze the properties of our AVID protocol and its performance.

Theorem 4 (Termination and Agreement). If an honest dispersing client invokes DISPERSE(M) and no
other client invokes DISPERSE on the same instance, then every honest node eventually finishes the dispersal
phase. If any honest node finishes the dispersal phase, all honest nodes eventually finish the dispersal phase.

Proof. An honest dispersing client sends the correct symbols [m1,m2, . . . ,mn] = RSEnc(M,n, t + 1), and
reliably broadcasts the hash vector H = [hash(m1), hash(m2), . . . , hash(mn)]. By the Validity property of the
RBC, the RBC will terminate at all honest nodes. Hence, every honest node will finish the dispersal phase.

A nodes terminates the dispersal phase if and only if the RBC protocol terminates. Thus, by the Totality
property of the RBC every node will terminate the RBC and thus terminate the dispersal phase.

Lemma 3. If the dispersal phase terminates at an honest node, then every honest node will output the same
vector of hashes H = [h1, h2, . . . , hn] for RBC. Furthermore, at least t + 1 honest nodes have received a
symbol that matches with the corresponding location of H.

Proof. Nodes terminate the dispersal phase if and only if the RBC protocol terminates. Thus by the Totality
and Agreement property of the RBC every node will receive the same message H. Furthermore, when any
honest node finishes the RBC, it has received READY messages from at least 2t + 1 nodes, among which at
least t + 1 are honest. Thus, at least one honest node receives ECHO messages from at least 2t + 1 nodes,
among which at least t+1 are honest. Before these honest nodes send ECHO messages, they have the predicate
evaluated to be true, which implies that each honest node j above has received mj from the client such that
hash(mj) = H[j].

Lemma 4. If an honest node has finished the dispersal phase with H as the output of the RBC, then any
honest client can reconstruct the same H after invoking RETRIEVE.

Proof. By Agreement of AVID, all honest nodes eventually finish the dispersal phase once an honest node has
finished the dispersal phase. Also, due to Lemma 3 all honest nodes output the same H for RBC when the
dispersal phase terminates. Therefore, when an honest client invokes RETRIEVE, all 2t+ 1 honest nodes will
send the correct ⟨HASH, h′

i, hash(H)⟩ to the client. By OEC (line 17-20) and the collision resistance property
of the hash function, the client can successfully decode the same hash vector H.

Theorem 5 (Availability and Correctness). If an honest node has finished the dispersal phase, and some
honest clients invoke RETRIEVE, then they eventually output the same message M ′. Furthermore, if an honest
client invoked DISPERSE(M) and no other client invokes DISPERSE on the same instance, then M ′ = M .

11

Proof. By Lemma 4, the honest client reconstructs the same hash vector H as the one output by any honest
node during the dispersal phase, where H corresponds to some message M ′. Moreover, at least t+1 honest
nodes have received mj such that hash(mj) = H[j]. Therefore, when an honest client invokes RETRIEVE, all
these t + 1 honest nodes will send the correct ⟨SYMBOL,mi⟩ where hash(mi) = H[i] to the retrieving client,
enabling it to reconstruct the message M ′.

Let fu(·) denote the polynomial of degree t or less a retrieving client u obtains via interpolation. The
client u then uses fu(·) to recover the message Mu only if hash(fu(i)) = H[i] for all i ∈ [n]. Hence, due to
collision resistance property of the hash(·), if two retrieving client, u and v outputs messages Mu ̸= ⊥ and
Mv ̸= ⊥, respectively, then Mu = Mv.

Also, if any honest retrieving client outputs ⊥, then every honest retrieving client outputs ⊥. For the
sake of contradiction, let us assume that a retrieving client u outputs ⊥ but another retrieving client v ̸= u
outputs Mv ̸= ⊥. Let Tu be the set of indices used by retrieving client u to interpolate fu. Then, there
exists a k ∈ [n] \ Tu such that H[k] ̸= hash(fu[k]). Since retrieving client v outputs Mv ̸= ⊥, this implies
fu[k] = fv[k] for all k ∈ Tu. However, both fu and fv have degree t or less and agrees on t+1 distinct points.
This implies fu and fv matches as polynomial and fu[k] = fv[k] for all k ∈ [n], which is a contradiction.

If an honest dispersing client invoked DISPERSE(M) and no other dispersing client invokes DISPERSE on
the same instance, by the Termination property of AVID, all honest nodes eventually finish the dispersal
phase with RBC output H = [hash(m1), . . . , hash(mn)] where [m1, . . . ,mn] = RSEnc(M,n, t + 1). Also,
from Lemma 4 the retrieving client will receive H during the retrieval phase. Then, by collision-resistant
property of the hash function, the honest retrieving client use correct symbol to recover the message, hence
will recover and output M .

Theorem 6 (Performance). The communication cost of a dispersing client during the dispersal phase is
O(|M |+κn) and the total communication cost of the dispersal phase is O(|M |+κn2). Also, each node incurs
a storage cost of O(|M |/n + κ). Furthermore, the total communication cost for retrieval at a client is
O(|M |+κn).

Proof. During the dispersal phase, the dispersing client only sends a symbol of size O(|M |/n) to each node
and reliably broadcasts a message of size κn. Hence, the total communication cost of the dispersing client is
O(|M |+κn) from Lemma 3. Also, each node receives a symbol of size O(|M |/n) and participates in the RBC
of a message of size O(κn). Hence, using Lemma 3, the total communication cost of the dispersal phase is
O(|M |+κn2). At the end of the dispersal phase, each node stores two symbol of size O(|M |/n) and O(κ),
respectively, and a hash output of size κ. Thus, the total storage cost of our AVID protocol is O(|M |+κn).

During retrieval, each node sends at most two symbols of size O(κ) and O(|M |/n) to the retrieving client.
Hence, the communication cost of a single retrieving client is O(|M |+κn).

5 Lower Bounds
In this section, we prove communication complexity lower bounds for deterministic protocols that solve RBC
and AVID, which have been mentioned in Table 1 and 2. To strengthen the result, the lower bounds for
RBC are proven under synchrony. The lower bound proofs are inspired by [14].

5.1 Reliable Broadcast
For any deterministic RBC protocol with input M that tolerates up to Θ(n) Byzantine nodes, it is straight-
forward to show a lower bound of Ω(n|M |+n2) [26] on the communication cost even under synchrony. The
Ω(n|M |) part is because O(n) honest nodes need to receive the message when the protocol terminates, and
the Ω(n2) part is due to the classic Dolev-Reischuk lower bound [14]. Therefore, both Das et al. [12] and
our BalRBC have near-optimal communication cost.

Next, for any deterministic protocol that solves RBC under synchrony, we will show that Ω(|M |+n) is a
lower bound on the communication cost of any protocol node including the broadcaster, which implies our
BalRBC and BalEFRBC has near-optimal per-node cost as well.

12

Theorem 7. In any deterministic protocol that solves RBC, for any honest node p, there exists an execution
in which p incurs a communication cost of Ω(|M |+n).

Proof. We will prove that for any deterministic RBC protocol, all honest nodes incur at least Ω(|M |+n)
communication cost in at least one execution.

The argument for broadcaster is straightforward. First, the broadcaster needs to send at least Ω(|M |) bits
for its input message M . Moreover, the broadcaster has to send messages to at least t+ 1 nodes, otherwise
it is possible that no honest node receives any information from the broadcaster, and the Validity property
of RBC can be violated. Since t = Θ(n), we conclude that the broadcaster has to send Ω(|M |+n) bits.

Consider any non-broadcaster honest node during any failure-free execution where the broadcaster has
input M . This honest node needs to output M due to the Validity requirement, so at least Ω(|M |) bits need
to be received.

Let Cp,E denote the number of messages an honest node p sends to any node and receives from any
honest node during an execution E. We show that Cp,E ≥ t/2 + 1 for any honest node p in at least one
execution E. Otherwise, suppose there exists a RBC protocol where an honest node q has Cq,E ≤ t/2 for any
execution E. If q receives no message during the entire execution but other honest nodes output for RBC,
due to Totality q eventually outputs as well. Without loss of generality, suppose q outputs 0 in this case.
Consider a failure-free execution E1 where the honest broadcaster has input 1. By assumption, Cq,E1 ≤ t/2.
Let S denote the set of nodes that q receives messages from in E1. We have |S|≤ t/2. Consider execution
E2 where the honest broadcaster has input 1, and q is Byzantine and remains silent. Since the broadcaster is
honest and has input 1, by Validity, all honest nodes output 1 in E2. Then, we construct another execution
E3 same as E2 except that the nodes in S are Byzantine and q is now honest. The nodes in S behave
identically as in E2, except that they send no message to q. By assumption, Cq,E3 ≤ t/2. The adversary
also corrupts the set of nodes R that q sends messages to in E3. This is within the adversary’s corruption
budget since |S ∪ R|≤ |S|+|R|≤ t. The Byzantine nodes in R behave identically as in E2. Since q receives
no message in E3, q will output 0 in E3 by assumption. Other honest nodes will output 1 in E3 since they
cannot distinguish E2, E3. However, the Agreement property of RBC is then violated. Therefore, we prove
that Cp,E ≥ t/2 + 1 for any honest node p in at least one execution E, which implies the communication
cost at any honest node for any RBC protocol is Ω(n).

Therefore, in any deterministic protocol that solves RBC, for any honest node p, there exists an execution
in which p incurs a communication cost of Ω(max{|M |, n}) = Ω(|M |+n).

5.2 Asynchronous Verifiable Information Dispersal
For AVID (or even synchronous VID), the communication cost of the dispersing client during dispersal phase
is lower bounded by Ω(|M |+n) by a similar argument from the above section – the dispersing client needs
to send Ω(|M |) bits and needs to send messages to at least t+1 = Ω(n) nodes. For the total communication
cost during dispersal, we will show the following Ω(|M |+n2) lower bound for AVID.

Theorem 8. Any deterministic protocol that solves AVID must incur a communication cost of Ω(|M |+n2)
during the dispersal phase in at least one execution.

Proof. Recall that the communication cost of the dispersing client during dispersal phase is lower bounded by
Ω(|M |+n). Now we will show that any deterministic protocol that solves AVID must uses ≥ (t/2)2 messages
during the dispersal phase in at least one execution. Suppose it is not true, and there exists a deterministic
AVID protocol that uses < (t/2)2 messages during the dispersal phase for all executions. Consider the
following two executions.

1. Execution E1: Let the dispersing client be honest. The adversary corrupts the set of nodes B where
|B|= t/2. Let A denote the rest of the nodes. For each node b ∈ B, b does not send messages to each
other, and ignores the first t/2 messages received.

One observation is that ∃p ∈ B such that p receives < t/2 messages, since the protocol uses < (t/2)2

messages during the dispersal phase and |B|= t/2. Also, due to Termination, all honest nodes in A
terminate the dispersal phase in E1.

13

2. Execution E2 same as E1 except the following differences: Let A(P) denote the set of nodes that (at-
tempt to) send p messages in E1. Since p receives < t/2 messages, |A(p)|< t/2. The adversary corrupts
nodes in A(p) and B \ {p}. The corrupted nodes in B \ {p} behaves like in E1 and ignores all messages
from node p. The corrupted nodes in A(p) behave like in E1 but do not send messages to p.

Claim: E1 and E2 are distinguishable to honest nodes in A \ A(p), and the honest nodes in A \ A(p) will
terminate the dispersal phase in E2 as well.

The claim can be shown by examining how every node behaves in E1, E2. Nodes in B \ {p} behave the
same to all nodes. Nodes in A(p) behave the same to A \ A(p). Node p behaves the same since in both
executions it does not receive any message from others. Thus the claim is true.

Now, consider two cases.

• If p never terminates the dispersal phase in E2, then Agreement property is violated since other honest
nodes terminates the dispersal phase in E2, contradiction.

• If p terminates the dispersal phase in E2 without receiving any messages, suppose p terminates at time τ .
Then consider another execution E3 where the dispersing client is Byzantine and remains silent, and all
nodes are honest. All messages from any node to p are delayed after τ . Since p cannot distinguish E2 and
E3, it terminates the dispersal phase in E3 at time τ as well. Due to the Agreement property, all honest
nodes will eventually terminate the dispersal phase in E3. Now consider another execution E4 where the
dispersing client with message M is honest but its messages are delayed, and all nodes are honest. For all
honest nodes, they cannot distinguish E3 and E4 before receiving any message from the dispersing client.
Therefore, these honest nodes will terminate the dispersal phase in E4 before receiving any message from
the dispersing client. In the retrieval phase of E4, according to the Availability property, the retrieving
client reconstructs some message eventually at some time τ ′. Suppose the messages of the dispersing client
are delayed beyond time τ ′ in E4. Since no honest node receives any message from the dispersing client,
during the retrieval phase of E4 the dispersed message cannot be reconstructed, violating the Correctness
property of AVID, hence a contradiction.

Hence, any deterministic protocol that solves AVID must uses ≥ (t/2)2 messages during the dispersal phase in
at least one execution, and thus must incur a communication cost of Ω(max{|M |+n, (t/2)2}) = Ω(|M |+n2).

Theorem 9. Any deterministic protocol that solves AVID must incur a communication cost of Ω(|M |+n)
during the retrieval phase in at least one execution.

Proof. Consider any execution with an honest retrieving client. The client needs to receive at least Ω(|M |)
bits from the honest nodes to obtain M , and the client needs to send messages to at least t+1 = Ω(n) nodes
for retrieval otherwise it could be the t nodes are Byzantine and ignore the message. Hence, the retrieval
phase has cost Ω(|M |+n) .

6 Related Work

Reliable Broadcast. The problem of reliable broadcast (RBC) was introduced by Bracha [8]. In the same
paper, Bracha provided an error-free RBC protocol for a single bit with a communication cost of O(n2), thus
O(n2|M |) for |M | bits using a naïve approach. Almost two decades later, Cachin and Tessaro [9] improved
the cost to O(n|M |+κn2 log n) assuming a collision-resistant hash function with κ being the output size of the
hash. Hendricks et al. in [19] propose an alternate RBC protocol with a communication cost of O(n|M |+κn3)
using a erasure coding scheme where each element of a codeword can be verified for correctness. Assuming
a trusted setup phase, hardness of q-SDH [5, 6] and Decisional Bilinear Diffie-Hellman (DBDH) [7], Nayak
et al. [26] reduced the communication cost to O(n|M |+κn2).

Recently, Das et al. [12] presents a RBC protocol that has a communication cost to O(n|M |+κn2) assum-
ing only collision-resistant hash function. However, in their RBC protocol, the broadcaster incurs a higher

14

communication cost than the non-broadcaster nodes. Our protocol maintains the same total communication
cost while ensuring that each node, including the broadcaster, incurs asymptotically the same communication
cost.

The original RBC protocol due to Bracha [8] is error-free, i.e., it does not require any cryptographic
assumptions and is secure against any computationally unbounded adversary in all executions. The error-
free RBC protocol due to Patra [27] achieves a total communication cost of O(n|M |+n4 log n), and it is
later improved to O(n|M |+n3 log n) by Nayak et al. [26]. The two protocols above are not balanced; the
broadcaster has a cost roughly O(n) higher than other nodes.

Our error-free RBC builds upon the recent result on synchronous error-free Byzantine agreement due to
Chen [11]. In particular, our observation is that, with appropriate changes, we can use Chen’s protocol to
establish the initial condition of the Asynchronous Data Dissemination (ADD) problem introduced by [12].
ADD is a protocol that efficiently disseminates the message from a subset of honest node to all honest nodes
in an asynchronous network. Note that, Chen’s approach do not rely on any cryptographic assumption and
incurs a communication cost of O(n|M |+n2 log n). Thus, by combining the modified Chen’s protocol along
with our balancing technique from §3 and information theoretic Asynchronous Data Dissemination protocol
of [12], we get an information-theoretically secure RBC protocol with near-optimal communication cost of
O(n|M |+n2 log n).
Asynchronous Verifiable Information Dispersal. The first AVID protocol is due to Cachin and Tes-
saro [9]. In their protocol, during the dispersal phase, each node, including the dispersing client, incurs a
communication cost of O(|M |+κn log n), leading to a total dispersal cost of O(n|M |+κn2 log n). This cost
arises because every node needs to send a symbol and its associated Merkle path proof to all nodes. Finally,
during retrieval, each retrieving client incurs a communication cost of O(|M |+κn log n). Again, the log n
factor is due to nodes sending Merkle path proofs to the retrieving client.

Hendricks et al. in [19] propose an alternate AVID protocol where during dispersal, the dispersing client
incurs a communication cost of O(|M |+κn2). They improve the communication cost using a non-interactive
verification scheme with fingerprinted cross-checksum. In their protocol, only the dispersing client sends the
symbols to all nodes, and the nodes perform an RBC on the fingerprinted cross-checksum but not the symbols.
As a result, the remaining nodes incur a communication cost of O(κn2). Hence, the total communication
cost of their protocol during the dispersal phase is O(|M |+κn3). Also, the total retrieval cost for a single
retrieving client is O(|M |+κn2), as each node sends a O(κn) size finger-printed cross-checksum and an
encoded symbol to the retrieving client.

Very recently, Yang et al. [30] presents a new AVID protocol in which, during the dispersal phase, the
dispersing client incurs a communication cost of O(|M |+κn log n). Furthermore, the total communication
cost of their dispersal phase is O(|M |+κn2). The main innovation of the AVID protocol of [30] is that they
remove the need for nodes to gossip symbols and Merkle path proofs during the dispersal phase. They do so
by designing a novel retrieval protocol and a RBC on the root of the associated Merkle tree. Nevertheless,
during the dispersal phase, the dispersing client still needs to send a Merkle path proof to every node.
Moreover, during retrieval, each node still sends an encoded symbol and the associated Merkle path proof
to the retrieving client, leading to a communication cost of O(|M |+κn log n). Our protocol improves the
communication costs of both these steps by a factor of log n using a vector of hashes instead of a Merkle
tree, along with our balanced RBC protocol for long messages.

With trusted setup and assuming hardness of q-SDH [20], the recent work by Alhaddad et al. [3] achieves
the dispersing client cost to O(|M |+κn) and the total communication to O(|M |+κn2) using the KZG [20]
polynomial commitment scheme. Our protocol achieves the same cost using only collision-resistant hash
function without any trusted setup or additional cryptographic assumptions other than collision-resistant
hash functions.

7 Discussion and Conclusion
We have presented two asynchronous Byzantine reliable broadcast (RBC) protocols with a balanced com-
munication cost at all nodes including the broadcaster. The first RBC protocol assumes a collision resistant

15

hash function and achieves the same total communication complexity as the state-of-the-art, and second
RBC protocol is error-free and improves the cost of the state-of-the-art error-free protocol. Our balanced
RBC protocol immediately implies a balanced communication cost of asynchronous verifiable/complete se-
cret sharing schemes [12]. We also present an asynchronous verifiable information dispersal (AVID) protocol
with improved communication and storage cost. Finally, we present lower bound results on the communi-
cation cost of any honest node in any deterministic RBC protocol, and the total communication costs of
dispersal and retrieval phases in any deterministic AVID protocol. Our balanced RBC protocol and AVID
protocol have near-optimal communication costs. Interesting open problems include designing an AVID pro-
tocol that also achieves optimal or near-optimal total storage cost, and designing an information theoretic
(or error-free) AVID protocol that has efficient communication cost.

References
[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin Tomescu.

Reaching consensus for asynchronous distributed key generation. In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, page 363–373, 2021.

[2] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine broadcast:
A complete categorization. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing (PODC), page 331–341, 2021.

[3] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct erasure coding proof systems.
Cryptology ePrint Archive, 2021.

[4] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, pages 52–61, 1993.

[5] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In International conference
on the theory and applications of cryptographic techniques, pages 56–73. Springer, 2004.

[6] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the sdh assumption in
bilinear groups. Journal of cryptology, 21(2):149–177, 2008.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In International
conference on the theory and application of cryptology and information security, pages 514–532. Springer,
2001.

[8] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

[9] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In 24th IEEE
Symposium on Reliable Distributed Systems (SRDS’05), pages 191–201. IEEE, 2005.

[10] Jinyuan Chen. Fundamental limits of byzantine agreement. arXiv preprint arXiv:2009.10965, 2020.

[11] Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. In 35th International Symposium
on Distributed Computing (DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[12] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applications. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages
2705–2721, 2021.

[13] Sourav Das, Tom Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, and Ling Ren. Prac-
tical asynchronous distributed key generation. Cryptology ePrint Archive, 2021.

16

[14] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. Journal
of the ACM (JACM), 32(1):191–204, 1985.

[15] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat: Asynchronous bft made practical. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 2028–2041,
2018.

[16] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[17] Shuhong Gao. A new algorithm for decoding reed-solomon codes. In Communications, information and
network security, pages 55–68. Springer, 2003.

[18] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Dumbo: Faster asynchronous
bft protocols. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 803–818, 2020.

[19] James Hendricks, Gregory R Ganger, and Michael K Reiter. Verifying distributed erasure-coded data.
In Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed computing, pages
139–146, 2007.

[20] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials
and their applications. In International conference on the theory and application of cryptology and
information security, pages 177–194. Springer, 2010.

[21] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous distributed key
generation for computationally-secure randomness, consensus, and threshold signatures. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages 1751–1767,
2020.

[22] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate, and Andrew Miller.
Honeybadgermpc and asynchromix: Practical asynchronous mpc and its application to anonymous com-
munication. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 887–903, 2019.

[23] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-mvba: Optimal multi-valued validated
asynchronous byzantine agreement, revisited. In Proceedings of the 39th Symposium on Principles of
Distributed Computing, pages 129–138, 2020.

[24] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error correcting codes,
volume 16. Elsevier, 1977.

[25] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages
31–42, 2016.

[26] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved extension protocols
for byzantine broadcast and agreement. In 34th International Symposium on Distributed Computing
(DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[27] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal communication
complexity. In International Conference On Principles Of Distributed Systems, pages 34–49. Springer,
2011.

[28] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the society
for industrial and applied mathematics, 8(2):300–304, 1960.

17

[29] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes, December 30 1986.
US Patent 4,633,470.

[30] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dispersedledger:
High-throughput byzantine consensus on variable bandwidth networks. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), 2022.

[31] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller. hbacss: How to robustly
share many secrets. In (To appear) Proceedings of the 29th Annual Network and Distributed System
Security Symposium, 2022.

A Balanced Error-Free Reliable Broadcast
In this section, we extend the error-free synchronous Byzantine agreement protocol of [11] to obtain an
error-free asynchronous Byzantine reliable broadcast protocol with communication cost O(n|M |+n2 log n).
Thus, for |M |≥ O(n log n), our protocol is optimal in terms of communication cost. We also apply the same
technique of §3 to balance the cost of broadcaster and other nodes so that the protocol has per-node cost
O(|M |+n log n).

A.1 Design of BalEFRBC
Our error-free RBC has five phases: phase 0 to 4. We summarize our protocol in Algorithm 4 and describe
each phase in detail.
Phase 0: The purpose of phase 0 is to let the broadcaster to send its proposal, M , to all nodes. As
discussed in §3, if the broadcaster sends its proposal directly to each node, the broadcaster would incur a
communication cost of O(n|M |). We adopt the approach we design in §3. More specifically, during phase
0, the broadcaster encodes M using a (n, t + 1) Reed-Solomon code. Let [m1,m2, . . . ,mn] be the encoded
symbols. The broadcaster then sends the i-th symbol mi to node i as ⟨PROPOSE,mi⟩ message. Each node
i, upon receiving ⟨PROPOSE,mi⟩ message from the broadcaster, sends ⟨SHARE,mi⟩ to all other nodes. Every
node then performs information theoretic online error correction using the SHARE messages to recover the
potential proposal. Let Mi be the proposal node i recovers at the end of phase 0.
Phase 1: During phase 1, each node first encode the proposal it recovered during phase 0 using a (n, k)

Reed-Solomon code for k = ⌊ t
5⌋+1. Let [y(i)1 , y

(i)
2 , . . . , y

(i)
n] := RSEnc(Mi, n, k) be the output of the encoding

procedure at node i (line 11). Node i then sends the ⟨SYMBOLS, y(i)i , y
(i)
j ⟩ to node j for every j ∈ [n] (line

12). Also, node i upon receiving ⟨SYMBOLS, y(j)i , y
(j)
j ⟩ from node j adds node j to the set S1

1 if (y(i)i , y
(i)
j) =

(y
(j)
i , y

(j)
j) (line 15-16). Otherwise, node i adds j to the set S1

0 (line 18). Node i then waits until either |S1
1 |

is greater than or equal to n− t, or |S1
0 | is greater than or equal to t+1. The event |S1

1 |≥ n− t implies that
node i received matching symbols from at least n− t nodes. Alternatively, the event |S1

0 |≥ t+1 implies that
node i received non-matching symbol from at least t+ 1 nodes.

Upon |S1
1 |≥ n − t, node i sends the message ⟨P1, s1i = 1⟩ to all nodes (line 19-20). Alternatively, if

|S1
0 |≥ t + 1, node i sends the message ⟨P1, s1i = 0⟩ to all nodes (line 21-22). Finally, for every ⟨P1, s1j = 1⟩

message received from any node j, node i adds node j to the set S2
1 once it received j’s symbols in phase

1 and the symbols match (line 24-27). Otherwise, node i adds the senders of ⟨P1, 0⟩ message to the set S2
0

(line 29). The reason for waiting to receive node j’s symbols in line 25 is that we do not want to add nodes
with mismatched symbols in S2

1 , which is crucial for Lemma 5 to hold. Note that it is still possible that an
honest node j whose symbols do not match node i, i.e., j ∈ S1

0 at node i, sends s2j = 1. In our protocol node
i ignores all such messages (line 24-27).
Phase 2: During phase 2, if s1i as calculated in phase 1 (line 19-22) is equal to 0, node i sends the ⟨P2, s2i = 0⟩
to every node. Otherwise, if s1i is 1, then depending upon the size of S2

1 or S2
0 , node i sends the following

message. Upon |S2
1 |≥ n− t, node i sends ⟨P2, s2i = 1⟩ to all nodes (line 31-32). Otherwise, upon |S2

0 |≥ t+1,

18

Algorithm 4 BalEFRBC protocol, code for node i, i ∈ [n]

PHASE 0:
1: // only broadcaster node
2: input M
3: Let [m1,m2, . . . ,mn] := RSEnc(M,n, t+ 1)
4: send ⟨PROPOSE,mj⟩ to node j for each j ∈ [n]

// each node i
5: Let M := ⊥
6: Initialize S1

0 ,S1
1 ,S2

0 ,S2
1 ,S3

0 ,S3
1 ,S4

0 ,S4
1 to be ∅

7: upon receiving the first ⟨PROPOSE,mi⟩ from the
broadcaster do

8: send ⟨SHARE,mi⟩ to all nodes

9: For the first ⟨SHARE,m∗
j ⟩ received from node j, add

(j,m∗
j) to T // T initialized as ∅

10: Perform IT-OEC for set T (Algorithm 1)
11: Let Mi be the returned value of IT-OEC

PHASE 1:
12: Let [y

(i)
1 , y

(i)
2 , . . . , y

(i)
n] := RSEnc(Mi, n, k)

13: send ⟨SYMBOLS, (y(i)
j , y

(i)
i)⟩ to node j, ∀j ∈ [n].

// Exchange symbols

14: upon receiving ⟨SYMBOLS, (y(j)
i , y

(j)
j)⟩ from node j for

the first time do
15: if (y

(j)
i , y

(j)
j) = (y

(i)
i , y

(i)
j) then

16: Let S1
1 := S1

1 ∪ {j}.
17: else
18: Let S1

0 := S1
0 ∪ {j}.

19: upon |S1
1 |>= n− t do

20: set s1i = 1, send ⟨P1, s1i ⟩ to all.
21: upon |S1

0 |>= t+ 1 do
22: set s1i = 0, send ⟨P1, s1i ⟩ to all.
23: upon receiving ⟨P1, s1j ⟩ from node j for the first time

do
24: if s1j = 1 then
25: Wait till j ∈ S1

0 ∪ S1
1

26: if j ∈ S1
1 then

27: Let S2
1 := S2

1 ∪ {j}.
28: else
29: Let S2

0 = S2
0 ∪ {j}.

PHASE 2:
30: if s1i = 1 then
31: upon |S2

1 |>= n− t do
32: set s2i = 1, send ⟨P2, s2i ⟩ to all.
33: upon |S2

0 |>= t+ 1 do
34: set s2i = 0, send ⟨P2, s2i ⟩ to all.
35: else
36: set s2i = 0, send ⟨P2, s2i ⟩ to all
37: upon receiving ⟨P2, s2j ⟩ from node j for the first time

do

38: if s2j = 1 then
39: Wait till j ∈ S1

0 ∪ S1
1

40: if j ∈ S1
1 then

41: Let S3
1 := S3

1 ∪ {j}.
42: else
43: Let S3

0 := S3
0 ∪ {j}.

PHASE 3:
44: if s2i = 1 then
45: upon |S3

1 |>= n− t do
46: set s3i = 1, send ⟨P3, s3i ⟩ to all.
47: upon |S3

0 |>= t+ 1 do
48: set s3i = 0, send ⟨P3, s3i ⟩ to all.
49: else
50: set s3i = 0, send ⟨P3, s3i ⟩ to all.
51: upon receiving ⟨P3, s3j ⟩ from node j for the first time

do
52: if s3j = 1 then
53: Let S4

1 := S4
1 ∪ {j}.

54: else
55: Let S4

0 = S4
0 ∪ {j}.

56: upon |S4
1 |>= n− t do

57: send ⟨ECHO, s4i = 1⟩ to all.
58: upon |S4

0 |>= t+ 1 do
59: send ⟨ECHO, s4i = 0⟩ to all.
60: upon receiving 2t + 1 ⟨ECHO, s⟩ for matching s and

not having sent a READY message do
61: send ⟨READY, s⟩ to all

62: upon receiving t + 1 ⟨READY, s⟩ for matching s and
not having sent a READY message do

63: send ⟨READY, s⟩ to all

64: upon receiving 2t+ 1 ⟨READY, s⟩ for matching s do
65: if s = 0 then
66: output M = ⊥ and return
67: start PHASE 4

PHASE 4:
68: // only after executing line 67
69: Wait till receiving t + 1 ⟨SYMBOLS, (y(j)

i , ∗)⟩, ∀j ∈ S4
1

// SYMBOLS messages from PHASE 1, and set S4
1 from

PHASE 3
70: Let mi := y

(j)
i

71: send ⟨RECONSTRUCT,mi⟩ to all
72: For the first ⟨RECONSTRUCT,m∗

j ⟩ received from node j,
add (j,m∗

j) to T // T initialized as ∅
73: Perform IT-OEC for set T (Algorithm 1)
74: Let Mi be the returned value of IT-OEC
75: output Mi and return.

19

node i sends ⟨P2, s2i = 0⟩ to every node (line 33-34). Also, similar to phase 1, for every ⟨P2, s2j = 1⟩ message
received from any node j, node i adds node j to the set S3

1 once it received j’s symbols in phase 1 and the
symbols match (Line 38-41). Otherwise, node i adds the senders of ⟨P2, 0⟩ message to the set S3

0 (line 43).
Phase 3: The first part of phase 3 (line 44-55) is similar to phase 2 (line 30-43), except that any node j that
sends ⟨P3, s3i = 1⟩ is included in set S4

1 without the additional checks as in phase 1 and 2.
The remaining steps of phase 3 is analogous to running the 1-bit RBC protocol due to Bracha [8].

Specifically, upon |S4
1 |≥ n− t, node i sends ⟨ECHO, s4i = 1⟩ to all nodes (line 56-57). Otherwise, if |S4

0 |≥ t+1,
node i sends ⟨ECHO, s4i = 0⟩ to every node (line 58-59). Intuitively, the content of the ECHO message (1 or 0)
from node i denotes the opinion of node i on whether every node should output M ′ ̸= ⊥ or M ′ = ⊥. Each
node upon receiving 2t+ 1 ⟨ECHO, s⟩ messages for a matching s, sends the ⟨READY, s⟩ message, if it have not
sent it already (line 60-61). A node also sends the ⟨READY, s⟩ message upon receiving t+1 matching ⟨READY, s⟩
messages, if have not sent it already (line 62-63). Finally, upon receiving 2t+1 matching ⟨READY, s⟩, if s = 0,
node i outputs ⊥ and returns (line 65-66). Otherwise, node i proceeds to phase 4 (line 67).
Phase 4: A node starts phase 4 only after receiving 2t+ 1 ⟨READY, 1⟩ messages. During phase 4, each node
waits for t+ 1 matching ⟨SYMBOLS, y(j)i , ∗⟩ from nodes in S4

1 (line 69). Recall that ⟨SYMBOLS, y(j)i , ∗⟩ are sent
during phase 1. Let mi := y

(
ij) be the symbol received in t+ 1 SYMBOLS messages with matching y

(
ij) (line

70). Then, each node sends the message ⟨RECONSTRUCT,mi⟩ to all nodes (line 71). Finally, each node uses
the received RECONSTRUCT messages to perform OEC and outputs the output of the OEC algorithm (line
72-75).

A.2 Analysis
In this section we will analyze algorithm 4 and show that it implements an error-free RBC protocol for large
messages with communication cost of O(n|M |+n2 log n) and tolerates up to 1/3-rd Byzantine nodes. Our
proof directly uses several Lemmas from [10] and we only provide the lemma statement for those lemmas.

Lemma 5 (Key Lemma). When any honest node i sends ⟨ECHO, 1⟩ at phase 3, all honest nodes in node i’s
set S4

1 recovers the same message at the end of phase 0.

Proof. The proof of this lemma follows directly from the proof of [10, Lemma 3] where we use our proof of
Lemma 8 and 9.

Theorem 10 (Totality and Agreement). Algorithm 4 guarantees the Totality and Agreement property.

Proof. Suppose an honest node outputs M ′, then it has received 2t+ 1 ⟨READY, s⟩ messages for matching s.
Then since at least t + 1 messages above are from honest nodes, every honest node will eventually receive
t + 1 ⟨READY, s⟩ messages. Note that no honest node can send READY for any s′ ̸= s, due to the quorum
intersection of ECHO messages. Thus all honest nodes will send ⟨READY, s⟩ and thus receive 2t+ 1 ⟨READY, s⟩.
If s = 0, this implies that every honest will output the default message M ′ = ⊥ and return. Otherwise, if
s = 1, each node will start phase 4. What remains to show is that, during phase 4, each honest node will
send a reconstruct message with a correct symbol of the encoding of a unique message M ′ (line 71) after
receiving t+ 1 matching SYMBOLS (line 69), and decode and output M ′ (line 72-75).

An honest node receiving 2t+1 ⟨READY, 1⟩ implies that at least one honest node sent a ⟨ECHO, 1⟩ message.
Without loss of generality, let i be the first node that sent an ⟨ECHO, 1⟩ message. Observe that node i sends
⟨ECHO, 1⟩ only when |S4

1 |≥ n− t at node i. This means at least n− 2t ≥ t+ 1 nodes in |S4
1 | are honest and

each such node j sent s3j = 1 to all nodes. Also, due to Lemma 5, for every pair of honest nodes, they have
the same initial message at the end of phase 0, i.e., j, ℓ ∈ S4

1 , Mj = Mℓ. Hence, every honest node i will
eventually will receive at least t + 1 matching ⟨SYMBOLS, (y(j)i , ∗)⟩ messages from honest nodes in S4

1 . This
implies, every honest node will send RECONSTRUCT message with correct symbol, and due to properties of
OEC, each honest will output the same message M ′.

Theorem 11 (Validity). Algorithm 4 guarantees the Validity property.

20

Proof. When the broadcaster is honest and has input M , due to guarantees of OEC, during phase 0, every
honest node will eventually receive M , i.e., Mi = Mj = M for all honest nodes i and j. Since, RSEnc
is a deterministic function, for every pair of honest nodes i and j, the tuple of symbols will match, i.e.,
(y

(j)
i , y

(j)
j) = (y

(i)
i , y

(i)
j). Since there are at least n − t honest nodes, eventually |S1

1 | will be greater than
or equal to n − t at all honest nodes and every honest node i will send ⟨P1, s2i = 1⟩ to others. No honest
node will send ⟨P1, s2i = 0⟩ since there are at most t Byzantine nodes who may send inconsistent symbols.
A similar argument also implies that during phase 2 and 3, each honest node i will send ⟨P2, s3i = 1⟩ and
⟨P3, s3i = 1⟩, respectively, to all other nodes. Hence, every honest node will eventually send ⟨ECHO, 1⟩ and
⟨READY, 1⟩ to others and all honest node will start to phase 4. Finally, during phase 4, every honest node
sends a valid coded symbol of M in RECONSTRUCT message. Thus, again due to guarantees of OEC, every
honest node will reconstruct the message M .

Theorem 12 (Performance). For any message M of size |M |, the total communication cost of Algorithm 4
is O(n|M |+n2 log n) bits. Furthermore each node incurs a communication cost of O(|M |+n log n).

Proof. During phase 0, the broadcaster sends a symbol to each node, and each node gossips the symbol
to every other node. Note that in Reed-Solomon code, each symbol is of size max{|M |/n, log n} bits.
Hence, the communication cost of each node during phase 0 is at most O(|M |+n log n). Hence, the total
communication during phase 0 is at most O(n|M |+n2 log n). During phase 1, each node sends two symbols
(line 12) and a single bit (line 19 and 22) to every other node. Hence, by the same argument as above,
the total communication cost of phase 1 is at most O(n|M |+n2 log n). A node only sends a single bit to
other nodes during phase 2. Similarly, during phase 3, each node only sends 1-bit to others and runs a 1-bit
Bracha’s RBC protocol. Hence, the communication cost of phase 2 and phase 3 is O(n2). Finally, during
phase 4, each node sends a symbol to all other nodes, hence the per node and the total communication cost
of phase 4 is O(|M |+n log n) and O(n|M |+n2 log n), respectively.

Combining the above, the per node and the total communication cost of Algorithm 4 is O(|M |+n log n)
and O(n|M |+n2 log n), respectively.

A.3 Re-proving Lemmas
In this section we will re-prove some lemmas from [10] for our Key Lemma (Lemma 5). Our proofs basically
follow the original proof of [10], adapted to our asynchronous RBC protocol.

We will first restate the definitions introduced by Chen [10] in our protocol language.
Notation for groups of nodes. We divide the n-node network into group of nodes. The group definition
is based on the values of the messages recovered by nodes at the end of phase 0 and values of the success
indicators {sji}ni=1 for j = 1, 2, 3, 4. Let F be the group consisting of the indices of all of the dishonest nodes.
Note that |F|≤ t. We define the following groups of honest nodes.

Al ≜{i : Mi = M̄l, i /∈ F , i ∈ [n]}, l ∈ [η] (1)

A[1]
l ≜{i : s1i = 1,Mi = M̄l, i /∈ F , i ∈ [n]}, l ∈ [η[1]] (2)

A[2]
l ≜{i : s2i = 1,Mi = M̄l, i /∈ F , i ∈ [n]}, l ∈ [η[2]] (3)

A[3]
l ≜{i : s3i = 1,Mi = M̄l, i /∈ F , i ∈ [n]}, l ∈ [η[3]] (4)

for some different non-empty values M̄1, M̄2, · · · , M̄η and some non-negative integers η, η[1], η[2], η[3] such
that η[3] ≤ η[2] ≤ η[1] ≤ η. The above definition implies that Group Al is a subset of honest nodes who
recovered the same message at the end of phase 0. A[1]

l is a subset of Al who have the same non-empty
value of updated messages at the end of phase 1. Note that at the end of phase 1, if the updated message of
honest node i is non-empty, then it implies that its updated message remains the same as its message after
phase 0. Moreover, s1i = 1. Similarly, A[2]

l is a subset of A[1]
l who have the same non-empty value of updated

21

messages at the end of Phase 2 for l ∈ [η[2]], while A[3]
l is a subset of A[2]

l who have the same non-empty
value of updated messages at the end of Phase 3 for l ∈ [η[3]]. In our setting, when 1 ≤ η[3] ≤ η[2] ≤ η[1] ≤ η,
the sets Al,A[1]

l1
,A[2]

l2
,A[3]

l3
are all non-empty for any l ∈ [η], l1 ∈ [η[1]], l2 ∈ [η[2]], l3 ∈ [η[3]]. Note that∑η

l=1|Al|+|F|= n.
Let B[p] defined as

B[p] ≜{i : spi = 0, i /∈ F , i ∈ [n]}, p ∈ {1, 2, 3}. (5)

Based on our definitions, it holds true that

η[p]∑
l=1

|A[p]
l |+|B[p]|+|F|= n, p ∈ {1, 2, 3}. (6)

Throughout our analysis, for any message M , we use M(·) = RSEnc(M,n, k) to denote the Reed-Solomon
encoding of the message M . Moreover, we use M(i) to denote the i-th symbol of M(·). For some i ∈ Al,
the equality of M̄l(i) = M̄j(i) might be satisfied for some j and l. Thus, we further sub-divide the group Al

the following (possibly overlapping) sub-groups

Al,j ≜{i : i ∈ Al, M̄l(i) = M̄j(i)}, j ̸= l, j, l ∈ [η] (7)

Al,l ≜Al \ {∪η
j=1,j ̸=lAl,j}, l ∈ [η]. (8)

Similarly, Group A[p]
l can be further divided into some sub-groups defined as

A[p]
l,j ≜{i : i ∈ A[p]

l , M̄l(i) = M̄j(i)}, j ̸= l, j, l ∈ [η[p]] (9)

A[p]
l,l ≜A[p]

l \ {∪η[p]

j=1,j ̸=lA
[p]
l,j}, l ∈ [η[p]]. (10)

for p ∈ {1, 2, 3}.
Notation for graphs. Chen [10] defines a graph G = (P, E), where P consists of n − t vertices, i.e.,
P = [n− t], and E is the set of edges. Let i∗ ∈ P, and let C ⊆ P \ {i∗} be a of vertices with |C|≥ n− 2t− 1,
such that each vertex in C is connected with at least n−2t edges and one of the edges is connected to vertex
i∗. We count an edge connecting to itself as an edge as well. For any pair of vertices i, j ∈ P, we use Ei,j = 1
(resp. Ei,j = 0) to indicate that there is an edge (resp. no edge) between vertex i and vertex j. In summary,
in G, for a given i∗ ∈ P = [n− t], the following properties regarding the set C holds.

Ei,i∗ = 1 ∀i ∈ C (11)∑
j∈P

Ei,j ≥ n− 2t ∀i ∈ C (12)

|C| ≥ n− 2t− 1 (13)

For the graph G, let D ⊆ P denote the set of vertices such that each vertex in D is connected with at
least k vertices in C, that is,

D≜
{
i :

∑
j∈C

Ei,j ≥ k, i ∈ P \ {i∗}
}

(14)

where k is the Reed-Solomon encoding parameter. Then, the following lemma provides a result on bounding
the size of D.
Lemmas from [10]. Next we will provide Lemmas from [10] that we will directly use later for re-proving
Lemmas for our Algorithm 4.

22

Lemma 6. For Al,j and A[1]
l,j defined in (7) and (9), and for η ≥ η[1] ≥ 2, the following inequalities hold

true

|Al,j |+|Aj,l|<k, ∀j ̸= l, j, l ∈ [η] (15)

|A[1]
l,j |+|A[1]

j,l|<k, ∀j ̸= l, j, l ∈ [η[1]] (16)

where k is the Reed-Solomon encoding parameter.

Proof. Refer to [10, Lemma 7] for proof.

Lemma 7. For any graph G = (P, E) specified by (11)-(13) and for the set D ⊆ P defined by (14), and
given n ≥ 3t+ 1, it holds true that

|D| ≥ n− 9t/4− 1. (17)

Proof. We refer the reader to [10, Lemma 8] for proof.

Re-proving Lemmas from [10]. We next argue that at the end of phase 2, if there exists 1 or more group
of honest nodes with different messages, then it must hold true that the initial size of each group must be
at least n− 9t/4. More formally,

Lemma 8. When η[2] ≥ 1, it holds true that |Al|≥ n− 9t/4, for any l ∈ [η[2]].

Proof. The proof consists of the following steps, which mostly follows the proof of [10, Lemma 9]:

• Step (a): Transform the network into a graph that is within the family of graphs satisfying (11)-(13) for
a fixed i∗ in A[2]

l∗ and l∗ ∈ [η[2]].

• Step (b): Bound the size of a group of honest nodes, denoted by D′ (with the same form as in (14)), using
the result of Lemma 7, i.e., |D′|≥ n− 9t/4− 1.

• Step (c): Argue that every node in D′ has the same initial message as node i∗.

• Step (d): Conclude from Step (c) that D′ is a subset of Al∗ , i.e., D′ ∪ {i∗} ⊆ Al∗ and conclude that the
size of Al∗ is bounded by the number determined in Step (b), i.e., |Al∗ |≥ |D′|+1 ≥ n − 9t/4 − 1 + 1, for
l∗ ∈ [η[2]].

Step (a): The first step of the proof is to transform the network into a graph that is within the family of
graphs defined above. We will consider the case of η[2] ≥ 1. Recall that, when η[2] ≥ 1, we have |A[2]

l |≥ 1

for any l ∈ [η[2]]. Let us consider a fixed i∗ for i∗ ∈ A[2]
l∗ and l∗ ∈ [η[2]]. Note that,

s2i∗ = 1 ⇒At node i∗, |S2
1 |≥ n− t (18)

⇒At node i∗, |S2
1 ∩ {∪η[1]

p=1A[1]
p }|≥ n− 2t (19)

⇒At node i∗, |S1
1 ∩ {∪η[1]

p=1A[1]
p }|≥ n− 2t (20)

the last implication follows from the fact that j ∈ S2
1 ⇒ j ∈ S1

1 , ∀j ∈ ∪η[1]

p=1A
[1]
p , which holds due to the check

in line 25-26 in Algorithm 4.
Let C′ be defined as follows;

C′ ≜{S1
1 at node i∗ ∩ {∪η[1]

p=1A[1]
p }} \ {i∗} ⇒ |C′|≥ n− 2t− 1 (21)

23

Moreover, since C′ is a subset of ∪η[1]

p=1A
[1]
p , it implies

s1j = 1,∀j ∈ C′ ⇒At every nodej ∈ C′, |S1
1 |≥ n− t (22)

⇒At every nodej ∈ C′, |S1
1 ∩ {∪η

l=1Al}|≥ n− 2t (23)
(24)

In other words, for any j ∈ C′, node j receives at least n − 2t number of matched observations from
honest nodes during phase 1. Let us define a subset of {∪η

l=1Al} \ {i∗} of honest nodes as

D′ ≜ {p : p received matching SYMBOLS message from at least k nodes in C′ and p ∈ {∪η
l=1Al} \ {i∗}} (25)

where k is the Reed-Solomon encoding parameter.
Now we map the network into a graph by considering the honest nodes as the vertices and considering

the link indicators as edges. Let P ≜∪η
l=1Al. Let E consists of Ei,j for all i, j ∈ P such that Ei,j = 1 if

i ∈ S1
1 at node j. Note that i ∈ S1

1 at node j implies eventually j ∈ S1
1 at node i. Let G = (P, E) be a

graph, then C′ ⊆ P ′ \ {i∗} be as defined equation (21). It is easy to see that the graph G falls into a family
of graphs satisfying (11)-(13).

The step (b), (c), and (d) of our proof is identical to the proof of steps (b), (c), and (d) of [10, Lemma
9]. Thus we omit them for brevity.

Next we provide a lemma that will be used later for the analysis of the proposed protocol.

Lemma 9. In algorithm 4 with n ≥ 3t+ 1, if η[1] = 2 then it holds true that η[3] ≤ 1.

Proof. The proof mostly follows the proof of [10, Lemma 10]. Given η[1] = 2, the definitions in (1)-(10)
imply that

A[1]
1 ={i : s1i = 1,Mi = M̄1, i /∈ F , i ∈ [n]} (26)

A[1]
2 ={i : s1i = 1,Mi = M̄2, i /∈ F , i ∈ [n]} (27)

A[1]
1,2 ={i : i ∈ A[1]

1 , M̄1(i) = M̄2(i)} (28)

A[1]
1,1 =A[1]

1 \ A[1]
1,2 = {i : i ∈ A[1]

1 , M̄1(i) ̸= M̄2(i)} (29)

A[1]
2,1 ={i : i ∈ A[1]

2 , M̄2(i) = M̄1(i)} (30)

A[1]
2,2 =A[1]

2 \ A[1]
2,1 = {i : i ∈ A[1]

2 , M̄2(i) ̸= M̄1(i)} (31)

B[1] ={i : s1i = 0, i /∈ F , i ∈ [n]} = {i : i ∈ [n], i /∈ F ∪ A[1]
1 ∪ A[1]

2 }. (32)

In the following we will complete the proof by focusing on the following three cases

Case 1: |A[1]
1 |+|B[1]|≥t+ 1 (33)

|A[1]
2 |+|B[1]|<t+ 1 (34)

Case 2: |A[1]
1 |+|B[1]|<t+ 1 (35)

|A[1]
2 |+|B[1]|≥t+ 1 (36)

Case 3: |A[1]
1 |+|B[1]|≥t+ 1 (37)

|A[1]
2 |+|B[1]|≥t+ 1. (38)

24

Note that the following case

Case 4: |A[1]
1 |+|B[1]|<t+ 1 (39)

|A[1]
2 |+|B[1]|<t+ 1 (40)

does not exist. See [10] for its proof.
Case 1: Recall that in the first step of Phase 2, due to the check of line 25-26 in Algorithm 4, each node
i ∈ A2,2 with s1i = 1 eventually adds a node j to S2

0 for every j ∈ S1
0 . Moreover, by definition eventually

every node in B[1] ∪ A1 will be added to S1
0 at each node i ∈ A2,2 because s1i = 0, ∀i ∈ B[1] and nodes

A1 and A2,2 have mismatched symbols. Since we assume in (33), that |A[1]
1 |+|B[1]|≥ t + 1, it implies that

eventually during Phase 2, every node i ∈ A2,2 sets

s2i = 0, ∀i ∈ A[1]
2,2 (41)

With the outcome in (41) and after exchanging the success indicators, eventually, the set of A[1]
2,2, as well

as B[1], will be in the list of S0 at each honest node. Note that a subset of A[1]
2,1, i.e., A[1]

2,1 ∩ {p : s2p = 1})
may still be in list of S2

1 . Below we will argue that the complete set of A[1]
2,1 will be in the list of S3

0 .
During Phase 3, a node i ∈ A2,1 and with s3i = 1, eventually adds node j to S3

0 for each j ∈ A[1]
2,2 ∪ B[1].

This holds due to the check in line 39-40 of Algorithm 4. It is also true that

M̄i(j) ̸= M̄j(j), ∀j ∈ A[1]
1,1, i ∈ A[1]

2,1 (42)

Note that, the size of A[1]
1,1 ∪ A[1]

2,2 ∪ B[1] can be bounded by

|A[1]
1,1 ∪ A[1]

2,2 ∪ B[1]|=|A[1]
1,1|+|A[1]

2,2|+|B[1]| (43)

=n− |F|−|A[1]
1,2|−|A[1]

2,1| (44)

≥n− |F|−(k − 1) (45)
≥2t+ 1− (k − 1) (46)
≥t+ 1 (47)

where (43) uses the disjoint property between A[1]
1,1, A

[1]
2,2 and B[1]; (44) is from (6) and the disjoint property

between A[1]
1,1, A

[1]
1,2, A

[1]
2,1, A

[1]
2,2 and B[1]; (45) follows from Lemma 6, which implies that |A[1]

1,2|+|A[1]
2,1|< k

(or equivalently |A[1]
1,2|+|A[1]

2,1|≤ k − 1); (46) uses the condition that n ≥ 3t + 1 and |F|= t; (47) results
from the fact that t ≥ k − 1 based on our design of k. Hence, for every node i ∈ A2,1, during phase 3,
eventually |S3

0 |≥ t + 1. Therefore, during phase 3, the node i updates its success indicator s3i = 0. Since,
A[1]

2,1 ∩ {p : s2p = 0} ⊆ S0, this implies that eventually A[1]
2 ⊆ S3

0 . Stating differently, at the end of Phase 3
of there exists at most 1 group of honest nodes, where the honest nodes within this group have the same
non-empty updated message (with success indicators as ones), and the honest nodes outside this group have
the same empty updated message (with success indicators as zeros), that is, η[3] ≤ 1, for Case 1.
Case 2: Due to the symmetry between Case 1 and Case 2, one can follow from the proof steps for Case 1
and interchange the roles of Groups A1 and A2 (as well as the roles of Groups A[p]

1 and A[p]
2 accordingly for

p ∈ {1, 2, 3}), to show for Case 2 that at the end of Phase 3 it is that A[1]
1 ⊆ S0.

Case 3: Follows from the analysis of case 1 and the argument presented in [10].

25

	Introduction
	System Model and Preliminaries
	System Model
	Problem Formulations
	Primitives

	Near-optimal Balanced Reliable Broadcast
	Balanced Hash-based Reliable Broadcast
	Balanced Error-Free Reliable Broadcast

	Improved Asynchronous Verifiable Information Dispersal
	Challenges and Our Approaches.
	Design of AVID
	Analysis of AVID

	Lower Bounds
	Reliable Broadcast
	Asynchronous Verifiable Information Dispersal

	Related Work
	Discussion and Conclusion
	Balanced Error-Free Reliable Broadcast
	Design of BalEFRBC
	Analysis
	Re-proving Lemmas

