
Brute Force Cryptanalysis

Aron Gohr
aron.gohr@gmail.com

Abstract. The topic of this contribution is the cryptanalytic use of spu-
rious keys, i.e. non-target keys returned by exhaustive key search. We
show that the counting of spurious keys allows the construction of dis-
tinguishing attacks against block ciphers that are generically expected
to start working at (marginally) lower computational cost than is re-
quired to find the target key by exhaustive search. We further show that
if a brute force distinguisher does return a strong distinguishing signal,
fairly generic optimizations to random key sampling will in many cir-
cumstances render the cost of detecting the signal massively lower than
the cost of exhaustive search.
We then use our techniques to quantitatively characterize various non-
Markov properties of round-reduced Speck32/64. We fully compute, for
the first time, the ciphertext pair distribution of 3-round Speck32/64
with one input difference ∆ without any approximations and show that
it differs markedly from Markov model predictions; we design a perfect
distinguisher for the output distribution induced by the same input dif-
ference for 5-round Speck32/64 that is efficient enough to process millions
of samples on an ordinary PC in a few days; we design a generic two-
block known-plaintext distinguisher against Speck32/64 and show that
it achieves 58 percent accuracy against 5-round Speck, equivalent e.g. to
a linear distinguisher with ≈ 50 percent bias.
Turning our attention back to differential cryptanalysis, we show that our
known-plaintext distinguisher automatically handles the 5-round output
distribution induced by input difference ∆ as well as the perfect differ-
ential distinguisher, but that no significant additional signal is obtained
from knowing the plaintexts. We then apply the known-plaintext brute
force distinguisher to 7-round Speck32/64 with fixed input difference ∆,
finding that it achieves essentially the same distinguishing advantage as
state-of-the-art techniques (neural networks with key averaging). We also
show that our techniques can precisely characterize non-Markov proper-
ties in longer differential trails for Speck32/64.

1 Introduction and Goals of This Work

Brute force attacks on block ciphers commonly encounter two problems, namely
impractical computational complexity and the problem of spurious keys. For
instance, exhaustive search for a key K such that EK(P) = C may find many
solutions, of which only one is usually the key sought by the adversary. The
standard approach to this problem is to eliminate all spurious keys by requesting
more ciphertext. The standard approach to the cost problem is not to use brute

force, or at least to view it only as the yardstick against which real cryptographic
attacks must be measured.

In this paper, we instead use the counting of spurious keys to distinguish the
output of block ciphers from random data; and we show that in various situations
of interest, very good estimates of the number of these spurious keys can be
obtained at a computational cost that is much lower than that of exhaustive key
search.

As an application, we analyze the behaviour of low-round versions of one
specific cipher (Speck32/64) with no or very mild approximating assumptions.
In particular, we calculate the distribution of ciphertext pairs induced by some
particularly suitable input difference exactly for a few rounds. We show that the
ciphertext pair distribution of 3-round and 5-round Speck32/64 deviates fairly
strongly from predictions of the Markov model of its differential transitions; we
show that the output pair distribution of many longer trails of Speck32/64 like-
wise exhibits nonuniformity within the output difference classes. We then exhibit
a known-plaintext distinguisher with very high bias for 5-round Speck32/64,
show that it automatically exploits chosen plaintext inputs near-perfectly, and
use it to show that in one particular situation of interest, an adversary probably
would need to find a weakness in the key schedule of Speck32/64 to make use of
knowledge of the plaintext inputs to the cipher.

1.1 Related Work

Generalizations of Differential Cryptanalysis Several works have considered var-
ious generalizations of differential cryptanalysis. One of the earliest propos-
als in this direction were fairly generic statistical attacks suggested by Vau-
denay [Vau96]; here, plaintext and ciphertext data is jointly projected to some
smaller space by a suitable hash function h and the distribution of the hash val-
ues is analyzed for deviations from the value distribution induced by applying
h to uniformly distributed values. Similarly, Harpes’ and Massey’s partitioning
cryptanalysis [HM97] divides the plaintext and ciphertext set of a cipher under
study into well-chosen equivalence classes and follows the transition probabilities
of these equivalence classes through the cipher. Wagner [Wag04] gave a formal
framework called commutative diagram cryptanalysis for this class of attacks
and showed how various attacks discussed in previous literature can be seen to
fit into this framework. Some of the techniques we use in the present paper to
make cryptanalysis by the sampling of spurious keys practical (for instance, the
construction of decryption equivalence classes in section 2 and their subsequent
use throughout the paper) fit into this framework as well.

While Wagner’s work had already discussed all-in-one approaches to differ-
ential cryptanalysis as one instantiation of his commmutative diagram crypt-
analysis framework and established some of their properties (for instance, a link
between all-in-one differential and all-in-one linear attacks), all-in-one differential
cryptanalytic attacks do not seem to have been used on any block cipher prior
to Albrecht and Leander’s attacks on round-reduced Katan [AL12]. Later, all-
in-one attacks were developed by Gohr against Speck32/64 [Goh19]. The main

2

purpose of all-in-one attacks in Gohr’s paper was to establish a strong base-
line against which machine-learning attacks on the same target ciphers could
be compared. The same paper also introduced a distinguisher that exploits the
nonuniformity in the ciphertext pair distribution of 5-round Speck32/64 per-
fectly for one particular input difference. The present paper improves on this
distinguisher by making its use practical on large test sets and by providing
strong heuristic evidence that no significant additional signal can be obtained
by exploiting knowledge of the plaintext pairs by attacks that do not use weak-
nesses of the key schedule.

Universal Cryptographic Attacks It is universally understood (at least since
[Sha49]) that most practical cryptographic systems can be broken by a brute
force attack given an attacker of unlimited computational capacity. In the case
of a simple known-message attack, the adversary will intercept a ciphertext C
and know by some other means the underlying plaintext messageM . They know,
in this setting, that C = EK(M), where EK is a family of (maybe probabilistic)
permutations and K is a secret key taken from some key space K. The standard
brute force attack then allows them to identify a small subset S ⊆ K such that
EK(M) = C for each K ∈ S simply by trying all possible values of K. For
typical ciphers, S will in expectation consist of only a single element when the
amount of intercepted ciphertext exceeds the key size of the cipher. When only
a plaintext distribution is known, the adversary still learns some a posteriori
probability distribution on the key and plaintext space.

Most of the subsequent cryptographic literature has considered this type of
attack merely as a baseline to real cryptographic attacks: if the adversary has
no other ideas, they may resort to the application of brute force attacks. Since
arguably the main design goal of modern ciphers is that the adversary should
have no other ideas available, a significant amount of work has been done on
quantifying the real-world costs of brute force attacks (see e.g. [BG12,CKL+21,
Ber05]).

Implicitly, much cryptanalytic work assumes the wrong-key randomisation
hypothesis, which can be viewed as saying that the brute force attack does not ex-
tract any cryptographically interesting information from some ciphertext before
the right key is found. Under this assumption, it is indeed only for engineering
aspects and as a baseline that the study of brute force attacks is interesting.

This paper explores a different aspect of brute force attacks, namely that
they allow the cryptanalyst to perfectly exploit the signal induced by some input
structure without the need to understand exactly what properties of the input
text are still extractable from the ciphertext. Using brute force search in this
way allows the cryptanalyst to design an input structure they hope will produce
an exploitable output signal and then test rigorously how much distinguishing
advantage an unbounded attacker could obtain against the tested primitive.
To the best of our knowledge, this use of optimized brute force search as an
all-in-one distinguisher was first made explicit in [Goh19] to upper-bound the
performance of differential distinguishers against five-round Speck32/64; it is,
however, implicit already in [Sha49], since a perfect distinguisher between two

3

sources can simply be viewed as a plaintext recovery attack against a keyed
probabilistic source that sends a single bit by either encrypting some plaintext
with known structure or outputs a random block of bits. Perfect distinguishers
have also been studied subsequently in various other works, e.g. Vaudenay’s
decorrelation theory [Vau03]. However, they seem to have mostly been used as
purely theoretical tools, most likely due to their apparent inability to produce
attacks more efficient than naive brute force key search.

Engineering aspects and optimizations of brute force key search have, of
course, been extensively studied in the literature; this includes, for instance,
previous work on the efficient implementation of brute force search [CKL+21,
BG12, KPP+06, Ber05] or time-memory tradeoffs [Hel80]. These papers essen-
tially look at the concrete cost of running a brute force key recovery attack
against some algorithm when nothing else is believed to work; in contrast, the
present paper looks at brute force as a way to get an idea whether something
else might work to recover some cryptanalytic signal by establishing whether the
desired signal can in principle be recovered at all.

Non-Markov Properties of Speck Non-Markov properties were first found in
Speck by Biryukov, Velichkov and Le Corre in the context of work to improve
automatic differential trail search for ARX primitives [BVLC16]. Gohr later
showed using neural cryptanalysis that some non-Markov properties are very
widespread for Speck32/64 [Goh19]. In particular, they showed using the real
difference experiment that the output pair distribution of Speck32/64 can for
at least eight rounds reliably be distinguished at fairly low data requirements
(on the order of 216 ciphertext pairs) from a version of itself in which output
pairs are randomized within their difference class. Benamira et al. were later
able to recover distinguishers with quite similar performance characteristics as
the neural distinguishers used by Gohr using different methods [BGPT21].

Block Cipher Cryptanalysis Without the Markov Assumption In most of the lit-
erature on differential cryptanalysis, the Markov assumption is understood to
be strictly speaking wrong for many ciphers, but still treated as a model as-
sumption that is useful and has no viable alternative (e.g. [BVLC16]). One very
notable exception is the cryptanalysis of hash functions [WY05,DCR06,Leu13,
SBK+17, LP19]. In hash collision search, the adversary has the goal of creat-
ing two messages M1 ̸= M2 such that h(M1) = h(M2), where h is the hash
function under study. In the calculation of any efficiently computable h, a rel-
atively small internal hash function state will be manipulated for a relatively
small number of steps until an output is produced, giving rise to intermediate
states Mi = h0(Mi), h1(Mi), h2(Mi), . . . , hn(Mi) = h(Mi). In a nutshell, dif-
ferential cryptanalysis is then used to control the differences hi(M0) ⊕ hi(M1)
for chosen messages M0 and M1, the aim being that hn(M0) ⊕ hn(M1) = 0. In
these attacks, high-probability differentials over parts of the hash computation
are combined with careful control of the exact values of messages and internal
state to minimize the amount of trial and error until a conforming pair is found.

4

Efficient High-Performance Distinguishers against Speck32/64 Various types of
differential all-in-one distinguishers have been proposed for Speck32/64. Table 1
gives an overview; briefly, neural networks, stacked ensembles of simpler models,
key-averaging based techniques, and variations of brute force key search have
all been used to model the output pair distribution of round reduced versions of
Speck32/64 with greater accuracy than is achievable by computing the difference
distribution fully under the Markov assumption. Of these, the neural network,

Table 1. Qualitative overview of differential distinguishers for reduced Speck32/64
with input difference ∆ = (0x40, 0x0).

Rounds Type Accuracy Reference

5-8 DDT (Markov) 0.911, 0.758, 0.591, 0.512 [Goh19]

5-8 Neural network 0.929, 0.788, 0.616, 0.514 [Goh19]

5-7 Average Key Rank 0.9298, 0.7879, 0.6028 [BGPT21]

5-6 M-ODT ensemble + LGBM 0.923, 0.779 [BGPT21]

5 Optimized brute force search ≈ 0.95 [Goh19]

average key rank and M-ODT based distinguishers are notable for reaching a
roughly similar level of performance both in terms of distinguishing power and
execution speed on a standard platform (although the low memory footprint
might make the neural network approach more efficient in a specialized hardware
setting).

1.2 Main Contributions

In the present work, we first introduce a general framework for brute force dis-
tinguishers for block ciphers. We then discuss general conditions under which
an approximative evaluation of a brute force distinguisher is possible at a cost
substantially lower than brute force key search.

As a concrete application, we show that a brute force distinguisher using some
conceptually straightforward performance optimizations can be used in practice
to exploit the ciphertext pair distribution of 5-round Speck32/64 perfectly when
the input distribution consists of plaintext pairs with difference (0x40, 0x0). Our
distinguisher is efficient enough that testing millions of samples is easily practical
on a normal PC. We also show that knowledge of the plaintext does not yield a
significant additional signal in this situation.

To obtain our five-round distinguisher, we first compute the ciphertext pair
distribution of 3-round Speck with our input difference completely. We show that
this distribution has a very compact description (it can be stored, for instance,
in a 50 MB zip file), and that the distribution of output pairs is in most possible
output difference classes very non-uniform. We further compute the 3-round
difference distribution exactly and show that about half of the values of the
exact model differ from the predictions of the corresponding Markov model,
with around 20 percent of values different enough that the errors of the Markov

5

model are easily apparent after sampling on the order of 108 output pairs. To
verify our models, we compare the predicted output distributions of both models
against empirical sampling of appropriate versions of the cipher.

We show that our techniques can also be used to compute the ciphertext
pair distribution induced by specific longer differential trails for Speck32/64.
Examining some published trails from the literature, we find that the output
pairs produced by these trails are often distributed in a highly non-uniform way
within the given output difference class.

2 Preliminaries

2.1 Conventions and Notations

Basic Notions In this paper, E will denote a block cipher, i.e. a family {EK :
P → C,K ∈ K} of bijections between finite sets P (the plaintext set) and C (the
ciphertext set) that is parameterized by one parameter called the key which is
chosen from a finite set K called the key space. Unless something else is specified,
P, C and K will in this paper be the sets of bit strings of some fixed block size
lP and key size lK respectively; for Speck32/64, we have lP = 32, lK = 64.

Random Experiments When a value r is drawn from some set S according to the

probability distribution D, we will write r D← S. If D is the uniform distribution,
we simply write r ← S.

Dealing With Multi-Block Plaintext and Ciphertext We will by abuse of notation
extend the domain and codomain of a block cipher to cover multiple blocks by
using the cipher in ECB mode. The adversary is in this paper allowed to query
an oracle to obtain EK(P) for some (maybe multi-block) P of their choosing;
the oracle will depending on the outcome of a random coin r ← {0, 1} either
return EK(P) or a value drawn at random from C. The adversary wins if they
can recover r better than by random guessing.

Bitwise Operations We will use the usual notations for bitwise addition, rotation,
modular addition and standard dot product over F2. In this paper, ⊕ will be
bitwise addition of two bit vectors, W ≪ c and W ≫ c will be left and right
rotation of a w-bit wordW by c steps respectively, ⊞ will be addition of two w-bit
numbers modulo 2w. All operations are extended component-wise to arbitrary
sequences of values of the appropriate bitsize. For vectors v, w ∈ Kn for some
field K, vẇ :=

∑n
i=1 viwi will denote their standard dot product.

Difference Classes When a pair of group elements g1, g2 in a group G have
difference δ = g1g

−1
2 , we say that the pair (g1, g2) is in the difference class δ.

When nothing else is specified, the group operation in question will simply be
bitwise addition.

6

Iterative Block Ciphers Block ciphers are usually built by applying in alternating
steps a simple key dependent function (such as bitwise addition of keying data
to the cipher state) and a fixed round permutation. Both steps together form
the round function of the cipher. The subkeys used in single rounds of the cipher
are derived from a master key by means of a key schedule.

In this paper, we say that a cipher uses the free key schedule if the subkeys are
chosen independently and uniformly at random from the set of possible subkey
values.

Sets Sets are always regarded as finite in this paper. For a set M , the cardinality
of M will be denoted by Card(M). In particular, all functions appearing in this
work are regarded to have upper limits on the bit-length of any inputs, although
these limits may not always be specified.

Decryption Equivalence When E is a block cipher and C is a ciphertext (possibly
spanning multiple blocks), we set Nkeys(P,C) := Card({K ∈ K : EK(P) = C}).
Further we call

{(Nkeys(P,C), P) : P ∈ P}

the decryption set of C. When E is an iterative block cipher, i.e. when it is the
composition of a sequence of round functions, we will use the name notions to
talk about the decryption sets of intermediate cipher states.

When two (multi-block) ciphertexts C1, C2 ∈ C have the same decryption
set, we say that C1 and C2 are decryption equivalent. Decryption equivalence
of C1 and C2 is also denoted by C1 ∼ C2. Note that decryption equivalence of
two ciphertexts implies that even an information theoretic adversary cannot tell
which of them was used to encrypt a known plaintext if they do not have some
information about the key. The set of all C ′ with C ′ ∼ C is called the decryption
equivalence class of C and denoted [C].

2.2 The Speck Family of Ciphers

Speck was proposed in 2013 by Beaulieu et al. [BSS+] as a family of lightweight ci-
phers intended for efficient software implementation. It has since been subjected
to a significant amount of cryptanalysis; the best known attacks not dependent
on weak key classes are differential attacks [Din14,SHY16,Goh19,BGL+21].

The Speck ciphers are characterized by two parameters, namely the key and
block size employed. Speck(b/k) denotes Speck with a block size of b bits and a
key size of k bits. Hence, Speck(b/k) takes as input a b-bit plaintext P and a k-bit
key K. The plaintext and key are represented as a tuple of w-bit words, where
w = b/2; in all variants, k ∈ {2w, 3w, 4w}. First, a nonlinear key schedule is used
to derive a sequence of subkeys K0,K1, . . . ,Kr−1 from K, where r is the number
of round transformations R to be used in encryption. Then, the ciphertext C is
obtained from P by setting C = Kr−1 ⊕R(Kr−2 ⊕R(. . . R(K0 ⊕R(P)))). The
Ki are b-bit values of the form Ki = K ′

i||K ′
i, where K ′

i is a w-bit value.

7

The round transformationR is an ARX function and can be given byR(Pl||Pr) :=
((Pl ≫ α)⊞ Pr)||(((Pl ≫ α)⊞ Pr)⊕ (Pr ≪ β)), where α, β are rotation con-
stants. The version of Speck that will be used for the experiments in this paper
is Speck32/64 with the free schedule, so we have w = 16, α = 7, β = 2. However,
none of these details will matter much to our experiments except as regards the
choice of input difference for differential distinguishers.

3 Brute-Force Distinguishers for Block Ciphers

In this section, we will give a framework for brute force distinguishers for block
ciphers, illustrate the framework with some examples, and discuss under which
conditions brute force distinguishers may succeed at a work factor much lower
than brute force key search.

Finally, we discuss implications of the framework for selective key search
policies and the wrong-key randomisation hypothesis.

3.1 Goals

Key recovery attacks against iterative block ciphers usually have three parts.
First, a round-reduced version of the cipher under study is attacked by a distin-
guisher : this is an algorithm which, given some knowledge on the cipher inputs,
can find non-random behaviour in the reduced cipher output. Second, partial
key search is performed on the remaining rounds of the cipher, generating a
list of final subkey candidates that transform the observed cipher output into
non-random output for the reduced cipher. This needs to either be done for all
rounds, removing the rounds of the cipher one by one to recover all subkeys,
or the key schedule has to be reversed in order to recover the master key from
already recovered subkeys. Often, in a final step some remaining key candidates
need to be tested on additional input-output pairs to remove non-target key
candidates.

In the basic setting of known or chosen plaintext attacks, a distinguisher
against a block cipher can itself be viewed as made of two components, namely
a randomized algorithm G that generates input to the cipher, and another al-
gorithm E that tries to exploit the induced output distribution of the cipher,
possibly with some knowledge of the specific input values that were generated
by G.

When designing attacks against block ciphers, G and E have to be finely tuned
to work together: after all, E must as well as possible be able recognize, based
on the ciphertext, some structure in the plaintext generated by G. The design
of both stages of an efficient distinguishing attack is often highly nontrivial.
Naturally, this means that many questions are usually not answered by a given
attack, for instance:

1. How far away is E from exploiting the signal generated by G perfectly? Could
there be another algorithm E ′ that finds more structure in the block cipher
output?

8

2. Is G chosen well? Would a stronger distinguishing signal survive to the cipher
output if some other plaintext generating algorithm were used?

3. In many cases, E will not use all of the information about the plaintext values
tried that is available after running G: for instance, differential distinguishers
routinely ignore the input values entirely, only forcing them to be good
starting points of some differential trail. Could a better attack be developed
by using more knowledge about the plaintext?

On the highest level, this paper aims to help answer such questions by de-
coupling the development of the plaintext generation and ciphertext exploitation
algorithms in known or chosen plaintext attacks. To this end, we will show that
in a wide range of settings, proof-of-concept distinguishers against small block
ciphers can be constructed generically once G is fixed. These distinguishers are
furthermore expected to be close to exploiting the output distribution perfectly,
allowing for the establishment of sound and nontrivial upper bounds for the suc-
cess rates of distinguishers against reduced small block ciphers exploiting specific
input structures.

These points will be reinforced by various practical experiments on reduced
Speck32/64. The techniques used, however, have a generic theoretical foundation
and are therefore not specific to Speck.

3.2 Basic Concepts and Examples

Let E be a cipher with key space K, plaintext set P and ciphertext set C.

Definition 1. Let EK : P → C be a cipher and f : P → [0, 1] be a discrete
probability mass function on the plaintext set. We say that f is a plaintext
signal with advantage δ for E if a computationally unbounded adversary A has
a win-rate of 0.5 · (1 + δ) in the following game:

1. r ← {0, 1}.
2. P

f← P.
3. K ← K.
4. If r = 0, then C ← C; else C := EK(P).
5. A gets C as input and guesses r.

Given these notations, we have the following:

Lemma 1. Let f be a plaintext signal and let C be a ciphertext. Assume that
keys are uniformly distributed and sampled independently from the plaintext.

The posterior probability for r = 1 given the observed ciphertext C is then
given by

P(r = 1|C) =
p1

p0 + p1
,

where p0 = 1/Card(P) and p1 =
∑

K∈K f(E−1
K (C))/Card(K).

9

Proof. p0 is by the rules of the game the likelihood of sampling C in the case
r = 0. p1 is the likelihood of sampling C in the case r = 1. The claim follows by
applying Bayes’ theorem.

All of the following examples are well-known and only given to illustrate the
use of the notations introduced:

Example 1. (No Free Lunch) Let f be the uniform distribution on P. Since
EK is a bijection from P to C for every K, the distribution of C in the game
given is then independent of r. Consequently, the advantage of any adversary is
zero.

Example 2. (Diagonal Signal) Let EK be a block cipher with block size b
extended by ECB mode to inputs longer than one block. Let P = {0, 1}2b and
let

f(P0||P1) =

{
2−b if P0 ⊕ P1 = 0

0 otherwise.

Then an adversary can simply test if C = C0||C0 for some C0 ∈ {0, 1}b. This
strategy fails only if by chance a C ← C is of this form, i.e. in one out of 2b+1

samples seen. Consequently, this plaintext signal has advantage ≥ 1 − 2−b (the
unbounded adversary might do better than the simple strategy suggested).

Remark 1. The preceding example shows that plaintext signals with very high
advantage can be cryptographically uninteresting. One could of course fix this
by generating C in the r = 0 case by setting C := π(P) with π ← S2b freshly
sampled and domain-extended by ECB mode. In this paper, we choose not to
do so, for the following reasons:

1. While the plaintext signal exhibited in Example 2 is uninteresting from the
point of view of learning any cipher internals, it does show that ECB mode
(or more generally any mode that allows an adversary to completely control
the non-key inputs to a block cipher) has significant weaknesses. This seems
like a desirable property of a security game.

2. Indeed, many block cipher modes of operation that do not allow the adver-
sary to control the non-key inputs to the primitive in question start to show
significant plaintext leakage as the volume of plaintext processed approaches
the birthday bound (see e.g. [LS18]). This suggests that the plaintext signal
of Example 2, while useless e.g. for key recovery, should not just be viewed
as a pathology of a weak mode of operation.

Example 3. (Differential Attack) Let P and C be as in the previous example
but set

f(P0||P1) =

{
2−b if P0 ⊕ P1 = δ,

0 otherwise

for some fixed δ ̸= 0. This plaintext signal corresponds to an all-in-one differential
attack exploiting the induced ciphertext pair distribution. It has advantage 2a−1
when a is the accuracy of a perfect adversary. For 5-round Speck32/64 and
δ = (0x40, 0x0) [Goh19] therefore showed an advantage of ≈ 0.9.

10

Example 4. (All-in-One Known Plaintext Attack) Let P0 ∈ P be a fixed
plaintext, f(P0) = 1 and f(P ′) = 0 for all P ′ ̸= P0. Let further C ∈ C and
denote by Nkeys(C) the number of K ∈ K such that EK(P0) = C. In the game
of Definition 1, the probability that C will be sampled is then p0 = 1/Card(C)
when r = 0 and p1 = Nkeys(C)/Card(K) when r = 1. Given C as input, an
unbounded adversary will therefore obtain a posterior probability that r = 1 of
P(r = 1) = p1/(p0+p1). When Card(K) = Card(C), this implies P(r = 1) > 0.5
exactly if Nkeys > 1, and in this case unoptimized brute force search will find
some K satisfying EK(P0) = C with an expected work factor of ≤ 2−2Card(K)
single-block encryptions or decryptions.

Example 4 uses the signal from a single known plaintext optimally if all keys
are sampled. When the amount of plaintext is too low to rule out all wrong
keys, the signal returned will, however, strongly depend on which plaintext is
being used. This will be very evident when we present empirical results using
round-reduced Speck32/64.

Remark 2. (Limitations of the Framework) While the attacks use the in-
formation given to the adversary optimally (when the key space is sampled
exhaustively), it is still possible that better attacks can be constructed at the
same data cost:

1. The methods here discussed can only produce useful distinguishers that use
a fairly small amount of data. For a typical block cipher, beyond a few blocks
of plaintext-ciphertext pairs the advantage of a known-plaintext attack in
the security game of Definition 1 will become overwhelming, but the amount
of computation necessary to carry the attack out also becomes identical to
standard brute force key search (since in the real case only one key remains
contributing to the recovered signal). Still, an adversary using the techniques
in this paper can of course combine information from several observations
by treating them as independent instantiations of the same distinguishing
problem.

2. The plaintext signals used may also not be the optimal ones.
3. Attacks that use both a plaintext and a ciphertext signal may be stronger

than those that only use a plaintext signal.
4. Finally, attacks that choose the inputs to be queried adaptively may extract

an even stronger signal than any attack that fits into the framework here
discussed.

We leave these possible improvements and extensions to the techniques discussed
in this paper to further research.

3.3 Optimizing Brute-Force Distinguishers

Naively, brute force distinguishers require sampling a significant part of the key
space to recover a good approximation to the target signal. This is not feasible

11

outside of toy ciphers, especially if one hopes to use brute force distinguishers
to help in the identification of useful plaintext signals.

In the sequel, we will for this reason discuss several fairly generic ways to
speed the evaluation of brute force distinguishers up significantly. In the next
section, we will then apply some of these ideas to two brute force distinguishers
against round-reduced Speck32/64; for 5-round Speck32/64, this will result in
a distinguisher that can in our implementation process around two ciphertext
pairs per core per second on an ordinary PC without any loss of power compared
to a full sampling of the key space.

Ignore the Key Schedule Replacing the actual key schedule of the cipher under
study with an assumption of independent and uniformly distributed subkeys will
often allow the adversary to build equivalence classes of ciphertexts. Usually, the
set of possible subkeys forms a group (most commonly by bitwise addition of
subkeys) and the operation that mixes key and (partially encrypted/decrypted)
plaintext gives an action of that group on P. When the subkeys for all rounds
are uniformly and independently chosen, ciphertexts C and C ′ are decryption
equivalent whenever they are on the same orbit of the final subkey addition.
Depending on the size of the orbits and the size of the output space, this can
greatly simplify statistical sampling of the output distribution.

Example 5. Let EK be an Even-Mansour cipher [EM97] with b bit block size
and independent subkeys K1 and K2, i.e. EK(P) := K2 ⊕ F (K1 ⊕ P) with F
some fixed permutation. Assume that the plaintext signal is given by a two-block
fixed plaintext P = P0||P1 and that the observed ciphertext is C = C0||C1. Then
the problem of determining the number of keys that link P and C is equivalent
to determining the probability of the differential transition P0 ⊕ P1 → C0 ⊕
C1 because ciphertexts within the same difference class are always decryption
equivalent for this cipher. This reduces the sampling effort required for finding
solutions by a factor of 2b compared to naive sampling.

Use Meet-in-the-Middle Sampling Working with independent subkeys also has
the advantage that the resulting cipher becomes vulnerable to meet-in-the-
middle attack. This means that the adversary can (naively) use n samplings
from the plaintext distribution, 2n partial encryptions and decryptions, O(n)
memory, the sorting of two arrays of n entries and a final step to determine
the size of the intersection of two sorted arrays to find out how many of n2

tested (not necessarily unique) keys connect the plaintext signal to the observed
ciphertext.

Example 6. Let EK be a two-round Even-Mansour cipher with b bits block size
and let the plaintext signal be again given by two fixed plaintext blocks. By
Example 5, in order to construct a key (K0,K1,K2) that connects P0||P1 and
C0||C1 it suffices to find K0 and K2 such that F (K0 ⊕ P0) ⊕ F (K0 ⊕ P1) =
F−1(K2 ⊕C0)⊕F−1(K2 ⊕C1). After trying n0 values for K0 and n2 values for
K2, we expect to obtain ≈ n0n2/2

b collisions if C0 and C1 are sampled uniformly
at random in such a way that they are independent of each other and of the Pi.

12

Remark 3. Meet-in-the-middle sampling can in principle use the standard known
optimizations of the generic meet in the middle attack, principally collision de-
tection using parallelizable memoryless methods [VOW99]. However, care needs
to then be taken to remove pseudocollisions from the results and to keep track
of the number of keys tested versus the number of matches found. Our exper-
iments in the next section that use meet-in-the-middle sampling just use the
simple approach of performing the meet-in-middle matching in memory.

Remark 4. Example 6 treats meet-in-the-middle sampling as if keys were sam-
pled uniformly at random from the set of all keys. While this is true for the
very first key that is sampled, subsequently sampling is biased, since the set
of keys covered by sampling is always the cartesian product of the partial keys
tried below and above the meet-in-the-middle point in the cipher. Heuristically,
we expect this sampling bias to have the least effect on the performance of the
resulting distinguisher when the meet-in-the-middle point is chosen such that
the number of rounds on both sides is approximately the same, but we did not
perform experiments to test this.

Selective Sampling Brute force distinguishers aim at estimating the expected
probability weight of decryptions of a given ciphertext under uniformly sampled
random keys as given by the plaintext signal1. However, that does not imply
that a brute force distinguisher has to sample keys uniformly at random.

If parts of the key space are sampled with higher density (because they yield
more plausible-looking plaintext), then they have to be downweighted in the final
tallying step so that an unbiased estimate of the probability weight of uniformly
random decryptions of the given ciphertext is obtained.

Example 7. Assume a differential distinguisher for the block cipher E, i.e. plain-
texts of the form P, P ⊕ δ, where P is a single block. Assume further that it
is known that a particularly strong differential signal is expected if E follows a
differential path δ → δ1 → . . . δr for some initial rounds. Assume further that it
is known that the transition δ → δ1 depends to a large degree on k bit conditions
on the first subkey. Then a simple non-uniform sampling policy might consist of
trying keys that fulfill the bit conditions half the time and trying random other
keys the other half of the time. If finally nb conforming keys are found in the
path where the bit conditions are fulfilled and nr keys are found in the random
path with N trials in each path, an unbiased estimate of the proportion of good
keys (i.e. keys that decrypt the observed ciphertext pair to the known input
difference) under uniform sampling is 2−k nb

N + (1− 2−k)nr

N .

Memoizing Intermediate Results If keys are chosen independently at random, it
is also useful to remember if some equivalence class of partially decrypted cipher-
texts C ′ has been successfully linked to a valid plaintext during past sampling;

1 This assumes that the cipher uses uniformly random key generation. If key generation
uses a non-uniform distribution, then the probability weight under that distribution
is the one of interest.

13

if other keys connect the observed ciphertext to C ′, the information that a link
to a valid plaintext exists can be propagated back to the source immediately in
this case, without a need to sample the same path again potentially many times.

Modelling the Cipher It is of course also possible to replace part of the cipher with
an approximation. For instance, if a cipher has n + 1 rounds and the plaintext
signal is given by a fixed plaintext P , one could estimate the number of keys
connecting some partially decrypted ciphertext C ′ with P through the first n
rounds instead of determining the number of good lower subkeys by sampling.
This leads to key-averaging distinguishers as in [Goh19,BGPT21].

Sampling with Constraints In some situations, hard constraints may be avail-
able that come from other sources, for instance cryptanalysis already performed
on the target, from side channels or from the cryptanalytic question that the
adversary wants to resolve. This can be viewed as a special case of using a se-
lective sampling policy where unpromising branches of the search tree can be
cut entirely instead of being downweighted during the sampling phase. In this
case, again the size of the unsampled part of the key space has to be taken into
account when estimating the proportion of good keys.

Example 8. Suppose that E is an iterative b-bit block cipher with independent
and uniformly distributed k-bit subkeys, k < b, where the subkeys act on the
cipher state by bitwise addition on a fixed part of the state. Suppose further
that E has a known differential trail

δ0 → δ1 → δ2 → . . . δn.

Suppose further that the resulting cipher does not fulfill the Markov property
and suppose that a pair of inputs P0, P1 and outputs C0, C1 has been observed
that fulfills P0 ⊕ P1 = δ0 and C0 ⊕ C1 = δn. It is then a reasonable question
whether the observed output pair could have followed the known differential
trail.

The set of two-block cipher states after each round can be partitioned into
22b−k equivalence classes. Since the bitwise addition of the subkeys to each block
of the two-block message is compatible with the constant difference classes, the
cipher state after round i falls into one of 2b−k equivalence classes if the cipher
follows the predefined trail.

The adversary can calculate the distribution of the output pairs exactly by
executing the following algorithm:

1. Set N(0, c) := 1 for all equivalence classes of input pairs.
2. Set N(i, c′) := 0 for all i and all equivalence classes c′ of intermediate cipher

states that do not belong to the chosen trail.
3. Set N(i+ 1, c) :=

∑
k∈sk N(i, E−1

i+1(c, k)), where sk is the set of subkeys for

round i + 1 and E−1
i (c, k) denotes the ciphertext equivalence class reached

by decrypting a representative of c by subkey k. The choice of representative
does not matter here, but has to be fixed before evaluating the sums in
question.

14

All valuesN(n, c) for c compatible to the output difference can then be computed
with n · 2b one-round decryptions and the same number of summations using
memory for n · 2b−k multiple-precision integers (or fixed-precision floating point
numbers, if approximate results are sufficient). N(n, c) gives the number of keys
that link decryption equivalence class c in δn to the input difference δ0.

3.4 Brute Force Distinguishers and Key Search

Effects of Wrong Key Decryption Gohr found in [Goh19] that a key recovery
attack against 11-round and 12-round Speck32/64 using machine learning based
differential distinguishers could be sped up significantly by locating the right key
using information gained from evaluating the distinguisher response to wrong
keys. Brute force cryptanalysis gives a theoretical basis to the expectation that
nonrandom behaviour should be visible (to an unbounded adversary, at least)
in wrong-key decryptions whenever it is information-theoretically possible to
distinguish ciphertext from random text given an amount of ciphertext lower
than the unicity distance of the underlying plaintext distribution and encryption
method: after all, brute force cryptanalysis is capable of finding the signal in
question (at least with sampling of the full key space) and the main idea of
brute force cryptanalysis is to look at wrong-key decryptions.

There is, however, no generic expectation as to the form of any wrong-key
decryption signal .

Selective Key Search Standard modern cryptanalytic attacks mostly use a plain-
text signal where all plaintexts with nonzero probability of being sampled are
equiprobable. For instance, differential attacks and all attacks that assume full
knowledge of the plaintext are of this form when translated into the framework
used in the present paper. Set p := f(P) for any plaintext P with f(P) ̸= 0.

Then, P(r = 1|C) =
c1·Nkeys(C)

c1·Nkeys(C)+c2
, where Nkeys(C) is the number of keys

that connect C to a possible plaintext and where c1 = p · Card(K)−1 and
c2 = Card(C)−1. When Nkeys(C) can be efficiently computed (or at least ef-
ficiently estimated) and when E is an iterative block cipher, it is tempting to
use to resulting distinguisher to peel off the encryption round by round and de-
rive a probability distribution on the possible full keys. However, while this is
expected to indeed yield a non-uniform posterior probability distribution on the
outer subkeys, the probability mass for any S ⊆ K is still given by

P(r = 1|C observed and K ∈ S) =
c1(S) ·Nkeys(C, S)

c1(S) ·Nkeys(C, S) + c2
,

whereNkeys(C, S) is the number of good keys in S and where c1(S) = p·Card(S).
In particular, setting S to be a set with just a single element shows that all keys
that have not been ruled out are a posteriori equiprobable. Our distinguisher
does not point us towards the exact key that was used to generate C if C was
indeed sampled from the ciphertext distribution. In particular, sorting the keys
for instance by the posterior likelihood of the outermost subkey does not improve
the expected position of the true key in the list of possible keys.

15

Remark 5. The situation changes when the adversary can combine distinguisher
signals from several brute force distinguishers. In this case, the standard method
of removing one cipher round at a time using the combined distinguisher signals
may be quite applicable.

Remark 6. When the correct key can be recognised by running some additional
tests, the above argument does also not show that the computational cost of
solving for the true key is not reduced by sorting the subkeys at each search
node by their posterior probability under the used real-or-random test. The
reason for this is that generating the valid completions of some partial expanded
key (i.e. the expanded subkeys that connect the observed ciphertext with a valid
plaintext) may have a computational cost that does not primarily depend on the
number of valid completions found.

4 Experimental Results and Applications

4.1 Overview and Strategy

In this section, we apply the techniques previously developed to Speck32/64 with
independent subkeys. First, we combine Example 8 and the guess-and-determine
technique for efficiently finding the subkeys fullfilling a single-round differential
transition δ0 → δ1 developed by Dinur [Din14] to efficiently count the number of
keys fulfilling any given differential trail of Speck32/64. We use this to calculate
the output pair distributions for some trails in the literature, finding that output
pairs for many of these trails are far away from being uniformly distributed in
their difference classes.

We then note that 3-round Speck32/64 with input difference∆ := (0x40, 0x0)
has only 42149 possible output differences and that each of these output differ-
ences is linked by a unique differential trail to the fixed input difference. For
each of these trails, we calculate the distribution of the output pairs. We com-
pare these results both to empirical sampling and to the Markov model computed
in [Goh19]. We find that empirical sampling matches the theoretical results of
our model perfectly, but that the Markov model contains widespread mistakes
that are easily visible to our empirical sampling. We verify that the Markov
model correctly predicts the output distribution of a version of the cipher that
has been changed to be Markov, implying that the errors in the model output
are not due to problems in the implementation of the Markov model, but due
to failure of the Markov assumption for the cipher under study.

In order to construct an efficient perfect distinguisher for five-round Speck32/64
with input difference ∆, we then use the same technique to connect a given out-
put pair to all 3 − round output differences. We use the precomputed 3-round
distribution to infer from this the number of keys that link our observed out-
put to the given input difference. This gives a five-round distinguisher that can
process millions of examples in a few days on a normal PC.

Finally, we develop a generic known-plaintext distinguisher for various re-
duced versions of Speck32/64 that is based on meet-in-the-middle sampling. We

16

show that with reasonable sampling settings, this distinguisher achieves state-of-
the-art performance for 5-round and 7-round Speck32/64. We show that knowing
the input does not help this distinguisher solve the 5-round problem by random-
izing the input pairs without changing the input difference; this does not lead
to a loss of performance when the input difference is ∆. Applying our distin-
guisher to two-block five-round Speck32/64 without a fixed input difference, we
show that our distinguisher exhibits a bias that is roughly equivalent to finding
a linear distinguisher with a 50 percent bias over these five rounds.

4.2 Calculating the Output Pair Distribution for Differential Trails
in Speck32/64

Problem Statement Let E be an iterative block cipher. Suppose we are trying to
construct a differential attack against it. We might then build a differential trail

δ0 → δ1 → . . .→ δn

for E that we hope has a relatively high transition probability. The standard
approach to determining the transition probability of such a trail is to compute

probabilities pi of the single-round differential transitions δi
pi→ δi+1 and treat

successive round transitions as independent. If E is a Markov cipher, then this
approach is theoretically justified; otherwise, it may yield wrong probabilities
for the whole path while simultaneously failing to predict the distribution of
ciphertext pairs in the output difference class. Since Speck is known not be
Markov, a more precise modelling of its differential trails is desirable.

Relevant Properties of Speck32/64 We are going to use the following properties
of Speck, all of which are well-known:

1. Speck is an iterative block cipher. A round consists of the application of a
round function R : {0, 1}w × {0, 1}w → {0, 1}w × {0, 1}w followed by the
addition of an l-bit subkey K to both halves of the cipher state.

2. Given a two-round differential trail δ0 → δ1 → δ2, knowledge of δ0 and δ2 is
sufficient to derive δ1.

A Simple Approach A generic strategy to calculate both the true path probability
and the output pair distribution in this setting has already been discussed in
Example 8. Essentially, it relies on the following ideas:

1. We keep the assumption of independent and uniformly distributed subkeys
because it allows us to easily identify sets of decryption equivalent cipher
states.2

2 One may be tempted to say that it allows identifying the decryption equivalence
classes of the cipher states. While this is very likely true in practice, we do not have
proof that the decryption equivalence classes for Speck32/64 are never larger than
the single-round decryption equivalence classes we use in our experiments.

17

2. Concretely, we treat output pairs as equivalent if their difference is a valid
Speck32/64 subkey.

3. We can then recursively count the number of keys that connect each equiv-
alence class of cipher states appearing in our trail to the original input dif-
ference while caching any results for reuse.

Decryption Equivalence Classes For Speck32/64, the single-round decryption
equivalence classes of cipher states are of size 216, since a subkey is a 16-bit
bitstring. Denote for a single-block ciphertext C the left 16-bit word by Cl

and the right 16-bit word by Cr. Then addition of a subkey K maps (Cl, Cr) to
(Cl⊕K,Cr⊕K). Any pair C0, C1 of ciphertexts is therefore under the assumption
of independent and uniformly distributed subkeys decryption equivalent to

(0, Cl
0 ⊕ Cr

0), (C
l
0 ⊕ Cl

1, C
l
0 ⊕ Cr

1).

Writing C := (C0, C1), ∆(C) := C0 ⊕ C1 and δ(C0) := Cl
0 ⊕ Cr

0 , we can
also derive the decryption equivalence class of C from knowledge of the pair
(δ(C0), ∆(C)). This representation is convenient in the present context, as ∆(C)
is constant for each round in a given differential trail and the decryption equiva-
lence classes of intermediate cipher states inside a differential trail can therefore
be uniquely identified when δ(C0) and the round number i are known.

Remark 7. That these ciphertext equivalence classes are useful (and that they
are, in the terms of this paper, decryption equivalence classes) for Speck32/64
was already mentioned in [Goh19], where it was noted that neural network based
distinguishers for Speck32/64 make use of these equivalence classes. The same
equivalence classes are also used implicitly by the average key rank and M-ODT
distinguishers proposed by [BGPT21].

Assuming that Nkeys([Ci])) are known for all 216 equivalence classes in round
i of a differential trail, calculating the distribution of the next round using the
naive approach takes 216 single-round trial decryptions per equivalence class;
then, we have to look up whether the resulting decryptions fit the trail difference.
If so, δ(C0) is computed for the obtained decryption, the number of keys linking
this equivalence class to the desired input difference is looked up and added. All
in all, executing the algorithm given in Example 8 for an r+1-round trail would
take 232 · r single-round decryptions and table lookups as well as memory for
216 · r numerical values of the desired precision.

Optimization of the Key Sampling Stage This is entirely practical, but becomes
problematic if the goal is to do this for a large number of trails. We therefore
use Dinur’s guess-and-determine strategy for enumerating the solutions of single-
round differential transitions for Speck [Din14] to quickly count the number of
keys that connect a decryption equivalence class in round i + 1 to the trail
difference for round i. Processing a trail takes a few seconds on an 8-core PC in
our implementation; for instance, the output distribution of trail 3 from table 3
in [Din14] is calculated in about 7 seconds on our machine.

18

Converting the Results to a Ciphertext Pair Distribution For any C in the out-
put difference class of a differential trail T , we obtain the number Nkeys(C)
of keys that link C to the input difference δ0 of T . We have Nkeys(C) =∑

∆(P)=δ0
Nkeys(P,C), and Nkeys(P,C)/Card(K) is equal to the probability of

obtaining the ciphertext C given plaintext P . For the probability P(C|∆(P) =
δ0) of obtaining ciphertext C given a plaintext P chosen uniformly at random
from the set of plaintexts with ∆(P) = δ0 we get

P(C|∆(P) = δ0) =
Nkeys(C)

Card(K) · Card(∆−1(δ0))
,

and these are the same for all C within the same single-round decryption equiva-
lence class. Hence, the probability of obtaining the ciphertext C given a plaintext
with ∆(P) = δ0 under the condition that ∆(C) = δn is given by

P(C|∆(C) = δn, ∆(P) = δ0) =
Nkeys(C)∑

C′∈∆−1(δn)
Nkeys(C ′)

and the probability of obtaining some ciphertext C within the same single-round
decryption equivalence class is of the same form, except that the sum in the
denominator runs over only one representative of each class in this case.

Results We tried our methods on trails 1-4 of Table 3 in [Din14], which were
originally proposed in [ALLW14] and [BRV14]. For trails 1-3, the distribution
of decryption equivalence classes predicted at the trail output is markedly non-
uniform; trail 4, on the other hand, is predicted to have a uniform output pair
distribution.

Trail inputs and outputs as well as number of rounds covered are given in
Table 2. For three of these trails, our model predicts a fairly large number of
impossible output pairs. Most significantly, for trail 3 around 40 percent of the
output pairs in its output difference class are predicted to be impossible if the
trail is followed.

For trails 1 and 3, we checked the predictions of our model by direct sampling
from the output distribution given by encrypting suitable plaintext pairs for the
given number of rounds using random keys, where the real key schedule was used
for key expansion. Since both trails were expected to have a high probability
compared to other trails that might contribute to the same output difference,
we expected the output distribution to be close but not necessarily identical to
predictions. For trail 1, our aim was to check the pair distribution entirely; for
trail 3, we wanted to see if the prediction of a large number of impossible output
pairs would hold.

For trail 3, two out of 77 conforming output pairs were in decryption equiva-
lence classes that were predicted to be impossible for the trail; the large number
of predicted impossible pairs was further found to be due to the last transition
of the trail, and no transitions to impossible output classes were found in a few
hundred thousand trials fulfilling that transition.

19

Table 2. Results on single trails of Speck32/64. The trail IDs given are as in [Din14].
Input and output differences as well as round numbers of these trails are reported for the
reader’s convenience. pnot is the proportion of output pairs in the output difference class
of the trail that our model predicts cannot appear as trail output. Empirical sampling
used 109 samples from the ciphertext pair distribution, of which only the samples with
the output difference of the trail were kept; their numbers are reported in the Samples
column. A dash indicates that no empirical verification was done. Impossible Samples
gives the number of samples found that are predicted to be incompatible with the trail
(but which may be produced by other trails ending with the same output difference).

Trail ID Trail Input Trail Output Rounds log2(pnot) Samples Impossible Samples

1 (0x211,0xa04) (0x850a,0x9520) 6 -7 121831 0

2 (0xa60,0xa205) (0x850a,0x9520) 7 -7 - -

3 (0xa60, 0xa205) (0x802a, 0xd4a8) 8 -1.19 77 2

4 (0x8054, 0xa900) (0x40, 0x542) 9 −∞ - -

For trail 1, we divided the 216 decryption equivalence classes within the out-
put difference class into groups based on their predicted likelihood of appearing
in the cipher output. This partitioned the 121831 samples we obtained into 65
groups. For each of these groups, we calculated the mean number of observed
ciphertext pairs in each decryption equivalence class in the group as well as
the mean predicted by our model. Both values were in near-perfect agreement
(correlation approximately 0.999); see Figure 1 for details.

4.3 Calculating the Ciphertext Pair Distribution for 3-Round
Speck32/64

In this section, we use our techniques to fully calculate the ciphertext pair distri-
bution of Speck32/64 with input difference ∆ = (0x40, 0x0). We show that it is
highly compressible, with most decryption equivalence classes in possible output
difference classes being impossible. We also show that the predicted likelihoods
of many output difference classes differ significantly from those predicted by the
standard Markov model. We confirm our findings by empirically sampling the
3-round distribution of both original Speck32/64 and a version of the cipher that
has been changed to be Markov.

Preliminaries The following well-known observations are important for what
follows:

1. Given a trail δ0 → δ1 → δ2 with δi = (δli, δ
r
i) for Speck, one obtains δr1 =

(δl2 ⊕ δr2) ≫ β and δl1 = (δr0 ≪ β)⊕ δr1.
2. The input difference∆ := (0x40, 0x0) transitions deterministically to (0x8000, 0x8000)

for Speck32/64.
3. In particular, if C0, C1 is a pair of ciphertexts for Speck32/64 reduced to five

rounds and Nkeys(C0, C1) is the number of keys linking the ciphertext pair
C0, C1 to the input difference ∆, then Nkeys(C0, C1) is also the number of

20

Fig. 1. A more detailed look at the data for trail 1. In total, 121831 output pairs
conforming to the output difference of trail 1 were observed among 109 trials using the
input difference of the trail. Decryption equivalence classes were grouped according to
their expected frequency in the output. The x-axis shows the theoretically expected
number of samples for decryption equivalence classes in each group, and the y-axis
shows the observed average number of pairs for classes in that group in our test.

0 1 2 3

0

1

2

3

Predicted average pairs per class

O
b
se
rv
ed

av
er
a
g
e
p
a
ir
s
p
er

cl
a
ss

keys linking C0, C1 to the input difference (0x8000, 0x8000) at the output of
round 1. Hence, as far as the differential properties of five-round Speck32/64
with input difference ∆ are concerned, five-round Speck32/64 can be treated

4. For four rounds or less the subkeys of Speck32/64 can be treated as chosen
independently and uniformly at random if the master key has been chosen
uniformly at random.

Calculating the Pair Distribution This implies that for 3-round Speck32/64,
there is exactly one differential trail ∆→ δ1 → δ2 → δ3 with potentially nonzero
transition probability for any vector δ3 ∈ {0, 1}32.

We used the code published as supplementary material to [Goh19] to calcu-
late all possible output differences of 3-round Speck32/64 with input difference
∆ as well as the probabilities of the corresponding trails under the Markov as-
sumption. It turns out that there are 42149 possible output differences.

Since a single trail connects each of these differences to our input difference,
we then calculated the output pair distribution for each of these trails.

Results

Impossible Decryption Equivalence Classes We find that roughly 93 percent of
differences in the possible output classes are in fact impossible; the whole distri-

21

bution, comprised in principle of 42149·216 floating-point values, can be losslessly
compressed to about 50 megabytes.

Probabilities of Difference Classes Since each output difference comes from a
single trail, any deviation between the Markov model and the actual output
distribution has to come from round-to-round dependencies. In particular, inde-
pendent round transitions would imply that all transition probabilities would be
of the form 2−k due to the differential properties of addition [LM01].

In total, our model predicts different 3-round transition probabilities for the
chosen input difference for about 42.7 percent of all output differences. The most
serious deviation between the two distributions occurs for the output difference
(0x7e94,0x829f), which has an exact probability of 2−11, but is predicted to
appear with probability 2−9 under the Markov model; in empirical sampling, we
found it in 48556 out of 108 output pairs.

Roughly 19.4 percent of output differences are in the Markov model predicted
at probabilities that are three standard deviations from the values predicted by
the exact model at this sample size. It is therefore easy to practically see the
differences between the two models. Figure 2 gives a more detailed qualitative
overview.

Fig. 2. A qualitative comparison between the differential distributions for 3-round
Speck as obtained by exact calculation, the Markov model, and empirical sampling.
(Left) Scatter plot showing the probabilities of all output differences for 3-round
Speck32/64 with input difference ∆ = (0x40, 0x0) as well as the corresponding Markov
model predictions. Most of the points in the scatter plot can be resolved into horizon-
tal point clouds at higher magnification. (Right) Comparison of both models with the
results of sampling 108 outputs from the 3-round output distribution. No statistically
significant deviations were observed between the predictions of the exact model and
the results of sampling. Scatter points for the Markov model/sampling comparison
partially obscured by the scatter plot for the exact model.

Testing the Models We subjected both the Markov model and the exact model
to empirical testing at 108 samples. The Markov model predictions were clearly

22

incompatible with the results of sampling from the real cipher. The largest de-
viation between the values of our difference counters and the predictions of the
exact model, however, was of size approximately 4.5σ when the standard devia-
tion is calculated using the predicted probability, which is in the expected range
given that we have 42149 counters to evaluate. Also smaller deviations between
counters and predictions appeared at the expected rate.

In order to test the correctness of the Markov model, we designed a version
of 3-round Speck32/64 that we theoretically expected to follow it. To this end,
we inserted an additional 32-bit whitening key at the input to the third round.
The first round transition is deterministic, so a uniform distribution of plaintext
pairs within the input difference class gives for every value of the involved subkey
rise to a uniform distribution of first-round output pairs within the difference
class prescribed by the differential trail. The first round can therefore be ignored
for the purposes of calculating the second round difference distribution. Our
additional whitening key makes sure that ciphertext pairs entering the third
round are likewise evenly distributed within the round-2 output difference class
of the trail under consideration and that therefore the Markov assumption is
fulfilled for the third round and therefore for the entire modified cipher. Indeed,
sampling from this cipher yielded results that were within experimental error
margins in agreement with the Markov model.

4.4 An Efficient Perfect Distinguisher for 5-Round Speck32/64

Efficiently Extending the Perfect Distinguisher to Five Rounds Given a five-
round output pair C0, C1, we execute the following algorithm:

1. Set a counter count := 0.
2. For every possible third-round output difference ∆3, do:

(a) Determine the unique two-round trail ∆3 → ∆4 → C0 ⊕ C1 that is the
only possible link between ∆3 and C0, C1.

(b) Test if the individual transitions in the trail ∆3 → ∆4 → C0 ⊕ C1 are
possible. If yes, do:
– Use Dinur’s two-round attack [Din14] to enumerate all pairs of sub-

keys k for the last two rounds such that decrypting C0, C1 with the
subkey pair k yields a partial decryption C ′

0, C
′
1 with C ′

0⊕C ′
1 = ∆3.

– Calculate the decryption equivalence class of C ′
0, C

′
1 and look up

the number N(C ′
0, C

′
1) that connect it to the desired input differ-

ence in a precomputed decryption class distribution table for 3-round
Speck32/64.

– Update count to count+N(C ′
0, C

′
1).

3. Return count as the number of keys linking C0, C1 to the input difference
∆.

For a randomly generated pseudo-ciphertext pair C, we expect to countN0 :=
232 keys. Given C, we therefore obtain a posterior probability preal of C having
been generated as a real pair in our game of preal = Nkeys(C)/(Nkeys(C)+N0),
where Nkeys(C) is the number of keys linking C to the input difference ∆.

23

Implementation Issues To keep memory requirements low, we keep the precom-
puted 3-round pair distribution in memory in compressed form and only decom-
press the distribution data for a single 3-round difference class when it is needed.
This costs some speed, but means that we hold only around 55 Megabytes of
precomputed data in memory instead of around 20 Gigabytes, as a naive imple-
mentation would do.

Performance of the Resulting Distinguisher We generated one million ciphertext
pairs, of which roughly half were generated uniformly at random, while the rest
were sampled from the real five-round output distribution. We then calculated
the posterior real-or-random probabilities for all of these ciphertext pairs as de-
scribed. Our distinguisher returned the result corresponding to ground truth
in 944782 of these cases, corresponding to an overall accuracy of ≈ 94.5 per-
cent, within error margins in agreement with the results previously reported
in [Goh19].

Exploitation of Deep Round-to-Round Dependencies We used this data set to test
whether the perfect distinguisher gains a significant signal from exploitation of
events in the first two rounds of encryption. To this end, we ran a version of
our distinguisher that omitted the calculation of decryption equivalence classes
for round-3 output and instead used just the exact probabilities of intermedi-
ate output differences encountered at round 3 to approximate the number of
keys linking round 3 candidate decryptions to the input difference. This distin-
guisher disagreed with the perfect distinguisher on 6775 pairs, with the perfect
distinguisher returning the right label in 3952 or roughly 58 percent of these
cases.

Some of the disagreements between these two very similar distinguishers
were quite strong. The largest absolute difference in the test set was obtained
for the ciphertext pair (0xdb07/0x3e18, 0xdfe4/0x3949), which was generated
from the random distribution and given a posterior probability of being real of
97 percent by the simplified distinguisher, but recognised as random with 99
percent confidence by the perfect distinguisher.

4.5 A Known-Plaintext Brute Force Distinguisher for Reduced
Speck32/64

Methods We also practically tried using meet-in-the-middle sampling to con-
struct distinguishers against round-reduced Speck32/64. To distinguish r rounds
of Speck32/64 with a two-block known plaintext P and ciphertext C, we en-
crypted P for r1 := ⌈r/2⌉ rounds and decrypted C for r2 := r − r1 rounds. The
obtained partial encryptions and decryptions were then matched by decryption
equivalence class. Note that this matching by decryption equivalence class had
the effect that the last subkey used encrypting towards the meet-in-the-middle
point automatically became irrelevant.

Sampling was run with 108 keys in both directions and all collisions were
counted. To this end, we kept the values obtained by partial encryption (af-
ter normalizing for decryption equivalence) in memory. After generation of the

24

desired number of examples, this array was sorted. Matching of the results of
partial decryption was then performed by binary search over this sorted array.

Finally, the number of keys (in the setting where subkeys are independent
and uniformly distributed) linking the given input pair with the given ciphertext
pair was estimated from the result by assuming that sampling with n keys in
this way covers to a good approximation 216 · n2 out of the total 216·r keys and
that the tested keys can be viewed as uniformly distributed among all keys.

A Known Plaintext Distinguisher for Five-Round Speck32/64 We first used the
resulting generic distinguisher to construct a two-block known-plaintext distin-
guisher against 5-round Speck32/64.

Plaintext pairs were thus sampled uniformly at random from the set of 64-
bit bitstrings and encrypted by random keys sampled uniformly using the real
Speck32/64 key schedule for five rounds. Half of the samples were then ran-
domized by replacing the obtained ciphertext with a 64-bit bitstring chosen
uniformly at random. Meet-in-the-middle sampling with 108 independent and
uniformly distributed subkeys was then used to distinguish real from random
samples. On a test set of size 1000 pairs, the ground truth label was returned in
581 cases.

As a point of comparison, assume that some single-mask linear distinguisher
against 5-round Speck32/64 has a bias of ϵ, i.e. that we have

|P(λ · P ⊕ µEK(P) = 0)− P(λ · P ⊕ µEK(P) = 1)| = ϵ,

where the probability is averaged over all choices of P and K and where
λ, µ ∈ {0, 1}32. Given two blocks of plaintext P0, P1 and corresponding ciphertext
C0, C1, the optimal decision rule for an adversary using this linear property is
then to assume that the given sample is from the real distribution if λ(P0⊕P1) =
µ(C0 ⊕ C1). Setting p = 0.5 + ϵ/2, the probability of this event is p2 + (1 −
p)2 if P0, P1, C0, C1 is from the real distribution and 0.5 otherwise. Hence, a
distinguisher of this kind achieves an overall accuracy a on two-block data of

a =
ϵ2

4
+ 0.5,

which implies that the accuracy observed for our brute force distinguisher would
only be reached at a ϵ ≈ 0.56. It would be interesting to know how close all-
in-one linear distinguishers can come for these five rounds, assuming that the
nonlinear component of the first round is removed; we leave this as a problem
for further research.

Treating Differential Distinguishers as Known-Plaintext Distinguishers The meet-
in-the-middle known-plaintext distinguisher will automatically exploit chosen
plaintext very well at the sampling budget we used. We tested this by running
our known-plaintext distinguisher without any changes on test data consisting of
plaintext pairs P0, P1 with difference ∆ = (0x40, 0x0) and corresponding cipher-
text pairs C0, C1. We tested this with encryption for five and for seven rounds,

25

in both cases using the real Speck32/64 key schedule. We then ran the following
experiments:

1. First, we tried to distinguish 5-round Speck32/64 with input difference ∆
from random output. To this end, we generated a test set consisting of 1000
plaintext pairs and corresponding ciphertext exactly as before in the known-
plaintext setting, but fixed the difference between plaintexts of each plain-
text pair to ∆. We then ran both our meet-in-the middle distinguisher with
a search budget of 108 samples for encryption and decryption and the per-
fect differential distinguisher on the ciphertext samples. In this experiment,
the same decision was reached by both distinguishers in 985 cases; ground
truth was matched in 950 cases by the perfect output pair distribution dis-
tinguisher and in 945 cases by the meet-in-the middle distinguisher. This
shows that our meet-in-the-middle distinguisher is very close to exploiting
the output distribution of 5-round Speck32/64 with the chosen input differ-
ence perfectly.

2. Next, we switched out the real plaintext pairs in our sample against freshly
generated random plaintext pairs with input difference ∆. By this test, we
hoped to find out whether the meet-in-the-middle distinguisher is able to
gain some advantage from knowing the plaintext instead of just the difference
between both inputs of a plaintext pair. No such advantage was detected in
our trial. Indeed, accuracy even slightly increased, with ground truth being
matched in 949 cases now and agreement with the distinguisher based on
perfect knowledge of the output distribution rising to 993 cases.

3. We suspected that this apparent lack of an ability to exploit knowledge of
the plaintext inputs in the preceding experiment was due to the fact that in-
put pairs with input difference ∆ always transition to the round-1 difference
(0x8000, 0x8000). Randomizing the inputs without changing the input dif-
ference therefore has no influence on the state difference after the first round
when the input difference is ∆. We therefore repeated the previous two ex-
periments with the input difference (0x2800, 0x10) and found that for this
input difference, randomizing the input data has a dramatic impact on the
performance of our meet-in-the-middle distinguisher. With non-randomized
plaintexts, our distinguisher matched ground truth in 859 out of 1000 tri-
als; this is a reasonable level of performance, given that [BGPT21] report
an accuracy of roughly 76 percent for the same problem using a neural
distinguisher following the network architecture given in [Goh19]. After ran-
domization of the input pairs (again keeping the input difference), the vast
majority of the items in the randomized-input dataset where classified as
random, irrespective of whether the output pair was generated uniformly at
random or by sampling from the output distribution of 5-round Speck32/64
with input difference (0x2800,0x10). Out of our 1000 samples, only 201 were
now classified as real, and ground truth was matched in only 568 cases.3

3 The neural distinguisher reported by Benamira et al. is expected to achieve a lower
accuracy than our meet-in-the-middle distinguisher simply because it uses less in-

26

4. Finally, we tested our meet-in-the-middle distinguisher also against 7-round
Speck32/64, again using input pairs with fixed input difference ∆. We tested
the 7-round version of our known-plaintext meet-in-the-middle distinguisher
on a test set consisting of 4000 fixed-difference input pairs with correspond-
ing output pairs. For comparison, we also ran a key averaging distinguisher
based on a 6-round neural distinguisher on the output pairs; key averaging
was performed for 1000 randomly selected keys using the six-round neural
network and the key averaging implementation given in the supplementary
data to [Goh19]. The search budget for the meet-in-the-middle distinguisher
was again set to 108 samples. Both approaches achieved roughly the same
empirical accuracy on the test set, showing that our meet-in-the-middle dis-
tinguishers work well on the 7-round problem.

5 Conclusions

The basic idea we have examined in this work is simple: namely, that direct
counting of spurious keys, i.e. of non-target keys that decrypt some observed ci-
phertext to a plaintext that is consistent with our knowledge about the plaintext,
yields a generic way of constructing all-in-one distinguishers for block ciphers.
We have shown in this work that while the distinguishers so obtained are rel-
atively expensive in terms of the computation time and memory required, the
approach can be made quite practical for some interesting classes of distinguish-
ers for small block ciphers when some relatively mild simplifying modifications
to the cipher under study are allowed.

In this study, the main approximation of this kind we use is the replacement
of the key schedule with uniformly distributed and independent choice of sub-
keys. In addition, we treat meet-in-the-middle sampling as an approximation to
uniform sampling from the key space so extended. For five-round Speck with
only the input difference known, we use some further optimizations to obtain
a relatively efficient key-counting model for a situation where the independent-
subkeys assumption is actually true and where our model hence becomes exact.4

The models we consider yield various insights into optimal exploitation of the
studied plaintext signals, including the slightly surprising finding that knowing
the exact plaintext values does not seem to be useful to an all-in-one adversary
trying to distinguish Speck32/64 with the input difference (0x40, 0x0) from ran-
dom data, assuming at least that the adversary sees only two output blocks and
that they do not exploit the key schedule.

formation: it does not know the input pair. Using our framework, it is however
straightforward to construct a brute force distinguisher that only uses the output
pair and the input pair difference and thus solves the same problem. To this end, we
simply constructed a meet-in-the-middle distinguisher for a version of Speck32/64
that has an initial 32-bit whitening key. This achieved 808 correct classifications for
our 1000 input-output samples.

4 Note that our implementation of this model does, however, still contain some errors in
the computed ciphertext pair distribution due to the use of floating-point arithmetic.

27

We expect that the techniques developed in this paper will be generically
useful in the study of small block ciphers, allowing for the refinement of the se-
curity assessment of round-reduced versions of such ciphers. They can also help
to assess how much of the available signal is being seen by other approaches to
distinguishing the same distributions, such as machine learning models. Like-
wise, the design of small good plaintext structures should profit from a generic,
theoretically justified approach of testing them, even if such testing is relatively
expensive.

Brute force cryptanalysis is capable of automatically and reliably solving
a number of problems that would potentially need some human intervention if
other techniques for automatic cryptanalysis are used: for instance, in the simple
known-plaintext setting, brute force distinguishers will automatically circumvent
arbitrary fixed initial permutations in a block cipher. Another attractive prop-
erty of brute force distinguishers is that well-known cryptographic attacks are
naturally obtained from them when additional modelling steps are justified: for
instance, for Markov ciphers, the brute force attack using two-block input and
output is immediately equivalent to an all-in-one differential attack using the
input difference given by the two input blocks. Also key-averaging attacks such
as in [Goh19,BGPT21] may be viewed simply as brute force attacks where part
of the key sampling has been replaced by a heuristic model counting the number
of good keys for some smaller part of the cipher under study.

For all these virtues, brute force distinguishers remain, on account of their
genericity, fundamentally a blunt tool that can only produce relatively slow dis-
tinguishers. However, we expect that their further study will improve our under-
standing of other, more efficient attack modes on block ciphers and thereby ulti-
mately improve the security guarantees offered especially by small and lightweight
symmetric constructions.

Acknowledgments A significant part of this work was done when the author was
working at BSI; their support was instrumental in making this paper possible.
My thanks go out also to Friederike Laus, Le Van Schröer and Ernst Schulte-
Geers for useful comments on an earlier version of this manuscript.

References

[AL12] Martin R Albrecht and Gregor Leander. An all-in-one approach to differ-
ential cryptanalysis for small block ciphers. In International Conference on
Selected Areas in Cryptography, pages 1–15. Springer, 2012.

[ALLW14] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential
cryptanalysis of round-reduced simon and speck. In International Workshop
on Fast Software Encryption, pages 525–545. Springer, 2014.

[Ber05] Daniel J Bernstein. Understanding brute force. In Workshop Record of
ECRYPT STVL Workshop on Symmetric Key Encryption, eSTREAM re-
port, volume 36, page 2005. Citeseer, 2005.

[BG12] Alex Biryukov and Johann Großschädl. Cryptanalysis of the full aes using
gpu-like special-purpose hardware. Fundamenta Informaticae, 114(3-4):221–
237, 2012.

28

[BGL+21] Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Conditional
differential-neural cryptanalysis. IACR Cryptol. ePrint Arch, 719:2021,
2021.

[BGPT21] Adrien Benamira, David Gerault, Thomas Peyrin, and Quan Quan Tan. A
deeper look at machine learning-based cryptanalysis. IACR Cryptol. ePrint
Arch, 287:2021, 2021.

[BRV14] Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential analysis of
block ciphers simon and speck. In International Workshop on Fast Software
Encryption, pages 546–570. Springer, 2014.

[BSS+] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The simon and speck families of lightweight
block ciphers. IACR eprint report.

[BVLC16] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search
for the best trails in arx: Application to block cipher speck. In International
Conference on Fast Software Encryption, pages 289–310. Springer, 2016.

[CKL+21] Anupam Chattopadhyay, Mustafa Khairallah, Gaëtan Leurent, Zakaria
Najm, Thomas Peyrin, and Vesselin Velichkov. On the cost of asic hard-
ware crackers: A sha-1 case study. In The Cryptographer’s Track at the RSA
Conference 2021, 2021.

[DCR06] Christophe De Canniere and Christian Rechberger. Finding sha-1 charac-
teristics: General results and applications. In International Conference on
the Theory and Application of Cryptology and Information Security, pages
1–20. Springer, 2006.

[Din14] Itai Dinur. Improved differential cryptanalysis of round-reduced speck. In
International Workshop on Selected Areas in Cryptography, pages 147–164.
Springer, 2014.

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. Journal of cryptology, 10(3):151–161, 1997.

[Goh19] Aron Gohr. Improving attacks on round-reduced speck32/64 using deep
learning. In Annual International Cryptology Conference, pages 150–179.
Springer, 2019.

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE transactions
on Information Theory, 26(4):401–406, 1980.

[HM97] Carlo Harpes and James L Massey. Partitioning cryptanalysis. In Interna-
tional Workshop on Fast Software Encryption, pages 13–27. Springer, 1997.

[KPP+06] Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred
Schimmler. Breaking ciphers with copacobana–a cost-optimized parallel
code breaker. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 101–118. Springer, 2006.

[Leu13] Gaëtan Leurent. Construction of differential characteristics in arx designs
application to skein. In Annual Cryptology Conference, pages 241–258.
Springer, 2013.

[LM01] Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differ-
ential properties of addition. In International Workshop on Fast Software
Encryption, pages 336–350. Springer, 2001.

[LP19] Gaëtan Leurent and Thomas Peyrin. From collisions to chosen-prefix col-
lisions application to full sha-1. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 527–555.
Springer, 2019.

29

[LS18] Gaëtan Leurent and Ferdinand Sibleyras. The missing difference problem,
and its applications to counter mode encryption. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 745–770. Springer, 2018.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full sha-1. In Annual International Cryptology
Conference, pages 570–596. Springer, 2017.

[Sha49] Claude E Shannon. Communication theory of secrecy systems. The Bell
system technical journal, 28(4):656–715, 1949.

[SHY16] Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential
analysis of arx block ciphers with application to speck and lea. In Aus-
tralasian Conference on Information Security and Privacy, pages 379–394.
Springer, 2016.

[Vau96] Serge Vaudenay. An experiment on des statistical cryptanalysis. In Pro-
ceedings of the 3rd ACM Conference on Computer and Communications
Security, pages 139–147, 1996.

[Vau03] Serge Vaudenay. Decorrelation: a theory for block cipher security. Journal
of Cryptology, 16(4):249–286, 2003.

[VOW99] Paul C Van Oorschot and Michael J Wiener. Parallel collision search with
cryptanalytic applications. Journal of cryptology, 12(1):1–28, 1999.

[Wag04] David Wagner. Towards a unifying view of block cipher cryptanalysis. In In-
ternational Workshop on Fast Software Encryption, pages 16–33. Springer,
2004.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash func-
tions. In Annual international conference on the theory and applications of
cryptographic techniques, pages 19–35. Springer, 2005.

30

