
An Introduction to Secret-Sharing-Based
Secure Multiparty Computation

Daniel Escudero
daniel@escudero.me

June 4, 2023

Contents

Introduction 2

I MPC Fundamentals 14

1 The Theory of Multiparty Computation 15
1.1 A General Introduction to MPC . 15

1.1.1 Adversaries and their Power . 16
1.1.1.1 Possible Corrupted Sets . 17
1.1.1.2 Type of Corruption . 20

1.1.2 Privacy Guarantees . 21
1.1.3 Output Guarantees . 22
1.1.4 Different Functions to be Computed 23

1.1.4.1 Public-Output vs Private-Output 23
1.1.4.2 Reactive vs Non-Reactive Functionalities 24
1.1.4.3 General vs Special-Purpose MPC 24

1.1.5 Efficiency Metrics . 27
1.2 Simulation-Based Security . 27

1.2.1 High-Level Idea . 27
1.2.2 Interactive Agents . 29

1.2.2.1 Relevant Interactive Agents in the UC Framework 29
1.2.3 Interactive Systems . 32

1.2.3.1 Relevant Interactive Systems in the UC Framework 33
1.2.3.2 Parameterized Interactive Systems 34

1.2.4 Security Definition . 34
1.2.4.1 Perfect Security . 35
1.2.4.2 Statistical Security . 36
1.2.4.3 Computational Security . 36

1.2.5 The Composition Theorem . 37
1.2.6 Some Basic Functionalities . 39

1.2.6.1 Underlying Communication Resource 39
1.2.6.2 Arithmetic Black Box Model 40

1.3 Fundamental Results . 41
1.3.1 Results for t < n/3 . 41
1.3.2 Results for t < n/2 . 42

1.3.2.1 The Case of a Passive Adversary 42
1.3.2.2 The Case of an Active Adversary 43

1.3.3 Positive Results for t < n . 44
1.3.4 Summary of Main Results . 44

i

Contents

2 Secret-Sharing-Based MPC 46
2.1 Linear Secret-Sharing Schemes . 47
2.2 MPC based on Linear Secret-Sharing Schemes 49

2.2.1 The Case of an Active Adversary . 49
2.2.2 Offline-Online Paradigm . 50

II Honest Majority 52

3 Shamir Secret-Sharing 53
3.1 Secret-Sharing and d-Consistency. 55
3.2 Error Detection/Correction . 56

3.2.1 Error Detection . 58
3.2.1.1 A more intuitive view. 59

3.2.2 Error Correction . 59
3.2.2.1 Efficient error-correction. 59
3.2.2.2 A more intuitive view. 60

3.3 Error Correction/Detection in the Context of MPC 60
3.4 Reconstructing Secret-Shared Values Efficiently 61

4 Passive and Perfect Security for Honest Majority 63
4.1 A First Protocol . 63
4.2 A More Efficient Protocol . 66

4.2.1 Using Double-Sharings for Secure Multiplication 67
4.2.1.1 A small optimization. 68

4.2.2 Producing Double-Sharings Efficiently 68

5 Active and Perfect Security for Two-Thirds Honest Majority 70
5.1 Actively Secure Multiplication for t < n/3 70
5.2 Instantiating the Offline Phase . 71

5.2.1 Hyper-Invertible Matrices . 71
5.2.2 Generating Double-Sharings . 72

5.3 Actively Secure Input Phase . 73

6 Active and Statistical Security for Honest Majority 75
6.1 Reconstructing Secret-Shared Values . 75
6.2 Preprocessing Phase . 76
6.3 Online Phase . 79
6.4 Verification Phase . 80

III Dishonest Majority 82

7 Passive Security for Dishonest Majority 83
7.1 Additive Secret-Sharing . 83
7.2 Protocols for Secure Multiplication . 84

7.2.1 Product-to-Sum Conversion . 84
7.2.2 Product-to-Sum Conversion Based on Homomorphic Encryption . . . 85

7.3 Preprocessing Model . 86
7.4 Offline Phase . 86
7.5 Online Phase . 87

ii

Contents

8 Active Security for Dishonest Majority 88
8.1 Integrity via Pairwise MACs . 89

8.1.1 Reconstructing secret-shared values 89
8.1.2 Local Operations . 90

8.1.2.1 Addition/Subtraction. 90
8.1.2.2 Canonical shares of public values. 91

8.2 Integrity via Global MACs . 91
8.2.1 Reconstructing Secret-Shared Values 92

8.2.1.1 Partial openings. 92
8.2.1.2 Commit-and-open. 92
8.2.1.3 Reconstruction. 93

8.2.2 Local Operations . 94
8.2.2.1 Addition/Subtraction. 94
8.2.2.2 Canonical shares of public values. 94

8.3 Online Phase . 94

Bibliography 96

1

Introduction

A big part of the theory and practice of cryptography is devoted to the study of different
technologies deployed in our world today. Standard topics include the task of encryption,
which relates to hiding information, but it is also common to consider digital signatures and
message authentication codes to ensure integrity, enable authentication and authorization,
and many other subjects relevant for today’s infrastructure. For centuries, these were
essentially the main tasks associated with the idea of securing information and communi-
cation, and this continues being the case today—of course, with the added complications
of digital and worldwide-distributed technologies. Research into correct implementations
and deployments of these tools, possible attacks, improvements, enhancements in user
experience, adaptation to modern more technologies and scenarios, and other relevant
questions, is of high importance.

However, a big portion of the field efforts is devoted not to current systems or natural ques-
tions like simply hiding information or ensuring integrity. In recent decades, researchers
in cryptography have been pushing the barriers of science by considering new problems
and challenges that were not even imagined in previous times. A good example is the
idea of zero knowledge proofs, which provides us with the ability of proving properties of
certain given data, without revealing the data itself. For instance, an individual could be
able to prove to a third party that the balance in his or her bank account is above a certain
threshold without revealing the exact amount, or it could be able to prove knowledge of
the answer to a given question or challenge, without announcing the answer itself. This
may sound counterintuitive and perhaps even impossible, but such techniques have been
under research for decades already, and it is fair to say that today they are crossing the
boundary towards the real world due to their wide range of applications, most notably
within the blockchain and cryptocurrency domains (which, on their own, are interesting
applications of cryptographic techniques that are gaining popularity quite rapidly). This is
because, in simple terms, zero knowledge proofs have the potential of enabling users to
prove that certain transaction was made, without revealing the specifics of the transaction
itself, among several other use cases. For more information on this, see for example [29].

Another interesting concept that at first glance seems impossible to instantiate is the idea
of computing on private data. As we have previously commented on, it is natural to expect
certain type of information to be kept hidden, such as monetary transactions, balances,
highly-sensitive information, login credentials, medical records, private conversations, and
many, many others. However, it is commonly the case that, although this data has to be
kept private from unauthorized agents, it is ultimately revealed in one way or another
to be processed by a legitimate party, and in general, the situation in which data has
to be kept hidden perpetually is rare. In many cases, however, it is not the full hidden
data that is needed to be retrieved, but rather, a derived property from this data. As
an example, consider a set of encrypted medical records from a hospital. In order to
compute the proportion of users having certain medical condition, the hospital (or the

2

Introduction

party executing this analysis) would need to decrypt all records and then perform the
computation, potentially revealing much more information than simply the intended
proportion.

In today’s world, more and more information is collected every single day. With more
devices recording data every single minute, and more information about individuals being
stored as they interact with new services and technologies, information has never been
so plentiful. However, not all of it is readily available due to security or privacy concerns,
as illustrated by the different examples above. Researchers in cryptography have studied
the task of performing computation over hidden or sensitive data in order to remove
this obstacle, and enable advances in multiple disciplines without violating the notion of
securing information. To achieve this, multiple ideas applicable to different settings have
been proposed. For example, functional encryption enables users to encrypt their data, and
derive special “keys” that can be used to decrypt not the entire information, but derived
data like, for example, only a small piece of the full information or operations carried out
on these.

Homomorphic encryption on the other hand promises its users to be able to encrypt, or
completely hide data, while still being able to perform certain computations on these.
The result of this process leads to an encryption of the result of the computation, which
can then be decrypted. This way, throughout the whole procedure the data is always
hidden, and the only value that is revealed is the final output. Naturally, this is a very
powerful tool with countless applications, and it has received enormous attention from the
cryptographic community. Unfortunately, in spite of inspiring recent breakthroughs like the
first actual construction of such a scheme [26], and in spite of multiple works proposing
new constructions and improving over previous ones, the efficiency of these techniques is
still too low for a wide range of relevant applications. However, many use cases are already
within reach, and the field evolves in a very rapid manner, so a more widespread adoption
of these tools can be around the corner.

Another tool that aims at enabling data analysis and aggregation on private data, that is
gaining a lot of popularity in recent years due to its simplicity, is differential privacy [23].
The main idea behind this technique lies in adding small “noise” to the data in such a way
that information about individuals cannot be discerned from the published records, but
overall, certain aggregate data can still be computed. The result will be only approximate,
as it contains some errors derived from the noise added to individual records, and there is
a trade-off between the level of privacy provided and the precision of the result.

Many other advanced techniques in cryptography with several relevant applications are
of interest to researchers, and some of them are slowly making their way into our real
world. Of particular interest to us is secure multiparty computation, which is proposed as an
alternative tool instantiate the dreamful task of performing computations on hidden data.
We discuss this set of techniques below.

3

Introduction

Secure Multiparty Computation

Consider the following scenario. There is an individual, Alejandra, applying for a loan at a
Bank, and for doing so she needs to present a lot of information about her, like her income,
savings, investments and possessions. Alejandra is a very important businesswoman, and
she does not want all of this information to be held by the bank in the case she gets rejected,
so she asks the bank to publish the algorithm they use to determine whether she applies
for the desired credit so that she can check her situation first. On the other hand, the bank
developed one of the most advanced credit analysis algorithms, and it is not willing to do
this as that might imply they lose an important asset.

Imagine also this setting. A gender-equality campaign promoted by an NGO in certain
city aims at determining whether men and women are being paid equally, in average,
across several companies in the area. For doing so, the NGO would like these companies to
send the information regarding salaries and benefits so that they can compute the desired
statistics. However, although the NGO is only interested in learning averages across all
companies, and although these might agree with the idea of calculating such figures, they
do not feel comfortable sending all this information to a third party such as the NGO, which
could harm their operations.

Both of the examples above constitute cases of computation on data that is intended to be
kept private, and these can be brought together under the following description. There
are n parties, P1, . . . , Pn, each Pi having an input xi that they wish to maintain secret.
Furthermore, there is a function f(X1, . . . , Xn), and the parties want to learn the result
z = f(x1, . . . , xn). In the first example, n = 2, x1 is the set of records from Alejandra, x2 is
the bank’s algorithm and f(X1, X2) is the function that applies algorithm X2 to X1, and in the
second case n is the number of companies, each xi is the information regarding employee
salaries of the i-th company, and f is the function that determines average income based
on gender.

As in general with the problem of computing on hidden data, the tasks described above
seem hard to solve without the involved parties willing to share their data. However, as
we have mentioned already, researchers in cryptography have been working on different
technologies to enable this type of computations. The parties in the scenarios above could
in principle resort, for example, to homomorphic encryption techniques, encrypting their
inputs and computing on the corresponding ciphertexts, but for reasonably meaningful
functions f(·) this could be simply too inefficient. Alternatively, it is possible that differential
privacy techniques can help, specially in the second scenario where the NGO wishes to
compute different statistics on data coming from different parties, but this could potentially
affect the precision of the study.

A different approach, called secure multiparty computation, or MPC for short, aims at
developing much more efficient solutions to the problem above that do not undermine
precision or correctness. Observe for example the following in the Alejandra vs Bank
scenario. Alejandra does not trust the bank to have her information completely, so she
might send the bank a “hidden” version of her data. If homomorphic encryption is used,
then the bank would be able to apply its analysis algorithm internally, but as we have
already mentioned this could place an insurmountable computational barrier. Alternatively,

4

Introduction

we may notice that Alejandra, also interested in the output of the computation, can lend a
hand to interactively compute the result together with the bank. A similar observation holds
in the second scenario: although all the different companies could simply encrypt their
records and send these to the NGO for computation,1 we may notice that if the companies
are willing to collaborate to jointly compute the function, savings in efficiency could be
achieved

In contrast to other approaches like homomorphic encryption, which work by hiding data
completely from anyone not holding a special key and allow anyone to compute on the
hidden data, MPC leverages the fact that there are multiple parties in the computation,
and these entities can together compute the desired function. This is achieved via an
interactive protocol executed by the parties that guarantees privacy of the data throughout
the whole computation. We will discuss in Chapter 1 the details of what these guarantees
exactly mean, but for now, it suffices to say that if a function is computed using an MPC
protocol, then all of its inputs remain private and only the result of the computation is
revealed. Unlike the case of homomorphic encryption, the computation is carried out by
the parties holding the inputs themselves and it cannot be delegated to any other entity
holding “encryptions”.2

Secure multiparty computation was introduced in 1982 when Yao presented the concept of
Garbled circuits [41], which is a particular way of securely evaluating a function using MPC.
Since then, many different approaches have been proposed by cryptography researchers in
the literature, leading to a fruitful line of exploration that has produced many interesting
theoretical and practical results. Today, we have a solid understanding in regards to what
type of protocols with what form of security can exist, and many of the state-of-the-art
techniques can be used already for a wide range of applications and use cases. For example,
the gender-equality study described above actually happened in Boston [35].

Several other applications of MPC have reached the realm of our real world, such as the
Danish sugar beet AUCTION in 2008 [8], the tax fraud detection process in Estonia in
2015 [7], and many more. Furthermore, many other relevant use cases are considered
regularly by researchers, and several prototypes are already under development. These
applications include, for example, custody of cryptographic material, training/evaluating
ML models.3, securing databases, secure statistics, e-voting, and many more. Finally,
what is also interesting is that these technologies are getting attention from institutions,
organizations, and companies beyond academia, with some notable examples being Google,
VISA, Facebook, IBM, Intel and Microsoft. Moreover, many start-ups and well-established
companies are aiming at developing products based on secure multiparty computation,
such as Sharemind, Galois, Cape Privacy, Unbound tech, Partisia and Inpher.

1It is worth noticing that for the situation in which the computation is simple additions, which is potentially
the case in this example, homomorphic encryption is actually quite efficient.

2This is not a real limitation in MPC since secure computation can still be outsourced, albeit with different
security guarantees as in homomorphic encryption.

3See for example the blog post Privacy-Preserving Training/Inference of Neural Networks, Part 2. https:
//bit.ly/3eRKlgM

5

https://bit.ly/3eRKlgM
https://bit.ly/3eRKlgM

Introduction

Security of MPC Protocols

In an MPC protocol the parties involved send messages to each other according to some
specified set of rules. These rules instruct the parties on what to do at each step of the
interaction, and they depend on the information known by the given party such as the
secret inputs they hold, some internal randomness, the messages they have received in
previous steps of the protocol, etc. For example, a rule for some party Pi might look like
“after receiving a message m from party Pj0 , sample some random value and add it to m,
multiply by your internal input xi, and send the result to party Pj1”. Ideally, at some point
of the interaction, certain rule will instruct each party how to obtain the intended result of
the computation.

Intuitively, an MPC protocol is secure if, after the execution of the protocol, the output
z = f(x1, . . . , xn) is learned by the parties and nothing about their inputs x1, . . . , xn
(besides the output z itself) is revealed. Formalizing this notion, which is necessary in
order to be able to reason mathematically about these constructions, turns out to be highly
non-trivial. In fact, the development of an adequate model to argue about MPC protocols,
on its own, constitutes one of the biggest achievements in the theory of MPC itself. We
will provide in Chapter 1 a more complete intuition on how security is defined in MPC,
together with a rather detailed but still high-level description of the simulation-based
security paradigm, which permeates the theory of secure multiparty computation. For now,
we will be content with the overall idea discussed in the paragraph below, which will enable
us to introduce some basic terminology.

At a high level, the goal of an MPC protocol is to ensure that each party learns nothing in
addition to the output z after their participation in the interaction. However, it might be
the case that, by working together, certain parties can jointly learn additional information
about the inputs from the remaining participants, which is an undesirable outcome. To
handle this, we require MPC protocols to guarantee that, even if certain subset of parties
collude, the privacy of inputs from the remaining parties are kept private. To model the
idea of a subset of parties working together toward breaking the privacy of the other
parties, we consider an adversary that corrupts a given subset of the parties. We can think
of this adversary as a “coordinator” that is in charge of controlling some with the parties,
or alternatively, we can think of the corrupt parties as simply being different identities of
the same underneath entity.

It is reasonable to expect that, the more parties that are corrupted, the easier it is for the
adversary to break the protocol. Given this, we measure the security of a protocol by the
amount t of corrupt parties that it can tolerate before it breaks.4 Some protocols will be
able to tolerate an adversary that corrupts all-but-one parties while preserving the privacy
of the non-corrupted—also known as honest—parties. However, other protocols will be
designed to be secure as long as the adversary corrupts at most a minority of the parties,
so t < n/2, providing no guarantees if an adversary corrupts more than n/2 parties. The
latter setting is known as honest majority, while in contrast the former scenario is referred
to as dishonest majority. As we will see throghout this text, the tools, techniques and ideas

4As we will see in Section 1.1, there are other ways of quantifying the adversary’s power, but the current
approach of simply counting the amount of corrupted parties is already very useful and intuitive„ on top of
being widely used and quite standard.

6

Introduction

used in each of these two settings are typically very different, and the types of guarantees
that can be achieved in each case also vary.

Several other factors affect the security of an MPC protocol, like the behavior assumed by
corrupt parties (where terms like passive and active corruptions appear), or “how private”
are the inputs from honest parties towards the adversary (where the concepts of perfect,
statistical or computational security show up). These different considerations are deferred
to Chapter 1, and for now, it suffices to keep in mind that the security of MPC protocols is
based on how hard it is for a set of colluding parties, coordinated by an adversary, to break
the privacy of the inputs from the remaining parties.

Secret-Sharing-Based MPC

There are quite a few paradigms for designing secure computation protocols. For example,
since the introduction of the idea by Yao [41], Garbled circuits have been improved in
several directions and today they are much more efficient and promising than their previous
counterparts. These techniques are useful when the parties are geographically separated
and have a high latency connection between them given that it requires a small amount of
communication rounds, although it typically demands high bandwidth. Another method
consists of using homomorphic encryption techniques, which is again particularly well-
suited for highly distributed computations. However, as we have discussed already, this
tends to impose a computational burden. Finally, a very popular approach, which is the
main technique for secure multiparty computation we will focus on in this document,
consists of making use of linear secret-sharing schemes, which enable the parties to hold
distributed versions of the intermediate results of the computation, maintain this invariant
throughout the evaluation process, until the result is reached.

Arithmetic circuits. Importantly, a common and central idea across all of the techniques
mentioned above consists of first representing the desired computation as an arithmetic
circuit, and then designing a method to process such circuit securely. An arithmetic circuit is
a representation of a function that consists of wires and gates. The input wires are fed with
the inputs to the computation and then processed through gates to obtain the values for
the internal wires, which account for the intermediate results of the computation, until the
output wires are reached, where the result of the computation is obtained. More details are
discussed in Chapter 1, but for now, it suffices to know that the gates represent operations
over a ring, an algebraic structure admitting an addition and a multiplication operation.
These constitute the allowed intermediary processes that can be applied to the data, which
is itself represented as elements over this ring.

A typical choice of ring is the set of integers modulo a prime p, which constitutes what is
called a field, where every non-zero element admits a multiplicative inverse. For example,
the set {0, 1} with the operations AND and XOR constitutes precisely a field (integers modulo
2), and arithmetic circuits defined over this structure, also known as binary circuits, are

7

Introduction

highly important in many use cases.5 On the other hand, for applications involving integer
arithmetic, it is common to consider integers modulo a large prime p given that, if the
integers used in the computation can be guaranteed to be smaller than p, then reduction
modulo p does not play any effect and the resulting arithmetic becomes in essence simple
integer arithmetic, which is useful in numerous scenarios. In theory, arithmetic circuits
over finite fields can be shown to be sufficient to represent any desired computation, so
designing MPC protocols to securely compute arithmetic circuits is in principle enough to
securely compute any functionality.6

Linear secret-sharing schemes. Intuitively, a secret-sharing scheme is a method to “split”
a secret into shares in such a way that (1) if not enough shares are held, then nothing is
learned about the underlying secret, but (2) certain minimum number of shares together
completely determine the secret. In the context of MPC, secret-sharing schemes are useful
since they enable the parties to hold shares of a secret in such a way that an adversary
corrupting t parties—and hence learning their t shares—cannot learn anything about
the hidden secret, but with the cooperation of some honest parties this secret could be
recovered.

To securely compute a given function represented as an arithmetic circuit using a secret-
sharing scheme, the overall procedure is the following. First, each party Pi, holding an
input xi, distributes shares of this value towards the other parties. The privacy properties
of the secret-sharing scheme ensures that the adversary, who controls an unknown subset
of t parties, cannot learn this value xi for an honest Pi.

Now, after all the inputs are held in shared form by the parties, the next step is to execute
the different steps in the circuit, obtaining shared versions of all intermediate values in the
computation, until eventually the parties obtain shares of the output of the circuit, point in
which the parties use the reconstruction properties of the secret-sharing scheme to learn
the result. For example, if two secret-shared inputs are set to be added together, the parties
execute certain procedure that enables them to obtain, from the shares of the inputs they
hold initially, new shares whose underlying secret is the sum of the two original secrets. A
similar situation holds for the multiplication of two shared values. A linear secret-sharing
scheme allows the parties to process addition gates locally—that is, without interaction—by
simply adding together the shares of the two secrets under consideration. Multiplication
on the other hand requires more care, and in fact, it is not an overstatement to say that
most of the hardness of designing a secret-sharing-based MPC protocols lies in obtaining a
secure and efficient method to multiply secret-shared values.

5In addition, the reader might be familiar with binary circuits having gates like AND, NOT, NAND, etc. since they
are quite common in low-level computer architectures.

6However, several relevant computations lack a “nice” representation as an arithmetic circuit, so this approach
is far from practical. Fortunately, it serves as a central building block. We will have much more to say in
this regard in subsequent sections, but for the purpose of this introduction it is sufficient to consider the
task of securely evaluating arithmetic circuits as our main goal.

8

Introduction

The Purpose of this Document

We see then that secret-sharing-based MPC consists of the parties first secret-sharing their
inputs, then proceeding in a “gate-by-gate” fashion to obtain shares of all intermediate
wires/values of the computation until shares of the outputs, that can be reconstructed, are
reached. This is a general recipe that leaves many questions up for consideration; things
like: what exact secret-sharing scheme to use? How do the parties secret-share their inputs
and reconstruct the outputs in a way that guarantees correctness? How do the parties
process the different gates in the circuit? The goal of this document is to provide detailed
answers to these and many more questions, which ultimately results in the specification of
several of MPC protocols and techniques. These questions (and their potential answers)
depend heavily on multiple factors such as the type of security desired, the power assumed
by the adversary, the networking model, the efficiency metric being optimized for, among
others.

Secure multiparty computation is a very exciting field, combining ideas from a wide
range of disciplines, gaining more and more traction as more applications and use-cases
become within reach, and getting attention by researchers and practicioners from all sorts
of regions from both academia and industry. Things change shape constantly, optimal
protocols become “outdated” almost yearly, and it is very hard to keep track of state-of-
the-art techniques. These different aspects, together, make it very hard for new comers to
learn about the basics of the field. Furthermore, even if one could specify a set of essential
and fundamental reading resources like research papers, books, workshops and schools,
a challenge that remain is learning the necessary theory of simulation-based security, in
order to be able to appreciate and follow security proofs in this domain.

Motivated by the above, this document serves as a general guide to multiparty computation
based on secret-sharing, focusing more on practical aspects of the techniques and construc-
tions rather than their theoretical grounds. As we have already hinted at, simulation-based
security is a rich and fruitful theory that deals with the task of properly formalizing MPC
protocols, and we do discuss this framework along with some of its core concepts in
Section 1.2. However, we clarify that, at least with the early versions of this document,
the main intention of this text is to provide a solid understanding of some of the most
relevant techniques to achieve MPC based on secret-sharing primitives, so the reader can
expect more emphasis on the actual tools and methods rather than the (highly important!)
“clutter” that surrounds research papers in order to formally argue about these construc-
tions. Our motto is that simply understanding the how of secret-sharing-based computation
can be done in a relatively clean, simple and self-contained way, if one is willing to relax
the why these techniques work by being content with intuitive correctness and security
arguments.

This text arises as a by-product of the author’s PhD Thesis, which can be found in this link:
https://www.escudero.me/pdfs/phd_thesis.pdf. The thesis introduces new techniques
to design MPC protocols when the underlying algebraic structure is the ring of integers
modulo a power of two, and presents formal and full-fledged proofs of their security. Some
of the approaches followed in the thesis resemble the traditional and standard techniques
presented here, and a reader who is interested in guided formal simulation-based proofs
is invited to visit that resource (at least until these full-fledged proofs make it to this

9

https://www.escudero.me/pdfs/phd_thesis.pdf

Introduction

document). Finally, we remark that this document is work in progress, and it will be ideally
updated on a regular basis. For an up-to-date version, check the IACR Eprint repository
and/or the author’s website: escudero.me.

Organization of the Document

This text is divided into three main parts, as follows:

Part I: MPC Fundamentals. This first part presents the necessary tools to be able to
reason and argue about MPC protocols and their security in a formal and rigorous manner.
It is made of the following chapters:

Chapter 1: The Theory of Multiparty Computation. This chapter presents some basic
concepts in MPC that are necessary to formally argue about protocols and their
security. This includes the description of the simulation-based security model con-
sidered in MPC, some essential impossibility results, and some general approaches
to the design of MPC protocols. The contents of this chapter are not tied to secure
computation based on secret sharing.

Chapter 2: Secret-Sharing-Based MPC. Here, an overview of what a linear secret-
sharing scheme is, and how it can be used to achieve secure multiparty computation,
is provided.

Part II: Honest Majority. Secure multiparty computation techniques can be categorized
in different ways depending on a wide range of factors like the intended security, the
network conditions, the power of the adversary, among others. In this text, however, we
take as a main distinguishing factor whether the adversary corrupts a minority or a majority
of the parties, since techniques for each one of these two cases tend to be substantially
difference. This part deals with the first case in which there is a corrupted minority, or, in
other words, an honest majority. This part includes the following chapters:

Chaper 3: Shamir Secret-Sharing. An essential construction of a linear secret-sharing
scheme, called Shamir secret-sharing, is provided in this chapter.

Chapter 4: Passive and Perfect Security for Honest Majority. This chapter presents a
perfectly secure protocol with passive security that is secure against an adversary
corrupting t parties, where t < n/2.

Chapter 5: Active and Perfect Security for Two-Thirds Honest Majority. In this chap-
ter we consider a protocol for active security with abort that still attains perfect
security, at the expenses of tolerating t parties with a smaller bound of t < n/3

Chapter 6: Active and Statistical Security for Honest Majority. We return our atten-
tion to the maximal adversary honest majority setting (t < n/2) and present an
actively secure protocol with abort that achieves statistical security.

10

escudero.me

Introduction

Part III: Dishonest Majority. In this part we discuss techniques in the setting in which
the adversary corrupts potentially all but one party, so t < n, which is also known as the
dishonest majority setting. This includes for example the case of two parties and one
corruption. Currently, all the protocols considered in this part are set in the preprocessing
model where certain correlation data is assumed, and no attempt to instantiate this phase
is done at the moment.

This part includes the following chapters:

Chaper 7: Passive Security for Dishonest Majority. This chapter presents a protocol for
MPC in the dishonest majority setting (in the preprocessing model).

Chapter 8: Active Security for Dishonest Majority. This chapter extends the protocol
from Chapter 7 to achieve active security with abort making use of message authenti-
cation codes, or MACs.

Other Learning Resources

As we have already mentioned, the field of secure multiparty computation changes rapidly,
and partly because of this, and also due to its relative young age, the area does not have a
condensed and well-established reduced set of to-go resources, at least when compared
to other disciplines. However, we can find a wide range of reading material such as
tutorials, books, courses, videos, blogs, etc. Instead of listing these, we refer the reader to
Drago Rotaru’s Awesome MPC compendium: https://github.com/rdragos/awesome-mpc,
which does an outstanding job at collecting relevant learning resources in the domain of
secure multiparty computation.

We remark also that an excellent resource that closely resembles our “less-formal-more-
practical” approach is A Pragmatic Introduction to Secure Multi-Party Computation by David
Evans, Vladimir Kolesnikov and Mike Rosulek.7 We note however that these resources
are complementary to each other: Pragmatic MPC focuses more on dishonest majority
techniques and Garbled Circuits, while the current focus on this text is on secret-sharing-
based protocols.

Future Additions

This is a work-in-progress document, and as such it is bound to drastically change in
subsequent iterations. The following are some of the planned additions/modifications. This
list is intended to change as the document is extended.

• Concrete constructions for a small number of parties. Although protocols supporting
any number of parties exist, in many cases, when the number of parties is small (say,

7https://securecomputation.org/docs/pragmaticmpc.pdf

11

https://github.com/rdragos/awesome-mpc
https://securecomputation.org/docs/pragmaticmpc.pdf

Introduction

between 2 and 5 parties), more efficient and usually simpler protocols tailored for
these settings can be designed. It is our goal to include some of these protocols in the
future.

• Building blocks for computations beyond arithmetic circuits. Although one can learn a
lot by restricting to arithmetic circuits, in practice several meaningful computations
are not described as such. Something so seemingly simple as performing scientific
computation over the reals, evaluating mathematical functions such as tangents and
logarithms, or even branching or bit-decomposing values, can be a daunting task
when performed in MPC. Our goal is to include several techniques in the literature to
deal with these—more practically oriented—challenges.

• Concrete applications of MPC. We would like to include several meaningful and
efficient applications of MPC.

• Instantiating the preprocessing for dishonest majority MPC. With a few exceptions,
most of the current document is concerned with information-theoretic constructions
rather than computationally-secure ones. Techniques in the latter domain tend to be
of an entirely different nature, given that they involve computational assumptions
and therefore make use of heavy mathematical machinery to be able to define hard
computational problems and derive meaningful cryptographic constructions from
them. It is our objective to include a reasonably comprehensive set of techniques and
results in this direction.

• Garbled circuits. As we have already mentioned, garbled circuits are a different
approach to achieve (computationally secure) multiparty computation. Although it
tends to differ from secret-sharing-based MPC, in several cases mixing the two leads
to very useful results. It is in our plans to include a discussion on this in the future.

• Comprehensive introduction to simulation-based security and more formal proofs. Al-
though we have already stated that the goal of this work is to focus on more practical
aspects of secure multiparty computation, emphasizing techniques and results rather
than theoretical frameworks and proofs, we still believe it is highly important for the
reader to be aware of the existence of the notion of simulation-based security, and
due to this we discuss this topic briefly in Section 1.2. However, we currently do not
provide any formal proofs of the constructions presented in this work.

For the interesting readers we plan to include in the future some sections that further
expand on the topic of formal security proofs, possibly including different simulation-
based frameworks, impossibility results, full-fledged guided proofs of many essential
constructions, among others. Nevertheless, this would be done in separate sections in
order to not disrupt the main purpose of the text, which is to provide new researchers
and practicioners with a simple and relatively comprehensive resource for learning
about how the different techniques in MPC work.

Other minor TODOs include the following:

• Include a detailed list of preliminaries, and if possible, a section with elementary
background.

12

Introduction

• Include more figures and graphs to better illustrate some concepts and ideas.

• Add more references, “further reading” subsections for each relevant part, as well as
historical notes.

• Include small subsections with high level explanations and pointers on more advanced
topics.

• Although this document has been reviewed thoroughly, the fact that it comes from
a larger text may make some sections incoherent. This will be fixed in subsequent
iterations.

General Preliminaries and Notation

Most of the notation used in this paper will be introduced “on the fly”, that is, it will be
presented in each relevant section where it is used for the first time. However, some general
notation that we can introduce from now consists of the following:

• The set Z/MZ denotes the ring of integers modulo M , whose representatives are
taken over the set {0, . . . ,M − 1}.

• All vectors, denoted by bold lowercase letters like x and y, are column vectors by
default. This is particularly relevant when dealing with multiplications with matrices.

• x ∈R A means that x is sampled uniformly at random from the set A.

• For a positive integer `, [`] denotes the set {1, . . . , `}.

• For a k-bit integer x, we denote by (x[k − 1], . . . , x[0]) its bit decomposition, that is,
x[i] ∈ {0, 1} for i ∈ {0, . . . , k − 1} and x =

∑k−1
i=0 x[i] · 2i.

13

Part I

MPC Fundamentals

14

Chapter 1

The Theory of Multiparty Computation

The goal of this initial chapter is to introduce the reader to some of the most relevant existing
theoretical concepts in the area of secure multiparty computation. First, in Section 1.1,
we present a general and high level introduction to some of the most important concepts
and ideas in MPC, like the notion of an adversary, and different settings and goals that are
typically considered in MPC. Then, in Section 1.2, we present the idea of simulation-based
security, which is the formal mathematical machinery necessary to properly define the
concepts discussed in Section 1.1. This tool allows us to approach the task of securely
computing a given function from a mathematical point of view, enabling us to obtain precise
and explicit security results. Finally, we discuss in Section 1.3 some of the most relevant
results in the theory of secure multiparty computation, which are related to the types of
security notions that can be achieved in the three main distinctive settings: two-thirds
honest majority, honest majority, and dishonest majority.

1.1 A General Introduction to MPC

In secure multiparty computation we consider a setting where n parties P1, . . . , Pn, each
Pi having an input xi, want to securely compute a given function f(X1, . . . , Xn), in such
a way that only the value z = f(x1, . . . , xn) is learned, and nothing else about x1, . . . , xn
is revealed. This is intended to be achieved by means of an MPC protocol, which is a set
of rules that the parties execute, involving some local computation plus some exchange
of messages. These rules depend on the inputs of each party, and they are typically
randomized, meaning that they usually depend on some random bits sampled by each
party as well.

Ideally, nothing should be learned about the inputs x1, . . . , xn, except perhaps from what
is leaked about the output z.1 Towards formalizing this notion, it is useful to think of
an ideal world in which there is a trusted third party who receives the inputs from the
parties, computes the result z, and sends this to all the participants, promising to perform
the correct computation and not to leak absolutely anything else besides z. The goal of
a secure multiparty computation protocol is to instantiate this type of scenario without

1Notice that it might be the case that the output z reveals a lot of information about some of the inputs, which
is obvious for instance if the function f is defined as X1 = f(X1, . . . , Xn). This is acceptable in the context
of MPC given that the only goal is to protect the inputs x1, . . . , xn, except possibly for what is leaked by the
output z itself.

15

Chapter 1 The Theory of Multiparty Computation

the presence of a trusted third party, only involving communication among the parties
holding the inputs themselves. In other words, a protocol must match the behavior of the
ideal world in what we call the real world. As we will see in Section 1.2, this ideal/real
world paradigm is not only useful to understand at a high level what the guarantees of
a secure multiparty computation protocol should be, but it also serves as the core idea
behind a proper mathematical formalization, which enables the use of rigorous definitions
and theorems.

1.1.1 Adversaries and their Power

In a wide range of notions and constructions across all of cryptography, it is very common
to formalize the idea of something being “secure” by considering the idea of an adversary,
which is an entity who tries to break whatever property we are trying to protect, and should
not be able to succeed with reasonable probability. This adversary is simply an algorithm, a
mathematical object that can be formally defined. For example, in the case of encryption it
is common to define security (at least, one particular notion among several other variants)
by requiring that no (typically efficient) adversary can win at a “game” that is supposed to
represent a real-world scenario where an attacker gets to interact with an already-deployed
encryption scheme. In this game, the adversary gets to choose two different messages,
and it gets an encryption with an unknown random key of one of these two plaintexts,
chosen at random. It is the adversary’s goal to determine which of the two messages was
encrypted. If no adversary, which in essence means no algorithm, is able to significantly
win at this game, then, intuitively, it must be the case that the encryption scheme is good at
its job of hiding data, since encryptions of different messages look indistinguishable.

Many other notions in cryptography, like the security of digital signatures or key exchange
mechanisms, are formalized via adversaries attacking the system, and secure multiparty
computation is naturally no exception. Consider an execution of a secure multiparty
computation protocol where n parties P1, . . . , Pn engage in a set of communication and
computation rules, exchange messages, and return a result at the end of this interaction.
Who should be the adversary in such scenario? As the name implies, an adversary is a
“rival” whose aim is to break a given security property we are trying to maintain, in this
case, the fact that the inputs of the parties remain private, except from the output z. For
example, we can consider one of the parties in the execution of the protocol to be the
adversary, and what we could require is that this party, after the interaction with the other
participants, this “adversarial party” does not learn anything about the other parties’ inputs,
besides what is leaked by the output of the computation.

Let us assume that a given secure computation protocol satisfies the notion that no party,
regarded as the adversary, can learn anything about the inputs from the other parties,
as considered above (assume for now that we can appropriately define the idea of “not
learning more than what is leaked by the output”, which is achieved via simulation-based
security as considered in Section 1.2). A natural question is, what would such notion reflect
in practice? In principle, it is very powerful: if any of the parties behaves as an adversary,
trying to learn anything from the other parties’ inputs (besides what is leaked by the
output), this party will fail at doing so. However, it fails to capture a very important “attack”
that could easily happen in a practical scenario, and it has to do with the possibility of a

16

Chapter 1 The Theory of Multiparty Computation

collusion attack. Imagine that, among the n parties participating in the protocol, there are
two which, for different reasons, might benefit from learning the inputs from the remaining
parties. These two parties may decide to trust each other and collude, that is, work together,
perhaps by sharing out-of-band messages to each other, if this somehow helps them in their
task of learning information they are not allowed to gather. Alternatively, if by joining the
internal data of different parties it is possible to break privacy, then an external attacker
that breaks into several of the participating machines can learn private information.

In light of the scenario described above, which could easily appear in practice, it becomes
important to somehow incorporate into our adversarial definition the idea of parties
colluding, working together, sharing information to each other, in order to break the
privacy of the remaining parties. One could in principle achieve this by considering
different adversaries that somehow communicate to each other, but it turns out to be a
much simpler way if, instead of following this approach, we consider a single adversary, as
before, that, instead of simply playing the role of an individual party, it completely controls
a given set of parties. This attacker plays a similar role as the “hacker” described in our
previous example, and it also serves to model the case in which two or more parties collude
voluntarily, since the strategy they follow in their collusion process can be modeled as an
algorithm, which can be ultimately regarded an adversary on its own. Finally, notice that
this notion strictly generalizes the one we considered initially above, where a protocol was
secure if no single party acting as an adversary could violate privacy. This case corresponds
to the scenario when an adversary corrupts a set containing only one single party.

With this idea of what the adversary role is in the execution of a secure multiparty com-
putation protocol, we proceed to describe and categorize many of the possible different
variants that such adversary can present. Before we do this, however, we introduce some
notation that will be used throughout this work. Suppose that the n parties participating
in a given protocol execution is P1, . . . , Pn. The set of indexes in [n] corresponding to
corrupted parties is denoted by C, while the set of indexes corresponding to the remaining
parties, which are also called honest parties, is denoted by H = [n] \ C.

1.1.1.1 Possible Corrupted Sets

In our first naive notion of security a protocol was considered secure if any adversary,
corrupting any single one of the parties P1, . . . , Pn participating in the protocol, cannot
learn anything about the remaining parties’ inputs. Observe that in this case the protocol
should remain secure no matter what party is corrupted. If, for example, we only require
security against adversaries corrupting one of the parties among P2, . . . , Pn (so P1 is never
corrupted), a simple and trivial protocol would consist of the parties sending their inputs
to P1, who computes the function and returns the result. This satisfies the security notion
since we only require that the adversary does not learn any extra information about the
honest parties’ inputs, which is trivially guaranteed since P1 is always honest. We see then
that, depending on which parties are allowed to be corrupted by the adversary, different
protocols might exist.

As we have mentioned in previous paragraphs, in our more general context the adversary
is not restricted to corrupting one single party but rather it can corrupt a set of parties
potentially having size greater than one. However, in order to define security, we require

17

Chapter 1 The Theory of Multiparty Computation

the protocol to protect the privacy of the honest parties’ inputs in the event in which
the adversary corrupts a given set of parties. A crucial question that appears under this
consideration is then the following: which sets of parties can the adversary corrupt? In the
single-corruption case from above these possible sets are {P1}, . . . , {Pn}, and as before, if
the collection of possible sets the adversary can corrupt is too simple (e.g. all the possible
sets miss one specific party, which means that this party is always honest), the task of
designing secure multiparty computation protocols may become trivial.

In general, the collection of possible sets the adversary can corrupt is a security property
of a given protocol. Such collection, which is simply a set of subsets of [n], is called an
adversarial structure, and different secure multiparty computation protocols are designed
with the goal of withstanding corruptions from different adversarial structures. Below we
consider some relevant adversarial structures. Before we do this, however, we note that, if
a set B is part of a given adversarial structure, then we must include every subset A ⊆ B
into the structure as well, given that a protocol cannot be secure against corruptions in A if
it is already insecure when the adversary corrupts a smaller subset. Given this, we define
adversarial structures as antimonotone collections of subsets of [n], meaning that if B is in
the collection, every set A ⊆ B has to be part of it too.

Q2 and Q3 Adversarial Structures. The ability to consider general adversarial structures
is very useful in scenarios in which there is a lot of asymmetry among the “importance”
of the different parties. For example, consider a setting with three parties P1, P2, P3,
and suppose for simplicity in the argument that they have no reasons or motivations to
voluntarily collude. However, there is still the concern that an attacker breaks into some of
these machines. Suppose now that P1 is very well protected, but P2 and P3 have a weaker
safeguards. In such a setting we might consider a protocol that withstands the adversarial
structure {{P1}, {P2}, {P3}, {P2, P3}}. This way, if the adversary wants to break the system
then it has to corrupt a set of parties outside this structure, so either P1 and one of P2 or
P3. Since {P2, P3} is part of the adversary structure, even if the attacker breaks into the
two weaker machines P2 and P3, it cannot still breach privacy.

There is a long and important line of study into how to design secure multiparty computa-
tion protocols for general adversarial structures, starting with the work of [15]. However,
among all possible adversarial structures, there are two types that are particularly impor-
tant. We will make more explicit the relevance of these two particular structures later in
Section 1.3.

Q2 structures. An adversarial structure is Q2 if, for every A1 and A2 in the structure,
A1 ∪A2 6= {P1, . . . , Pn}.

Q3 structures. An adversarial structure is Q3 if, for every A1, A2 and A3 in the structure,
A1 ∪A2 ∪A3 6= {P1, . . . , Pn}.

Threshold Adversarial Structures. In settings in which there is more “symmetry” among
the parties, and there are no obvious reasons to put more weight into how easy it is for one
party to get broken into, or into how likely it is that a given party colludes, with respect to
another party, a natural adversarial structure is the threshold structure. This measures the

18

Chapter 1 The Theory of Multiparty Computation

adversary’s capabilities by how many parties it can corrupt simultaneously, without making
any distinction among the parties whatsoever. More concretely, a threshold adversary
structure is parameterized by a value 0 < t < n, and it consists of all the subsets of [n]
of size at most t. Intuitively, a protocol that is secure against such structure guarantees
privacy of the honest parties’ inputs as long as the adversary does not corrupt more than t
parties.2

Below we discuss three types of threshold adversarial structures, depending on their
threshold value t. The main importance of these distinctions will be made clear in Sec-
tion 1.3, when we discuss several fundamental results in the feasibility of secure multiparty
computation protocols depending on each of these cases.

Honest majority, t < n/2. In this case the adversary is assumed to corrupt at most t < n/2
parties, so, no matter what set of corrupted parties is chosen, the set of honest parties
constitute a majority. It is easy to verify that the resulting adversarial structure is Q2.

Two-thirds honest majority, t < n/3. Now the adversary is assumed to corrupt even less
parties, at most t < n/3. Here the set of honest parties is always at least two-thirds
the total number of parties. It is easy to verify that the resulting adversarial structure
is Q3.

Dishonest majority, t < n. This is the scenario where the no special bound on t holds,
so t can take the largest possible value, t = n − 1. In this case the adversary can
corrupt any set containing all but one party, and a protocol secure in this setting
would still guarantee privacy to this remaining party. This is the strongest possible
setting: intuitively, each party knows individually that their inputs are secure, even if
all the other parties collude. This is not the case with any of the previous scenarios
(and in general, if t < n− 2), since in these cases the adversary can break the privacy
of an individual party’s input by corrupting a set with at least t+ 1 parties.

We remark that, throughout this document, our only focus lies in threshold adversarial
structures.

Remark 1.1 (Maximal vs non-maximal adversaries). Intuitively, when designing secure
multiparty computation protocols in any of the threshold settings listed above, it is better
to consider the maximum possible value of t that respects the given bound. For example, in
the honest majority setting where t < n/2, the best is to choose t as the largest integer that
respects this bound, i.e. t =

⌈
n
2 − 1

⌉
, since in this case the resulting protocol tolerates the

largest number of corruptions while still falling within the honest majority setting.3

Motivated by the above, it is quite common, and in fact, we do so in several opportunities
in this document, to assume for simplicity that the adversary corrupts exactly t parties, and
that t is as large as possible while respecting the bound under consideration. At an intuitive
level, this should be without loss of generalization given that, if a protocol is secure against an

2Notice that t lies between 1 and n−1. If t = 0 then there are no corruptions and the task of secure multiparty
computation becomes trivial. Also, if t = n, then all parties are corrupted so there are no honest parties’
inputs to protect the privacy of.

3It is important to mention that having a gap between t and n/2 (or n/3) is sometimes useful as it allows the
use ofpacked secret sharing, a technique to improve efficiency of MPC protocols in these scenarios [18,24].

19

Chapter 1 The Theory of Multiparty Computation

adversary that corrupts exactly, say,
⌈
n
2 − 1

⌉
parties, then the protocol should remain secure

even if the adversary corrupts less, since this means that now the adversary is less powerful.

Unfortunately, although such reasoning makes a lot of sense, the mathematical model under
which the concept of MPC is formalized, which is discussed in Section 1.2, does not satisfied
this property. More precisely, there are protocols that are secure against

⌈
n
2 − 1

⌉
corruptions,

but an adversary corrupting less than this amount can somehow break the protocol. This
counter-intuitive nuisance is hardly an issue in practice, but it is important to be aware of it.
We revisit this issue when we assume a maximal adversary in this document.

1.1.1.2 Type of Corruption

Our current corruption model is intended to represent a set of parties colluding, exchanging
messages out-of-band, sharing their internal state, and possibly coordinated by an attacker,
which is in fact how the proper adversarial model is formalized. Recall that a secure
multiparty computation protocol is in essence a set of computation and communication
rules that the parties have to follow in order to securely compute a given function. So far,
although the adversary is able to see all the internal state of the corrupt parties, including
messages received and sent by these, we have implicitly assumed that the corrupt parties
follow the rules specified by the protocol faithfully. This corresponds to the notion of a
passive of semi-honest adversary, and it is intended to reflect a setting in which all of the
parties are assumed to follow the protocol instructions, but even if an attacker is able to
access the internal information from a given subset of the parties (within certain adversarial
structure), the protocol should guarantee privacy of the inputs from the remaining parties.

Unfortunately, it is in principle not possible for the parties to somehow verify that the other
participants are following the protocol specification faithfully. This is because, ultimately,
all the different parties see from other participants are messages which, although depend
on their private inputs, are supposed to reveal nothing about these values from the security
definition itself. From this, if an adversary can gain additional information by modifying
the behavior of the corrupt parties during the execution of the protocol, perhaps in a way
in which such misconduct goes undetected towards the honest parties, a need to protect
secure multiparty computation protocols against such actions appears.

An adversary with the more advanced and realistic capabilities described above is referred
to as an active or malicious adversary, and protocols that are secure against such type of
adversarial behavior are the most ideal to deploy in much of the potential use cases for
secure multiparty computation, given that it prevents corrupt parties from causing any
harm during the execution of the protocol, even if they internally deviate from the specified
rules, which in principle they would be able to do without being detected. However,
although these protocols are stronger than their passively secure counterparts, they are
naturally much harder to construct, plus they tend to add certain overhead in terms of
performance.

So, to summarize:

Passive/semi-honest corruption. An adversary is said to be passive if the behavior of the
corrupt parties during the protocol execution is exactly as specified by the protocol

20

Chapter 1 The Theory of Multiparty Computation

description. The adversary sees the internal state of the corrupt parties, including
in/out messages, input and internal random coins, but it cannot alter their behavior.

Active/malicious corruption. An adversary is said to be active if it controls the corrupt
parties completely, including possibly modifying their actions during the execution of
the protocol.

In this work we will consider both passive and active adversaries.

1.1.2 Privacy Guarantees

Recapping what we have seen so far, our intuitive security definition for secure multiparty
computation protocols requires that an adversary, corrupting (either passively or actively)
a set from an adversarial structure, which is simply a collection of possible corruption sets,
learns nothing from the honest parties’ inputs, which, as will be made more precise in
Section 1.2, is formalized by requiring that the protocol execution somehow looks “close”
to an ideal world in which a trusted third party is used. In this section we explore in a bit
more detail what the concept of these two executions being “close” means. The description
here is rather verbal and intuitive, and it is only made more precise in Section 1.2 where
we properly define the idea of simulation-based security.

Perfect security. In this case the real and ideal executions follow the exact same distribu-
tion, so, from the point of view of the adversary, nothing is learned about the honest
parties’ inputs from the protocol execution. This is regardless of the computational
resources available to the adversary.

Statistical security. This is a slightly weaker notion, and it is also called unconditional
security. In this case the real and ideal worlds have statistically close distributions,
meaning that the distributions from the real and ideal worlds may not be the same,
but are very close. More precisely, by controlling certain parameter of the given
construction, it is possible to shorten the gap between these two distributions by any
desired amount. To illustrate what this type of security entails, it is useful to think, as
an example, of an MPC construction that achieves the following: the real and ideal
worlds follow the exact same distribution, except that there is a very small chance
(regardless of its computational powers) in which the adversary can completely break
privacy of the honest parties’ inputs in the real world. In this case, security would be
statistical.

Computational security. The two security notions above are very powerful, but as we
will see in Section 1.3, they are not always possible to achieve. As a result, and
motivated by practice, it is useful to restrict security to only efficient adversaries, that
is, adversaries that make use of a bounded amount of resources, which are formally
modeled as algorithms running in polynomial time (in terms of a security parameter).
In a computationally secure protocol, the distributions from the real and ideal worlds
are indistinguishable, but only as long as the adversary is not infinitely powerful,
which is enough for practical use. As an example, consider an MPC protocol in which
some party has to send an encryption of its input using a secret key. Although this

21

Chapter 1 The Theory of Multiparty Computation

might be hard to break for an adversary not knowing the secret key, an attacker with
infinite resources can brute-force the ciphertext to recover sensitive information.

The first two notions, perfect and statistical security, are commonly referred to as
information-theoretic security. It is typically the case that protocols satisfying these notions
of security tend to be more efficient than computationally secure ones, given that they
are usually simpler and do not rely on certain parameters that aim at making a given
computational problem hard. However, as we have mentioned, information-theoretic
security is not always possible to achieve.

1.1.3 Output Guarantees

Recall that, to define security of secure multiparty computation protocols, we have resorted
to comparing the real world, where the execution of the given protocol takes place, to an
ideal world where the desired function is computed by a trusted third party, who receives
the inputs from the parties and promises to reveal only the output. Defined in this way, the
parties have the guarantee in the real world that their inputs are as protected in the actual
interaction as in the ideal world, where only the output is revealed. However, another
subtle property of the trusted third party is that, as described above, it always returns the
correct output of the computation to all of the parties. Unfortunately, as we will see in
Section 1.3, this notion, which is called guaranteed output delivery in the literature, is not
always possible to achieve in the real world. In some settings, for example, the best that
can be achieved is that if the parties obtain a result, it is guaranteed to be the correct one,
but it could be the case that no party obtains any result at all.

From the above, it becomes necessary to relax the requirements in the ideal world regarding
the output of the computation. To this end, we present the following three notions related
to this. We remark that, in any of the three concepts below, whenever the parties obtain an
output it is guaranteed to be the correct one.

Guaranteed output delivery. As described above, in this case all the parties are guaranteed
to obtain the output, regardless of the actions that the corrupt parties perform.

Fairness. In this case it could happen that the adversary causes the honest parties to not
obtain the output, which is referred to as causing the parties to abort. However, if
this happens, then the corrupt parties (and hence the adversary) are guaranteed to
also not learn the output.

Security with abort. In this scenario it can be the case that the adversary denies the honest
parties from learning the output, while the corrupt parties may still learn the result.
Furthermore, we identify two possible variants: in security with unanimous abort all
the honest parties are guaranteed to either receive the output or abort altogether,
and in security with selective abort, which is even weaker, the adversary can choose
which honest parties receive output and which honest parties abort.

If the adversary is passive, the corrupt parties will behave exactly as if they were honest
parties, following the protocol specification, so in this case it always holds that the protocol

22

Chapter 1 The Theory of Multiparty Computation

terminates with the correct output, which in particular means that, trivially, guaranteed
output delivery is obtained.

Additionally, we note that, although the most desired property is guaranteed output delivery,
which ensures availability of the output under all possible attacks, the notion of fairness
is already very useful in practice, as the adversary does not learn or gain anything from
stopping the (honest) parties from learning the output. For example, if the computation
under consideration is distributed voting, a protocol that simply satisfies security with
abort may allow the adversary to first learn the outcome of the voting, and decide to deny
the honest parties from learning this if desired. A protocol with fairness, however, may
simply disrupt the computation (which is of course a problem of a different nature on its
own), but the adversary cannot decide to cause an abort depending on the output of the
computation.

1.1.4 Different Functions to be Computed

Another important consideration when designing secure multiparty computation protocols
is what type of computations they are intended to operate with. In this section we provide
a general discussion on the topic, differentiating between several important types of
computations.

1.1.4.1 Public-Output vs Private-Output

So far, our description of the function to be computed has been f(X1, . . . , Xn), with z
being the output of applying this function to the inputs of the parties, x1, . . . , xn, which
is the value that all parties learn at the end of the execution of a given secure multiparty
computation protocol. This scenario is referred to as the public-output setting, since there is
only one result, that all parties learn equally. Alternatively, we may consider the case where
each party receives a different result. In this case, we regard the function as producing n
different outputs (z1, . . . , zn), where each party Pi is intended to learn (only) zi. Clearly,
this scenario, called the private-output setting, is a generalization of the public-output case
(by taking zi = z for i ∈ [n]), but it is fortunately not much harder to achieve. The reason
for this is that, given an MPC protocol for public-output functions, each party can simply
provide as an additional input a secret-key only known to this participant, and the function
to be computed can be modified so that all the outputs are returned to all parties, except
that output zi is “encrypted” under the key provided by party Pi. This way, only this party
can recover its corresponding output.

In this document we sometimes consider the public-output case (specially when computing
arithmetic circuits), and in some other occasions we consider the private-output setting
(when in the context of the arithmetic black box model). See Section 1.2.6.2 for details.

23

Chapter 1 The Theory of Multiparty Computation

1.1.4.2 Reactive vs Non-Reactive Functionalities

A reactive functionality is one that enables the parties to learn “partial results” of the
computation, and continue the process in a way that perhaps depend on these intermediate
results, plus possibly new inputs. A good example of this type of computations is given
by, for example, a commitment scheme, which enables a party to commit to a given value
without revealing its contents, to do so at a later stage without the ability of announcing
a different value to the one committed earlier. On the other hand, in a non-reactive
functionality the parties simply provide their inputs at the beginning of the protocol, and
obtain the result at the end of the execution. There are many relevant applications that can
be phrased as non-reactive functionalities, like data processing tasks, distributed voting
and auctions, and many others.

Clearly, reactive secure multiparty computation is a more general setting than the non-
reactive case. However, it is generally the case that one can obtain a secure multiparty
computation for reactive functionalities from a protocol that only supports non-reactive
ones by making use of a technique called verifiable secret-sharing. In short, this technique
enables the parties to obtain a “shared state” of each checkpoint in a reactive computation
using the non-reactive protocol, which can be reconstructed to obtain partial outputs.
Although there are certain scenarios in which non-reactive computation is possible while
reactive computation is not, it is generally the case that the two notions are back-to-back,
so the difference between the two is typically irrelevant for the discussion of different
secure multiparty computation protocols.

1.1.4.3 General vs Special-Purpose MPC

Another relevant distinction for secure multiparty computation protocols lies in whether
they are designed to support any arbitrary function, or if they are tailored to specific
functions. The former family is typically referred to as general-purpose MPC protocols,
while the latter, being more targeted to particular computations, is called special-purpose
MPC.

It is fair to say that most of the proposed secure multiparty computation protocols in
the literature correspond to general-purpose constructions. However, at first glance, this
may sound as an extremely difficult task: how can a single protocol support any arbitrary
computation? The catch is in the way that computations are represented, which involves
the concept of arithmetic circuits, discussed below.

Arithmetic Circuits and General-Purpose MPC. As we have mentioned above, re-
searchers in the field of secure multiparty computation have focused mostly in designing
general-purpose MPC protocols, which are intended to securely compute any functionality
that the parties wish to compute. This is possible thanks to an abstraction known as
arithmetic circuits, which concisely captures any possible function in terms of rather simple
operations over certain algebraic structure.

Consider a finite field F, and let f : Fn 7→ F be any function defined over this field. A well

24

Chapter 1 The Theory of Multiparty Computation

known fact in field theory is that every such function can be written as an arithmetic circuits,
which in formal terms is simply a directed acyclic graph with labeled nodes. Denoting by
(i, o) a node that has fan-in i and fan-out o, every node is either of the type (0, 1), (2, 1), or
(1, 0). (0, 1) nodes are called the input gates, and they model the inputs to the computation.
(2, 1) nodes are call the operation gates, and they represent field operations. A field has
two main operations, addition (+) and multiplication (·), and this is reflected in the fact
that there are two types of gates addition and multiplication gates, each corresponding to a
different operation. Finally, (1, 0) nodes are the output gates.

Edges are also called wires, and in an actual execution of the function f , each wire
has associated a value to it corresponding to an intermediate result of the computation.
Wires outgoing from an input gate are associated to the actual value provided as input,
corresponding to the given input gate. Wires leaving an operation gate are matched with
the values corresponding to the result of applying the corresponding operation (addition or
multiplication) to the (associated values to the) incoming wires to the gate at hand. Finally,
the wire that goes into the output gate is precisely the result of the computation.

With this tool at hand, designing a general-purpose secure multiparty computation protocol
reduces to constructing a protocol for securely computing arithmetic circuits exclusively,
which is what most of the research in the field of MPC is concerned with. Furthermore,
among all different techniques to design secure multiparty computation protocols, there is
a promising general template known as secret-sharing-based MPC that, in a nutshell, works
by letting the parties have a “hidden” representation of the inputs to the computation,
together with some methods to obtain a hidden version of the output of each operation gate,
assuming the inputs are already hidden. Eventually, the output is reached in hidden form,
point in which the parties can “reveal” it so that the result of the computation is learned.
From this template, the task of secure multiparty computation reduces to designing a
method to (1) keep “hidden” versions of different values, (2) obtain a hidden version of
the result of an addition or a multiplication, assuming the inputs are already hidden, and
(3) reveal a hidden value. This, at a first glance, seems more feasible than the daunting
task of securely computing any conceivable function.

General-purpose MPC protocols are particularly useful in theory as they show what type
of computations are possible, which, accompanied with impossibility results, provide us
with a complete landscape of the sorts of computations we can hope for. However, their
reachability in practice can be, in principle, more questioned. For instance, recall that
these protocols work by first representing the desired computation as an arithmetic circuit
over a finite field, which is simply a combination of additions and multiplications over
this structure, but it is not at all clear what type of practical applications lend themselves
to be efficiently expressed as an arithmetic circuit. As an starting example, applications
that involve real-valued arithmetic, such as these in the domain of machine learning,
for illustration, are more naturally written in terms of operations over the real numbers,
including possibly additional processes that go beyond basic additions and multiplications
(e.g. taking square roots, applying sine or cosine, or even non-mathematical operations
such as flipping the bits of the given value in the bit-representation).

In spite of the above, many general-purpose MPC protocols are not a mere theoretical tool,
as they tend to be the basis, or the starting point, of a wide range of more specialized
protocols. This is achieved by adding certain subprotocols for specific operations that

25

Chapter 1 The Theory of Multiparty Computation

appear repeatedly across multiple applications, such as the case of real-valued arithmetic
illustrated above. Additionally, the existence of highly-efficient general-purpose MPC
protocols has allowed the creation of several MPC frameworks that enable a set of parties
interested in securely computing a given function to achieve this task with little-to-none
knowledge of secure multiparty computation. This is achieved by enabling computation
over arbitrary computer programs that, in essence, resemble an arithmetic circuit with
several available sub-operations added on top. Popular frameworks of this kind include
MP-SPDZ [31], SCALE-MAMBA [1], EzPC [12], among others, and it is fair to say that these
implementations play a pivotal role into taking secure multiparty computation techniques
from theory to practice.

Special-Purpose MPC. A special-purpose secure multiparty computation protocol ex-
ploits particular properties of the given function in order to optimize the construction to
the case at hand. This has major relevance in practice, but quite surprisingly, it also plays
an important role in the theory of MPC.

First, in terms of practice, the benefits of considering special-purpose protocols are generally
obvious: by exploiting the structure of the function to be computed it is typically the case
that multiple savings in efficiency can be achieved with respect to the use of a more generic
protocol for arbitrary computation. We remark, however, that many special-purpose MPC
deployments have as a starting point more generic techniques to compute basic additions
and multiplications, which come from the general-purpose MPC domain.

On the other hand, special-purpose secure multiparty computation constructions also have
a tremendous impact in theory, by considering certain concrete functionalities. In general,
the theory of MPC, as far as feasibility or impossibility results is concerned, is not interested
in secure multiparty computation protocols for very specific tasks such as image analysis or
distributed voting. This is because, at the end of the day, one of the major results in the
field of MPC is that secure multiparty computation of any function is generally possible, so
designing special-purpose for these practically-oriented tasks is not that relevant in this
direction.

Instead of considering special-purpose MPC protocols as a way of improving efficiency of
more generic constructions, the main contribution of these type of protocols in terms of
theory lies in simplifying the construction of other, possibly more general-purpose, protocols.
More precisely, different useful functions that turn out to be crucial for the development of
other protocols are identified, and as a result, advances and developments in regards to
MPC constructions for these primitives, specifically, lead to general improvements across
all other constructions that make use of these concrete functionalities. A good example
of a particular function that is not only particularly useful on its own, but also serves as a
major building block in many other secure multiparty computation protocols, is Oblivious
Transfer. In short, this is a two-party functionality that receives two inputs, (m0,m1) and
a bit b from two parties P1 and P2 respectively, and returns mb to P2, effectively allowing
this party to learn only the chosen value mb among m0 and m1, while P1 does not learn
which value was chosen. For a more detailed definition on this primitive, constructions and
applications, we refer the reader to e.g. [34].

26

Chapter 1 The Theory of Multiparty Computation

1.1.5 Efficiency Metrics

Finally, we discuss some of the efficiency metrics that we are typically interested in when
designing secure multiparty computation protocols.

Computation complexity. A first measure is the amount of computation that each party
has to carry out locally. Fully homomorphic encryption techniques are typically very
costly in terms of computation, although they tend to have minimal overhead in
terms of communication.

Communication complexity. Since MPC is a distributed application, it is important to
measure how many bits need to be transmitted overall by all the parties during
a protocol execution. Protocols based on garbled circuits tend to have a large
communication complexity, although they round count is generally small.

Round count. Finally, orthogonal to communication complexity, which is affected by
bandwidth resources, is the concept of round count, which is more relevant in
terms of the latency between the parties. A communication round consists of one
execution of the parties sending one message to each other. If a protocol involves
many rounds, and there are parties having high-latency links between them, then
the overall efficiency of the given MPC protocol might be poor. Secret-sharing-based
MPC protocols, although they tend to be very reasonable in terms of communication
complexity, suffer from a round count that is proportional to the number of layers
present in the arithmetic circuit at hand.

1.2 Simulation-Based Security

One of the major achievements of modern cryptography lies in properly formalizing several
constructions like encryption or digital signatures, so that rigorous mathematical reasoning
could be applied on these. This way, concrete guarantees and relationship across different
notions could be achieved, as exemplified by the idea of “provable security”.

Secure multiparty computation appeared in the late 80’s as an interesting task to study,
having many potential applications and involving very interesting techniques. However,
it took almost a decade until more formal approaches to secure multiparty computation
appeared, which enabled a more rigorous treatment of the area. The “mathematical
framework” under which the task of secure multiparty computation can be phrased is
highly non-trivial, and is undoubtedly considered a contribution on its own.

1.2.1 High-Level Idea

There exist several different frameworks for formalizing secure multiparty computation
protocols, like the stand-alone model [9], the UC framework [10] and the SUC framework
[11], among others. However, although there are minor differences from one model to the

27

Chapter 1 The Theory of Multiparty Computation

other, what is common across all these approaches is that security is defined via simulation,
an idea that is already common in the area of zero-knowledge proofs, for example, and
serves the purpose of properly defining the notion of “not learning anything beyond X”. To
provide a high level idea of what this technique is about, recall from Section 1.1 that the
idea of a given secure multiparty computation protocol being secure is related to ensuring
the adversary, who corrupts a subset of the parties, does not learn anything about the
inputs from the honest parties, except perhaps from what is leaked by the output of the
computation itself.

Formalizing the idea of an adversary not learning some data is not new in cryptography, as
it has appears already, for example, in constructions such as encryption schemes, which are
formalized using game-based security.4 The main challenge in the MPC setting, however,
is that the adversary does learn something about the data that is intended to be hidden,
namely, the output of the computation. Furthermore, another major complication lies
in the fact that secure multiparty computation is a distributed application, involving
communication among the parties according to some specified pattern. The adversary gets
to see all the messages exchanged with the corrupt parties during the protocol execution,
and when the adversary is active, it even gets the power to modify the behavior of the
corrupt parties. These complications put a barrier in the use of simpler game-based
definitions widely used across cryptography.

The key idea to tackle the complication above, as we already hinted at in Section 1.1,
is to consider an ideal world that captures the desired properties of the interaction, and
somehow requiring that the real world, where the actual protocol execution takes place,
is indistinguishable from the ideal world. Typically, the ideal world consists of the parties
sending their inputs to a third trusted party who computes the function and returns
the result, and only the result, to the parties. Now, to claim that the two worlds are
indistinguishable, a natural approach is to claim that the adversary cannot distinguish the
real from the ideal world. However, this approached is doomed as these two worlds are
trivially distinguishable from the point of view of the adversary: in the real world there
are messages going to and from all the parties, there are several rounds, and there is no
trusted parties, while in the ideal world there is a third trusted party that simply receives
inputs and sends output. These two patterns look entirely different, so the adversary can
clearly distinguish between the two.

This is where the idea of simulation kicks in. In the real world, the adversary, corrupting a
subset of the parties, interacts with the honest parties and learns a result at the end of the
execution. In the ideal world, the adversary will not directly interact with the trusted party.
Instead, while the honest parties do interact with the third trusted party, the adversary
interacts with some “virtual” honest parties that, unlike the actual honest parties, do not
have access to the inputs intended to be kept hidden towards the adversary. These virtual
honest parties are coordinated by a simulator, who also controls the corrupt parties in the
ideal world, sending input and receiving output from the third trusted party. This way, the
simulator effectively serves as an interface that enables the adversary to interact with the
third trusted party in the ideal world, while having an interaction that equals the one from
the real world.

4In a nutshell, game-based security considers a scenario in which the adversary interacts with the system
trying to distinguish certain data that is intended to be hidden, and security is formalized by requiring that
no adversary can win at this “game” with high probability.

28

Chapter 1 The Theory of Multiparty Computation

To prove that a given secure multiparty computation protocol is secure, it is then necessary
to define a simulator that acts as the interface sketched above, in such a way that the real
world, where the adversary interacts with the actual honest parties holding the real inputs,
is indistinguishable from the ideal world, where the adversary interacts with the virtual
honest parties controlled by the simulator. Notice that the only power the simulator counts
on in order to “fool” the adversary is the access to the third trusted party, which receives
inputs and reveals solely the output. As a result, intuitively, this means that the adversary’s
experience in the real world can alternatively be “recreated” by having access only to the
third trusted party, which, from a philosophical standpoint, instantiates the core idea of the
adversary only learning the output of the computation, after the interaction with the honest
parties in the real world.

With the intuitive approach outlined above, we now proceed to provide slightly more
formal details on how simulation-based security works. We remark that, in this document,
we focus only on the UC framework, leaving other simulation-based security notions such
as stand-alone security aside. Furthermore, the description here is not intended to be
fully self-contained, and the approach to the UC framework used in this section is taken
from [16]. For a more complete treatment of the UC framework we refer the reader to this
reference.

1.2.2 Interactive Agents

We begin by considering all the different entities involved in the formalization of a secure
multiparty computation protocol and their security. Our starting point is the concept of an
interactive agent, which, at an intuitive level, is a computational device that receives and
sends messages, holds internal state and carries out computations. For example, the parties
in a secure multiparty computation protocol are interactive agents, but in the framework
under which these ideas are formalized several other interactive agents appear. Interactive
agents can be formalized by the means of interactive Turing machines, which are simply
traditional Turing machines (or algorithms) that, additionally to carrying out computations,
can send and receive data to and from certain communication ports, which can be thought
of as computer buses or channels.

1.2.2.1 Relevant Interactive Agents in the UC Framework

Now we describe the different interactive agents that appear in the UC framework. As we
have mentioned already, the first natural interactive agents are the parties, which are the
actual devices carrying out the computation, but several other interactive agents such as
the simulator or the “trusted third party” appear. We discuss these below.

Parties. The parties, which we denote by P1, . . . , Pn, constitute the first natural example
of interactive agents. Each party Pi, having certain input to the computation, proceeds
according to the instructions of the protocol, performing local computation and sending/re-
ceiving data to/from the other parties, as required. At the end of this execution, each party
Pi obtains the result of the computation.

29

Chapter 1 The Theory of Multiparty Computation

Functionalities (in the real world). A functionality is simply an interactive agent that
connects to the parties. It receives messages from them, performs local computation,
maintains internal state, and sends messages back to the parties.

Although there is only one “type” of functionalities, these are used in two different contexts,
with the first being in the real world, where the actual execution of the protocol takes place.
In an execution of a secure multiparty computation protocol, the parties may be able to use
certain “external” resources that may aid them during the computation. As an example, the
parties may count on a third trusted party that, although it may not compute the whole
desired function for the parties, may provide certain help like distributing some secret keys,
or sending certain certificates. This can be formalized as a functionality that the parties
talk to during the execution of the protocol at hand. Furthermore, what is crucial is that,
as we will see in Section 1.2.5, if later on another protocol is developed that imitates the
behavior of this functionality, then the parties can use this construction as a subroutine
and the overall construction remains secure, without the need of a third trusted party to
assumed to provide the secret-key or certificate service from the example above.

Furthermore, so far we have been implicitly assuming that the parties communicate among
each other by means of special ports set between every pair of parties. However, now that
we have introduced the concept of a functionality, it is convenient to consider communica-
tion instead as a functionality which receives messages from and sends messages to the
parties. For example, a simple peer-to-peer network may be modeled as a functionality
that acts as follows: party Pi sends a message of the type “send message m to party Pj”,
and the functionality sends to Pj the message “party Pi sends the message m”.5 Although
this approach may seem as an unnecessary complication, it actually plays the important
role of enabling flexibility in the way the parties talk to each other.6 For example, in this
document we consider as a basis a functionality that, in addition to modeling point-to-point
encrypted and authenticated channels, supports an additional broadcast channel. More
details are provided in Section 1.2.6.1.

Functionalities (in the ideal world). The second setting in which functionalities are used
is in the ideal world. Recall that, in that world, there is a trusted third party that receives
the inputs from the different parties and returns the result of the computation. This is
precisely a functionality, which, as defined above, is an interactive agent that receives
inputs from the parties, performs certain internal computation and sends a result to the
parties.

In the most simple case, a functionality receives the inputs to a given function, evaluates
this function internally, and returns the result to the parties. However, the concept of
a functionality allows us to model much more complex interactions. For example, in
Section 1.1.4.2 we discussed non-reactive computation, which enables the parties to
obtain partial results and continue the computation afterwards. This can be captured
by a functionality that receives inputs from the parties, stores some internal state, sends

5Functionalities of this type are referred to as communication resources in [16], but we avoid this terminology
in order to make it more clear that these functionalities are no different than the ones considered in the
ideal world.

6Furthermore, an important low level detail of functionalities is that they leak certain information to the
environment, which can be used to model the fact that, in practice, the adversary might be able to see
certain metadata such as when an honest party sent a message to another honest party, its size, etc.

30

Chapter 1 The Theory of Multiparty Computation

partial results, and continues in this fashion as indicated by the parties. We will discuss in
Section 1.2.6 some basic functionalities we will use throughout this document.

Adversary. The adversary, denoted by A, is modeled as another interactive agent, and it
has ports communicating it to the each of the corrupt parties. If the corruption is passive,
these ports are used to inform the adversary about the internal state of the corrupt parties,
including the messages they have received. On the other hand, if the corruption is active,
these ports are used to “fully control” the corrupt parties.

Environment. This entity plays a crucial role within the notion of simulation-based
security. Intuitively, the environment is in charge of distinguishing the real world from
the ideal world. We have mentioned in Section 1.2.1 that it is the adversary who cannot
distinguish between the real and ideal worlds, but this is unfortunately insufficient. The
main reason for this is that, if we simply require that the adversary cannot distinguish
between the two worlds, then, even though this would imply that the inputs from the
honest parties are protected, it might be the case that the honest parties do not receive
the correct output of the computation, which is also an important concern. This could
occur since, to “fool” the adversary, the simulator only needs to create a similarly-looking
interaction towards the adversary, but it could be that the honest parties in the real world
end up computing a completely different result than in the real world, while in the ideal
world they obtain the correct result. Since the adversary does not see these outputs as they
belong to honest parties only, the two worlds would still be indistinguishable.

In order to address this issue, indistinguishability is defined in such a way that the inputs
and the outputs of the computation are also taken into account. This is formalized by
considering another agent, the environment, typically denoted by Z, that indicates the
parties which inputs to use, and receives from each party the result they obtained in the
world under consideration (in the ideal world this corresponds to the correct result of the
computation, while in the real world this is the result the party computes in the execution
of the given protocol). Under this new consideration, a protocol is said to be secure if
no environment can distinguish between the real and ideal worlds. Notice that this in
particular means that the adversary cannot distinguish between the two worlds as otherwise
the adversary could inform the environment which world is currently being executed, but,
even if the two executions are indistinguishable to the adversary, the environment can still
make use of the inputs it provided to the computation together with the outputs received to
attempt to distinguish. If, even after this, the two executions are still indistinguishable, then
it is because not only the distributions look similar to the adversary but also the outputs in
the real world follow the same distribution as in the ideal world with respect to the inputs
provided, which corresponds precisely to the correct results of the computation.

In the UC model, the environment and the adversary are essentially “one and the same”,
which is modeled by the fact that these two agents have a shared port that enables the
environment to fully control the adversary, in essentially the same way as the adversary
can fully control the honest parties in the case of an active corruption. Given that these
two entities, including also the corrupt parties, are so entangled, in this work we merge the
environment, the adversary and the corrupt parties, using the term environment/adversary
indistinctively to refer to the resulting interactive agent. This entity is in charge of (1)

31

Chapter 1 The Theory of Multiparty Computation

playing the role of the corrupt parties and (2) sending inputs to the honest parties and
receiving output from these.7

Simulator. Finally, as we have already discussed in Section 1.2.1, the simulator is in
charge of acting as an “interface” between the adversary and the desired functionality in
the ideal world. This is formalized by means of an interactive agent that connects to the
adversary/environment in the ideal world through the same ports as the corrupt parties do
in the real world, and also connects to the functionality under consideration, “on behalf”
of the corrupt parties. This way, the simulator can send inputs to and receive outputs from
the functionality, which constitutes the simulator’s main tool to create an indistinguishable
scenario towards the environment with respect to the real world.

1.2.3 Interactive Systems

An interactive system is simply a collection of interactive agents. As an example, a collection
of parties is an interactive system, which we refer to as a protocol. We first review some
notions that will be important for our discussions.

Open/closed ports. Recall that a communication port is simply a “channel” that different
interactive agents have access to in order to send a receive messages. For example, each
party has shared ports with the functionalities used in the protocol execution, which
enables them to send and receive messages to/from it. An interactive system, being a
collection of interactive agents, contains several ports. Many of them will involve at least
two interactive agents, like the ports used between each party and a functionality. However,
in an interactive system some ports may only involve one interactive agent. For example,
the environment is in charge of sending inputs to and receiving output from the honest
parties, plus it can send instructions to and receive information from the corrupt parties,
which means that the parties have ports to communicate with the environment. Given this,
in an interactive system such as a protocol, which does not contain the environment, these
ports only involve one interactive agent (or, in other word, these ports are “open-ended”).
Other open ports in a protocol are these that the parties use to communicate with the
different functionalities.

Ports involving at least two interactive agents are known as closed ports, while ports
involving only one interactive agent are called open ports.

Open/closed interactive systems. An interactive system with open ports is referred to as
an open interactive system, and an interactive system that only has closed ports is known
as a closed interactive system. For example, a protocol is an open interactive system, given

7More generally, the environment, as the name implies, gets to see all the “execution setting”, which, on
top of inputs and outputs, also involves other “metadata” such as information about when a party sends
a message to another, the sizes of these, etc. This is formalized in [16] by means of leakage ports, which
provide the environment with this type of information. The environment is also in charge of “scheduling”
the execution of the protocol. We refer the reader to [16] for details.

32

Chapter 1 The Theory of Multiparty Computation

that it has the open ports corresponding to the interaction between the environment and
the parties, as well as between the parties and the different functionalities used in the real
world.

Open interactive systems cannot in principle be run, as they may miss some data that
should be written into the open ports. For example, a protocol cannot be run, given that it
misses at least one functionality the parties can use for communication, and it also misses
the inputs to be used have to be provided (by the environment) into the open ports (plus,
the environment is also in charge of scheduling the execution itself). On the other hand,
if we consider a larger interactive system consisting of the protocol (which is the set of
parties), the different functionalities to be used, and the environment, now we obtain a
closed interactive system. This system can be run, as the environment can now provide
inputs to the parties, execute the protocol, obtain results (and in fact, it can do this multiple
times).

Composition of interactive systems. Given two interactive systems I1 and I2, it is
possible to obtain a bigger system from these two by considering the collection of all the
interactive agents involved in these two sets, or, in other words, the union of the collections
I1 and I2. This is denoted by I = I1♦I2. For example, we considered above a closed
system given by Z♦Π♦(F1♦ · · ·♦F`), where Π was the protocol under consideration and
F1, . . . ,F` the various functionalities used in the protocol execution.

1.2.3.1 Relevant Interactive Systems in the UC Framework

We already discussed an important interactive system, a protocol, which is simply a collec-
tion of parties. Now we consider the two main interactive systems in the UC framework:
the real and ideal worlds. Recall that, in the real world, is where the actual execution of
the given protocol takes place, while in the ideal world the parties make use of a trusted
third party, modeled as a functionality, to compute the function securely. These ideas are
easily formalized via the notion of an interactive system.

Real world. Intuitively, the real world is where the actual execution of the secure mul-
tiparty computation protocol at hand takes place. We formalize this via the following
interactive system. Let Π = {P1, . . . , Pn} be the protocol and let F1, . . . ,F` be the func-
tionalities to be used in the execution of the protocol. The real world is defined as the
interactive system given by Real := Π♦(F1♦ · · ·♦F`). Notice that this is an open system,
as it requires the environment to provide inputs and schedule the protocol execution.

Ideal world. At a high level we have considered the ideal world as where the parties send
their inputs to a third trusted party, and receive outputs afterwards. This had to be refined
to include a simulator S, that acts as the interface between the adversary/environment,
and the third trusted party.

33

Chapter 1 The Theory of Multiparty Computation

Let F be the functionality that models the desired computation to be carried out securely
(i.e. the third trusted party), and let S be a simulator. The ideal world is defined as the
interactive system given by Ideal := S♦F. Once again, this is an open system, and in fact it
has the same open ports as the interactive system Real: the simulator contains open ports
for the environment to connect, as if it were connecting to the corrupt parties in the real
world, and the functionality F has open ports for the environment to provide input to and
receive output from the honest parties. In particular, the interactive systems Z♦Real and
Z♦Ideal are both closed.

1.2.3.2 Parameterized Interactive Systems

Finally, before we dive into the actual security definitions we will consider in this work, we
remark that some interactive agents (and hence, interactive systems) can contain several
external tweakable parameters. For example, a protocol typically allows for computation
over different algebraic structure (e.g. say fields, but of different sizes), or a functionality
may be parameterizable according to the length of the messages it accepts, to cite some
examples. These are all external parameters, meaning that they have to be set before
considering an execution of these interactive agents. For illustration, they can be thought
to be analogous to compile-time parameters in compiled programming languages.

A very important external parameter is the security parameter. Intuitively, this is a natural
number that, as it grows larger, the protocol becomes “more secure”. This will become
clearer in Section 1.2.4 where we consider different notions of security. For now, it suffices
to recall that, among all the different external parameters that the various interactive
agents under consideration have, one we make explicit mention to is the security parameter,
denoted by κ. To make this explicit we may sometimes write I(κ), where I is an interactive
system/agent that is parameterized by κ.

1.2.4 Security Definition

Having defined the different interactive agents involved in our framework, we now turn
out attention to defining security. As we have already mentioned, this will be achieved by
requiring that no environment can distinguish between the real and ideal executions. In this
section we approach in more detail the task of properly defining “indistinguishability”.

We begin by introducing some minor preliminaries. First, we present the definition of a
negligible function.

Definition 1.1 (Negligible functions). A function µ : N 7→ [0,∞) is negligible if, for every
c ∈ N, there exists κc ∈ N such that, for every κ ≥ κc, it holds that µ(κ) ≤ κ−c. Alternatively,
µ is negligible if, for every polynomial p(X), there exists κp(X) ∈ N such that, for every κ ≥ κp(X),
it holds that µ(κ) ≤ p(κ).

An example of a negligible function is µ(κ) = 2−κ. Intuitively, a negligible function is a

34

Chapter 1 The Theory of Multiparty Computation

function whose inverse, asymptotically, grows faster than any possible polynomial. These
functions are widely used throughout cryptography to represent very small quantities.

The second consideration we must take care of before approaching our formal definitions, is
that we include additional semantic notion to the environment. This interactive agent is in
charge of distinguishing the real from the ideal execution, and it does so by interacting with
either of these worlds, and outputting a bit,8 that is, either 0 or 1, that represents which
world the environment considers it is interacting with. As we will see, the assignments
between these bits and the two worlds is irrelevant. Whenever the environment Z interacts
with an interactive system I, and produces output b, we denoted this by b← Z♦I. Notice
that this is a random variable, given that the whole computation carried out by Z is
potentially randomized.

Below we consider a setting in which a protocol Π is used to securely compute a func-
tionality F, while making use of the functionalities F1, . . . ,F`. We remark that all the
notions below are set with respect to a given adversarial structure, which, as discussed in
Section 1.1, dictates the possible sets that can be corrupted.

1.2.4.1 Perfect Security

First we define the idea of perfect security, which reflects a protocol whose security cannot
be broken even by unboundedly powerful environments/adversaries.

Definition 1.2 (Perfect security.). We say that a protocol Π securely instantiates a functional-
ity F in the (F1, . . . ,F`)-hybrid model with perfect security if there exists a simulator S such
that, for any environment Z and for every κ ∈ N,

Pr[1← (Z♦Real)(κ)] = Pr[1← (Z♦Ideal)(κ)],

where Real = Π♦F1♦ · · ·♦F` and Ideal = S♦F.

Let us analyze the definition above in detail. First, perfectly secure protocols typically do
not rely on the parameter κ, so we can remove it from the definition (it is included for the
sake of maintaining certain “uniformity” in the notation with respect to the other notions of
security described below). Now, the security definition above states that, there must exist
a simulator S such that Z outputs 1 when interacting with the system Real with exactly
the same probability that Z would output 1 when interacting with the system Ideal. This
means precisely that Z cannot distinguish between the two worlds since, if it could, it
could choose for example to output 1 only in the real world, while outputting 0 in the ideal
world (so Pr[1← Z♦Real] = 1 and Pr[1← Z♦Ideal] = 0).

Notice that there is nothing special about the output 1. The same definition could have
been considered with the output 0, given that Pr[0← Z♦Real] = 1− Pr[1← Z♦Real] and
Pr[0 ← Z♦Ideal] = 1 − Pr[1 ← Z♦Ideal]. This remark also holds for the other security
notions below.

8An interactive agent, being an enhance Turing machine, can produce output simply by writing it to a special
tape and halting.

35

Chapter 1 The Theory of Multiparty Computation

Finally, the quantity |Pr[1 ← (Z♦Real)(κ)] − Pr[1 ← (Z♦Ideal)(κ)]| is typically referred
to as the statistical advantage of Z, and it is essentially a measure of how well Z can
distinguish between the real and ideal worlds. We see that, in the setting of perfect security,
the advantage of any environment is 0.

1.2.4.2 Statistical Security

Now we consider a more flexible definition that allows certain small distinguishing advan-
tage.

Definition 1.3 (Statistical security.). We say that a protocol Π securely instantiates a function-
ality F in the (F1, . . . ,F`)-hybrid model with statistical security if there exists a negligible
function µ(κ) such that, for any environment Z,9

|Pr[1← (Z♦Real)(κ)]− Pr[1← (Z♦Ideal)(κ)]| ≤ µ(κ),

where Real = Π♦F1♦ · · ·♦F` and Ideal = S♦F.

In this case, Z might be able to distinguish the two worlds “a little”, which is reflected
in the case that Pr[1 ← (Z♦Real)(κ)] and Pr[1 ← (Z♦Ideal)(κ)] may not be equal. In
fact, it could be the case that, for some values of κ, the environment might distinguish
the two worlds very well (for instance it can happen that Pr[1 ← (Z♦Real)(κ)] = 1
and Pr[1 ← (Z♦Ideal)(κ)] = 0 for some values of κ). However, the definition requires
that, as κ grows, this distinguishing advantage shrinks at a good rate. For example, if
µ(κ) = 2−κ, then choosing κ = 1 may be too bad since this means that the advantage that
the environment has to distinguish between the two worlds is only 1/2, but if κ = 40, then
this is reduced to 2−40, which is much more acceptable (in fact, 2−40 is a very common
value to aim for when designing statistically secure protocols).

1.2.4.3 Computational Security

Finally, we consider the “weakest” of the security notions regarding secure multiparty
computation protocols. In this case, the environment has a small distinguishing advantage,
but this only holds if the environment is computationally bounded, meaning that it runs in
polynomial time. In terms of practical meaning, this notion is good enough given that in an
actual MPC deployment all parties involved will use a bounded amount of computational
resources. Furthermore, as we will see in Section 1.3, some secure multiparty computation
scenarios do not allow for any of the previous notions, and require computational security
instead.

9Here we must slightly limit the environment with respect to these from Definition 1.2, which did not have
any limitation. In this case, we must assume that, although Z might be computationally unbounded, it
only makes a polynomial (in κ) number of “calls” to either Real or Ideal. Otherwise, the notion cannot
be achieved, since by interacting with one of the two worlds a super-polynomial number of times the
distinguishing probability can be arbitrarily improved.

36

Chapter 1 The Theory of Multiparty Computation

Definition 1.4 (Computational security.). We say that a protocol Π securely instantiates a
functionality F in the (F1, . . . ,F`)-hybrid model with computational security if, for any
efficient environment Z,10 there exists a negligible function µZ(κ) such that

|Pr[1← (Z♦Real)(κ)]− Pr[1← (Z♦Ideal)(κ)]| ≤ µZ(κ),

where Real = Π♦F1♦ · · ·♦F` and Ideal = S♦F.

The first thing to notice with the definition above is that, unlike Definition 1.3, there is not a
single negligible function µ(κ) that bounds the advantage of every possible environment Z
when attempting to distinguish the real and the ideal worlds. This is not possible to achieve
in general since there can be a series of environments Z1,Z2, . . . with each Zc running in
time κc (which is polynomial), so for a fixed κ0 these environments have running times
κ10, κ

2
0, . . ., which is unbounded. Eventually, with enough running time it would be possible

to break the fixed bound on the advantage of µ(κ0).

As a result, the best that can be hoped for is that, for every single environment Z, its
distinguishing advantage can be upper bounded by a negligible function µZ(κ) that depends
on this environment. A practical interpretation of this can be the following. After a careful
analysis of the construction at hand, we consider the most efficient known attack on the
protocol, derive an environment Z from this, determine the associated negligible function
µZ(κ) and choose κ so that the advantage of this environment in particular is below certain
threshold (e.g. 2−80). Given our observations above, it could be the case that this choice of
κ is not sufficient to ensure a low distinguishing advantage for other environments, but at
least it rules out the best one that is currently known.

We remark that, in this document, even though we consider settings in which only com-
putational security is achievable, we only deal with perfect and statistical security in our
actual security proofs. This is because, for the settings not admitting this type of security,
we consider an offline/online paradigm that enables computation with perfect or statistical
security with the help of certain functionalities.

1.2.5 The Composition Theorem

Consider a protocol ΠF that securely instantiates a functionality F with the help of some
other functionality R, that is, in the R-hybrid model. In the real world, this functionality
R acts as some kind of third trusted party that the parties can use to aid them in the
task of securely computing F; however, in practice, this functionality R must somehow
be instantiated. For example, if R represents peer-to-peer encrypted and authenticated
channels then a protocol like TLS must be executed to set these up. Formally, this would
mean that a new protocol ΠR that instantiates R, perhaps in some T -hybrid model, is used,
and a natural question is then the following: what types of formal security guarantees can
the new protocol achieve? With the “new protocol”, we mean protocol ΠF but replacing the

10An efficient environment is one that, at a high level, runs in polynomial time with respect to its parameters.
However, there are several details that must be taken care of when properly defining this idea, given that
the environment, and in general, any interactive agent, exchanges messages with other agents and can
make “calls” to these. We refer the reader to [16] for details.

37

Chapter 1 The Theory of Multiparty Computation

interaction with the functionality FR by executions of the protocol ΠR, which instantiates
this functionality.

The core result of the UC framework, or universal-composability framework, is that,
precisely, the resulting composed protocol inherits the properties of the two protocols
involved, ΠF and ΠR. In particular, this protocol still instantiates F, but instead of doing it
in the R-hybrid model, it does it in the T -hybrid one, which is the functionality needed by
the protocol ΠR. It will typically be the case that T is much simpler than R, which implies
that progress has been achieved towards instantiating F securely.

Before we discuss the theorem in detail, we discuss some of the consequences of the above
high-level description of the result. First, the composition theorem enables a modular
description of highly complex protocols by breaking them into pieces and then proving the
security of each fragment separately, an approach that we make extensive use of throughout
this document. For example, in a large and complex protocol Π it might be the case that
certain piece or pattern is repeated in several places of the protocol execution. This part
can be isolated as a protocol Π′ on its own, instantiating certain functionality R, and the
protocol Π could possibly be expressed in a much simpler way in terms of this functionality.
Now, to prove security, we do not need to provide a proof of the big “monolithic” protocol
Π, but rather, we can prove that its simpler variant, which is set in the R-hybrid model,
instantiates the desired functionality, and then we can focus only in proving that the
protocol Π′ indeed instantiates R. For illustration purposes, it is useful to think of the
approach above as splitting complex functions in a programming language into simpler
constructions that make calls to other functions. This approach enables clear and modular
proofs and protocol descriptions, and it is arguably one of the key factors that has enabled
such a rich and fruitful body of research in the area of secure multiparty computation.

The composition theorem is not only useful as a pedagogical tool. In practice, secure
multiparty computation protocols are deployed in large and complex distributed systems
that are possibly running, concurrently, many other protocols to achieve other tasks. For
example, keys must be negotiated, random values must be sampled, inputs must be
provided, etc. The composition theorem ensures that, even if several protocols are executed
simultaneously, as long as each of them can be proven secure, then the resulting group of
protocols is also secure. This is a crucial observation that favors the UC framework with
respect to other formal models, such as the stand-alone one, that does not accept such
flexible concurrent composition.

Composing protocols. In order to properly state the composition theorem, it is important
to clearly and explicit define the different interactive agents and systems involved.

Consider a protocol ΠF = {P1, . . . , Pn} that instantiates a functionality F in the R-hybrid
model, and consider another protocol ΠR which has different parties {Q1, . . . , Qn}11 and
instantiates the functionality R in the T -hybrid model. Composing the protocols ΠF
and ΠR amounts to simply composing them as interactive systems, which is denoted by
ΠF♦ΠR.

11Recall that, formally, a party carries the “code” of the protocol that is executed, so different protocols involve
different parties.

38

Chapter 1 The Theory of Multiparty Computation

To make more sense of this notion, recall that the parties Q1, . . . , Qn have ports to commu-
nicate with the environment, while the parties P1, . . . , Pn have ports to communicate with
the functionality R. These ports are one and the same: messages sent from Pi to R are
received by Qi as coming from the environment, and similarly in the opposite direction.
This way, the interactive system {Pi, Qi} acts as one single party, interacting with the
environment (through Pi’s ports) and also with the functionality T (through Qi’s ports).
With this new interpretation, we see that the composition of two “compatible” protocols is
again a protocol, where the new parties might be interactive systems that behave just like
an interactive agent. For more details we refer the reader to Section 4.2.7 in [16].

The main theorem. With the notation above at hand, we are ready to properly state the
composition theorem, which is fully proven in [16].

Theorem 1.1 (Composition Theorem, Thm 4.20 in [16]). Let ΠF be a protocol instantiating
a functionality F in the R-hybrid model with perfect/statistical/computational security, and
let ΠR be a protocol instantiating R in the T -hybrid model with the same type of security.
Then, the composed protocol ΠF♦ΠR securely instantiates the functionality F in the T -hybrid
model, with the same type of security.

1.2.6 Some Basic Functionalities

We end this chapter with a description of some functionalities we use throughout this
document. This includes the basic communication resource that the parties use to interact
with each other, and the functionality used to model the task of general purpose secure
computation, with a variant to account for security with abort.

1.2.6.1 Underlying Communication Resource

As a starting point, we assume that the parties communicate through the following func-
tionality.

Functionality FP2P+BC

The functionality proceeds as follows:

• On input (message, j,m) from party Pi, send (message, i,m) to Pj .

• On input (broadcast,m) from party Pi, send (broadcast, i,m) to all parties.

The functionality above models a peer-to-peer encrypted and authenticated network in which
the parties can send messages to each other confidentially, and the adversary cannot
modified their contents when the sender is not an actively corrupt party. In addition to this,
in includes a broadcast channel, in which a sender with a given message can distribute this
data to the other parties in such a way that all parties are guaranteed to receive the exact
same value.

39

Chapter 1 The Theory of Multiparty Computation

All of our protocols assume FP2P+BC as a basis, so we do not write that a given instanti-
ation is “in the FP2P+BC-hybrid model”. Only in Section 1.3, where we present several
fundamental results, we sometimes consider a functionality FP2P that does not include the
broadcast channel.

1.2.6.2 Arithmetic Black Box Model

Recall that, in general-purpose secure multiparty computation, our aim is to securely
compute any possible function, written as an arithmetic circuit over certain algebraic
structure. In this work, we model such computations in two different ways. First, we
consider standard arithmetic circuits as defined in Section 1.1.4.3. These a directed acyclic
graphs with input, operation (addition and multiplication) and output gates, and they are
better suited for modeling non-reactive computation. Naturally, such type of computation
can be easily described as a functionality that receives inputs from the parties, computes
the given arithmetic circuit, and returns the output.

In some other places, however, we consider a more flexible functionality that is better
suited for reactive computation, which, as defined in Section 1.1.4.2, enables the parties to
obtain partial results, learn them, and continue the computation possibly depending on
these values. The model we make use of to represent such behavior is the arithmetic black
box model. At a high level, this allows the parties to access a “storage box” that can keep
values sent by the parties, but it also allows for additions and multiplications to be carried
out on stored values, saving the results. Finally, it enables the parties to read any stored
value at any time, which effectively models the setting of reactive computation. The formal
functionality is described below.

Functionality FABB: Arithmetic Black Box

The functionality proceeds as follows.

• On input (input, id, i) from the honest parties, send (input, id, i) to the adversary, wait
for input (value, id, x) from party Pi, where x ∈ Z/2kZ, and then store (id, x) in
memory.

• On input (comb, {ci}`i=0, {idi}i∈[`], id`+1) from the honest parties, retrieve (idi, xi) for
i ∈ [`] from memory and store (id`+1, z), where z = (c0 +

∑`
i=1 cixi) mod 2k. Then

send (comb, {ci}`i=0, {idi}i∈[`], id`+1) to the adversary.

• On input (mult, id1, id2, id3) from the honest parties, retrieve (id1, x) and (id2, y) from
memory and store (id3, z), where z = x · y. Then send (mult, id1, id2, id3) to the
adversary.

• On input (open, id) from the honest parties, retrieve (id, x) from memory and send x
to all the parties. Then send (open, id) to the adversary.

Formalizing security with abort. We have discussed in Section 1.1 three different no-
tions regarding the guarantees the honest parties have with respect to the output of the
computation: guaranteed output delivery, where all parties will receive output, fairness,
where honest parties receive output if the corrupt parties do so as well, and security with

40

Chapter 1 The Theory of Multiparty Computation

abort, where the adversary may cause the honest parties to abort, perhaps not obtaining
any output, while the adversary may be able to learn the result nevertheless.

We capture security with abort in the UC framework by endowing all functionalities with the
following behavior: at any point of the execution, the adversary can input a special signal
abort to the given functionality, which sends abort to all honest parties. Upon receiving
such message, each honest party immediately produces abort as output, and halts.

In the real world, whenever we say that “the parties abort”, it means that they produce
abort as output, and halt. In some cases, the event triggering an abort is only seen by one
party (e.g. some party receives incorrect data). When we say that “party Pi aborts”, we
implicitly assume that this party sends abort through the broadcast channel, so all parties
abort too.12

1.3 Fundamental Results

We now proceed to presenting some of the most fundamental results in the theory of secure
multiparty computation, regarding the feasibility or impossibility of MPC in certain contexts.
Below, we consider different results in the context in which the adversarial structure is a
threshold structure with threshold t, categorized by whether t < n/3, t < n/2 or t < n. As
we will comment in each relevant section, most of the results for t < n/2 and t < n/3 carry
over to the case of Q2 and Q3 general adversarial structures, respectively.

1.3.1 Results for t < n/3

The context in which the adversary corrupts at most one third of the parties is particularly
relevant as it allows for the strongest level of simulation-based security, namely, perfect
security.

Positive results. We begin with the following crucial result, which shows that the most
desired notions of perfect security and guaranteed output delivery can be achieved if
t < n/3, even if the adversary is active.

Theorem 1.2. There exists a protocol instantiating FABB with perfect security and guaranteed
output delivery in the FP2P-hybrid model,13 secure against an active adversary corrupting at
most t < n/3 of the parties.

12This is the crucial difference between selective abort and unanimous abort. In the former, it can happen that
only some honest parties abort while the others remain in the computation. Through a broadcast channel,
as shown in [27] and as used here, we can ensure unanimous abort by asking aborting parties to announce
their status through the broadcast channel.

13As mentioned in Section 1.2.6.1, our security statements later in the document are all set in the FP2P+BC-
hybrid model and we do not write this explicitly.

41

Chapter 1 The Theory of Multiparty Computation

The proof of this result can be found for example in [5,13].

Remark 1.2. Notice that, in Theorem 1.2, the basic communication resource is FP2P, which
represents encrypted and authenticated peer-to-peer communication, without a broadcast
channel. Most constructions will still make use of a broadcast channel, but this is possible to
construct from plain peer-to-peer channels with perfect security if t < n/3, as shown in [39].

Negative results. An interesting fact is that, if the adversary breaks the t < n/3 condition,
that is, if the adversary corrupts more than one third of the parties, then Theorem 1.2 does
not hold anymore. More precisely, the “perfect security” part of the theorem cannot be
fulfilled, which is summarized in the following theorem.

Theorem 1.3. No protocol can instantiate FABB in the FP2P-hybrid model against an active
adversary corrupting at least n/3 parties with perfect security.

To show that this theorem holds, it suffices to exhibit a particular function that cannot be
instantiated with perfect security in the FP2P-hybrid model, if an active adversary corrupts
at least n/3 parties. This invalidates the possibility of FABB being instantiable, given that
FABB can be used to trivially instantiate any other functionality. There are several functions
that, if t ≥ n/3, cannot be securely computed in the FP2P-hybrid model. A typical example
being the broadcast functionality. This result can be found in [39].

Finally, although there are some functions such as broadcast that cannot be instantiated
with perfect security in the FP2P-hybrid model if t ≥ n/3, it is natural to ask whether, even
if we add broadcast as a basis, that is, if we work in the FP2P+BC-hybrid model, there are
still some functions that cannot be instantiated with perfect security if t ≥ n/3. This turns
out to be the case, as shown for example in [16] (see Theorem 5.12 in the reference).

Theorem 1.4. No protocol can instantiate FABB in the FP2P+BC-hybrid model against an
active adversary corrupting at least n/3 parties with perfect security.

1.3.2 Results for t < n/2

Now we turn our attention to the setting in which the adversary corrupts at most one half
of the parties. In this setting, although general-purpose secure computation with perfect
security against an active adversary is not possible (as illustrated in Theorem 1.4), several
other properties are still attainable.

1.3.2.1 The Case of a Passive Adversary

Positive results. First we discuss what happens when the adversary is passive. In this
case, it turns out that a protocol with perfect security can be designed, as expressed by the
following theorem.

42

Chapter 1 The Theory of Multiparty Computation

Theorem 1.5. There exists a protocol instantiating FABB with perfect security in the FP2P-
hybrid model, secure against a passive adversary corrupting at most t < n/2 of the parties.

Notice that this theorem is similar to Theorem 1.2, except that this time the adversary is
passive and the corruption threshold is at most n/2, instead of being upper bounded by
n/3. Protocols that illustrate the validity of Theorem 1.5 are presented in [5,13].

Negative results. A protocol with perfect security to compute arbitrary functionalities
cannot exist if the condition t < n/2 is broken. In fact, such protocol cannot exist even if we
loosen the security notion to statistical security. This is shown in the following theorem.

Theorem 1.6. No protocol can instantiate FABB in the FP2P-hybrid model against a passive
adversary corrupting at least n/2 parties with statistical security.

A proof of this result can be found, for example, in [37].

1.3.2.2 The Case of an Active Adversary

Positive results. Now we focus on the case in which the adversary corrupts a subset
of the parties actively. As shown in Theorem 1.3, in the case in which t < n/2, given
that in principle it could hold that t ≥ n/3, it is not possible to instantiate FABB with
perfect security in the FP2P-hybrid model (or even in the FP2P+BC-hybrid model from
Theorem 1.4). However, it turns out that, if we relax the security requirement to statistical
security rather than perfect security, an instantiation can be realized. Furthermore, the
strongest output notion of guaranteed output delivery can be attained. This is summarized
below.

Theorem 1.7. There exists a protocol instantiating FABB with statistical security and guar-
anteed output delivery in the FP2P+BC-hybrid model, secure against an active adversary
corrupting at most t < n/2 of the parties.

Protocols proving this theorem include [37], or the more recent results of [28] which
improve over the communication complexity of the previous ones.

Negative results. Theorem 1.6 shows that, if the bound t < n/2 is violated, then no
protocol can instantiate FABB with statistical security in the FP2P-hybrid model, even if the
adversary is assumed to be passive. In particular, this impossibility extends (“with even
more reason”) if the adversary is active.

On the other hand, another natural question is whether the strong notion of guaranteed
output delivery, achievable if t < n/2, is still attainable if t ≥ n/2. There is a negative
answer to this question, and in fact, not even the weaker notion of fairness can be realized
if t ≥ n/2. This is captured in the following theorem.

43

Chapter 1 The Theory of Multiparty Computation

Theorem 1.8. No protocol can achieve fairness when instantiating FABB in the FP2P+BC-
hybrid model against an active adversary corrupting at least n/2 parties.

A proof of this result can be found in [14].

1.3.3 Positive Results for t < n

Finally, we discuss what results are possible in the most general case in which the adversary
can, in principle, corrupt all but one party, in contrast to the previous settings, in which the
adversary was assumed to corrupt at most a 1/2 or even a 1/3 proportion of the parties.
In terms of negative results, we can infer from Theorem 1.6 that information-theoretic
security (that is, either perfect or statistical security) is out of the picture in this case, and
from Theorem 1.8 we rule out the possibility of achieving fairness. As a result, protocols in
this setting must make use of computational assumptions (even if the adversary is passive),
or, in other words, they must involve cryptographic constructions whose security depends
on the hardness of certain underlying problem, and they have to settle for security with
abort.

Fortunately, in terms of positive results, it can be shown that protocols with the properties
described above indeed exist. In this case the instantiation can be done over FP2P rather
than FP2P+BC since it is possible to obtain broadcast by making use of computational
assumptions.

Theorem 1.9. There exists a protocol instantiating FABB with computational security in the
FP2P-hybrid model, secure against a passive adversary corrupting possibly all but one of the
parties.

Several protocols of this type have been achieved in the literature, such as [6,19,21,32,33].
In Chapters 7 and 8 we include constructions in this setting with passive and active security,
respectively. These constructions satisfy perfect and statistical security, which contradicts
the impossibility results discussed above. This is because, as we will see in the relevant
sections, these protocols are not set in the FP2P-hybrid model, but instead, they are built
making use of a stronger functionality that distributes certain preprocessed data among the
parties.

1.3.4 Summary of Main Results

The following table summarizes the results we have seen so far in the section. A check
mark (3) represents that a construction in the given setting can be obtained, while an
X mark (7) indicates that it is not possible in general to instantiate FABB in the scenario
under consideration. Additionally, marks in black indicate results that can be trivially
derived from the marks in red, and the numbers in parentheses after the latter type of
marks represent the number of the theorem in previous sections associated to that result.
Finally, this table omits certain details regarding the possibility/impossibility of broadcast,

44

Chapter 1 The Theory of Multiparty Computation

or more precisely, when FP2P or FP2P+BC is needed, in the t < n/2 row containing the
asterisk (?), so we refer the reader to the relevant section above for details.

Privacy guarantees Output guarantees

perf. stat. comp. GOD fair abort

Active
t < n 7 7 3 (1.9) 7 7 (1.8) 3 (1.9)

t < n/2 ? 7 (1.6) 3 (1.7) 3 3 (1.7) 3 3

t < n/3 3 (1.2) 3 3 3 3 3

Passive
t < n 7 7 (1.6) 3 3 3 3

t < n/2 3 (1.5) 3 3 3 3 3

t < n/3 3 3 3 3 3 3

45

Chapter 2

Secret-Sharing-Based MPC

The goal of this chapter is to introduce the reader to several essential techniques used in
secure multiparty computation over fields. Given that the focus of this section is simply to
provide an overview of major existing techniques for secure multiparty computation over
fields, we omit formal proofs in the simulation based model from Section 1.2, and content
ourselves with including more intuitive and simple arguments about why the different
techniques and protocols satisfy the different properties they intend to.

Essentially all existing approaches to secure multiparty computation in the literature begin
by representing the function to be computed as an arithmetic circuit, which were described
in Section 1.1.4.3. However, once this circuit can be established, the specific method used
to securely evaluate such circuit tends to vary from work to work. In spite of this, it is still
possible to identify some general patterns, and, although a few works may not properly fall
within any of the categories below, these are inclusive enough to fit a large portion of the
literature in the field of (general-purpose) secure multiparty computation.

First, some constructions make use of homomorphic encryption techniques to homomorphi-
cally evaluate the given circuit (or at least certain portions of it), typically without involving
a lot of interaction. These techniques are mostly theoretical (at least these involving large
encrypted computations) as the overhead in terms of computational complexity is typically
too large. However, as the field of fully homomorphic encryption progresses, this approach
becomes more and more practical and, as a result, it may eventually turn into a more
practical solution for large and complex computation, at least if used in a partial and clever
way (that is, instead of simply evaluating the entire function in one go using homomorphic
encryption).

A different approach consists of somehow obtaining a “hidden” version of the circuit that
then can be evaluated only on the set of inputs provided by the parties. This turns out
to be the approach initially proposed by Yao [41] when the concept of secure multiparty
computation was itself born, and a rich and extensive body of works has taken care of
enhancing and improving this method, which is known as garbled circuits. This technique
has several benefits in terms of efficiency as it is typically the case that, after the circuit has
been “hidden” (or garbled), which requires interaction in a constant number of rounds, the
evaluation of the circuit itself can happen with little to none communication. This makes
this technique ideal for settings in which the parties are widely distributed and latency is
high, so minimizing round trips becomes relevant. Unfortunately, a big downside of the
garbled circuits approach is that the process of garbling the circuit, even though happens
in a constant number of rounds, tends to involve a large amount of data, which ends up in

46

Chapter 2 Secret-Sharing-Based MPC

consuming a lot of bandwidth, up to the extent that for certain applications this becomes a
serious bottleneck. Furthermore, the garbled circuit technique is generally better suited
for binary circuits (that is, circuits defined over F2 = {0, 1}), with a handful of (mostly
theoretical) constructions considering more general arithmetic circuits (e.g. [2,3]).

The alternative approach to securely evaluate an arithmetic circuit is based on a tool called
secret-sharing. In a secret-sharing scheme (a concept that we define more precisely in
Section 2.1 below), a given value can be distributed among several parties so that each of
these participants now holds a “share”, which satisfy the following: certain sets of shares do
not leak anything about the underlying value, while some other sets of shares completely
determine it. In secret-sharing-based MPC the goal is then to obtain a secret-shared
representation of the inputs to the computation, using a secret-sharing scheme that ensures
that any possible set in the adversarial structure (that is, any set of parties that could be
corrupted) cannot learn anything about the underlying secret. This is followed by methods
to obtain a secret-shared representation of all intermediate values in the computation, until
the output is reached.

We discuss the secret-sharing-based MPC approach in more detail in the sections below.
Before we dive into it we remark, however, that there are several works in the literature
that, although they make use of secret-sharing techniques, they do not adhere exactly to
the template provided here. For example, it is very common to mix secret-sharing with
garbled circuits (e.g. [22]), or even with homomorphic encryption techniques.

2.1 Linear Secret-Sharing Schemes

We begin our discussion on secret-sharing-based secure multiparty computation protocols,
which is the general template to which all of the constructions considered in this work
adhere, by first discussing the concept of a secret-sharing scheme itself.

For the purpose of this section we consider a finite field F. Furthermore, we restrict to
threshold secret-sharing schemes, which only protect the secret if less than certain amount
of shares is known, and completely leak the value otherwise. Finally, we also remark that
our description here is entirely informal (plus it makes several simplifications) and does not
constitute in any way a formal nor precise treatment of linear secret-sharing schemes. For
a more concrete mathematical presentation on these tools we refer the reader to [16].

Let s ∈ F. At an intuitive level, a secret-sharing scheme for n parties with threshold t
provides methods for, on input s, computing a set of values (s1, . . . , sn) ∈ Fn such that

1. For any set A ⊆ [n] with |A| ≤ t, the set of shares {si}i∈A does not leak anything
about the value s;

2. For any set B ⊆ [n] with |B| ≥ t + 1, the value s can be completely reconstructed
from the set of shares {si}i∈B.

When a value s ∈ F is secret-shared as above, it is common to denote this by JsK :=

47

Chapter 2 Secret-Sharing-Based MPC

(s1, . . . , sn). In a distributed setting with n parties it is typically assumed implicitly in the
notation above that each party Pi has the share i, for i ∈ [n].

A secret-sharing scheme as above is linear if, in words, each party can locally add/subtract
their shares of different values to obtain shares of the corresponding operation on the
secrets. A bit more precisely, it must hold that, if JxK = (x1, . . . , xn) and JyK = (y1, . . . , yn),
then Jx± yK = (x1 ± y1, . . . , xn ± yn). Now we discuss some simple examples of linear
secret-sharing schemes

Example 2.1 (Additive secret-sharing). The following is a construction of a linear secret-
sharing scheme for n parties with threshold n − 1, which means that every set of at least
(n−1)+1 = n shares can reconstruct the secret while any smaller set remains oblivious to this
value. Notice that there is only one possible set of n shares, which is the set of all the shares.

To secret-share a value s ∈ F, a tuple (s1, . . . , sn) ∈ Fn is sampled uniformly at random
constrained to s1 + · · ·+ sn = s. This can be done, for example, by sampling n− 1 random
values s1, . . . , sn−1 and defining sn = s− (s1 + · · ·+ sn−1). More generally, any set of n− 1
shares can be sampled uniformly at random while the last one is defined as the secret subtracted
with the sum of the other shares. The set of shares is then (s1, . . . , sn).

To analyze the required properties by a linear secret-sharing scheme, we observe the following:

• Any set of at most n− 1 shares follows the uniform distribution, so in particular it does
not reveal anything about the secret s.

• Given all the shares s1, . . . , sn, the secret s can be fully determined as s1 + · · ·+ sn = s.
This, together with the point above, shows that this construction is a secret-sharing
scheme.

• Given two shared values JxK = (x1, . . . , xn) and JyK = (y1, . . . , yn), that is, x =
x1 + · · ·+ xn and y = y1 + · · ·+ yn, since x± y = (x1 ± y1) + · · ·+ (xn ± yn), it holds
that Jx± yK = (x1 ± y1, . . . , xn ± yn). This shows that the proposed method constitutes
a linear secret-sharing scheme.

Example 2.2 (Replicated secret-sharing [30]). The following is a construction of a linear
secret-sharing scheme for n parties with a more general threshold t < n. To secret-share a value
s ∈ F, first a set of values {sA}A⊆[n],|A|=t ⊆ F is sampled uniformly at random, constrained to∑

A⊆[n],|A|=t sA = s. Each share si for i ∈ [n] is defined to be a vector itself, which is given by
si = (sA)A⊆[n],i/∈A.

Now we analyze the required properties by a linear secret-sharing scheme.

• Given any set B ⊆ [n] with |B| ≤ t, the collection of shares {si}i∈B miss the value sB′

for any B ⊆ B′ ⊆ [n]. As a result, these shares together do not have enough information
to reconstruct s, since all of the “additive values” {sA}A⊆[n],|A|=t are needed to do so.

• Given any set B ⊆ [n] with |B| ≥ t+ 1, the collection of shares {si}i∈B contains all the
summands {sA}A⊆[n],|A|=t, which enables the reconstruction of the secret s. To see this,

48

Chapter 2 Secret-Sharing-Based MPC

let A ⊆ [n] with |A| = t. The summand sA is included in all si for i /∈ A, and since
|A| = t < t+ 1 ≤ |B|, there is at least one such indexes i in the set B.

• The fact that the construction above constitutes a linear secret-sharing scheme is straight-
forward to see.

2.2 MPC based on Linear Secret-Sharing Schemes

Consider a linear secret-sharing scheme J·K. As we know, thanks to the linearity properties
of J·K, it is possible for the parties to obtain Jx+ yK given two shared values JxK and
JyK. Now, suppose that the parties count on a method to obtain, not only the addition
(and subtraction), but also the product of two shared values. More precisely, suppose the
parties can obtain Jx · yK from two shared values JxK and JyK, possibly by performing some
interaction. With this at hand, the parties can easily compute the given arithmetic circuit
by following this procedure:

1. Each party Pi, having input xi, distributes shares of this value to the other parties, so
the parties obtain JxiK.

2. For each operation gate in the circuit where the inputs x and y are secret-shared as
JxK and JyK, the parties proceed as follows:

• If the gate is an addition gate, then the parties use the linear property of the
secret-sharing scheme to obtain Jx+ yK without any interaction.

• If the gate is an multiplication gate, then the parties use the assumed method to
obtain Jx · yK, potentially with interaction.

• Eventually, the parties get shares of the result of the computation JzK. At this
point, t + 1 of the parties announce their shares to all the others so that the
parties, having at least t+ 1 shares, can reconstruct the output z.

From the template above, we see that, to design a secure multiparty computation protocol,
it suffices to consider a linear secret-sharing scheme with the same threshold as the upper
bound on corrupted parties, together with a method to obtain Jx · yK from JxK and JyK. As
we will see throughout this text, this general template is highly effective for building efficient
protocols in a wide variety of settings, and, most of the time, the major complications
appear not in the secret-sharing scheme itself, but in the procedure to multiply secret-shared
values.

2.2.1 The Case of an Active Adversary

The general template above works well if the adversary is passive, but, when the corruptions
are active, care must be taken in some parts of the protocol. First, naturally, the assumed
method to securely compute multiplications must be actively secure, since otherwise an

49

Chapter 2 Secret-Sharing-Based MPC

active adversary can attack the whole protocol by simply attacking multiplication gates.
However, the phase where shares of the inputs are distributed must also be revisited, since,
as we will see in subsequent sections, there are several secret-sharing schemes where, if
the party distributing shares behaves maliciously, sending perhaps “incorrect” shares, the
protocol can be rendered insecure due to “inconsistencies” created among the parties.

To prevent actively corrupt parties from secret-sharing their inputs incorrectly, a typical
approach consists of somehow reducing this to the broadcast channel by using a random
shared value JrK, where the secret t is known by the party providing input. If the input
is x, this party simply needs to use the broadcast channel to announce e = x− r, which
leaks nothing about x since r is uniformly random and only known to the party sending
the message, and then the other parties can locally compute JxK = JrK + e, which leads to
shares of the input x since r + e = x. This method has the advantage that, assuming that
JrK was distributed “correctly”, the resulting shares of x will also be correct.

Finally, another place where the adversary can attack the protocol is in the last step,
where the shares of certain parties are announced in order to reconstruct the result of the
computation. In this case, an actively corrupt party can simply lie about his own share, and
it is not clear what would happen in such scenario. Indeed, this is a problem we will need
to deal with throughout this work, and such attack, unless countered, tends to lead to the
parties reconstructing a wrong result.

This type of behavior is addressed by enhancing the secret-sharing scheme with some
method to check that the announced shares are somehow “correct”, and have not been
modified. In some settings, especially the t < n/2 and t < n/3 scenarios, this can be
achieved without modifying the sharing procedure itself, while in some other cases, like
in dishonest majority, some additional information that aids at ensuring integrity must be
added. Details on all these problems and different approaches to solve them in various
settings are given throughout this text, although the first relevant section where such
techniques are encountered is Section 3.2.

2.2.2 Offline-Online Paradigm

In several cases, part of the interaction involved during the execution of a given secure
multiparty computation protocols is independent of the inputs from the parties. For
example, when we discussed in the previous section the general idea to obtain secret-
shared inputs correctly, we made use of a secret-shared value JrK where r is known by the
input provider. This type of data has to be produced by certain interaction in the MPC
protocol, but it is independent of any of the inputs to the computation.

It is common in the field to refer to the steps in a given protocol that do not depend on the
inputs to the computation as the preprocessing or offline phase, while the part of the protocol
that requires the parties to know their inputs is typically called the online phase. The main
motivation behind this terminology is that the preprocessing phase, being independent of
the inputs, can be executed at the very start of the protocol execution, and after it is over
the parties become ready to provide inputs and “actually compute” the function.

50

Chapter 2 Secret-Sharing-Based MPC

The distinction between an offline and an online phase is not only relevant at the language
level. Consider two protocols having roughly the same performance overall, except that one
has a very efficient online phase when compared to the other. Even though both protocols
perform similarly, the total latency since the moment the inputs are provided until the
output is obtained is smaller in the protocol with a fast online phase. Imagine a setting
where the parties are idle before running the computation, which is scheduled in advance.
This time can be then used to execute the offline phase, so that the parties are ready to run
the efficient online phase when the inputs are known.

As we will see in Chapters 7 and 8, this offline/online paradigm takes even more relevance
in the dishonest majority, since in this case, as we saw in Section 1.3, protocols must make
use of heavy cryptographic tools to operate. Modern constructions, such as the ones we
consider here, push all the complexities and inefficiencies of these mechanisms to the
offline phase, while leaving a relatively simpler and much more efficient online phase
(which, in addition, typically enjoys information-theoretic security).

51

Part II

Honest Majority

52

Chapter 3

Shamir Secret-Sharing

We begin by presenting the construction and properties of a very popular and widely used
secret-sharing scheme, namely Shamir secret-sharing scheme. This was proposed by Adi
Shamir in [38], and it is one of the most widely known and used examples of a linear
secret-sharing scheme over a field.

Let F be a field of size q, where q is a power of a prime. Assume that q > n, and let
α0, α1, . . . , αn ∈ F be different points in F. We denote by F≤d[X] the F-module of univariate
polynomials over F of degree at most d in the variable X. Let Fu×v denote the set of matrices
with dimensions u× v.

Given β1, . . . , βu ∈ F, let Vanu×v(β1, . . . , βu) ∈ Fu×v be the matrix given by

Vanu×v(β1, . . . , βu) ∈ Fu×v :=

1 β1

1 β2
1 · · · βv−1

1

1 β1
2 β2

2 · · · βv−1
2

...
...

...
. . .

...
1 β1

u β2
u · · · βv−1

u

 .

When the β’s are clear from context we denote this matrix simply by Vanu×v. This is called
a Vandermonde matrix, and it is well known that if u = v (so the matrix is square) its
determinant is equal to

∏
i<j(βi−βj). In particular, this determinant is non-zero (and hence

the matrix is invertible) if and only if all β’s are different. Let d ≥ 0 and let β0, . . . , βd ∈ F
be all different. Since given a polynomial f(X) =

∑d
i=0 ciX

i ∈ F≤d[X] it holds that

(f(β0), . . . , f(βd))
ᵀ = Van(d+1)×(d+1)(β0, . . . , βd) · (c0, . . . , cd)ᵀ,

this shows that every polynomial of degree at most d is determined by its evaluation at any
d+ 1 distinct points.

To secret-share a value s ∈ F using Shamir secret-sharing, the dealer samples a polynomial
f(X) ∈ F≤d[X] at random, restricted only to f(α0) = s. The share corresponding to party Pi

is then f(αi). As an example, if α0 = 0, it is easier to see more explicitly how such sampling
could be done: the dealer samples c1, . . . , cd ∈R F and sets f(X) = s+

∑d
i=1 ciX

i, but for a
general α0 the process is slightly more complex, as we describe below.

53

Chapter 3 Shamir Secret-Sharing

Shamir Secret-Sharing

The dealer secret-shares a value s ∈ F among n parties P1, . . . , Pn as follows.

1. Sample s1, . . . , sd ∈R F and define
c0
c1
...
cd

 =

1 α1
0 α2

0 · · · αd
0

...
...

...
. . .

...
1 α1

d α2
d · · · αd

d

−1

·

s
s1
...
sd

 .

Let f(X) ∈ F≤d[X] be given by f(X) =
∑d

i=0 ciX
i.

2. For each i = 1, . . . , n, the dealer distributes the share f(αi) to party Pi

Reconstruction from any d+ 1 shares

Given shares {f(αi)}i∈A for some subset A ⊆ [n] with |A| = d + 1, the secret is
reconstructed as follows.

1. Fix some ordering in A and let us denote (αi)i∈A = (αa1 , . . . , αad+1
). Let

(λA
a1
, . . . , λA

ad+1
) = (1, α0, . . . , α

d
0) · Van

(d+1)×(d+1)(αa1
, . . . , αad+1

)−1.

2. The secret is computed as s =
∑d+1

i=1 λA
ai
· f(αai

).

Definition 3.1. Given A ⊆ {1, . . . , n} with |A| = d + 1, we call the values above {λA
i }i∈A

Lagrange coefficients. These can be alternatively computed as

λA
i =

∏
j∈A, j 6=i

α0 − αj

αi − αj
.

The reconstruction of a secret distributed with Shamir secret-sharing from any d+ 1 shares
is done by using these shares, which are evaluations of a polynomial of degree at most t,
to recover such polynomial, followed by its evaluation at α0. This is written much more
explicitly in the description of the protocol above, which in particular shows that the secret
is computed as a linear combination of the shares involved, a fact that will be used later in
one of our described protocols.

Privacy of this secret-sharing scheme, that is, the fact that any set of d shares does not leak
anything about the secret s, is also easy to see, as these are in a 1-1 correspondence with
the randomness used by the dealer. To see this, consider for example the case in which
the given set of shares is {f(αi)}di=1. In the way that the secret-sharing scheme is defined,
these d values constitute the seed used by the dealer, which are taken completely at random
and independently from the secret s. In the general case it can be shown that there is a
bijective affine transformation between the randomness used by the dealer and any set of d
shares, which shows that these shares are uniformly random and independent of the secret.
Thus, if we want to use Shamr secret-sharing to protect a secret against an adversary that
may potentially obtain t shares, it suffices to take d ≥ t. We omit the proof of this result
since it follows in a straightforward manner from the properties introduced so far, and it is
only heavy in notation.

54

Chapter 3 Shamir Secret-Sharing

3.1 Secret-Sharing and d-Consistency.

In our protocols, the parties will hold shares of different values, and the various parties
will play the role of the dealer in Shamir secret-sharing to distribute certain secrets. We
begin with the following definition.

Definition 3.2. Let β1, . . . , β` ∈ F be all different. Given s = (s1, . . . , s`) ∈ F`, we say that
s is d-consistent if there exists f(X) ∈ F≤d[X] such that si = f(βi) for i = 1, . . . , `. Observe
that if ` ≤ d + 1, then every vector s ∈ F` is d-consistent, but if d + 1 < `, then the set of
d-consistent vectors constitutes a strict F-vector subspace of F`.

If the parties hold d-consistent Shamir shares (s1, . . . , sn) of a value s, we denote this by
JsKd = (s1, . . . , sn). This definition makes sense in the context of a passive adversary: deal-
ers will always follow the protocol so they will distribute valid shares, and the (passively)
corrupt parties will always use the correct shares they hold when required. However, in the
context of an active adversary, the following can happen:

• An actively corrupt dealer distributes shares (s1, . . . , sn) that are not d-consistent.

• Even if a dealer distributes d-consistent shares (s1, . . . , sn), an actively corrupt party
Pi can modify its own share from si to any value s′i at any given point.

Given these issues, it does not make too much sense to say that the parties hold a vector of
shares (s1, . . . , sn) (again, since the actively corrupt parties can change their shares). To
address this, we expand the definition of JsKd and d-consistency to the setting of an active
adversary, as follows.

Definition 3.3. Consider the setting of an active adversary. Let H, C ⊆ [n] be the sets of
indexes corresponding to honest and corrupt parties, respectively. We say that the parties hold
d-consistent shares of a secret s ∈ F if there exists a polynomial f(X) of degree at most d such
that:

1. s = f(α0);

2. Each honest party Pi for i ∈ H has si = f(αi) (i.e. the honest parties’ shares are
d-consistent);

3. The adversary knows sj = f(αj) for j ∈ C.

Furthermore, when this holds, we write JsKd = (s1, . . . , sn).1

One aspect that is not very formal from the definition above is what it means for the
adversary to “know” a given value. This is formalized in the context of simulation-based

1We clarify that sometimes the notation JsK instead of JsKd will be used when the degree d is clear from
context.

55

Chapter 3 Shamir Secret-Sharing

proofs by requiring that the simulator is able to “extract” the given value from the adversary,
after interacting with it on the emulated protocol execution. Details are left to the relevant
sections that make use of this concept, such as Chapter 6. However, some intuition on
this notion can be provided. Consider for example a setting in which an honest dealer
sends d-consistent shares (s1, . . . , sn) of a secret s to the parties, with si = f(αi) for some
f(X) ∈ F≤d[X], but the corrupt parties Pi change their shares from si to s′i. Even though the
resulting vector may not be d-consistent anymore, the parties still have d-consistent shares
JsKd: (1) the honest parties’ shares are d-consistent, and (2) the adversary knows the “real”
values si corresponding the corrupt parties Pi.

Remark 3.1. Let H ⊆ [n] be the set of indexes corresponding to honest parties. Let JsKd =
(s1, . . . , sn) be a d-consistent sharing, which means that there exists a polynomial f(X) ∈
F≤d[X] such that s = f(α0), si = f(αi) for i ∈ H, and the adversary knows sj = f(αj) for
j ∈ [n] \ H. If |H| = n− t ≥ d+ 1, then the polynomial f(X) is unique, and in particular, so
is the secret s. However, if n − t ≤ d then, for any secret s′ ∈ F, there exists a polynomial
fs′(X) ∈ F≤d[X] such that fs′(α0) = s and fs′(αi) = si for i ∈ H, so if the adversary knows
s′j = fs′(αj) for j ∈ [n] \H, the parties would simultaneously “hold” shares Js′Kd of any secret
s′, or, in other words, there is not a well-defined secret from the honest shares alone.

Finally, notice that if t ≥ n/2 and d = t, then n − t ≤ d. This is the reason why Shamir
secret-sharing is typically only used if t < n/2: in this setting there are at least t+ 1 honest
parties, so their honest shares, if t-valid, define a unique secret.

Homomorphisms. Consider two shared values JxKd and JyKd, using polynomials
f(X), g(X) ∈ F≤d[X], respectively (that is, Pi’s share of x is f(αi) and the one of y is
g(αi)). If each party adds their shares together, that is, each Pi computes f(αi) + g(αi),
they obtain shares of x + y under the polynomial f(X) + g(X) ∈ F≤d[X]. This is denoted
by Jx+ yKd ← JxKd + JyKd. On the other hand, if the parties locally multiply their shares,
they obtain shares of x · y under the polynomial f(X) · g(X) ∈ F≤2d[X]. This is denoted by
Jx · yK2d ← JxKd · JyKd. Note that the degree of the polynomial increases from d to 2d.

Finally, observe that subtraction can be performed locally in a similar way as addition, as
well as multiplying by any constant (that is, a value known by all parties). Furthermore,
the parties can also locally add a constant, that is, obtain Jx+ cK from JxK and c, by each
party adding this constant to their share.

3.2 Error Detection/Correction

As it has been already mentioned, Shamir secret-sharing is used, in the context of MPC,
in order to distribute the inputs of the computation, as well as the intermediate values
and the output, among the different parties, in such a way that the adversary does not
learn anything about the underlying secrets. In the process of securely computing the given
function, it will be necessary for the parties to reconstruct, or open, some secret-shared
values. This is the case, for example, for obtaining the output of the computation, which
is in secret-shared form and must be learned by all the parties. Additionally, processing

56

Chapter 3 Shamir Secret-Sharing

certain operations like multiplications during the course of the computation requires the
parties to learn certain secret-shared data.

Reconstructing a secret-shared value JsK can be achieved, for example, by asking t + 1
parties to send their shares to all the other parties.2 After a party receives at least t + 1
shares (including possibly its own), this party can reconstruct the polynomial of degree at
most t that interpolate these shares, hence obtaining the secret.

Unfortunately, when the parties are actively corrupt, they can misbehave in the recon-
struction of a secret-shared value by sending incorrect shares. For example, a secret
reconstructed from the shares (s1, . . . , st+1) would be computed as s =

∑t+1
i=1 λ

[t+1]
i · si, but

if party P1 announces a different share s1+ δ1, then the reconstructed secret would be s+ δ,
with δ = λ

[t+1]
1 δ1. Furthermore, the parties do not have a way of detecting that a change

has been introduced, given that (s1 + δ1, s2, . . . , st+1) look like legitimate shares of s+ δ.

The reason why the parties cannot detect that an error has been introduced is because
any set of t + 1 values (s′1, . . . , s

′
t+1) is consistent with a polynomial of degree at most t.

However, if the parties use, say, t+ 2 shares (s1, . . . , st+1, st+2) to first check the existence
of a polynomial f(X) such that f(αi) = si for i = 1, . . . , t+ 2, then it is “less likely” that the
error δ1 that P1 introduced preserves the existence of this polynomial. This is because a
vector of t+ 2 shares is not necessarily consistent with a polynomial of degree at most t,
and in fact, we can show that if δ1 6= 0 then there is no way in which (s1+δ1, . . . , st+1, st+2)
is consistent with a polynomial of degree at most t.

Unfortunately, the method above of checking consistency using t+ 2 shares is insufficient
to prevent an attack that modifies the reconstructed secret, given that the adversary
has the power to modify not only P1’s share, but the shares of at most t parties. The
following example shows that, if the parties only check that 2t shares are consistent with
a polynomial of degree at most t, then the adversary, who controls t parties actively, can
cause the reconstructed secret to be incorrect, without being detected. This is related to
Remark 3.1, where it is mentioned that if n′ − t ≤ d, where n′ is the total number of shares
(so 2t for the purpose of this example, where also d = t), then the secret is not well-defined
by the honest shares alone, and the corrupt parties can modify theirs to result in t-valid
sharings of any secret.

Example 3.1. Let JsKt = (s1, . . . , sn), where the underlying polynomial is f(X), that is,
f(α0) = s and f(αi) = si for i ∈ [n]. Let A ⊆ [n] be the set of the t indexes corresponding to
corrupt parties, and let B ⊇ A such that |B| ≤ 2t. Suppose that at reconstruction time the
parties check that the announced shares corresponding to indexes in B are consistent with a
polynomial h(X) of degree at most t, and output h(0) if this is the case. Then the adversary
can cause the parties to reconstruct a wrong secret as follows.

1. The adversary samples a polynomial g(X) of degree at most t such that g(αi) = 0 for
i ∈ B\A and g(α0) = δ for some δ 6= 0 of the adversary’s choice. Observe this is possible
since |(B \ A) ∪ {α0}| ≤ t+ 1.

2This incurs in a total communication complexity of ≈ t · n. This can be improved to O(n), as described in
Section 3.4.

57

Chapter 3 Shamir Secret-Sharing

2. The corrupt parties Pi for i ∈ A modify their share si as s′i = si + δi, with δi = g(αi).

At reconstruction time the parties check if there is a polynomial h(X) of degree at most t such
that h(αi) = si for i ∈ B \A, and g(αi) = s′i for i ∈ A, and if this is the case, they output h(0)
as the reconstructed secret. Such polynomial indeed exists, namely h(X) = f(X) + g(X). Indeed,
if i ∈ B \A, then h(αi) = f(αi) + g(αi) = si + 0, and if i ∈ A then h(αi) = f(αi) + g(αi) =
si + δi = s′i. However, the reconstructed secret is equal to h(α0) = f(α0) + g(α0) = s+ δ.

In what follows we will see that the parties can check that the announced shares are
correct if they use at least 2t + 1 shares. In fact, we will see that they can identify the
incorrect shares, remove them, and therefore reconstruct the right secret, if they use at
least 3t+1 shares. These results will be presented in a more general way, using terminology
that resembles that in the field of error correcting codes, and later in Section 3.3 we will
interpret what these results imply in our setting.

The results in this section are more general, since they are phrased in the context of
error-correcting codes. Let ` and d be non-negative integers, and let β1, . . . , β` ∈ F be
all different. Let s = (s1, . . . , s`) ∈ F` be a d-consistent vector, which, recalling from
Definition 3.2, means that there exists f(X) ∈ F≤d[X] such that si = f(βi) for i = 1, . . . , `.
Suppose that this vector is modified as s+ δ, for some error vector δ ∈ F`. In the context of
error-correction, the goal is to recover the polynomial f such that f(βi) = si for i = 1, . . . , `
from the corrupted vector s+ δ. In error-detection we are only interested in determining
whether δ is non-zero.

3.2.1 Error Detection

First, notice that being d-consistent is an F-linear property, so δ is d-consistent if and only
if s+ δ is d-consistent as well. If these conditions hold, then any hope of error-correction
or detection is lost given that s + δ will look as “legitimate” as s. Given the above, we
begin by looking at some conditions under which δ can be d-consistent. Let e be an upper
bound on the number of non-zero entries of δ. Observe that if e < `− d, then δ cannot be
d-consistent, unless it is the zero vector. This is because, if δ was d-consistent, its `− e > d
zero entries would be enough to determine the underlying polynomial, which has to be the
zero polynomial. On the other hand, if e ≥ `− d, then it is easy to check that δ could be
d-consistent.3

We see then that, if e < `− d, the only way in which s+ δ can be d-consistent is if δ = 0,
so if no error was introduced. As a result, we can detect whether δ is zero by checking if
s+ δ is d-consistent.

3In fact, this is the reason why the attack in Example 3.1 works. There we have ` ≤ 2t, d = t and e = t, so
e ≥ `− d. This is also the reason why, if n− t ≤ d, a degree-d secret-shared value is not well defined if the
adversary is active, as pointed out in Remark 3.1.

58

Chapter 3 Shamir Secret-Sharing

3.2.1.1 A more intuitive view.

Another way to see the result displayed above is the following. Suppose that e < `− d, and
that s+ δ happens to be d-consistent. Then, the underlying polynomial could be recovered
from any set of d+ 1 entries, and in particular, it could be recovered from the `− e ≥ d+ 1
entries that were not affected by δ, which shows that the underlying polynomial of s+ δ
has to be the same as that of s.

3.2.2 Error Correction

Unfortunately, even if e < `− d, knowing that s+ δ is not enough to find the polynomial
f(X) underlying s. For example, if e = `− d− 1, a pair of non-zero error vectors δ1, δ2 ∈ F`

having at most e non-zero entries can be found such that s2 = δ1 − δ2 is d-consistent, but
this is a problem since the modified vectors s1 + δ1 and s2 + δ2, where s1 = 0 (which is
d-consistent), are the same, so given only this vector it is not possible to know if it is a
modified version of s1 or of s2.

If the bound e is zero, then obviously we can always find f from s+ δ, so there must be a
point in which the amount of errors in δ is so small, that error-correction is possible. This
point is reached when e < (`− d)/2, and moreover, this is optimal in the sense that, for
(`− d)/2 ≤ e < `− d, we can always build examples as the one suggested above that show
that finding the original polynomial for s is not possible.

We claim that if e < (`− d)/2, if s1, s2 ∈ F` are two different d-consistent vectors, and if
δ1, δ2 ∈ F` are error vectors with at most e non-zero entries each, then s1 + δ1 = s2 + δ2
cannot hold. This would enable error correction of s+ δ by looking through all possible
error vectors with at most e non-zero entries, subtracting it from s+ δ, and checking if the
result is d-consistent vector. To show the claim above simply notice that s1 + δ1 = s2 + δ2
implies that δ2 − δ1 = s1 − s2 would be a d-consistent vector, but this cannot happen since
δ2 − δ1 has at most 2e < ` − d non-zero entries, but we just showed above that a vector
with strictly less than ` − d non-zero entries cannot be d-consistent unless it is the zero
vector, which would imply that s1 = s2.

3.2.2.1 Efficient error-correction.

Above, we said that to error correct s+ δ, one would have to go over all possible vectors δ
could be equal to, which is of course very inefficient. This could be optimized slightly by
looping over all possible subsets of e coordinates, and checking if the remaining coordinates
of s + δ form a d-consistent vector (of dimension ` − e). Because (` − e) − d > e, the
results from before show that this can only happen if this “sub”-vector does not have any
errors in it, which means that the guessed coordinates contain all the possible errors. This,
unfortunately, is still too inefficient.

Instead, in practice we would recur to error-correction algorithms, also known as decoders,
which achieve the task of identifying the error locations very efficiently. For the case at

59

Chapter 3 Shamir Secret-Sharing

hand, we could use for example the Berlekamp-Welch algorithm [40], which is an efficient
algorithm to solve the decoding problem.

3.2.2.2 A more intuitive view.

The process of error-correction can be also thought of as follows. Suppose that after looping
through all subsets of coordinates of s+δ of size `−e, we find one that is d-consistent. Then,
any set of d+ 1 coordinates among these determine all the others. Furthermore, we know
that the chosen sub-vector has at most e errors, so it has at least (`− e)− e = `− 2e ≥ d+1
non-modified entries, which determine the polynomial completely. Since these entries are
the same as in s, we see that the polynomial underlying the chosen sub-vector is the same
as the one for the original vector s.

3.3 Error Correction/Detection in the Context of MPC

As motivated at the beginning of Section 3.2, the purpose of the theory of error detec-
tion/correction in the context of MPC is to allow parties to reconstruct secret-shared values
correctly, in spite of the actively corrupt parties announcing incorrect shares. More precisely,
the parties have a secret-shared value JsKd = s = (s1, . . . , sn), and in order to learn s, each
party Pi announces its share si to the other parties. Actively corrupt parties may announce
an incorrect si + δi for some error δi, which means the secret must be reconstructed from
the shares s + δ, where δ ∈ Fn has as its i-th entry 0 if i is an index corresponding to
an honest party, and δi otherwise. Since there are t corrupt parties, there are at most t
non-zero entries in δ. This puts us in the context of error correction/detection studied
before with ` = n and e = t.

The results from the previous sections can be summarized as follows:

No error detection. If e ≥ ` − d, then the adversary can choose δ so that s + δ is d-
consistent, and the reconstructed secret will be s+ δ for some δ of the adversary’s
choice.

Error detection. If e < `− d, then s+ δ is d-consistent if and only if δ = 0.

Error correction. If 2e < `−d, then there exist efficient algorithms to recover s from s+δ.

As we will see in subsequent sections, the values of d that we will need to make use of
in our protocols are d = t and d = 2t. Furthermore, the two main settings in which we
will make use of these techniques are the honest majority setting, in which t < n/2, and
two-thirds honest majority where t < n/3. The following table summarizes, for the cases
of t < n/2 and t < n/3, and for the different degrees d = t and d = 2t, when error
detection/correction is possible. These results will be used later in Chapters 5 and 6 when
we construct actively secure protocols with t < n/3 and t < n/2 respectively.

60

Chapter 3 Shamir Secret-Sharing

error corr. error det.

t < n/3
degree t 3 3

degree 2t 7 3

t < n/2
degree t 7 3

degree 2t 7 7

3.4 Reconstructing Secret-Shared Values Efficiently

The previous section addressed the question of ensuring the adversary does not fool the
parties into reconstructing a secret-shared value JsKd incorrectly as s+ δ. However, doing
this naively would require each party to send its share to all other parties, which incurs in a
total communication complexity of at least n·t field elements being transmitted. To alleviate
this issue, an alternative is to let the parties send their shares to a single “intermediate”
receiver, who reconstruct the secret and then informs all the parties of this result. This is in
fact the approach taken in the protocol from Section 4.2.1 to reconstruct JaK2t: the parties
send their shares to P1, who sends the result back to all the other parties.

Unfortunately, the issue that arises with this approach is that an actively corrupt intermedi-
ate receiver may choose to lie about the reconstructed value, which would ultimately lead
to the parties learning an incorrect secret. Designing a solution to this problem while still
achieving linear communication complexity is far from trivial, and the one we will present
below was introduced in [20].

Suppose that the parties are not reconstructing one value JsKd, but many of these
Js0Kd , Js1Kd , . . . , JsdKd. Consider the polynomial f(X) =

∑d
j=0 sjX

j . The parties can com-
pute Jf(αi)Kd =

∑t
j=0 JsjKd α

i
j for i ∈ [n] (observe that each f(αi) can seen as a degree-d

share of f(α0)). Then, the parties can reconstruct each of these shares towards the corre-
sponding parties, which leads the parties to obtain shares Jf(α0)Kd = (f(α1), . . . , f(αn)).
At this point they can reconstruct this new secret using the naive approach from above:
each party Pi sends its share f(αi) to all other parties. This enables each party to error
correct/detect in order to recover the secret f(α0), but, what is more important, is that each
party will not only recover the secret, but the polynomial f(X) itself, whose coefficients are
s0, s1, . . . , sd.

Regarding communication complexity, the solution above involves Θ(d · n) field elements.
However, since d+ 1 secret-shared values are reconstructed, the amortized complexity per
secret is Θ(n), as required. The protocol is summarized below.

ΠPublicRec: Efficient Public Reconstruction

Input: Secret-shared values Js0Kd , . . . , JsdKd
Output: All the parties learn s0, . . . , sd.
Protocol: The parties proceed as follows

1. Let f(X) =
∑d

j=0 sjX
j . The parties locally compute Jf(αi)Kd =

∑d
j=0 JsjKd α

j
i for

i ∈ [n].

61

Chapter 3 Shamir Secret-Sharing

2. Each party Pk for k ∈ [n] sends its share of Jf(αi)K to Pi, for i ∈ [n].

3. Upon receiving the shares of Jf(αi)K, each Pi for i ∈ [n] does the following:

• If n > d+ 2t, then perform error correction to recover f(αi).

• If n > d + t, then perform error detection to either recover f(αi), or fail at
reconstruction. If the latter happens then the party aborts.

4. If no abort was produced in the previous step, each Pi for i ∈ [n] sends the recon-
structed f(αi) to each other party Pj .

5. Upon receiving the shares, each party Pj proceeds as follows:

• If n > d+ 2t, then perform error correction to recover the polynomial f(X), and
output its coefficients s0, . . . , st.

• If n > d+ t, then perform error detection to either recover the polynomial f(X),
outputting its coefficients, or fail at reconstruction. If the latter happens then
abort.

To see why the protocol works as intended we proceed as follows. First, by the results from
Section 3.3, each party Pi for k ∈ [n], upon receiving the shares of Jf(αi)Kd from the other
parties, is able to perform error correction if n > d+ 2t to recover f(αi), or alternatively it
can perform error detection if n > d+ t.

Now notice the polynomial f(X) has degree at most d, and at this point if no abort has
happened the parties hold the evaluation points (f(α1), . . . , f(αn)). Again by the results
from Section 3.3 we have that, when these shares are announced, the parties can perform
error correction if n > d + 2t to recover not only the “secret” f(α0), but the polynomial
f(X) =

∑d
j=0 sjX

j , and if n > d + t, error detection can be performed. As a result, if no
party aborts, the parties finish the protocol reconstructing the correct original secret-shared
values.

Remark 3.2. The protocol ΠPublicRec requires the parties to reconstruct several secret-shared
values Js0Kd , . . . , JsdKd in order to benefit from the improved efficiency. However, it can be
the case during certain steps of a protocol execution only a few secret-shared values must be
reconstructed. For example, this is the case if the function being computed only has one output,
which is obtained in secret-shared form and must be reconstructed. In this case, instead of
using the protocol ΠPublicRec, the parties can simply use the more naive approach of sending
the shares to each other in one single round, with each party error correcting on its own to get
the output. This involves quadratic communication complexity, but this is acceptable since this
is only called once at the end of the protocol execution.

62

Chapter 4

Passive and Perfect Security for Honest
Majority

With the tools that have been described so far we are now ready to describe a perfectly
secure protocol that can withstand a passive adversary corrupting t parties where t < n/2.
Recall from Section 1.3.2 that the combination of passive and perfect security with honest
majority cannot be enhanced in any way, in the sense that improving any of the three
properties degrades the others. For example, shifting from passive to active security
requires us to either switch from perfect to statistical simulation, or from honest majority
to two-thirds honest majority. Also, for instance, if the threshold t < n/2 does not hold,
that is t ≥ n/2, then even if we settle with passive security, the simulation would have to
be computational.

Notice that, since in this first protocol the adversary is assumed to be passive, the theory on
error correction/detection developed in Section 3.2 does not play a role here given that the
corrupt parties do not modify their shares when reconstructing a secret-shared value. This
theory will be used in Chapters 5 and 6 when we consider active adversaries.

4.1 A First Protocol

Let us begin with a protocol that is conceptually very simple, which is taken from [5,25].

Recall from Chapter 3 that, for any subset of indexes A ⊆ [n] of size d + 1, there exists
coefficients λA

1 , . . . , λ
A
d+1 such that, whenever the parties have a shared secret JsKd =

(s1, . . . , sn), this value can be computed as s =
∑

i∈A λA
i · si. This will be used in the

protocol below.

Passively secure protocol with perfect security

Setting: Each party Pi has input xi ∈ F.

Input phase: Each party Pi acts as the dealer in Shamir secret-sharing to distribute shares
of its input xi using polynomials of degree t. The parties obtain JxiKt.

Addition gates: For each addition gate with secret-shared inputs JxKt and JyKt, the
parties locally compute Jx+ yKt ← JxKt + JyKt.

63

Chapter 4 Passive and Perfect Security for Honest Majority

Multiplication gates: For each multiplication gate with secret-shared inputs JxKt
and JyKt, the parties proceed as follows:

1. The parties compute locally Jx · yK2t ← JxKt · JyKt.

2. Let us write Jx · yK2t = (z1, . . . , zn). Let λ1, . . . , λ2t+1 ∈ F be the (publicly known)
coefficients such that x · y =

∑2t+1
i=1 λi · zi. Each party Pi for i = 1, . . . , 2t+ 1 acts as

the dealer in Shamir secret-sharing to distribute shares JziKt.

3. The parties compute locally Jx · yKt =
∑2t+1

i=1 λi · JziKt
Output phase: Let JzKt be the output of the computation.

1. Each Pi for i = 1, . . . , t+ 1 sends its own share of z to all the other parties.

2. After each party Pi receives t+ 1 shares (possibly counting its own), it reconstruct the
output z.

Correctness and privacy of the protocol should be clear given that the adversary is passive:
after the input phase the parties have shares of each input to the protocol, which does not
leak information to the adversary due to the privacy properties of Shamir secret-sharing
scheme since the adversary knows only t shares coming from the corrupt parties, which
are not enough to determine a J·Kt-shared secret. After the input phase, all parties proceed
in a “gate-by-gate” fashion, computing shares of each intermediate value, or wire, in the
computation. Addition gates are clearly correct since these make use of the homomorphic
properties of Shamir secret-sharing. For multiplication gates, correctness follows from
inspection, and privacy follows again from the fact that each party Pi is distributing
information only in secret-shared form, which does not leak information towards the
adversary.

Intuition for the security proof

As explained at the beginning of the chapter, we will not include formal security proofs
for now, as these are delayed until Part II of this work, where the actual contributions are
presented. However, it is still a fruitful exercise to provide some intuition as to how such
proof would work in the protocol we have at hand here.

In order to obtain a proof of the security of the protocol described above, we would have
to define a simulator S that interacts with the adversary corrupting t parties, in such a
way that the adversary does not know if he is interacting in a real-world execution of
the protocol, where the actual honest parties are running the protocol at hand, or in
a ideal-world execution, where the honest parties only provide their inputs to an ideal
functionality that is in charge of computing the function on the given inputs and returning
only the output.

For simplicity in the notation, let us assume that the corrupt parties are P1, . . . , Pt. The
simulator S can interact with the t corrupt parties, and also with the functionality that
computes the given function ideally by providing inputs to it on behalf of the corrupt
parties. S needs to “fool” the adversary into believing that he is interacting with real honest
parties, so to do this S emulates a set of honest parties P t+1, . . . , Pn that will interact with

64

Chapter 4 Passive and Perfect Security for Honest Majority

the corrupt parties in what should look like a genuine execution of the protocol. Notice
that the trick here is that the simulator does not know what the actual inputs from the
honest parties are!

Let us begin by analyzing how the input phase could be simulated. In the protocol
description, all parties need to secret-share their input. S does not know the inputs from
the honest parties, so it cannot distribute towards the corrupt parties shares of these inputs.
However, this does not matter: the adversary corrupts only t parties, and recall from
the properties of Shamir secret-sharing that any set of t shares looks completely random.
Hence, the emulated honest parties can simply send random values to the t corrupt parties
as the shares of their inputs, without actually knowing what their inputs are. Therefore, so
far, the adversary cannot tell whether he is interacting with the actual honest parties in the
real world, or with the simulator in the ideal world.

On the other hand, as part of the input phase, the emulated honest parties P t+1, . . . , Pn

will receive shares of the inputs x1, . . . , xt from the corrupt parties P1, . . . , Pt, and since
there are at least t+ 1 parties among the parties emulated by S (given that t < n/2), this
enables him to reconstruct these inputs x1, . . . , xt. Furthermore, this also enables S to
reconstruct not only the inputs x1, . . . , xt, but also the shares that the corrupt parties have
of these inputs (since any t+ 1 shares not only determine the secret, but the polynomial
that was used to distribute it, so in particular they also determine all of the other shares).

At this point the corrupt parties have “shares” of all the inputs, with the quotes serving the
purpose of emphasizing that the shares corresponding to the inputs of honest parties are
just random values. On the other hand, the emulated honest parties do not really have
any share. In a sense, the only parties that hold shares are the corrupt ones, but there
are only t of them so these shares do not actually determine any secret, which enables
the computation to “take place”, even though in the ideal world only the inputs and the
outputs exist. This will be made clearer in subsequent paragraphs.

Observe that S knows all the shares that the corrupt parties have, which is crucial as we will
show towards the end. The next steps of the computation involve proceeding gate-by-gate,
obtaining shares of their outputs from shares of the inputs. Addition gates are handled in
a simple way as they require no interaction: the corrupt parties simply add their shares
together (notice in particular that the simulator still knows the shares held by the corrupt
parties if it knew the ones for the input summands).

Multiplication gates require a bit more care. Suppose that the shares held by the corrupt
parties P1, . . . , Pt corresponding to the inputs of the multiplication are (x1, . . . , xt) and
(y1, . . . , yt), which are known to S. According to the description of the protocol, each
corrupt party Pi will send to the other parties degree-t shares of xi · yi. The simulator
receives through the emulated honest parties at least t + 1 shares of each xi · yi, which
enables him to determine the shares that the other corrupt parties received. Also, the
protocol requires parties P t+1, . . . , P 2t+1 to similarly secret-share the product of their
shares of the inputs, but this is not possible since, again, the simulator does not know this
information. This is again not a problem since these parties can simply send random shares
to the t corrupt parties without actually knowing what value is being secret-shared. The
adversary cannot distinguish this from what happens in the real execution.

65

Chapter 4 Passive and Perfect Security for Honest Majority

Finally, the protocol reaches the output phase. The corrupt parties have shares of this
output, and the simulator knows what these shares are. Recall that S learned the inputs
x1, . . . , xt from the corrupt parties in the input phase. The simulator can interact with the
functionality to obtain the output z of the computation, using the real inputs from the
actual honest parties. This is the exact same output that would have been computed if the
adversary was involved instead in a real-world execution, where the actual honest parties
participate in the protocol. So far the adversary cannot tell the difference.

Since S knows the output z, and he also knows the t shares of this value that the corrupt
parties have, these t+1 points enables S to compute what the share corresponding to P t+1

should be so that it look consistent with the corrupt parties’ shares and the given output z.
Once this is done, P t+1 can easily play the output phase of the protocol by sending to the
corrupt parties the computed share. The adversary ends up reconstructing z, since this is
how the share of P t+1 was computed, and this is exactly what would have happened in a
real execution.

4.2 A More Efficient Protocol

The protocol described above is conceptually very simple. However, its main disadvantage
is the amount of data the parties have to communicate measured in terms of n, the number
of parties. Let M denote the number of multiplication gates in the circuit. For each of these
gates, the protocol requires the parties P1, . . . , P2t+1 to secret-share a value towards the
other parties, which in turn requires each of these parties to send a share to each other party.
This amounts to n− 1 field elements sent by each of the parties in {P1, . . . , P2t+1}, which
gives a total of Θ(t ·n) field elements transmitted over the network, per multiplication gate.
Alternatively, this can be written as Θ(t · n ·M) for the whole computation.1

As a practical observation, it is natural to increase t as n increases, given that this value
determines the amount of parties that the adversary needs to corrupt in order to break
the privacy of the protocol, and it can be argued that the more parties that participate
in the protocol, the “easier” it becomes for the adversary to corrupt a large portion of
these. Furthermore, it is typical to consider the maximal case for which t < n/2, namely
t = b(n− 1)/2c, an in this case the total communication complexity of the protocol above
becomes Θ(n2M), which is also referred to as quadratic communication complexity. It
would be much more ideal if we had a protocol with linear communication complexity,
that is, Θ(nM). A protocol with such communication complexity has the property that,
in average, the communication required by each party, which is 1

nΘ(nM) = Θ(M), is not
affected by how many parties participate in the protocol. This can be phrased as follows:
even if more parties join the computation, the amount of data each party has to send
remains, in average, constant.

The goal of this section is to present a perfectly secure MPC protocol in the honest majority
setting against a passive adversary that achieves linear communication complexity. The
protocol is taken from [20], and it follows a similar template to the one described in

1This ignores the communication involved in other steps of the protocol such as the input and output phases.
This is, however, reasonable, as in typical applications the “inner” complexity of the function (measured by
the amount of multiplications in our case) is much bigger than the amount of inputs and outputs.

66

Chapter 4 Passive and Perfect Security for Honest Majority

Section 4.1: each party first secret-shares its input, and then the parties proceed in a
gate-by-gate fashion, obtaining shares of the output of each gate, until they reach the final
output of the computation, whose shares are exchanged so that the parties can reconstruct
the result in the clear. The main difference lies in the way multiplication gates are handled,
which is the main source of inefficiency in the previous protocol. The multiplication
protocol from the previous section can be seen as having the following structure: The
parties locally multiply the shares of the inputs, obtaining degree-2t shares of the product
of the underlying secrets, and then they perform an action that converts these shares
from degree-2t to degree-t. In the previous protocol this conversion was achieved via
resharing: each party secret-shares its own degree-2t share using degree-t sharings, and
since reconstruction is linear, these shares can be combined in an appropriate manner to
obtain degree-t sharings of the original secret. Instead of using resharing, the protocol we
will discuss next uses the so-called double-sharings to reduce the 2t→ t conversion to the
task of simply reconstructing certain shared value, which is much more efficient to achieve
as we will see.

4.2.1 Using Double-Sharings for Secure Multiplication

Our protocol relies heavily on the concept of double-sharings, which constitute a special
type of preprocessing material that enables the parties to handle multiplications securely.
A double-sharing is a pair of the form (JrKt , JrK2t), where r ∈ F is uniformly random and
unknown to the adversary.2 These double-sharings constitute preprocessing material, since
they do not depend in any way on the inputs to the multiplication protocol, or in general,
the inputs to the function under consideration.

Secure multiplication protocol via double-sharings

Preprocessing: A double-sharing (JrKt , JrK2t).
Input: JxKt and JyKt two secret-shared values.
Output: JzKt, where z = x · y
Protocol: The parties execute the following

1. The parties compute locally Jx · yK2t ← JxKt · JyKt and JaK2t ← Jx · yK2t − JrK2t
2. The parties P2, . . . , P2t+1 send their shares of JaK2t to P1 who, together with his own

share, reconstructs a.

3. P1 sends a to all the other parties, so this value becomes publicly known.

4. The parties compute locally and output JzKt ← JrKt + a.

First, notice that the protocol achieves linear communication complexity: in step 2, 2t+
1 parties send a single field element to only one party, P1, who sends in step 3 one
field element to all other parties. This yields a total communication complexity of Θ(n).
Naturally, this only holds assuming that the parties can get the double sharing with linear
communication complexity too, which is discussed in Section 4.2.2 below.

2This is formalized as a functionality that samples r internally and acts as the dealer in Shamir secret-sharing,
distributing the appropriate shares to the parties. However, we stress that this chapter is not concerned
with the formalisms of the protocols, so we omit this.

67

Chapter 4 Passive and Perfect Security for Honest Majority

4.2.1.1 A small optimization.

Instead of sending a to all parties, P1 can secret-share this value, so that the parties get JaKt.
The rest of the protocol remains the same, changing JzKt ← JrKt+ a with JzKt ← JrKt+ JaKt.
The advantage of doing this is that, since a does not need to be kept private, t of the shares
can be fixed to be 0, and the remaining shares can be computed from these together with
the “secret” a. This means that P1 only needs to communicate the shares to n− t parties,
since t of the parties know already that their share of a will be 0. This optimization was
introduced in [28].

4.2.2 Producing Double-Sharings Efficiently

The task for this section is to describe a protocol in which the parties can compute double-
sharings. This protocol could be used in a preprocessing stage, before the inputs of the
parties are known.

To get started, let us consider the following simple protocol:

1. Each Pi for i ∈ [t+1] samples ri ∈R F and secret-shares this value towards the parties
twice: using degree-t and degree-2t polynomials. The parties obtain JriKt and JriK2t.

2. The parties produce the double-sharing (JrKt , JrK2t), where JrKt =
∑t+1

i=1 JriKt and
JrK2t =

∑t+1
i=1 JriK2t.

Since the adversary corrupts t parties, there is at least one honest party among P1, . . . , Pt+1,
which implies that the value of r looks uniformly random to the adversary who knows all
but one of the random summands. Unfortunately, this approach, although simple, does not
suffice for our purposes since it has quadratic communication complexity (each party Pi for
i ∈ [t+ 1] needs to send shares to all other parties).

The following approach, proposed in [20], enables the parties to produce, using quadratic
communication, a total of Θ(n) double-sharings. As a result, the amortized commu-
nication cost per double-sharing is linear. The protocol works as follows. Let M =
Vann×(n−t)(β1, . . . , βn), where β1, . . . , βn are mutually-different elements of F.

Preprocessing double-sharings

Output: A set of double sharings {(JriKt , JriK2t)}
n−t
i=1

Protocol: The parties proceed as follows

1. Each party Pi samples si ∈R F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain JsiKt and JsiK2t.

68

Chapter 4 Passive and Perfect Security for Honest Majority

2. The parties compute locally the following shares:

Jr1Kt
Jr2Kt

...
Jrn−tKt

 = Mᵀ ·

Js1Kt
Js2Kt

...
Jsn−1Kt
JsnKt

 ,

Jr1K2t
Jr2K2t

...
Jrn−tK2t

 = Mᵀ ·

Js1K2t
Js2K2t

...
Jsn−1K2t
JsnK2t

 .

3. The parties output the double sharings {(JriKt , JriK2t)}
n−t
i=1 .

Let us analyze that the protocol produces correct double-sharings, for which it suffices
to show that the values r1, . . . , rn−t produced by the protocol look uniformly random to
the adversary. We claim that these values are in a 1-1 correspondence with the values
si sampled by the n − t honest parties, which is enough to reach the desired conclusion
as these are uniformly random and unknown to the adversary. To see that the claim
holds, assume for simplicity that the first n − t parties, P1, . . . , Pn−t, are honest. Let
M ′ = Van(n−t)×(n−t)(β1, . . . , βn−t) and M ′′ = Van(n−t)×t(βn−t+1, . . . , βn), then Mᵀ can
be written in block form as Mᵀ = [M ′ᵀ|M ′′ᵀ], so r1

...
rn−t

 = M ′ᵀ ·

 s1
...

sn−t

+M ′′ᵀ ·

sn−t+1
...
sn

 .

Since M ′ is invertible, we obtain the desired result. The general case in which the honest
parties may not be P1, . . . , Pn−t is handled in a similar way by taking the appropriate
(n− t)× (n− t) submatrix of M .

Regarding communication complexity, observe that in the first step, which is the only
step involving interaction, each party sends a share to each other party, which leads to
a communication complexity of Θ(n2). Since n − t double-sharings are produced, we
conclude that the amortized communication complexity of generating each double-share is
Θ(n2/(n− t)), which is linear in n since n− t > n/2.

69

Chapter 5

Active and Perfect Security for Two-Thirds
Honest Majority

In the previous section we studied a perfectly secure protocol that is secure against a passive
adversary corrupting t parties where t < n/2. The goal now is to extend this to active
security. As mentioned before, this requires us to either lower the threshold from t < n/2
to t < n/3, or consider statistical instead of perfect security. In this section we take the first
route, that is, we consider two-thirds honest majority and maintain the requirement on
perfect security. The second approach, active and statistical security in the honest majority
setting, is discussed in Chapter 6.

Before we get into the description of our protocol, recall that, as shown in Section 3.3, in
the setting under consideration, t < n/3, the parties can reconstruct sharings JsKd with
error-correction (i.e. the parties are guaranteed to learn the correct secret) if d = t, and
with error-detection (i.e. either the parties reconstruct the right secret, or the presence of
errors is detected and the parties abort) if d = 2t. Furthermore, it is described in Section 3.4
how to do this efficiently via the protocol ΠPublicRec.

5.1 Actively Secure Multiplication for t < n/3

The tools developed in the previous sections are essential for the construction of an actively
secure version of the multiplication protocol described in Section 4.2.1. The main issue with
that protocol when ported to the actively secure scenario lies in opening, or reconstructing,
the secret-shared value JaK2t. To this end we can use the reconstruction techniques from
Section 3.4. In this case, d = 2t, and since we assume that t < n/3, we can take ` = n and
ensure that the error detection bound ` > d+ t holds (if d = t, then the error correction
bound can be achieved, a fact that will be useful later on). The resulting protocol is
described below. It assumes several simultaneous multiplications are to be processed, given
that the reconstruction protocol from the previous section requires t+1 values to be opened
to operate efficiently. Furthermore, as the preprocessing protocol from Section 4.2.2, the
actively secure method to compute double-sharings we will discuss in Section 5.2 also
operates in batches.

70

Chapter 5 Active and Perfect Security for Two-Thirds Honest Majority

Actively secure multiplication protocol via double-sharings

Preprocessing: A double-sharing (JrKt , JrK2t).
Input: Secret-shared values JxKt and JyKt.
Output: Jz = x · yKt.
Protocol: The parties execute the following

1. The parties compute locally Jx · yK2t ← JxKt · JyKt and JaK2t ← Jx · yK2t − JrK2t
2. The parties call the protocol ΠPublicRec from Section 3.4 to learn a.a

3. The parties compute locally and output JzKt ← JrKt + a.

aRecall that this protocol operates in batches of secret-shared data so this would be called once for
many simultaneous secure multiplications.

5.2 Instantiating the Offline Phase

The protocol from above required as preprocessing material double-sharings (JrKt , JrK2t).
Unfortunately, the protocol from Section 4.2.2 to achieve such task cannot be used directly
in the actively secure setting, with the main reason being the fact that, when a corrupt party
Pi is asked with distributing shares JsiKt and JsiK2t, it may not do this consistently. More
precisely, the underlying secrets in the degree-t and degree-2t must be equal according to
the protocol specification, but Pi may choose them to be different. Furthermore, what is
worse is that Pi can send shares that are not t/2t-consistent, that is, they may not be the
result of evaluating a polynomial of the appropriate degree on the points α1, . . . , αn. This
is very sensitive, since the theory of error detection and correction that we developed in
Section 3.2 relies heavily on the fact that the shares that the parties had were consistent.

The protocol we will consider to deal with this situation is taken from [4], and it makes use
of the so-called hyper-invertible matrices in order to guarantee that the sharings distributed
by each party satisfy the necessary consistency requirements. These are defined below, and
used to generate double-sharings in Section 5.2.2.

5.2.1 Hyper-Invertible Matrices

A matrix M ∈ Fk×` is said to be hyper-invertible if every square sub-matrix obtained by
taking subsets of the rows and columns of M is invertible.

An example of a hyper-invertible matrix is the following. Let α1, . . . , αk, β1, . . . , β` ∈ F be
all different field elements, and let Muv =

∏
i∈[`]\{v}

βu−αi

αv−αi
for u ∈ [k], v ∈ [`]. As shown

in [4], the matrix M ∈ Fk×` whose (u, v) entry is given by Muv is hyper-invertible.

71

Chapter 5 Active and Perfect Security for Two-Thirds Honest Majority

5.2.2 Generating Double-Sharings

The protocol to generate the necessary double-sharings using hyper-invertible matrices is
presented below. We let M ∈ Fn×n be a hyper-invertible matrix.

Preprocessing double-sharings with active security

Output: A set of double sharings {(JriKt , JriK2t)}ni=2t+1

Protocol: The parties proceed as follows

1. Each party Pi samples si ∈R F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain JsiKt and JsiK2t, but observe that corrupt parties may
distribute shares inconsistently.

2. The parties compute locally the following shares:
Jr1Kt
Jr2Kt

...
JrnKt

 = M ·

Js1Kt
Js2Kt

...
JsnKt

 ,

Jr1K2t
Jr2K2t

...
JrnK2t

 = M ·

Js1K2t
Js2K2t

...
JsnK2t

 .

3. For each i ∈ [2t], all the parties send their shares of JriKt and JriK2t to Pi.

4. Upon receiving these shares, each Pi for i ∈ [2t] checks that the received sharings
of JriKt and JriK2t are t and 2t-consistent, respectively. If any of the sharings is not
consistent, or if both are but the reconstructed value is not equal in both cases, Pi

sends abort to all parties and halts.

5. If no party sends an abort message in the previous step, then the parties output the
double-sharings (JriKt , JriK2t) for i ∈ {2t+ 1, . . . , n}.

To analyze the protocol let us assume without loss of generality that the corrupt parties are
P1, . . . , Pt. We claim that if there are no abort messages, then the following holds:

1. For each i ∈ {2t + 1, . . . , n} the sharings JriKt and JriK2t held by the honest parties
are t and 2t-consistent, respectively, and their underlying secrets match.

2. For each i ∈ {2t+ 1, . . . , n}, the secret ri looks uniformly random and unknown to
the adversary.

For the first claim we use the fact that no party among P1, . . . , P2t sent an abort message in
step 4. Since P1, . . . , Pt are actively corrupt, they may refrain from sending such message
when they were actually supposed to. However, Pt+1, . . . , P2t are all honest, so if none of
these parties sent an abort message it is because the sharings they received, (JriKt , JriK2t)
for i ∈ {t+ 1, . . . , 2t}, pass the check these parties perform. This means these sharings are
consistent and their underlying secrets match.

Now, let us partition M in block form as follows:A B C
D E F
G H I

 ,

72

Chapter 5 Active and Perfect Security for Two-Thirds Honest Majority

where A,B,D,E ∈ Ft×t, C,F ∈ Ft×(n−2t), G,H ∈ F(n−2t)×t and I ∈ F(n−2t)×(n−2t).
Given this partition, we see that, for d = t, 2t, it holds that

Jrt+1Kd
Jrt+2Kd

...
Jr2tKd

 = D ·

Js1Kd
Js2Kd

...
JstKd

+E ·

Jst+1Kd
Jst+2Kd

...
Js2tKd

+ F ·

Js2t+1Kd
Js2t+2Kd

...
JsnKd

 .

Since M is hyper-invertible, the square submatrix D is invertible, which means that we
can rewrite the equation above as

Js1Kd
Js2Kd

...
JstKd

 = D−1 ·

Jrt+1Kd
Jrt+2Kd

...
Jr2tKd

−D−1E ·

Jst+1Kd
Jst+2Kd

...
Js2tKd

−D−1F ·

Js2t+1Kd
Js2t+2Kd

...
JsnKd

 .

Observe that all the sharings that appear in the right-hand side of the equation above are
d-consistent for d = t, 2t, and their underlying secrets are the same: we already argued
this for (Jrt+1Kd , . . . , Jr2tKd), and for the remaining shares this holds since these were
distributed by honest parties. As a result, since these properties are preserved under linear
combinations, we see that the shares on the left-hand side also satisfy said properties. This
shows that all sharings provided by the parties, {(JsiKt , JsiK2t)}ni=1, are t and 2t-degree
consistent and the underlying secrets match, which implies that the same holds for the final
double-sharings produced by the protocol, {(JriKt , JriK2t)}ni=2t+1, since these are obtained
as linear combinations of the ones above. This proves the first claim.

To prove the second claim we observe that we can write
r2t+1

r2t+2
...
rn

 = G ·

s1
s2
...
st

+H ·

st+1

st+2
...
s2t

+ I ·

s2t+1

s2t+2
...
sn

 .

Since I is invertible, we see that (r2t+1, . . . , rn) is in a 1-1 correspondence with the vector
(s2t+1, . . . , sn), but the latter is chosen at random by the honest parties and is unknown to
the adversary, so (r2t+1, . . . , rn) will inherit such properties as well.

Finally, it is easy to see that the communication complexity of the protocol is Θ(n2).
However, since n− 2t > n/3 double-sharings are produced per execution, the amortized
complexity per double-sharing is Θ(n), as required.

5.3 Actively Secure Input Phase

So far we have discussed how to deal with multiplications and output reconstruction
when the adversary is behaving actively. The only missing step to completely port the
protocol from Section 4.2 to the actively secure setting is the input phase in which each

73

Chapter 5 Active and Perfect Security for Two-Thirds Honest Majority

party distributes shares of its own input. The problem here when the adversary is active
is the same problem we have already encountered before: corrupt parties may distribute
inconsistent shares.

Consistency is enforced by means of the following protocol. It requires as preprocessing
material a secret-shared value JrKt, where r ∈ F is random only known by the party Pi

who will provide input. This can be generated by taking a double-sharing (JrKt JrK2t),
discarding the degree-2t part (or alternatively ignoring it from the start when generating
the double-sharing), and letting the parties send their shares of JrKt to Pi, which enables
Pi to error correct to learn r. The protocol also requires the broadcast primitive that is part
of the communication channel we assume, as discussed in Section 1.2.6.1. However, as
discussed in Section 1.3.1, in the case in which t < n/3 and the corruption is active, which
is the setting in this chapter, a protocol with perfect security instantiating this broadcast
primitive exists.

Distributing shares of a given input

Input: Party Pi has an input x.
Preprocessing: A secret-shared value JrKt where r ∈ F is random and only known by Pi.
Output: Parties get consistent shares JxKt. If Pi is corrupt then the underlying secret may
not be equal to x.

Protocol: The parties proceed as follows:

1. Pi broadcasts e = x− r.

2. The parties locally compute JxKt = JrKt + e as the final shares of the input x.

If the sender is honest then its input is kept private since the only information revealed
is e = x − r, and since r is uniformly random and unknown to the adversary, this does
not leak anything about x. Furthermore, in case Pi is corrupt, the resulting shares are still
consistent since the they are obtained by adding a publicly known value e to an already
consistently-shared value JrK. Observe that this assumes that e is known by everyone,
which implicitly means that all parties know the same value. This may not be the case if the
rogue Pi sends different values for e to different parties. However, this is easy to enforce by
means of a broadcast protocol, as described below.

74

Chapter 6

Active and Statistical Security for Honest
Majority

In this section we study active security in the honest majority setting, that is, where the
number of corrupted parties t is strictly less than n/2. As discussed in Section 1.3.2, the
best security notion achievable with this threshold is statistical security, which is the type
of security we aim at in this section.

The protocol we will consider here follows a similar approach as the protocol from the
previous section: in a preprocessing phase the parties generate double sharings which are
then used in an online phase to compute multiplications securely. However, the main issue
that will appear in the t < n/2 case is, as we will see, that the adversary can inject certain
errors in the online phase that may cause the computation to be incorrect and, moreover,
this may lead to leakage of sensitive information about the honest parties’ inputs. This is
dealt with by executing a check before the output phase that is intended to verify that no
errors were introduced during the computation.

Throughout this section we will assume that n = 2t + 1. This is not only for simplicity:
our protocol is designed to tolerate exactly t corruptions while assuming that there are
t + 1 honest parties. As mentioned in Remark 1.1 in page 19, contrary to intuition, it is
not generally true that a protocol that has been designed to withstand t corruptions is also
secure against less than t corruptions, and the one presented in this section is an example
of that. We will discuss this issue in detail towards the end of this section.

6.1 Reconstructing Secret-Shared Values

As in the previous protocols, an operation that the parties will need to execute several
times lies in the reconstruction of a secret-shared value JsKd, where the degree d is either
equal to t or 2t. From Section 3.2, we see that in our current setting a party receiving n
shares can error-detect if d = t, and moreover, reconstruction of secret-shared values in
this case can be done with a communication complexity of O(n) field elements with the
help of the protocol ΠPublicRec from Section 3.4. However, as discussed in Section 3.3, if
d = 2t, then the adversary can cause the parties to reconstruct an incorrect secret s+ δ for
some (potentially non-zero) chosen δ. Fortunately, sharings of degree 2t are only used to
compute multiplications securely, and, as we will soon see, cheating in this opening leads

75

Chapter 6 Active and Statistical Security for Honest Majority

to incorrect multiplications which can be verified using different techniques. As a result, in
spite of the adversary being able to cheat in the multiplications, leading to incorrect results,
the validity of these can be checked by the parties.

We will make use of the protocol ΠPublicRec from Section 3.4. However, this protocol
does not consider the case d = 2t in which the adversary can cause reconstruction to
result in incorrect values. A secret-shared value JsK2t can be reconstructed with the same
communication complexity of O(n) field elements as follows:

1. The parties send their shares of JsK2t to P1;

2. P1 uses the first 2t+1 shares s1, . . . , s2t+1
1 to interpolate the unique polynomial f(X)

of degree at most 2t such that f(αi) = si for i ∈ [2t+ 1], and sets s = f(α0);

3. P1 sends s to all the parties.

As expected, after the execution of this protocol the adversary can cause the parties to
reconstruct s+ δ for some chosen error δ. This can happen if P1 is corrupt and adds this
error when sending the result to the parties 2, or it can also occur even if P1 is honest if the
actively corrupt parties send wrong shares to P1.

6.2 Preprocessing Phase

As we have already mentioned, the protocol we will use for the setting t < n/2 resembles a
lot the protocol from Chapter 5 in which parties produce double-sharings (JrKt , JrK2t) in
the preprocessing phase, which are then used to obtain shares of a product JxyKt from two
shared values JxKt and JyKt. This is done by letting the parties locally obtain JxyK2t, then
open a← JxyK2t − JrK2t and later compute JxyKt ← JrKt + a non-interactively.

We first discuss how the parties can obtain the necessary preprocessing material (JrKt , JrK2t).
In Section 5.2 we presented a protocol based on the so-called hyper-invertible matrices
(HIM) to obtain this type of correlation for the case in which t < n/3. Unfortunately, this
protocol is not suitable for our setting in which t < n/2, which can be seen by thoroughly
inspecting the construction. However, in Section 4.2.2 we presented a passively secure
protocol for generating double-sharing in the honest majority setting, and this method will
serve as the basis for the actively secure mechanism to produce double-sharings we need in
this section.

Let us begin by recalling briefly how the passively secure protocol from Section 4.2.2 works.
It begins by asking each party Pi to sample si ∈R F, and then secret-share this value twice

1Since we assume that n = 2t+ 1, these 2t+ 1 shares constitute all the shares, but this method also works
for 2t+ 1 < n.

2If P1 is actively corrupt then he can even perhaps add different errors to the value sent to different parties,
which results in the parties learning different values. For simplicity in the presentation we assume this is
not the case, that is, the honest parties obtain the same value s+ δ. This can be achieved by asking P1 to
use a broadcast channel to send this value. However, this is not necessary as the protocol still works even
if P1 distributes different values. However, for the sake of clarity and simplicity we assume this does not
happen.

76

Chapter 6 Active and Statistical Security for Honest Majority

using thresholds t and 2t as (JsiKt , JsiK2t). Then the parties locally apply to these sharings
a matrix that acts as a randomness extractor in order to obtain the final double-shares.

As mentioned in Section 5.2, this protocol is not actively secure, mainly because an actively
corrupt party Pi may cheat when asked to secret-share the value si. This cheating may take
place in different ways:

• Pi does not distribute JsiKt consistently, that is, the shares (si1, . . . , sin) of JsiKt sent
by Pi to the other parties are not t-consistent.

• Pi does not distribute JsiK2t consistently, that is, the shares (s′i1, . . . , s
′
in) of JsiK2t sent

by Pi to the other parties are not 2t-consistent.

• The shares (si1, . . . , sin) and (s′i1, . . . , s
′
in) are t and 2t-consistent, respectively, but

the underlying secrets are not the same.

Although these issues, at a high level, seem harmful for the protocol, we can show that the
ultimate effect they have on the execution is that a multiplication of two shared values
JxKt and JyKt may result in Jx · y + δKt for some adversarially-chosen error δ ∈ F. This
is of course a problem for the correctness of the protocol, since an adversary can cause
intermediate values to be computed incorrectly. Fortunately, it is possible to check, quite
efficiently, that the multiplications have been computed correctly, which is explained in
Section 6.4.

From the observation above, the protocol the parties use in order to generate double-
sharings efficiently is essentially the same as the protocol from Section 4.2.2. The protocol
is described explicitly below for the sake of completeness. Let M = Vann×(n−t)(β1, . . . , βn),
where β1, . . . , βn are different elements of F.

Preprocessing double-sharings

Output: A set of double sharings {(JriKt , JriK2t)}
n−t
i=1

Protocol: The parties proceed as follows

1. Each party Pi samples si ∈R F and secret-shares it using degree-t and degree-2t
polynomials. The parties obtain JsiKt and JsiK2t.

2. The parties compute locally the following shares:

Jr1Kt
Jr2Kt

...
Jrn−tKt

 = Mᵀ ·

Js1Kt
Js2Kt

...
Jsn−1Kt
JsnKt

 ,

Jr1K2t
Jr2K2t

...
Jrn−tK2t

 = Mᵀ ·

Js1K2t
Js2K2t

...
Jsn−1K2t
JsnK2t

 .

3. The parties output the double sharings {(JriKt , JriK2t)}
n−t
i=1 .

As mentioned before, even though this protocol is in principle not actively secure (in the
sense that there are seemingly a lot of places where the adversary can cheat to cause a
potentially harmful outcome), we will be able to show that, when this protocol is used
in conjunction with the protocol for multiplying two shared values from Section 6.3
below, the end result is that the adversary is able to inject additive errors to the result

77

Chapter 6 Active and Statistical Security for Honest Majority

of a multiplication. Fortunately, this type of attack can be prevented as described in
Section 6.4.

Instead of analyzing in detail the security guarantees of this protocol on their own, we
postpone the analysis to Section 6.3 below where we analyze the properties of the multipli-
cation protocol that aims to produce JxyKt from JxKt and JyKt. However, before we move
into that, we provide in this section a bit of intuition about why is it the case that none
of the attacks proposed above is relevant. In a nutshell, the reason lies in the fact that,
the notion of d-consistency from Definition 3.3 in Section 3.1, is only concerned with the
consistency of the shares held by honest parties.

Distributing shares of degree t inconsistently. An actively corrupt party can misbehave
when acting as a dealer in Shamir secret-sharing, and can choose to send arbitrary values
(s1, . . . , sn) that are not t-consistent to the parties. This is not a problem nonetheless, or
rather, an adversary can cause the exact same effect even if the dealer is honest, as we now
show.

For simplicity in the notation, assume that the corrupt parties are P1, . . . , Pt. Since n =
2t+ 1, there are exactly t+ 1 honest parties Pt+1, . . . , Pn. Let f(X) ∈ F≤t[X] be the unique
polynomial of degree at most t such that f(αi) = si for i = t + 1, . . . , n. Since the
dealer is actively corrupt, the adversary knows f(X) and therefore it knows s′i = f(αi)
for i = 1, . . . , t. In particular, from Definition 3.3, the parties hold t-consistent shares
JsKt = (s′1, . . . , s

′
t, st+1, . . . , sn), where s = f(α0).

In conclusion, even if the dealer is actively corrupt, any set of shares it sends will be by
definition t-consistent since there are exactly t + 1 parties and the shares these parties
receive uniquely define a polynomial f(X) ∈ F≤t[X].

Distributing shares of degree 2t inconsistently. Assume for simplicity in the notation
that the corrupt parties are P1, . . . , Pt. As before, an actively corrupt dealer can misbehave
and choose to send arbitrary values (st+1, . . . , sn) to the honest parties. Since n = 2t+ 1
(this also works for n ≥ 2t+ 1), for any secret s there exists a polynomial f(X) ∈ F≤2t[X]
such that f(α0) = s and f(αi) = si for i = t+ 1, . . . , n. Since the adversary knows f(X), it
knows in particular f(αj) for j = 1, . . . , t. This means, according to Definition 3.3, that the
parties trivially hold 2t-consistent shares of any secret.

As in Remark 3.1, this is not a good thing, since it means the adversary can change the
corrupt parties’ shares in order to obtain sharings of different values. However, as pointed
out before, this will be acceptable in our protocol: the concrete effect that this type of
attack will have in the overall protocol is that the adversary will be able to add errors to
the output of secure multiplications, but the correctness of these will be verified with a
simple protocol as described in Section 6.4.

Shares of degree t and 2t having different secrets. From the two notes above we see
that the adversary cannot, by definition, distribute shares t or 2t-inconsistently. The last
attack it could carry out then in the protocol for preprocessing double-sharings is that the

78

Chapter 6 Active and Statistical Security for Honest Majority

secret s in the shares of degree t is not the same as the secret s′ in the shares of degree
2t. Once again, although the shares of degree t uniquely define a secret s, the shares of
degree 2t are consistent with any possible secret, so there is not even an s′ defined. As
mentioned before, this gap will result in a concrete attack in the multiplication protocol
from Section 6.3 below, which can be prevented using certain checks after the multiplication
has been performed as explained in Section 6.4.

6.3 Online Phase

We now move to the description of the online phase of our protocol. Recall that the
function to be evaluated, F : Fn → F, is given by an arithmetic circuit over F. Let xi ∈ F
be the input of party Pi. As in previous sections, the protocol consists of having the parties
obtain shares Jx1Kt , . . . , JxnKt of their inputs, followed by methods to obtain from two
given shared values JxKt and JyKt, shares of Jx+ yKt and Jx · yKt. This allows the parties to
obtain shares of all intermediate values of the computation, until shares of the output JzKt,
with z = F (x1, . . . , xn), are produced. At this point the parties can simply reconstruct this
result to learn the output of the computation.

The input phase in which the parties obtain shares of their inputs, is handled in exactly the
same way as in Section 5.3, that is, for a party Pi to provide input xi, we assume the parties
have a random shared value JrKt where r ∈R F is only known by Pi. This could be easily
adapted from the protocol to obtain double-shares. Then Pi uses the broadcast channel to
send e = xi − r to all the parties, who define JxiK = JrK + e as their shares of xi.

Given JxKt and JyKt, it is straightforward for the parties to obtain Jx+ yKt given the linearity
properties of Shamir secret-sharing. On the other hand, to obtain Jx · yK, the parties
first execute the following protocol, which is exactly the same as the one presented in
Section 4.2.1.

Actively secure multiplication protocol via double-sharings

Preprocessing: Double-sharings (JrKt , JrK2t).
Input: Secret-shared values JxKt and JyKt.
Output: Jz = x · yKt.

Protocol: The parties execute the following

1. The parties compute locally Jx · yK2t ← JxKt · JyKt and JaK2t ← Jx · yK2t − JrK2t
2. The parties call the protocol ΠPublicRec from Section 6.1 to learn a.

3. The parties compute locally and output JzKt ← JrKt + a.

The main difference of this protocol with respect to the one from Section 5.1 is the set of
guarantees this one provides. In the protocol from Section 5.1, we could prove that the
parties obtain the correct Jx · yKt at the end of the protocol execution. In our case here, we
will not be able to prove this. This is because, as has been mentioned before, in our case
where t < n/2, opening degree-2t shares cannot be done while ensuring the integrity of
the underlying secret, which is not the case when t < n/3. Here, we show the following:

79

Chapter 6 Active and Statistical Security for Honest Majority

Proposition 6.1. Let JxKt and JyKt be inputs to the multiplication protocol above. Then, at
the end of the protocol execution, the parties get shares Jxy + δKt, where δ ∈ F is a value
known to the adversary.

Proof. The result of the call to protocol ΠPublicRec is a + δ = (xy − r) + δ, so the parties
compute Jzy + δK← JrK + (xy − r) + δ in the last step of the protocol.

6.4 Verification Phase

As we showed in Proposition 6.1, an active adversary can inject errors to the result of
secure multiplications. This is of course a problem since correctness of the computation is
not guaranteed anymore. Furthermore, it can lead to concrete privacy leakage attacks. For
example, if n = 3 and F (x1, x2, x3) = (x1 · x2) · x3, a corrupt party could add a non-zero
error in the first multiplication so that the output of the computation is (x1 · x2 + δ) · x3 =
F (x1, x2, x3) + δ · x3. If the adversary corrupts P1 and sets x1 = 0, then the correct output
is always 0 regardless of the inputs of the other parties, so the adversary should not be
able to learn anything about these according to the security definition of MPC. However,
with the attack above, the result becomes 0 + δ · x3, which in particular means that the
adversary can learn x3 by multiplying the result with δ−1.

Given this, it is imperative that, before the parties reconstruct the final result, they check
that no errors have been introduced in any of the multiplications involved in the compu-
tation. The more concrete setting is the following. The parties have (t-consistent) shares
(JxKt , JyKt , JzKt), where z is supposed to be equal to x · y. However, due to adversarial
behavior, it is actually the case that z = x · y + δ for some adversarially chosen value δ ∈ F,
and the parties want to check that δ = 0. At a high level, the method we will present to
address this issue consists of the following. First, the parties generate a triple such as the
one above (JaKt , JbKt , JcKt), where c = a · b+ ε for some adversarially chosen value ε, and in
addition, a, b ∈ F are uniformly random and unknown to the adversary. Then, the parties
will make use of this triple of shared values to check the correctness of z.

Generating the tuple (JaKt , JbKt , JcKt) is straightforward given the tools we have presented
thus far: getting JaKt and JbKt can be done by a simple modification of the protocol from
Section 6.2 to obtain double-sharings, without considering the degree-2t part, and JcKt can
be obtained from JaKt and JbKt by applying the multiplication protocol from Section 6.3.
Now, using such tuple to check the correctness of z is done with the following protocol.
Below, we let FCoin denote a functionality that returns public random values to all the
parties.

Verifying secure multiplications

Preprocessing: A tuple (JaKt , JbKt , JcKt), where c = a · b+ ε for some value ε ∈ F known by
the adversary, and a, b ∈ F are uniformly random and unknown to the adversary.
Input: Secret-shared values (JxKt , JyKt , JzKt), where z = x · y + δ for some value δ ∈ F
known by the adversary.
Output: A signal pass/fail.

80

Chapter 6 Active and Statistical Security for Honest Majority

Protocol: The parties execute the following

1. The parties call s← FCoin;

2. The parties compute locally JdKt ← JxKt − s · JaKt and JeKt ← JyKt − JbKt
3. The parties call the protocol ΠPublicRec from Section 6.1 to reconstruct d and e.

4. The parties compute locally JwK← s · e · JaK + d · JbK + s · JcK + d · e− JzK.

5. The parties call the protocol ΠPublicRec to reconstruct w, and check that w = 0. If this
is the case, output pass. Else, output fail.

Proposition 6.2. Let (JxKt , JyKt , JzKt) with z = xy + δ be an input to the protocol above.
Then, if δ 6= 0, the probability that the protocol results in the parties outputting pass is at
most 1/|F|. Furthermore, nothing about x or y is learned by the adversary after the execution
of the protocol.

Proof. Since d = x− s · a, e = y − b, z = x · y + δ and c = a · b+ ε, we have that

w =s · e · a+ d · b+ s · c+ d · e− z

=s · (y − b) · a+ (x− s · a) · b+ s · (a · b+ ε) + (x− s · a)(y − b)− (x · y + δ)

=sya− sba+ xb− sab+ sab+ sε+ xy − xb− say + sab− xy − δ

=s · ε− δ.

From this, we see that w = 0 if and only if s · ε − δ = 0, or s · ε = δ. Assume that δ 6= 0
and nevertheless w = 0. Then ε 6= 0 since otherwise δ = s · 0 = 0, but this implies that
s = δ/ε, which happens with probability 1/|F| since s is uniformly random and sampled
independently of δ and ε.

Remark 6.1. The verification step above can be improved so that, when many checks are
performed simultaneously (as expected in an actual secure computation scenario), the overhead
in communication by performing this check is very small. More concretely, this overhead can be
made sub-linear in the number of multiplications being checked thanks to the novel techniques
presented in [28].

81

Part III

Dishonest Majority

82

Chapter 7

Passive Security for Dishonest Majority

All the protocols we have seen so far assume that the adversary corrupts strictly less than
n/2 or n/3 parties. However, if such assumption is violated, privacy would break, which
can be seen from the fact that if the adversary corrupts more parties than the threshold
used for Shamir secret sharing then the underlying secret is revealed.

It would be ideal if we could design protocols where, from the view of each single party,
their input is kept private even if all of the other parties collude against the single party. In
other words, we would like to guarantee security under an adversary corrupting t parties,
even if t grows as large as n − 1, leaving only one honest party. This setting, where the
only bound on t is t < n, is called dishonest majority since in principle a majority of the
parties could be corrupt; this is in contrast to the case in which t < n/2 where the majority
of parties are guaranteed to be honest.

In this chapter we explore an MPC protocol in the dishonest majority setting with passive
security, which means that each party’s input is secure even if all the other parties collude,
as long as these parties follow the protocol specification. In Chapter 8 we explore the case
of active security, which ensures privacy even if the other parties misbehave. This is the
strongest possible setting, but it is also, naturally, the most expensive.

Another important aspect of the dishonest majority setting is that it includes the relevant
case in which n = 2 and t = 1, since in this case none of the bounds t < n/2 nor
t < n/3 hold. This particular scenario appears in many different applications, so it must be
considered as well.

7.1 Additive Secret-Sharing

We assume that t = n − 1. Unlike the results from Chapter 6, assuming t reaches the
maximum possible bound is only done for the sake of clarity in the notation, instead of
being a security feature. All of our results carry over if t < n− 1.

Additive secret-sharing

The dealer secret-shares a value s ∈ F among n parties P1, . . . , Pn as follows.

1. Sample s1, . . . , sn−1 ∈R F and define sn = s− (s1 + · · ·+ sn−1).

83

Chapter 7 Passive Security for Dishonest Majority

2. Distribute the value si to party Pi, for i ∈ [n].

In other words, the tuple (s1, . . . , sn) is uniformly random in (Z/2kZ)n, constrained to
s = s1 + · · ·+ sn. As a result, for every set A ⊆ [n] with |A| ≤ n− 1, the distribution of the
shares {si}i∈A is uniformly random, and in particular, it is independent of the secret s.

When the parties have shares as above, we denote JsK = (s1, . . . , sn). Notice that, given
two shared values JxK and JyK, the parties can locally add/subtract their shares of these
values to obtain Jx± yK. Furthermore, given a value c ∈ F known to all the parties, the
parties can locally obtain c JxK by multiplying c to every share, and they can obtain Jx± cK
by asking only one party, say P1, to add/subtract the value of c to its share.

7.2 Protocols for Secure Multiplication

As in previous sections, we obtain a secure computation protocol by asking the parties to
distribute shares of their inputs (which is trivial since, if x is known to party Pi, the parties
can non-interactively obtain JxK by writing x = x1 + · · · + xn where xj = 0 if j 6= i, and
xi = x), followed by the parties executing different subprotocols to obtain Jx+ yK and JxyK
from shared values JxK and JyK. As we mentioned before, the case of addition can be easily
handled by the parties adding their shares locally. However, obtaining JxyK is, as usual,
a much harder task. Furthermore, what complicates matters in the dishonest majority
scenario is that, as we have mentioned already in Section 1.3.3, this setting requires the
use of tools from the public-key cryptography domain, which are, in their nature, much
more expensive than the information-theoretic techniques we have been making use of so
far.

7.2.1 Product-to-Sum Conversion

We begin by reducing the problem of obtaining JxyK from JxK and JyK to a simpler problem.
Write JxK = (x1, . . . , xn) and JyK = (y1, . . . , yn), so

xy = (x1 + · · ·+ xn)(y1 + · · ·+ yn) =

n∑
i=1

xiyi +
∑

i,j∈[n],i 6=j

xiyj .

The goal is to obtain shares of each of these summands, which can in turn be added locally
to obtain shares of x · y. Since each term of the form xiyi is known by party Pi, the parties
can obtain JxiyiK trivially by setting Pi’s share to be xiyi, and the setting the other shares
to be 0. The main challenge lies on the terms of the form xiyj for i 6= j, since one factor is
known by one party Pi, and the other factor is known by a different party Pj .

Assume the existence of a protocol for product-to-sum conversion, in which Pi inputs xi, Pj

inputs yj , and Pi and Pj receive zi and zj respectively, with these values being uniformly
random constrained to xiyj = zi + zj . With such a tool, the parties can obtain JxiyjK by

84

Chapter 7 Passive Security for Dishonest Majority

letting Pi and Pj execute the product-to-sum protocol, obtaining zi and zj , and defining
the other parties’ shares to be zero.

From our observations above, the parties can locally compute JxiyiK for i ∈ [n], and, with
the help of a product-to-sum conversion protocol, they can also compute JxiyjK for i, j ∈ [n]
and i 6= j. As a result, they can compute shares of x and y as follows.

JxyK =
n∑

i=1

JxiyiK +
∑

i,j∈[n],i 6=j

JxiyjK .

7.2.2 Product-to-Sum Conversion Based on Homomorphic Encryption

From the previous section, we see that, in order for the parties to compute JxyK from JxK
and JyK, it suffices to design a two-party protocol for product-to-sum conversion. Recall
that, in such protocol two parties, which we denote by P1 and P2, each input a value x1
and x2, and they receive z1 and z2, which are uniformly random values constrained to
x1x2 = z1 + z2. In this section we show how such primitive can be instantiated making
use of Additively Homomorphic Encryption, or AHE for short. We remark that our aim is
simply to provide intuition on how this can be done, so we do not provide a lot of details
nor present a lot of formalism.

An encryption scheme consists of an encryption and decryption algorithms Encpk(·) and
Decsk(·) such that, intuitively:

1. Encpk(m) does not leak anything about the message m if the key pair (sk, pk) is
sampled by a sampling algorithm.

2. If c = Encpk(m), then m = Decsk(c).

In an additively homomorphic encryption scheme (AHE), in addition, there is a way to
“add/subtract” the ciphertexts to obtain encryptions of the respective operations on the
plaintexts, that is, given c = Enck(x) and d = Enck(y), it is possible to compute c ± d =
Enck(x± y). An example of an additively homomorphic encryption scheme is Paillier’s [36].
Such an encryption scheme can be used to instantiate the product-to-sum conversion
primitive as follows.

Secure multiplication

Input: Party Pi has input xi, for i ∈ {1, 2}
Setup: Key pair (sk, pk) with pk known by P1 and P2, and sk known by P1.
Output: Pi gets zi for i ∈ {1, 2}, where (z1, z2) is uniformly random constrained to x1x2 =
z1 + z2.
Protocol:

1. P1 sends c = Encpk(x1) to P2.

2. P2 samples z2 and sends d = x2 · c− Encpk(z2) to P1

3. P1 computes z1 = Decsk(d)

85

Chapter 7 Passive Security for Dishonest Majority

We see that P2 does not learn anything about x1 since it only receives c = Encpk(x1), which
by the properties of the encryption scheme, completely hides x1. On the other hand, P1

decrypts z1 = x1 · x2 − z2, as desired.

7.3 Preprocessing Model

The tools we have described so far enable the parties to securely compute any arithmetic
circuit comprised of additions and multiplications over the finite field F: the parties hold
additive shares of the inputs to the computation, addition gates can be processed non-
interactively, and multiplication gates make use of the method from Section 7.2, which
relies on an AHE scheme. Unfortunately, this approach would provide poor efficiency
when compared to the other MPC protocols we have explored in precious sections. These
protocols, to process multiplication gates, only required simple arithmetic over F, while
the use of AHE techniques, and in general, the different tools used in practice to perform
secure multiplication in the dishonest majority settings, is considerably more expensive.

Unfortunately, the use of these techniques is unavoidable when the adversary corrupts
more than a majority of the parties, even if the corruption is passive. Given this limitation,
an standard approach to limit its effect in practice is to split the computation in two phases:
an offline phase, also called preprocessing phase, which is independent of the inputs of the
computation, and an online phase, which now makes use of the inputs. The online phase
is designed to be much more efficient than the protocol we have sketched so far. In fact,
this phase typically achieves information-theoretic security and only makes use of simple
arithmetic operations, so it achieves high efficiency. This way, by pushing the offline phase
to a much earlier time before the parties set their inputs, say, when the parties are idle, the
execution of the MPC protocol is much more efficient from a practical perspective, counting
the latency from the time the parties provide input to the time they produce the output.

7.4 Offline Phase

To accelerate the computation of secure multiplications in the online phase, the parties
will need to produce a set of multiplication triples. A multiplication triple, also called
Beaver triple, is a tuple of the form (JaK , JbK , JcK), where a, b are uniformly random in F
and unknown to any party, and c = a · b. In the offline phase, the parties generate one such
tuple for every multiplication gate expected in the arithmetic circuit under consideration.
Notice that these tuples only contain random data and do not make use of the inputs of
the computation, which are used later in the online phase. As we have mentioned, this
is crucial for the preprocessing paradigm to provide any benefit since, as we will see, it
is in the production of these tuples where the parties spent most of their computational
resources, in order to be able to compute the online phase in a much more efficient way.

To generate a multiplication triple, the parties can proceed as follows.

86

Chapter 7 Passive Security for Dishonest Majority

Generating multiplication triples with passive security

Output: A multiplication triple (JaK , JbK , JcK), where a, b are uniformly random in F and
unknown to the adversary, and c = a · b.
Protocol:

1. Each party Pi samples ai, bi ∈R F. This leads to sharings JaK = (a1, . . . , an) and
JbK = (b1, . . . , bn).

2. The parties execute a multiplication protocol to obtain JcK, where c = ab.

3. The parties output the shares (JaK , JbK , JcK).

Notice that a = a1 + · · ·+ an and b = b1 + · · ·+ bn look uniformly random and unknown to
the adversary since there is at least one honest party contributing with a uniformly random
summand in each of these expressions.

7.5 Online Phase

Now we show how the parties can make use of a multiplication triple (JaK , JbK , JcK) to
securely obtain in the online phase JxyK from JxK and JyK, in a much more efficiently way
than simply using a multiplication protocol like the one from Section 7.2.

Multiplication based on multiplication triples

Input: Shared values JxK and JyK.
Output: Shared value JzK, where z = xy.
Preprocessing: Multiplication triple (JaK , JbK , JcK)
Protocol:

1. The parties compute locally JdK← JxK− JaK and JeK← JyK− JbK

2. The parties send their shares of JdK and JeK to each other to learn d and e.a

3. The parties compute locally JzK← d JbK + e JaK + JcK + de.

aThis can be optimized by asking parties to send their shares to one single party, say P1, who
reconstructs d and e and announces these values to the parties.

To see that the protocol works as intended, observe first that, given that d = x−a, e = y−b,
and c = ab, it holds that db+ ea+ c+ de = xy, so the protocol indeed produces shares of
x ·y. On the other hand, nothing is leaked about x or y since the only values that are opened
during the protocol execution are d and e, which look uniformly random to the adversary
given that a and b are random and unknown to the adversary. In particular, notice that the
protocol is perfectly secure. Furthermore, the protocol shines from its simplicity, involving
only the reconstruction of two secret-shared values and simple local arithmetic.

87

Chapter 8

Active Security for Dishonest Majority

In Chapter 7 we described a protocol for secure computation in the dishonest majority
setting, assuming the corruption is passive. However, that protocol is not secure if the
corrupted parties behave maliciously. As an example of what goes wrong when the
corruption is active, consider a secret-shared value JxK = (x1, . . . , xn). Suppose that,
at reconstruction time, the corrupt parties Pi for i ∈ C change their share from xi to
x′i = xi + δi for some δi ∈ F. Since there is no method for the honest parties to detect this
change, the reconstructed value would be

∑
i∈C x

′
i +

∑
i∈H xi =

∑n
i=1 xi +

∑
i∈C δi = x+ δ,

where δ =
∑

i∈C δi. In particular, the adversary can cause the reconstruction to lead to an
incorrect value, similar to what happened in Section 6.1 when shares of degree 2t had to
be reconstructed. This was fixed in the protocol for t < n/2 by noticing that the ultimate
effect that this attack has is that the adversary can affect the result of secure multiplications,
which can be checked with a verification protocol. In our current dishonest majority setting
this “share-modification” attack is much more devastating, since it does not only affect
multiplications but every single step that requires an opening.

To fix the issue of the adversary modifying the corrupt parties’ shares, we need to add
certain “redundancy” to the sharings, comparable to the redundancy present in Shamir
shares for t < n/2. This comes in the form of a tool called Message Authentication Codes, or
MACs for short. This term is taken from the symmetric key cryptography literature, and in
general, we use it to represent a primitive that guarantees data integrity, that is, that an
adversary cannot modify certain piece of data without being detected. This is precisely the
type of tool we need in our current context to disallow the adversary from modifying the
shares of the corrupt parties.

MACs are used in order to authenticate the parties’ shares so that they cannot change them
at a later point, and the way these are used is divided into two. In the first approach,
described in Section 8.1, each single party has an extra piece of information to check
the integrity of every other party’s share at reconstruction time. The second approach,
described in Section 8.2, consists of all the parties jointly having a way of checking not the
integrity of each individual share, but rather the integrity of the reconstructed secret. This
works better for a large number of parties since it is not necessary for every party to hold
authentication information of the share held by each other party.

Both of these methods are based on the following basic idea for ensuring integrity. Given
a piece of data m ∈ F, compute a random value α ∈R F, and let τ = α ·m. Integrity is
checked by verifying that m, multiplied by the value α, results in τ . If m is modified as
m′ = m+ δ and τ is modified as τ ′ = τ + ε, then the only way in which αm′ can equal τ ′ is

88

Chapter 8 Active Security for Dishonest Majority

if αδ = ε. If δ 6= 0, that is, if the data m was indeed modified to a different m′, then this
equation translates to α = ε/δ. If we somehow guarantee that ε and δ are independent of
α, then, given that α is uniformly random in F, this equation can only be satisfied with
probability 1/|F|.

8.1 Integrity via Pairwise MACs

We begin by presenting the construction in which each party has a way to check the share
announced by each other party. This construction was proposed initially in [6].

Additive secret-sharing with pairwise MACs

The dealer secret-shares a value s ∈ F among n parties P1, . . . , Pn with pairwise MACs as
follows.

1. Sample s1, . . . , sn ∈ F uniformly at random constrained to s = s1 + · · ·+ sn.

2. For each i, j ∈ [n], the dealer does the following:

• Sample (α
(s)
ij , β

(s)
ij) ∈R F.

• Compute τ
(s)
ji = α

(s)
ij sj + β

(s)
ij .

3. Distribute the tuple si = (si, {(α(s)
ij , β

(s)
ij)}j∈[n], {τ

(s)
ij }j∈[n]) to party Pi, for i ∈ [n].

Throughout this subsection we will denote by 〈s〉 the situation in which the parties have
shares (s1, . . . , sn) of s, with the additional redundancy, as above. Notice that this type of
sharing does not leak anything about s to the adversary.

8.1.1 Reconstructing secret-shared values

Now, assume the parties have shares (s1, . . . , sn) of some value s, with si =

(si, {(α(s)
ij , β

(s)
ij)}j∈[n], {τ

(s)
ij }j∈[n]). At reconstruction time, each party Pi announces

(s′i, {τ
′(s)
ij }j∈[n]), where (s′i, {τ

′(s)
ij }j∈[n]) = (si, {τ (s)ij }j∈[n]) for at least one i ∈ [n], which

corresponds to the indexes of the honest parties who announce their shares correctly. To
check the validity of these values, each party Pi executes the following.

Reconstructing shared values with pairwise MACs

Given 〈s〉 = (s1, . . . , sn), with si = (si, {(α(s)
ij , β

(s)
ij)}j∈[n], {τ

(s)
ij }j∈[n]), the parties reconstruct

s as follows:

1. At reconstruction time, each party Pi sends si to all the other parties and τ
(s)
ij to party

Pj .

2. Each party Pi checks if for all j ∈ [n] it holds that τ (s)ji = α
(s)
ij sj + β

(s)
ij . If so then Pi

reconstructs the value s = s1 + · · ·+ sn. Else, the parties abort.

89

Chapter 8 Active Security for Dishonest Majority

Proposition 8.1. If the protocol above does not result in abort, then its output is the correct s
with probability at least 1− 1/|F|.

Proof. Assume the parties did not abort, and let i0 ∈ H. Let (s′j , τ
′(s)
ji0

) for j ∈ C be the actual
values sent by the corrupt parties to Pi0 . Since Pi0 did not abort, it holds that, for all j ∈ C,
τ
′(s)
ji0

= α
(s)
i0j

s′j + β
(s)
i0j

. Let us write s′j = sj + δj and τ
′(s)
ji0

= τ
(s)
ji0

+ εj for j ∈ C. Recalling that

τ
(s)
ji0

= α
(s)
i0j

sj + β
(s)
i0j

, the equations above are equivalent to εj = α
(s)
i0j

δj for j ∈ C.

Now, suppose that δj0 6= 0 for some j0 ∈ C. From the above we have that α(s)
i0j0

=
εj0
δj0

. It
is easy to see that the view of the adversary before the execution of the reconstruction
protocol is independent of αi0j for j ∈ C since the adversary only sees τji0 = α

(s)
i0j
· sj + βi0j ,

but the uniformly random value βi0j is unknown to the adversary, which perfectly hides
the term α

(s)
i0j
· sj . From this, we see that the errors δj0 and εj0 added by the adversary are

independent of the uniformly random value α
(s)
i0j0

, so the equation α
(s)
i0j0

=
εj0
δj0

from above
can only be satisfied with probability 1/|F|.

We obtain that, except with probability 1/|F|, it holds that δj = 0 for all j ∈ C, so the
announced shares si for i ∈ [n] are all correct and therefore the reconstructed value is
correct as well.

8.1.2 Local Operations

Finally, to show that our secret-sharing scheme is suitable for secure computation, we need
to show that basic operations can be handled locally by the parties. This is shown below.

8.1.2.1 Addition/Subtraction.

Assume the parties have two shares values 〈x〉 = (x1, . . . , xn) and 〈y〉 = (y1, . . . , yn),
with xi = (xi, {(α(x)

ij , β
(x)
ij)}j∈[n], {τ

(x)
ij }j∈[n]) and yi = (yi, {(α(y)

ij , β
(y)
ij)}j∈[n], {τ

(y)
ij }j∈[n]).

According to our description of the sharing procedure, the values α(x)
ij and α

(y)
ij are sampled

separately when sharing the value x and y. However, to make this scheme compatible with
local addition and subtraction, we need to assume that α(x)

ij , α
(y)
ij for i, j ∈ [n] are sampled

uniformly at random with αij := α
(x)
ij = α

(y)
ij , or, more precisely, that the dealer samples

and distributes αij ∈R F once, and uses these to compute the values {τ (z)ij }j∈[n] for every
new secret-shared value z.

To obtain 〈x+ y〉, each party Pi defines zi as (zi, {(αij , β
(z)
ij)}j∈[n], {τ

(z)
ij }j∈[n]), where:

zi = xi + yi

β
(z)
ij = β

(x)
ij + β

(y)
ij , j ∈ [n]

τ
(z)
ij = τ

(x)
ij + τ

(y)
ij , j ∈ [n].

Subtraction works in a similar fashion.

90

Chapter 8 Active Security for Dishonest Majority

8.1.2.2 Canonical shares of public values.

Let c be a publicly known value, that is, a value known by all the parties. The parties can
obtain shares 〈c〉 by defining ci = (ci, {(αij , β

(c)
ij)}j∈[n], {τ

(c)
ij }j∈[n]) as follows.

ci =

{
0 for i ∈ [n] \ {1}
c for i ∈ {1}

β
(c)
ij =

{
0 for i ∈ [n], j ∈ [n] \ {1}
−αij · c for i ∈ [n], j ∈ {1}

τ
(c)
ij =

{
0 for i, j ∈ [n] .

Each party Pi can compute its share ci locally, and, moreover, it can be easily checked that
τ
(c)
ij = αjici + β

(c)
ij for i, j ∈ [n], as required by the syntax of the secret-sharing scheme.

8.2 Integrity via Global MACs

In the previous method from Section 8.1 to add integrity to the basic additive secret-sharing
scheme JsK = (s1, . . . , sn), for each (ordered) pair of parties (Pi, Pj), Pi could verify the
correctness of Pj ’s share sj by means of a key (αij , β

(s)
ij) and a tag τ

(s)
ji held by s. This way,

if any of the announced shares is incorrect, the check the honest party performs would
fail, which results in the parties aborting. However, the main drawback with this approach
is that each party Pi must hold a key and tag with respect to every other single party Pj ,
which ultimately means that the size of each party’s share grows linearly with n (more
concretely, each party’s share consists of 1 + 3n elements in F.) This may matter little if n
is relatively small, which is the case in the relevant setting of two-party computation, for
example. However, for a large number of parties, a share size that grows as Ω(n) may be
just too large.

Given the above, we present in this section a different method to ensure integrity that
only adds a small overhead to the size of each share with respect to the basic additive
secret-sharing scheme. This was first proposed in the work of [21]. To provide intuition on
how this method works, recall that the main goal is to add some redundant information to
a given additively-shared value JsK = (s1, . . . , sn) so that, when the parties announce their
shares (s′1, . . . , s

′
n), the parties can verify that the reconstructed value s′ = s′1 + · · ·+ s′n is

indeed correct. The method from Section 8.1 ensures this by providing the parties with
a method for checking that each party’s share s′i is announced correctly, that is, si = s′i,
which implies that s′ = s. However, a crucial observation is that, ultimately, what is desired
is that s′ = s, which can happen even if s′i 6= si for some values of i. Hence, the core idea is
to add integrity not to each individual share, but rather to the shared value s itself. This is
described in detail below. Notice that each party’s share is now made of only 3 elements in
F.

91

Chapter 8 Active Security for Dishonest Majority

Additive secret-sharing with global MACs

The dealer secret-shares a value s ∈ F among n parties P1, . . . , Pn with a global MAC as
follows.

1. Sample s1, . . . , sn ∈ F uniformly at random constrained to s = s1 + · · ·+ sn.

2. Sample α
(s)
1 , . . . , α

(s)
n ∈R F, and let α(s) =

∑n
i=1 α

(s)
i .

3. Sample γ
(s)
1 , . . . , γ

(s)
n ∈ F uniformly at random constrained to α(s) · s =

∑n
i=1 γ

(s)
i .

4. Distribute the tuple si = (si, α
(s)
i , γ

(s)
i) to party Pi, for i ∈ [n].

For the sake of this subsection, we denote by 〈s〉 the situation in which the parties have
shares (s1, . . . , sn) of s, with the additional redundancy, as above. Intuitively, we may write
〈s〉 = (JsK , JαK , Jα · sK).

8.2.1 Reconstructing Secret-Shared Values

8.2.1.1 Partial openings.

Assume now that the parties have additive shares 〈s〉 = (s1, . . . , sn) of some value s. By
partially opening 〈s〉, we mean the following:

1. Each party Pi sends their additive share si of JsK to P1.

2. P1 computes s = s1 + · · ·+ sn and then he broadcasts P1 to all parties.

This basic opening does not ensure the correct value is reconstructed, hence the name par-
tial. In this case the adversary can cause the reconstruction to be s+ δ, where, furthermore,
δ can depend on s if P1 is corrupted.

8.2.1.2 Commit-and-open.

Before we describe the mechanism for the parties to reconstruct values correctly, we
describe another type of opening that does not necessarily ensure that the reconstructed
value is correct, but at least guarantees that the added adversarial error is independent of
the secret. For this construction we will need to make use of a cryptographic tool known
as a commitment. For a formal treatment on these see for example [17]. Intuitively, a
commitment scheme is a pair (Commit,Open) where Commit(m, r) allows a participant to
“commit” to a value m using a uniformly random “key” r, and Open(m, r, c) checks whether
the commitment c corresponds to m and r. The basic properties of such a scheme are (1)
Commit(m, r), for a uniformly random r, does not reveal anything about m and (2) given
c = Commit(m, r), it is not possible to find m′ and r′ with m 6= m′ such that Open(m′, r′, c)
reports that the commitment c corresponds to m′, r′. An effective construction of such a
scheme consists of Commit(m, r) = H(m‖r), where H is a cryptographic hash function.

92

Chapter 8 Active Security for Dishonest Majority

With this tool at hand, the parties commit-and-open to a shared value JzK = (z1, . . . , zn) as
follows.

1. Each party Pi samples ri and computes the commitment ci = Commit(zi, ri). Then Pi

broadcasts ci.

2. After all these values are broadcast, each party Pi broadcasts (zi, ri).

3. The parties check that, for all i ∈ [n], Open(z′i, r
′
i, c

′
i) accepts, where c′i and (z′i, r

′
i) are

the values broadcast by Pi in the previous two steps. If Open(z′i, r
′
i, c

′
i) rejects, then

the parties abort.

A corrupt party Pi may still lie about its own share by broadcasting zi + δi, so the resulting
reconstructed value may still be incorrect. However, Pi only broadcasts zi + δi after he
has broadcasted the commitment ci, and by the properties of the commitment scheme
sketched above, this party cannot announce a different share than the one it has committed
to, which means that Pi has chosen δi based on the information sent in the first part of the
protocol. At this stage only commitments to the shares have been sent, which leak nothing
about the shares themselves, so the possible errors δi are independent of the other shares
and hence independent of the secret, as desired.

8.2.1.3 Reconstruction.

Let 〈s〉 = (s1, . . . , sn) be a value shared by the parties. Now we show how to put together
the different reconstruction methods from above so that the parties learn s correctly.

Reconstructing shared values with global MACs

Given a shared value 〈s〉 = (JsK , JαK , Jα · sK), the parties reconstruct s as follows:

1. The parties partially open s′ ← JsK = (s1, . . . , sn).

2. The parties compute locally JµK← Jα · sK− s′ JαK.

3. The parties commit-and-open µ′ ← JµK. If µ′ = 0, then the parties accept s′ as the
opened value. Else, the parties abort.

Proposition 8.2. If the protocol above does not result in abort, then each party outputs s with
probability at least 1− 1/|F|.

Proof. Let us write s′ = s + δ, where δ is an additive error introduced by the adversary
that might depend on s. Also, let us write µ′ = µ + ε, where ε is also an additive error
introduced by the adversary, but this, unlike δ, does not depend on the value of the secret
µ. We have that

µ′ = µ+ ε = (αs− s′α) + ε = αs− (s+ δ)α+ ε = ε− α · δ,

so µ′ = 0 if and only if ε− α · δ = 0.

93

Chapter 8 Active Security for Dishonest Majority

Now, assume that δ 6= 0, we would have that α = ε/δ, and since ε is chosen independently
of α, which is uniformly random, this equation can only be satisfied with probability 1/|F|.
From this we see that, if the protocol does not result in abort, δ = 0 except with probability
1/|F|, which means that the reconstructed value is s′ = s.

8.2.2 Local Operations

8.2.2.1 Addition/Subtraction.

Given two shared values 〈x〉 = (x1, . . . , xn) and 〈y〉 = (y1, . . . , yn), with xi = (xi, α
(x)
i , γ

(x)
i)

and yi = (yi, α
(y)
i , γ

(y)
i) for i ∈ [n], it is possible for the parties to locally obtain shares

〈x+ y〉. This requires that αi := α
(x)
i = α

(y)
i , that is, the dealer samples α1, . . . , αn ∈R F

once, and uses α =
∑n

i=1 αi to define the shares of all subsequent values. This way, if 〈x〉 =
(JxK , JαK , Jα · xK) and 〈y〉 = (JyK , JαK , Jα · yK), 〈x+ y〉 may be computed locally exploiting
the homomorphic properties of basic additive secret-sharing as (JxK + JyK , JαK , Jα · xK +
Jα · yK). More precisely, the shares (z1, . . . , zn) are defined as zi = (zi, αi, γ

(z)
i), where

zi = xi + yi and γ
(z)
i = γ

(x)
i + γ

(y)
i for i ∈ [n].

8.2.2.2 Canonical shares of public values.

Given a value c ∈ F known by all the parties, the parties can obtain shares 〈c〉 = (c1, . . . , cn)

by defining ci = (ci, αi, γ
(c)
i), with ci = 0 for i ∈ [n] \ {1}, ci = c for i = 1, and γ

(c)
i = αi · c

for i ∈ [n].

8.3 Online Phase

Let 〈·〉 denote “authenticated” sharings as the ones from either Section 8.1 or Section 8.2.
These have in common that local addition/subtraction of shared values, together with local
multiplication and addition/subtraction of publicly known values, is possible. Furthermore,
when reconstructing secret-shared values, although the adversary may initially cause the
parties to open a shared-value incorrectly, the parties can execute a verification step that
ensures that, with high probability, the opened value under consideration is reconstructed
correctly.

For our protocol we assume that the extra data required for the authenticated secret-sharing
scheme 〈·〉, like the necessary keys and tags, or their shares, depending on whether the
authentication mechanism chosen is pairwise or global MACs, is computed by the parties
in a preprocessing phase. During this phase the parties also obtain a multiplication triple
(〈a〉 , 〈b〉 , 〈c〉) with a, b ∈R F uniformly random and unknown to the adversary and c = a · b,
for every multiplication gate in the circuit under consideration. Furthermore, for every
input gate corresponding to party Pi, the parties have 〈r〉, where r ∈ F is uniformly random
and known only to Pi.

94

Chapter 8 Active Security for Dishonest Majority

With these tools at hand, the parties can securely compute the given arithmetic circuit
in a similar way as in Section 7.5. Multiplication gates are processed in essentially the
same way: the parties reconstruct a masked version of the inputs to the multiplication gate,
making use of a multiplication triple. However, since the secret-sharing scheme 〈·〉 is more
complex than simple additive secret-sharing J·K, it is not possible for the parties to obtain
shares of the inputs to the computation non-interactively. This is achieved in a similar way
as the protocol from Section 5.3, by letting each party broadcast a masked version of their
inputs using random values that are secret-shared, and then the parties add this publicly
known value to these shares. This is detailed below.

Secure computation based on authenticated secret-sharing

Offline phase: The parties obtain from the preprocessing phase:

• The necessary keys/shares for the secret-sharing scheme 〈·〉

• A multiplication triple (〈a〉 , 〈b〉 , 〈c〉) for every multiplication gate

• For every input gate with owner Pi, a uniformly random shared value 〈r〉 only known
to Pi.

Online phase: The parties execute the following.

Input gates. For every party Pi holding input x, the parties execute the following. Let 〈r〉
be a random shared value, where Pi knows r.

1. Pi broadcasts e = x− r.

2. The parties compute the sharings 〈x〉 ← 〈r〉+ e.

Addition gates. These are handled locally by using the properties of the secret-sharing
scheme 〈·〉.

Multiplication gates. Given two shared values 〈x〉 and 〈y〉, the parties obtain 〈xy〉 as follows.
Let (〈a〉 , 〈b〉 , 〈c〉) be a multiplication triple.

1. The parties compute locally 〈d〉 ← 〈x〉 − 〈a〉 and 〈e〉 ← 〈y〉 − 〈b〉
2. The parties reconstruct d← 〈d〉 and e← 〈e〉.
3. The parties compute locally 〈z〉 = d 〈b〉+ e 〈a〉+ 〈c〉+ de.

Output gates. The parties reconstruct 〈z〉 for every output shared value.

As with the protocol from Chapter 7, privacy is guaranteed in the input phase since the
input x is masked with the random value r when Pi broadcasts e = x− r, and similarly for
the reconstructed values d = x− a and e = y − b in the multiplication. Correctness follows
from the fact that, if d = x− a, e = y − b and c = ab, it holds that db+ ea+ c+ de is equal
to xy.

95

Bibliography

[1] A. Aly, K. Cong, D. Cozzo, M. Keller, E. Orsini, D. Rotaru, O. Scherer, P. Scholl,
N. Smart, T. Tanguy, et al. Scale–mamba v1. 14: Documentation, 2021.

[2] B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits. SIAM
Journal on Computing, 43(2):905–929, 2014.

[3] M. Ball, T. Malkin, and M. Rosulek. Garbling gadgets for boolean and arithmetic
circuits. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 565–577, 2016.

[4] Z. Beerliová-Trubíniová and M. Hirt. Perfectly-secure mpc with linear communication
complexity. In Theory of Cryptography Conference, pages 213–230. Springer, 2008.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 351–371.
2019.

[6] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption
and multiparty computation. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 169–188. Springer, 2011.

[7] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht. How the estonian tax and customs
board evaluated a tax fraud detection system based on secure multi-party computation.
In International conference on financial cryptography and data security, pages 227–234.
Springer, 2015.

[8] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard, J. D.
Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, et al. Secure multiparty computation goes
live. In International Conference on Financial Cryptography and Data Security, pages
325–343. Springer, 2009.

[9] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal
of CRYPTOLOGY, 13(1):143–202, 2000.

[10] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 136–145. IEEE, 2001.

[11] R. Canetti, A. Cohen, and Y. Lindell. A simpler variant of universally composable

96

Bibliography

security for standard multiparty computation. In Annual Cryptology Conference, pages
3–22. Springer, 2015.

[12] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi. Ezpc: programmable
and efficient secure two-party computation for machine learning. In 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 496–511. IEEE, 2019.

[13] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages
11–19, 1988.

[14] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages
364–369, 1986.

[15] R. Cramer, I. Damgård, and U. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 316–334. Springer, 2000.

[16] R. Cramer, I. Damgard, and J. B. Nielsen. Secure multiparty computation and secret
sharing-an information theoretic approach, 2012.

[17] I. Damgård. Commitment schemes and zero-knowledge protocols. In School organized
by the European Educational Forum, pages 63–86. Springer, 1998.

[18] I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In Annual international conference
on the theory and applications of cryptographic techniques, pages 445–465. Springer,
2010.

[19] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure mpc for dishonest majority–or: breaking the spdz limits. In European
Symposium on Research in Computer Security, pages 1–18. Springer, 2013.

[20] I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty com-
putation. In Annual International Cryptology Conference, pages 572–590. Springer,
2007.

[21] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Annual Cryptology Conference, pages 643–662.
Springer, 2012.

[22] D. Demmler, T. Schneider, and M. Zohner. Aby-a framework for efficient mixed-
protocol secure two-party computation. In NDSS, 2015.

[23] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

[24] M. Franklin and M. Yung. Communication complexity of secure computation. In

97

Bibliography

Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pages
699–710, 1992.

[25] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fast-track multiparty
computations with applications to threshold cryptography. In Proceedings of the
seventeenth annual ACM symposium on Principles of distributed computing, pages
101–111, 1998.

[26] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.

[27] S. Goldwasser and Y. Lindell. Secure multi-party computation without agreement.
Journal of Cryptology, 18(3):247–287, 2005.

[28] V. Goyal, Y. Song, and C. Zhu. Guaranteed output delivery comes free in honest
majority mpc. In Annual International Cryptology Conference, pages 618–646. Springer,
2020.

[29] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol specification. GitHub:
San Francisco, CA, USA, 2016.

[30] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Electronic
Science), 72(9):56–64, 1989.

[31] M. Keller. Mp-spdz: A versatile framework for multi-party computation. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages
1575–1590, 2020.

[32] M. Keller, E. Orsini, and P. Scholl. Mascot: faster malicious arithmetic secure compu-
tation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 830–842, 2016.

[33] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making spdz great again. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 158–189. Springer, 2018.

[34] J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 20–31, 1988.

[35] A. Lapets, F. Jansen, K. D. Albab, R. Issa, L. Qin, M. Varia, and A. Bestavros. Accessible
privacy-preserving web-based data analysis for assessing and addressing economic
inequalities. In Proceedings of the 1st ACM SIGCAS Conference on Computing and
Sustainable Societies, pages 1–5, 2018.

[36] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In International conference on the theory and applications of cryptographic techniques,
pages 223–238. Springer, 1999.

98

Bibliography

[37] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proceedings of the twenty-first annual ACM symposium on Theory
of computing, pages 73–85, 1989.

[38] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[39] R. Shostak, M. Pease, and L. Lamport. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[40] L. R. Welch and E. R. Berlekamp. Error correction for algebraic block codes, Dec. 30
1986. US Patent 4,633,470.

[41] A. C. Yao. Protocols for secure computations. In 23rd annual symposium on foundations
of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

99

	Table of Contents
	Introduction
	I MPC Fundamentals
	1 The Theory of Multiparty Computation
	1.1 A General Introduction to MPC
	1.1.1 Adversaries and their Power
	1.1.1.1 Possible Corrupted Sets
	1.1.1.2 Type of Corruption

	1.1.2 Privacy Guarantees
	1.1.3 Output Guarantees
	1.1.4 Different Functions to be Computed
	1.1.4.1 Public-Output vs Private-Output
	1.1.4.2 Reactive vs Non-Reactive Functionalities
	1.1.4.3 General vs Special-Purpose MPC

	1.1.5 Efficiency Metrics

	1.2 Simulation-Based Security
	1.2.1 High-Level Idea
	1.2.2 Interactive Agents
	1.2.2.1 Relevant Interactive Agents in the UC Framework

	1.2.3 Interactive Systems
	1.2.3.1 Relevant Interactive Systems in the UC Framework
	1.2.3.2 Parameterized Interactive Systems

	1.2.4 Security Definition
	1.2.4.1 Perfect Security
	1.2.4.2 Statistical Security
	1.2.4.3 Computational Security

	1.2.5 The Composition Theorem
	1.2.6 Some Basic Functionalities
	1.2.6.1 Underlying Communication Resource
	1.2.6.2 Arithmetic Black Box Model

	1.3 Fundamental Results
	1.3.1 Results for t<n/3
	1.3.2 Results for t<n/2
	1.3.2.1 The Case of a Passive Adversary
	1.3.2.2 The Case of an Active Adversary

	1.3.3 Positive Results for t<n
	1.3.4 Summary of Main Results

	2 Secret-Sharing-Based MPC
	2.1 Linear Secret-Sharing Schemes
	2.2 MPC based on Linear Secret-Sharing Schemes
	2.2.1 The Case of an Active Adversary
	2.2.2 Offline-Online Paradigm

	II Honest Majority
	3 Shamir Secret-Sharing
	3.1 Secret-Sharing and d-Consistency.
	3.2 Error Detection/Correction
	3.2.1 Error Detection
	3.2.1.1 A more intuitive view.

	3.2.2 Error Correction
	3.2.2.1 Efficient error-correction.
	3.2.2.2 A more intuitive view.

	3.3 Error Correction/Detection in the Context of MPC
	3.4 Reconstructing Secret-Shared Values Efficiently

	4 Passive and Perfect Security for Honest Majority
	4.1 A First Protocol
	4.2 A More Efficient Protocol
	4.2.1 Using Double-Sharings for Secure Multiplication
	4.2.1.1 A small optimization.

	4.2.2 Producing Double-Sharings Efficiently

	5 Active and Perfect Security for Two-Thirds Honest Majority
	5.1 Actively Secure Multiplication for t<n/3
	5.2 Instantiating the Offline Phase
	5.2.1 Hyper-Invertible Matrices
	5.2.2 Generating Double-Sharings

	5.3 Actively Secure Input Phase

	6 Active and Statistical Security for Honest Majority
	6.1 Reconstructing Secret-Shared Values
	6.2 Preprocessing Phase
	6.3 Online Phase
	6.4 Verification Phase

	III Dishonest Majority
	7 Passive Security for Dishonest Majority
	7.1 Additive Secret-Sharing
	7.2 Protocols for Secure Multiplication
	7.2.1 Product-to-Sum Conversion
	7.2.2 Product-to-Sum Conversion Based on Homomorphic Encryption

	7.3 Preprocessing Model
	7.4 Offline Phase
	7.5 Online Phase

	8 Active Security for Dishonest Majority
	8.1 Integrity via Pairwise MACs
	8.1.1 Reconstructing secret-shared values
	8.1.2 Local Operations
	8.1.2.1 Addition/Subtraction.
	8.1.2.2 Canonical shares of public values.

	8.2 Integrity via Global MACs
	8.2.1 Reconstructing Secret-Shared Values
	8.2.1.1 Partial openings.
	8.2.1.2 Commit-and-open.
	8.2.1.3 Reconstruction.

	8.2.2 Local Operations
	8.2.2.1 Addition/Subtraction.
	8.2.2.2 Canonical shares of public values.

	8.3 Online Phase

	Bibliography

