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Abstract. Technology is being used increasingly for lowering the trust barrier in domains
where collaboration and cooperation are necessary, but reliability and efficiency are critical due
to high stakes. An example is an industrial marketplace where many suppliers must participate
in production while ensuring reliable outcomes; hence, partnerships must be pursued with care.
Online marketplaces like Xometry facilitate partnership formation by vetting suppliers and
mediating the marketplace. However, such an approach requires that all trust be vested in
the middleman. This centralizes control, making the system vulnerable to being biased towards
specific providers. The use of blockchains is now being explored to bridge the trust gap needed to
support decentralizing marketplaces, allowing suppliers and customers to interact more directly
by using the information on the blockchain. A typical scenario is the need to preserve privacy
in certain interactions initiated by the buyer (e.g., protecting a buyer’s intellectual property
during outsourcing negotiations). In this work, we initiate the formal study of matching between
suppliers and buyers when buyer-privacy is required for some marketplace interactions and make
the following contributions. First, we devise a formal security definition for private interactive
matching in the Universally Composable (UC) Model that captures the privacy and correctness
properties expected in specific supply chain marketplace interactions. Second, we provide a lean
protocol based on any programmable blockchain, anonymous group signatures, and public-key
encryption. Finally, we implement the protocol by instantiating some of the blockchain logic by
extending the BigChainDB blockchain platform.

1 Introduction

Online marketplaces like Xometry 1 provide a centralized venue for vetted suppliers and customers that
significantly facilitates matching customers’ needs and suppliers’ offers in the manufacturing domain.
On the downside, such an approach requires that all trust be vested in the middleman. This approach
centralizes control, making the system vulnerable to bias towards specific providers. Furthermore,
both customers and suppliers have no privacy w.r.t. the middleman.

Motivated by these concerns and spurred by the development of blockchain technology, recent
work [20,23,36] propose to build decentralized online marketplace by replacing the middleman with a
smart-contract capable blockchain. A blockchain [32,45] is an immutable ledger that is shared among
multiple peers. Under the assumption that the majority of the peers follow the protocol, the ledger is
guaranteed to be immutable and contain only valid transactions. Validity of a transaction is assessed
by the peers by running specific scripts on those transactions. At a high-level, to build a decentralized
marketplace, the interaction between clients and suppliers with the middleman could be replaced with
smart contracts over blockchain transactions. Correctness would be guaranteed by the transparency
and consistency properties of the blockchain, which enforce trust and facilitate dispute resolution.
However, transparency of the transactions exposes the data they contain, which must remain private
in marketplaces to maintain a competitive advantage. Hence, even ignoring the cost and complexity of

1 Xometry https://www.xometry.com/ is one among many other (e.g., Fictiv, Protolab) online portals for on-
demand manufacturing services that match their vetted suppliers with customers interested in 3D printing
their unique design.
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smart contracts, privacy issues represent a significant hurdle towards a blockchain-based decentralized
marketplace.

Existing proposal for decentralized marketplaces [20, 23, 38, 40] mostly target retail marketplaces
(e.g., Amazon), where the matching between a customer C and a supplier S can be determined
non-interactively via a payment transaction from C in favor of S for a certain item. Privacy is-
sues concerning the customer’s identity can be mitigated with the use of anonymous wallets (e.g.
Zcash [37]).

In this work, we are interested in marketplaces where a match between a customer and a supplier
is determined after multiple interactions (e.g., request for proposal, bidding, selection, etc.), and some
interactions involve private inputs from both customers and suppliers. This is typical of outsourcing
supply chain marketplaces where some interactions involve customers needing to disclose high-value
data e.g. intellectual-property assets like manufacturing designs, software algorithms etc. The process
usually involves an initial exploratory phase in which only limited information is shared with a large
group of suppliers, followed by a narrowing down of the selection of candidate suppliers with whom
subsequent interactions involving additional data that need to be kept private. The sharing of some
initial limited information is to provide suppliers enough of a context to help them determine if they are
in a position to consider initiating a response without divulging valuable information. As a concrete
example, a customer might request proposals for the fabrication of a patient-specific craniofacial
implant made out of medical-grade titanium alloy, with a 3-week deadline. This initial information
may allow suppliers to determine if the request falls within their service capabilities, but yet it does not
necessarily divulge high-value information. However, as negotiations proceed and potential suppliers
are selected, suppliers will only be able to determine if they can meet the 3-weeks delivery time and
what price to charge after seeing the complexity of the private implant design. However, rather than
share the implant with the general supplier population in the previous interactions, the implant design
should be private input in interactions involving only shortlisted suppliers that will be able to fulfill
the request within the deadline. In addition, buyers need to keep some of their inputs in interactions
private, but they may also want to keep their identities private for some interactions. This is because,
in some contexts, the partnerships and collaborations that a company engages in are considered a
part of its competitive advantage.

On the other hand, in supply chain marketplaces, suppliers want to share as much information
about their capabilities, to be matched as candidates with as many requests as possible. However,
for specific interactions, they also want to maintain the privacy of some inputs. For example, they
may want to keep bid amounts private. Therefore, in the context of blockchains where all transactions
and transacting parties are recorded, it is essential to consider how to keep information about buyer
identity and some transactional inputs of both buyer and supplier private.

To summarize, in this work, we target interactive marketplaces that present the following charac-
teristics. 1. Matching is determined from private inputs. Private inputs from both the customers (e.g.,
the private product design) and the suppliers (e.g., the quotes) are required to perform the matching.
Hence, the approach of simply publishing requests on a blockchain and having smart contracts match-
ing them is not applicable here. 2. Customers should be anonymous but accountable. The matching
between the customer and the supplier should remain private. Yet, suppliers need some guarantee
that they are interacting with accountable customers, i.e., belonging to a group of verified customers
– even if it is a new company or a startup, their name should be registered somewhere. At the same
time, suppliers would also want to build a reputation by having a record of successful matches with
accountable customers. This is different from the typical marketplace setting where a customer can be
completely anonymous, and reputation is built only through reviews. 3. Matched resources might be
exclusive. A supplier sells the use of its resources rather than an item. The marketplace must guarantee
that the manufacturer does not overbook its resources.
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1.1 Our contribution

We initiate the study of decentralized interactive marketplaces and we build a proof-of-concept system
based on blockchain technology. Specifically, our contributions are:

1. A Formal Definition of Private Interactive Matching. We formally capture the correctness
and privacy properties of an interactive marketplace, by abstracting it as the problem of private
interactive matching in the Universally Composable (UC) framework [12]. Our definitional choices
are inspired by the service-oriented marketplaces such as in the manufacturing domain.

2. A Protocol for Decentralized Private Interactive Matching. We provide a decentralized
protocol based on an ideal ledger capable of a set of validation rules we define, and on anonymous
group signatures. We formally prove it is UC-secure.

3. Implementation and Evaluations. We provide an implementation strategy for our ledger pro-
tocol that involves extending the transaction validation framework of an open-source blockchain
database BigChainDB (discussed in Section 5). We call the extended platform SmartChainDB.

A Formal Definition of Private Interactive Matching To formally model the intuitive security
guarantees outlined above we use the Universally Composable (UC) framework [12]. In the UC frame-
work, the security of a system is defined by means of an ideal functionality. The ideal functionality
represents the ideal behavior of the system, and the influence/leakage allowed to an adversary. In
this paper, we design the ideal functionality FPrivateMatch that describes the ideal behavior of a plat-
form that matches customer with the correct suppliers, while guaranteeing anonymity of the customer
(within a certain group of well-known customers), correctness of the match, privacy and fairness. We
describe the ideal functionality in details in Section 3. At high-level ideal functionality FPrivateMatch

has the following properties. Generality. It captures a variety of settings since there are no fixed roles
– a party can sign up as a supplier and customer; and no fixed logic – the ideal functionality is pa-
rameterized by external algorithms validResource and canServe that determines validity of the supplier
commands. Customer’s (Accountable) Anonymity. Requests are not associated to a specific customer,
but to the group the customer belong to. This means that when a supplier is matched with a cus-
tomer, the only information leaked to the other parties is that a supplier was matched with a member
of a certain group (e.g., the group containing all the implant manufacturing companies). Hence, the
anonymity of the customers depends on the size of the group. However, misbehaving customers can be
de-anonymized. Customer’s Input Privacy. Requests contains public values (e.g., the type of resources
required, the deadlines, etc), and private values (e.g., the product design) which may depend on the
specific application. From our example earlier, the suppliers were informed that they needed to build
an implant made out of medical grade titanium allow in three weeks. This does not reveal any private
information about the buyer nor about what is being built. Following such real world scenarios we
consider the resources required to be a public value in the rest of the paper. The private values will
be revealed only to the suppliers who have expressed the interest in fulfilling the request and possess
the resources to do so. Our ideal functionality would allow a supplier to signal interest to all requests
just to see the private inputs. Note that this models a behavior that is allowed in real world. However,
note that just as in the real world, measures can be added so that if a supplier exhibits this behavior,
it can be automatically discarded by the customer.

Supplier’s Input Privacy. The resources offered by a supplier are public. The fact that a supplier
is interested in fulfilling a certain request is also public. However, details of their quote (e.g., price)
are private for everyone, except, of course, for the customer.

Supplier’s Transparency. The resources utilization (e.g., allocation to a certain request) of the
suppliers is public. This is a desired feature in the manufacturing domain, where public and accurate
information about resource utilization is desired to build reputation. We acknowledge that there might
be domain where this is not desirable.

Correctness and Flexibility of the Match. Only capable suppliers can bid to be matched with the
customer. The winner is chosen by the customer according to its own private decision algorithm.
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Fairness. Our ideal functionality allows both customers and suppliers to show a proof of misbehav-
ior. The validity of the proof is checked via an external algorithm, the instantiation of which depends
on the application 2 A misbehaving customer is de-anonymized, while a misbehaving supplier will
have its reputation marked.

Some Remarks on the Definition. Our definition of the ideal matching functionality are inspired
by the service-oriented marketplaces. In such domain having the supplier’s activities public is consid-
ered as a feature for building reputation rather than a drawback . Similarly, we allow the private input
associated to the customer’s request to be seen by the suppliers that are interested in bidding, and not
only the supplier that is finally matched. We note however that one can easily modify FPrivateMatch so
that, instead of the entire input x, only a predicate fS(x) of the input is leaked. Here fS is a predicate
that the supplier S can use to assess if it is able to fulfil the request on an input x. We note that fS
will have to be defined by the application domain, and by the suppliers. To realize this however, we
might require some inefficient techniques such as secure multiparty computation or fully homomorphic
encryption.

A Protocol for Decentralized Private Interactive Matching We provide a protocol that se-
curely instantiates the ideal functionality FPrivateMatch. Our protocol uses as building block a blockchain
with scripting capability such as checking hash and validating (group) signatures. In the protocol de-
scription, we abstract the blockchain as an ideal ledger functionality, that we call Gsmartchain. We later
discuss how to instantiate it by extending an existing blockchain platform BigChainDB (see Section5).
To protect the anonymity of customers while ensuring accountability, we use group signatures [4, 8].
These are signatures associated to a group. A group member can use its own private key to generate
an anonymous signature on behalf of the entire group. To ensure accountability of misbehaving mem-
bers, the group is curated by a group manager who has the ability to de-anonymize signatures when
necessary. In Section 4.2 we present how this group manager can be decentralized and remove a single
point of trust.

We also assume that there is a registration phase, where the identity of each party and the claimed
resources of the suppliers are vetted. This step is application-specific, and we abstract it with an ideal
functionality Greg. After registration, parties can join groups. Group formation is again application-
specific; in our protocol we assume groups exist and do not regulate group formation. We describe
the stages of the protocol in details in Section 4, here we discuss only few key points related to how
correctness and privacy are guaranteed.

The match is performed completely on the blockchain, by means of transactions published by
customers and interested suppliers. The match starts with a customer publishing an anonymous re-
quest for proposal (PREREQ) transaction indicating the resources needed for its own private project.
This transaction contains a unique request id RID, and is signed with a group signature, hence only
the group the customer belongs to is leaked. This pre-request transaction is followed up with other
transactions where (1) suppliers signal their interest in fulfilling the request; (2) the customer selects
a subset of supplier and give instructions on how to retrieve its private design. This transaction will
also contain a freshly sampled public key pkRID that will be used to encrypt bids for the anonymous
customer. (3) The suppliers publish their encrypted bids (their resources are then locked); (4) the
customer announces the winner (the resources of the non-winners are then unlocked). All such trans-
actions are linked through the request id RID (and a chain of puzzles, as described later). A final (5)
fulfill transaction is then sent by the customer and supplier to signal the successful completion of the
service. If anything went wrong, they could post a dispute transaction.

To ensure correctness and fairness, transactions are deemed valid only if they satisfy certain con-
ditions, and misbehaving parties are publicly identified. For example, a supplier’s transaction mani-
festing interest in participating in the matching is accepted only if the supplier currently has available

2 Relegating domain-specific validation to an external algorithm is typical in definition of ideal function-
ality. The same approach indeed was taken by [5], when defining the validation rules of the ideal ledger
functionality.
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Fig. 1. Protocol Overview: We consider three groups of customers as can be seen on the top right. The
customers are grouped by their industry - car manufacturers, phone manufacturers and airplane manufacturers.
In this example, Nokia (from the PHONE group) wants to build a chip (the design) and needs some chip
building equipment (the resource). The suppliers presented below are Intel, Nvidia and AMD. All transactions
are sent to a network of validators, that determine if a transaction is valid and then add them to the state of the
blockchain. 1 Nokia creates a pre-request transaction that details the resources it needs. It only authenticates
that it belongs to the group (GROUP:Phone) of phone manufacturers to achieve anonymity within the group.
To link next transactions, Nokia they attaches the hash of a random nonce, and reveal the nonce with the
next transaction. 2 Intel and AMD express interest in serving Nokia by posting an INTEREST transaction.

3 Nokia creates a REQUEST transaction where it encrypts the design with a key k, and encrypts the key k
with the public keys of AMD pkAMD and Intel pkIntel. It also attaches a public key pkbid for Intel and AMD to
encrypt their bids. 4 AMD and Intel retrieve the design and then determine a bid value. They encrypt their

respective bids under pkbid and post their BID transactions. 5 Nokia decrypts to retrieve the bid values and
determines a winner - Intel. It posts a WINNER transaction indicating that Intel won. After this step, the
interaction between Nokia and Intel will happen off-chain.

resources that match the request. Furthermore, a misbehaving customer can be de-anonymized with
the help of the group manager.

For privacy, the sensitive information of the matching is protected as follows. The identity of the
customer is protected with the use of group signatures, and with the use of ephemeral per-request
public keys pkRID. The private design of the customer is never included in a transaction. Rather, it is
encrypted and uploaded to another web location (controlled by the customer). In the transaction, a
customer will include encryptions of the key used to encrypt the design, under the public key of the
suppliers who have shown interest in doing the job. The private bids of the suppliers are protected
with encryptions, computed under the customer’s ephemeral public key pkRID.

Finally, note that, due to the use of anonymous group signatures, if the transactions for the match
associated withrequest RID were chained only through RID, a malicious member of the group, could
interject the flow by sending follow up transactions for the request RID – even without being the
legitimate customer. To prevent this, we chain the transactions through puzzles, in such a way that a
customer can compute the next transaction in the flow only if it knows the solution to the puzzle of
previous transactions.
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Fig. 2. Overview of a dispute resolution. In this example, Nokia wants to raise dispute because it was delivered
a faulty product. As before, all transactions are sent to a network of validators, that determine if a transaction
is valid and then add them to the state of the blockchain. 1 After Intel and Nokia were matched, the two
parties run key generation for a 2-of-2 threshold signature scheme, such that Nokia receives skN , pk and Intel
receives skI , vk. This signature verification key vk is used to create a 2-of-2 address on another cryptocurrency
such as Bitcoin. Nokia sends bid amount of coins to this address, and to spend money from this address one
would require both Nokia and Intel’s secret keys. 2 Both parties encrypt their secret key under the public

key of the mediator and send it to the other party. 3 Intel delivers the product to Nokia. 4 Nokia submits
a RFILL transaction. Since there is an issue with the product, they set issue = contract, if no issue then they
would set issue = ⊥. 5 Nokia also submits a transaction to prove that it did deliver the product on time.

It attaches the commitment of a delivery proof and a unique product-id. 6 Nokia sends a DISPUTE to the
mediator. They send the product, the contract, the reason for dispute, an identifier of the transactions on the
blockchain that correspond to the current contract and the encryption cI which is an encryption of the secret
key of Intel. 7 The mediator asks Intel for delivery proofs. 8 Intel provides the mediator with delivery

proofs and the unique digital identifier of the product 9 The mediator checks the product with respect to
the reason for dispute and that all transactions created for this contract are consistent and finally determines
that the winner is Nokia. It decrypts cI to get skI . The mediator signs a message (“customer”, contract)

indicating that Nokia won the dispute and sends skI , σM , “customer” back to Nokia. 10 Nokia now submits

a DISPUTE transaction to the blockchain and sets the proof of winning the dispute as the signature it received
from the mediator. Finally, Nokia is also able to retrieve the funds it put into the 2-of-2 address.
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Implementation: SmartChainDB Our implementation strategy choices were between the use of
smart contracts on platforms such as Ethereum or the development of native support for these market-
place transactions as first class blockchain transactions. We chose the latter approach which offered
several benefits over the use of the smart contracts model (to be elaborated on in Section 5). For
this reason, we selected to build on a platform BigChainDB [30], which is not a specific blockchain
application in itself. Rather, BigChainDB offers an architecture that is extensible and can be used to
implement different kinds of blockchain applications. In addition to extending BigChainDB’s transac-
tion model, we implemented the group signature scheme due to [8] and incorporated it as a possible
signature scheme in BigChainDB. We refer to the resulting extended system as SmartChainDB .

We undertook a performance evaluation to assess the additional overhead created by these new,
more complex marketplace transaction types, as well as the group signature scheme used for privacy.
We found that latency of our marketplace transaction types took no more than 2.5× that of traditional
transactions. However, in concrete terms this translated to a mere additional 2secs of processing time.
The group signature scheme took up to 12× more than the traditional signature scheme. Again, in
concrete terms, this translated to only 10ms overhead.

1.2 Related Work

Kosba et al. present Hawk [24], a framework for creating privacy-preserving Ethereum smart contracts.
Their framework allows a set of clients to describe a functionality that they want to implement, and
it outputs the code for a smart contract, and programs that should be run by the clients and by a
third party who is the facilitator. The data used by the smart contract is encrypted, this ensures
on-chain privacy. However, the facilitator must learn the inputs of all clients in order to compute the
functionality. In other words, the facilitator acts as a middleman and learns the inputs of the party,
which we want to avoid in this work.

Benhamouda et al. [6] present a framework on top of the Hyperledger Fabric that allows party
to send encrypted inputs to the chain. Later, when the inputs are required for a computation, the
parties must run an off-chain multiparty computation protocol over the encrypted input. Here, the
blockchain is used mainly as an immutable input storage, and the actual computations is performed
off-line.

The bidding and match steps in our private match functionality share similarities with sealed-
bid auctions. There, bidders simultaneously privately submit sealed bids to an auctioneer who then
announce the winner. A few sealed-bid auctions via smart contracts have been proposed (e.g., Galal et
al. [15] on Ethereum and Xiong et al. [46]). However, such protocols cannot be extended to implement
the entire flow of private matching.

In terms of functionality, the closest work to our is by Thio-ac et al [42] [41]. They integrate a
blockchain to an electronic procurement system (a procurement is the process of matching customers
with suppliers). However, they do not consider any privacy concern, nor do they present any definitions
or proofs.

Recent work proposes blockchain-based solutions to decentralize e-commerce retail platforms (e.g.,
Amazon). In [23, 33, 36], vendors list their items as input to a smart contract and buyers input their
bids. The smart contract computes the output and reveals the winner. None of these schemes consider
the anonymity of the buyers. Buyers’ anonymity is address in Beaver [39] by employing anonymous
wallets and the Zcash blockchain [37]. However, this line of work is suitable only for a non-interactive
match over public inputs and do not extend to the interactive setting we are interested in this paper.

Finally, a rich body of work has investigated the use of blockchains to increase transparency in the
supply-chain management (e.g. [14, 25,31,43, 44] just to name a few). However, all such work focuses
only on the traceability and provenance of the products.
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2 Universal Composability

In UC security we consider the execution of the protocol in a special setting involving an environment
machine Z, in addition to the honest parties and adversary. In UC, ideal and real models are considered
where a trusted party carries out the computation in the ideal model while the actual protocol runs
in the real model. The trusted party is also called the ideal functionality. For example the ideal
functionality FPrivateMatch is a trusted party that provides the functionality of anonymous matching.
In the UC setting, there is a global environment (the distinguisher) that chooses the inputs for the
honest parties, and interacts with an adversary who is the party that participates in the protocol on
behalf of dishonest parties. At the end of the protocol execution, the environment receives the output
of the honest parties as well as the output of the adversary which one can assume to contain the entire
transcript of the protocol. When the environment activates the honest parties and the adversary, it
does not know whether the parties and the adversary are running the real protocol –they are in the real
world, or they are simply interacting with the trusted ideal functionality, in which case the adversary
is not interacting with any honest party, but is simply “simulating” to engage in the protocol. In the
ideal world the adversary is therefore called simulator, that we denote by S.

In the UC-setting, we say that a protocol securely realizes an ideal functionality, if there exist no
environment that can distinguish whether the output he received comes from a real execution of the
protocol between the honest parties and a real adversary A, or from a simulated execution of the
protocol produced by the simulator, where the honest parties only forward date to and from the ideal
functionality.

The transcript of the ideal world execution is denoted IDEALF,S,Z(λ, z) and the transcript of
the real world execution is denoted REALΠ,A,Z(λ, z). A protocol is secure if the ideal world tran-
script and the real world transcripts are indistinguishable. That is, {IDEALF,S,Z(λ, z}λ∈N,z∈{0,1}∗ ≡
{REALΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

3 Private Interactive Matching: Formal Definition in the UC-Framework

The ideal functionality FPrivateMatch captures a private matching functionality in the UC Framework
[12](also see Appendix 2), where customers are allowed to request a service anonymously within a
group, suppliers bid to fulfill these services, where the value of the bid is private and eventually a
supplier is matched with the customer .

The functionality maintains a global state that will contain all the transactions and can be read by
all parties. It also maintains a list (buffer) of transactions that are to be added to state. To set notation
: P is the set of all parties and the adversary is denoted as A. G is the list of groups initialized by the
environment Z. We denote a set of locked resources as LOCKS and TIMER as the set of times for each
request. This set is used to ensure that no time-out (denoted FulfillTime or MatchTime) has occurred.
Upon receiving a command from a party, the functionality creates a transaction that corresponds to
the command, adds the transaction to buffer and sends the same to the adversary. This reflects the
fact that the adversary learns that a command has been invoked.

3.1 Overview of the functionality

Our functionality captures the operations that the system should perform, the inputs that the system
should protect and the information that the system is allowed to leak. It follows the formalisms on
the UC-framework and it is described in Figures 3
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Register : Upon receiving (REG, Pi, [roles]) from Pi, do P = P ∪ Pi. Send (tx = (REG, Pi, [roles])) to
A and do buffer = buffer∥tx.
Non-adaptive setup : Receive (CORRUPTED, b) from party Pi

Join Group : Upon receiving (gJOIN,GID) from a party Pi, update G[GID] = G[GID] ∪ {Pi}. Send
(gJOIN, Pi,GID) to A and (gJOIN, Pi,GID, 1) to Pi.
Update Profile : Upon receiving (UPD, prof, roles) from Pi, verify Pi ∈ P. If prof = GID, check if
Pi ∈ G[GID]. If yes, send (tx = UPD, Pi,GID) to A and do buffer = buffer∥tx. Else ignore the message.
If prof = resi, and (Pi, ·) /∈ LOCKS[RID] for some RID and validResource(resi, Pi) = 1, update P
as P ∪ {(Pi, resi)} and remove other instances of Pi ∈ P. Send (tx = UPD, Pi, resi) to A and do
buffer = buffer∥tx.
PreRequest : Upon receiving (PREREQ, GID, res, RID) from Pi

1. Check that Pi ∈ G[GID]. If not, ignore.
2. Add T [RID] = (Pi, res, ∅).
3. Initialize LOCKS[RID] = ∅ and TIMER[RID] = 0.
4. Send (tx = PREREQ, (RID, res,GID)) to the A and do buffer = buffer∥tx.
Interest : Upon receiving (INTRST,RID) from some supplier Pj :
1. Check if (res ∈ T [RID]) ⊂ resj
2. If yes, send (tx = INTRST,RID, Pj) to A and do buffer = buffer∥tx.
Request : Upon receiving (REQ, (RID, [designj ]j∈bidders,GID, bidders, contract)) from Pi

1. Check Pi ∈ T [RID] and Pi ∈ G[GID]
2. Update T [RID] = (P, res, bidders)
3. Send (tx = REQ,RID,GID, bidders) to A and do buffer = buffer∥tx.
4. For each Pj ∈ bidders, send (REQ,RID, designj , contract).
Bidding : Upon receiving (BID, (RID, bidj)) from Pj

1. Check canServe(RID, Pj , state, LOCKS) = 1 If yes,
2. Send (tx = BID, (RID, Pj)) to A and (BID, (RID, Pj , bidj)) to Pi. Send TIME to GrefClock to receive

currTime. Set TIMER[RID] = currTime.
3. Add (Pj ,RID, res) to LOCKS
Match : Upon receiving (WINNER,RID,GID, P ∗) from Pi

1. Check that Pi ∈ T [RID] and that it belongs to G[GID]
2. For each (Pj ,RID, ·) ∈ LOCKS[RID], delete (Pj ,RID, ·) from LOCKS[RID]. Send TIME to GrefClock to

receive currTime. Set TIMER[RID] = currTime.
3. Send (tx = WINNER,GID,RID, P ∗) to A and do buffer = buffer∥tx
Read : Upon receiving (READ) from Pi return state to Pi

Update State : Upon receiving (UPDATE, tx) from A: Delete tx from buffer. Update state = state∥tx.
Unlock resources on time-out :
1. If currTime− TIMER[RID] > MatchTime, then delete (Pi,RID, ·) from LOCKS[RID]
2. For RID if there exist WINNER message and no RFILL message and

currTime− TIMER[RID] > FulfillTime, then delete all (Pi, ·) from LOCKS[RID] and LOCKS[RID]
Fulfillment from customer: Upon receiving tx = (RFILL,ContractID,RID,GID, issue,Product) from
Pi:
1. Check that Pi ∈ T [RID] and that it belongs to G[GID]
2. Send tx = (RFILL,RID,ContractID,GID, issue) to A and do buffer = buffer∥tx
Fulfillment from supplier: Upon receiving tx = (SFILL,ContractID,RID, deliveryPrf) from Pi:
1. Send TIME to GrefClock and receive currTime. Set TIMER[RID] = currTime
2. Delete (Pi,RID, ·) from LOCKS[RID].
3. Send SFILL,ContractID,RID to A and do buffer = buffer∥tx
Dispute: Upon receiving tx = (DISPUTE,ContractID,GID, pType,RID, reason) from Pi:
1. Let T be set of transactions with id: ContractID. Let Pj be the counter-party in these

transactions. Let pType ∈ {“customer”, “supplier”}.
2. Check that Product is the same one received in RFILL. If not output 0. Check that deliveryPrf is

the same one received in SFILL. If not output 0.
3. Send (GET-PRODUCT) to Pi and get back Product and GET-DELIVERY to Pj and get back deliveryPrf
4. Run PhysicalCheck(T, pType,Product, deliveryPrf, reason, currTime) and output winner as Pi if

output 1, else output winner as Pj

5. If pType = “supplier” and winner is Pi, then do tx = tx∥Pj

6. If winner is Pi, send tx to A and do buffer = buffer∥tx
Fig. 3. An ideal functionality for private matching

FPrivateMatch
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– Register: All parties register with the functionality using this command. The party registers with
a vector of roles, which can include “supplier”, “customer” or be empty.

– Read: Any registered party can request to read the state.
– Update : With this command, the adversary specifies a transaction tx to be added to the state.

The functionality deletes this transaction from the buffer and then adds it to the state
– Join Group: The functionality is parameterized by a public list of groups - G where each group is

identified by a GID. Parties join a group by specifying a GID. The party and the GID are then sent
to the adversary.

– Update Profile: Each role is described by a profile. A customer ’s profile simply contains the GID
it belongs to. A supplier’s profile contains the resources it possesses. A party updates its profile by
adding a new group ID, or adding resources. The functionality verifies that the party had previously
joined the claimed group, or that the party has the claimed resources (by running a predicate called
validResource).

– Pre-request With this command a customer initiates a request (with id RID) for matching. It
indicates the resources (res) that it requires, and the GID of the group to which this request should
be associated. The functionality verifies the group membership and creates a PREREQ transaction.

– Interest With this command a supplier expresses interest for a request RID. The functionality
checks the supplier’s capability and creates an INTRST transaction. A customer learns the suppliers
that are interested fulfilling the request from state.

– Request With the REQ command a customer selects a set of suppliers (denoted bidders) from which
it wants to receive bids. The customer also sends a list of designs such that designj is the design
for supplier Pj . The functionality sends designj to each Pj in the bidders and but creates a REQ

transaction that does not include any design.
– Bidding With this command a supplier Pj sends a bid for a request RID. The functionality runs a

canServe predicate (Fig 18) to check if Pj can fulfill the request. If so, it creates a BID transaction
with the RID and Pj . At this point, the resources of this bidder are locked.

– Match With this command, the customer picks a winner from the set of suppliers that bid for the
request. The functionality releases the locks on the resources for the parties that are not winners.

– Fulfilled (resp., from supplier) With this command the customer (resp., supplier) informs the
functionality that the request has been fulfilled.

– Disputes The supplier or the customer can raise dispute by providing a DISPUTE command along
with the reason for dispute. The functionality first checks if the request is valid and then requests the
product and the proof of delivery from the customer and the supplier respectively. The functionality
then performs physical checks to determine the winner of the dispute and updates the state with a
transaction indicating the winner of the dispute.

– Unlock Request The functionality is parameterized by two timeouts denoted FulfillTime and
MatchTime. If a resource has been locked up for a time greater than any of these timeouts because
the customer did not follow up with the next command, the functionality removes these locks by
updating LOCKS.

3.2 Security Properties

The following security properties are guaranteed by FPrivateMatch:
Group anonymity of customers A customer that sends a command to the functionality is

anonymous within its group. This is achieved by having the functionality reveal only the group of the
customer to the adversary and the state. That is in PREREQ, REQ and WINNER transactions, only the
GID is added to the state. The unique identifier of the party Pi is never revealed.

Service Confidentiality Only the set of suppliers chosen by the customer can know the private
details associated to the request, and no other entities. This is achieved by allowing only the bidders
to receive design as shown in REQ transaction. The design is not sent to the adversary and the state.

Bid Confidentiality The bid for a certain request is known only to the customer and no other
entities. This is achieved by sending the bids to the customer only as shown in BID transaction. The
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transaction that is sent to the adversary and added to the state only includes the identity of the
bidders.

Request soundness A customer cannot add a transaction for a request unless it sent the PREREQ
command for the request. This is achieved by the check for each command received from a party Pi

for request RID, that Pi ∈ T [RID].

Supplier completeness A supplier can bid using the BID command for a request only if its
resources are available. This is achieved by locking the resources if the supplier’s resources are in use
for another request, and running a canServe predicate to verify that the resources are available.

Fairness Misbehaving parties can be caught via the DISPUTE command. The functionality resolves
the dispute by running a physical check and verifying that the parties followed the requirements
specified in the contract.

3.3 Auxiliary functionalities

We will use several building blocks such as anonymous signatures, registration authority, ledger, etc.
We abstract them as ideal functionalities and we describe them below.

Clock functionality. GrefClock (defined in [13]) in Fig. 4 captures a global reference clock. When
queried, it provides an abstract notion of time represented by currTime. FPrivateMatch uses this func-
tionality as a sub-routine.

GrefClock maintains an integer currTime (initialized to 0) corresponding to the reference time.
Increment TimeUpon receiving an INCREMENTTIME request from Z, update currTime← currTime+
1 and send ok to Z. Ignore INCREMENTTIME requests from all other entities.
Get Time Upon receiving a TIME command return currTime to the calling entity.

Fig. 4. The clock ideal functionality

GrefClock

Group signature functionality. Ggsign is taken from [4] and is described in Fig 5. There are two
types of players associated to the functionality. The group manager GM and the set of parties. The
functionality allows a party Pj to join the group only if the GM gives the approval. After joining Pj

can ask the ideal functionality to generate signatures on behalf of the group. A party Pl can ask the
ideal functionality to de-anonymize (“open” a certain signature, and the Ggsign will do so if allowed by
GM. An instance of the functionality for group with identifier GID is denoted as Ggsign[GID].
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There are two types of players the group manager GM and parties Pi. The functionality maintains a
database D for the list of parties in the group and a list L for signatures.
Non-adaptive setup : Each user Pi tells the functionality whether it is corrupted or not. Option-
ally, in this stage the global parameters are broadcast to all parties.
Group Setup Upon receiving (gSETUP) from the GM, send to the adversary - (gSETUP,GM).
User Key Generation Upon receiving (GKGen) from a user Pi, send (GKGen, Pi) to the adver-
sary.
Join Upon receiving (gENROLL, Pi) from a party Pi, ask GM if the party can join the group. Receive
bi ∈ {0, 1} from the GM and add (Pi, bi) to D and send (gENROLL, bi) to Pi. If the group manager is
corrupt, then register a user corrupt-GM.
Sign Upon receiving (gSIGN,m) from a party Pi. Check that the entry for Pi in D has bi = 1 . If
not, deny the command. If yes, send to A the message (gSIGN,m). If the GM is corrupt, also send
Pi to A. Receive σ from A. Store (Pi,m, σ) in L and send σ to Pi

Verify Upon receiving (gVERIFY, Pi,m, σ) from a party Pi or GM. Check if (m,σ) exists in L. If
yes, return 1, else return 0.
Open Upon receiving (gOPEN,m, σ) from a party Pi. Check if L has an entry (Pj ,m, σ) for some
Pj . Ask GM if it can open σ for Pi. If GM return 1 and Pj ̸= corrupt-GM, output Pj , else output ⊥.
Get group members Upon receiving gGET from a party Pi, return the database D to Pi

Fig. 5. The group signature functionality

Ggsign

Registration functionality. Greg described in Fig 6 abstract the registration process. Command REG

allows parties to join the system without any role, that they can later update using the UPD command.
Greg verifies if the party is eligible for this update by evaluating predicate ValidReg (Fig 7), and if so
it returns a certificate cert. Any party verify that a cert is valid by sending a VERIFY command.

This functionality is parameterized by a function ValidReg(Fig 7) and maintains a list LREG

– Upon receiving (REG, roles) from a party Pi send (Pi, roles) to A and get back certi. Store
(Pi, roles, certi) in LREG.

– Upon receiving (UPD, prof, roles) from a party Pi, check if ValidReg(Pi, prof, roles) = 1. If yes, send
(Pi, prof, roles) to A and get back certi. Update entry (Pi, roles, ·) in LREG, with (Pi, roles, certi).

– Upon receiving (VERIFY, cert∗, P ∗, roles) from a party Pi or a functionality F , check if
(P ∗, roles, cert∗) exists in LREG. If yes, return 1 else 0.

Fig. 6. The registration functionality

Greg

– If prof = GID and “customer” ∈ roles, send gGET to Ggsign[GID]. If Pi ∈ D, output 1.
– If prof = res and “supplier” ∈ roles, check validResource(Pi, res) = 1. If yes, return 1.

Fig. 7. Function to check for valid registration

Function ValidReg(Pi, prof, roles)

Smart Ledger functionality. The smart-ledger functionality Gsmartchain abstract the operations of
a shared ledger where transactions are validated and then added to the ledger. The ledger is denoted
by the global state state that all parties can read. Upon receiving a transaction from a party, the
Gsmartchain functionality first validates (see Fig 17) the transaction and then adds the transaction to
the state.
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The functionality is parameterized by a ValidateTxn function (defined in Fig 17). The functionality
maintains a global state.
Validate transactions : Upon receiving tx from a party Pi. If ValidateTxn(tx) = 1 , do state =
state∥tx. Else ignore.
Read : Upon receiving READ from a party Pi, return state.

Fig. 8. The Gsmartchain functionality

Gsmartchain

Non-interactive zero knowledge functionality. The NIZK functionality Fnizk is an ideal func-
tionality that allows parties to receive a proof that a particular witness w and statement x belong to
an NP relation R.

The non-interactive zero-knowledge functionality Fnizk allows proving of statements in an NP rela-
tion R.
Proving Upon receiving (PROVE, x, w)

if (x,w) /∈ R then
return ⊥

Send (PROVE, x) to A and receive (PROOF, x, π)
Let Π ← Π ∪ {(x, π)};W (x, π)← w
return π

Verification Upon receiving (VERIFY, x, π)

if (x, π) /∈ Π ∧ π ̸= ⊥ then
Send (Vf, x, π) to A and receive reply R
if R = (WITNESS, x, w) ∧ (x,w) ∈ R then

Let Π ← Π ∪ (x, π);W (x, π)← w

return (x, π) ∈ Π

Fig. 9. The non-interactive zero knowledge functionality

Fnizk

4 The PrivateMatch Protocol

In this section we provide a detailed description of our PrivateMatch, and prove that securely realizes
the ideal functionality FPrivateMatch. We describe our protocol using the UC formalism. A high-level
overview of the protocol is provided below.

Protocol Overview The protocol PrivateMatch uses the following ideal functionalities : a registration
functionality Greg (see Fig 6), a group signature functionality Ggsign (see Fig 5) and a validation
functionality Gsmartchain (see Fig 8), collision resistance hash functions [22] and a secure “special”
private key encryption protocol [27].
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Upon receiving command I from the environment Z the customer does the following:
Register If I = REG

1. Send (REG, [roles]) to Greg and receive cert. Send (tx = REG, (Pi, cert)) to Gsmartchain and receive
(ACCEPTED, b).

2. Create keys : Generate encryption keys (Enc.pki,Enc.ski)← Enc.KGen(1λ) and signature keys
(Sig.vki, Sig.ski)← Sig.KGen(1λ). Publish (Sig.pki,Enc.pki)

Customer : Join group If I = (gJOIN,GID), send (gENROLL) to Ggsign[GID] and receive back bit b.
Update profile If I = (UPD, prof, roles)
1. As supplier : Send (UPD, resi, [roles]) to Greg and receive cert. Send (tx = (UPD, (Pi, cert))) to
Gsmartchain and receive (ACCEPTED, b)

2. As customer : Send (UPD,GID, [roles]) to Greg. Receive cert and send (tx = (UPD, (Pi, cert))) to
Gsmartchain and receive (ACCEPTED, b)

Fig. 10. Registration and Updates

Registration and Profile Updates

The protocol proceeds by parties creating transactions and sending them to Gsmartchain functionality.
If a transaction is valid, the functionality adds the transaction to a global state that can be read by
any party. As described earlier our protocol considers two roles for parties - the customers and the
suppliers. To set notation, GID is the group identifier, reqID is an identifier for a request flow, res is
used to denote resources, bidders is the set of bidders that are selected by the customer, kRID is an
encryption key for a design specification denoted design. The encrypted ciphertext is Cd. Moreover
encryptions of kRID and bids are denoted as Ckey and Cbid repectively.
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Pre-request If I = (PREREQ,RID, res)
1. Sample nonce0 ← {0, 1}λ and compute hash0 = H(nonce0∥RID)
2. Send (gSIGN,GID, (hash0, res,RID)) to Ggsign[GID] and receive back σ. Send tx = (PREREQ,

GID, ((hash0, res,RID), σ)) to Gsmartchain and receive (ACCEPTED, b)
Request If I = (REQ,RID, design, bidders, contract,ContractID)
1. Sample random r and compute commitment to contract as

Ccontract = Com(contract,ContractID; r).
2. Generate design encryption key kRID ← PrivKGen(1λ). Encrypt design and contract opening -

Cd ← Enc(kRID, (design, contract,ContractID, r)).
3. For each Pj ∈ bidders - create Cj

key ← Enc(pkj , kRID)

4. Generate bid encryption keys (pkbid, skbid)← KGen(1λ). Sample nonce1 ← {0, 1}λ and compute
hash1 = H(nonce1∥RID).

5. Send (gSIGN,GID, (RID, pkbid, {C
j
key}j∈bidders, Cd, Ccontract,ContractID, hash1, nonce0)) to Ggsign[GID]

and receive σ. Send tx = (REQ, (GID, (RID, pkbid, {C
j
key}j∈bidders, Cd, Ccontract,ContractID, hash1,

nonce0), σ)) to Gsmartchain and receive (ACCEPTED, b)
Match If I = (WINNER,RID, P ∗)
1. Retrieve set of encrypted bids {RID, Cj

bid}j∈bidders from state
2. Decrypt each Cj

bid - Dec(skbid, C
j
bid) to get bidj . Ignore, if decryption fails.

3. Sample nonce2 ← {0, 1}λ and compute hash2 = H(nonce2∥RID)
4. Send (gSIGN,GID, (hash2, nonce1,RID, P

∗)) to Ggsign[GID] and receive σ. Send
tx = (WINNER, (GID, (hash2, nonce1,RID,ContractID, P

∗), σ)) to Gsmartchain and receive (ACCEPTED, b)
Key generation
1. Run Protocol KGen2(1

λ) with P ∗ to receive (skBpk)
2. Computes cB = EncpkM(skB) and sends (PROVE, (cB, pkM), skB) to Fnizk to Fnizk and receives a

ZKP πB that proves that cB = EncpkM(skB).
3. Create a pre-transaction that requires both skB and skS to redeem it: txB such that pays S the

amount price and send (txB, cB, πB) to P ∗.
Fulfilling If I = RFILL

1. Receive (digProd,Product, σP∗) from P ∗. Check ValidID(Product, digProd) = 1.
2. If ValidateProduct(contract,Product) = 1, set issue = ⊥, else issue = “contract” or If

deadline > currTime, set issue = (TIME, “contract”)
3. Send (gSIGN,GID, (nonce3, digProd, σP∗ , issue,RID, P ∗)) to Ggsign[GID] and receive σ. Send

tx = (RFILL, (GID, (nonce3, digProd, σP∗ ,ContractID, issue,RID, P ∗), σ)) to Gsmartchain and receive
(ACCEPTED, b)

Dispute If I = DISPUTE

1. Send (DISPUTE,ContractID, reason, cS) toM and receive (σM, “customer”, skS) if customer is the
winner or receive (σM, “supplier”,⊥)

2. Create DProof = (contract,ContractID, σM, “customer”).
3. Send (gSIGN,GID, (nonce3,DProof,RID, P

∗)) to Ggsign[GID] and receive σ. Send
tx = (DISPUTE, (GID, (nonce3,DProof,RID, P

∗), σ)) to Gsmartchain and receive (ACCEPTED, b).

Fig. 11. Customer protocols

Customer: requesting and matching

Registration and profile updates. Before participating in the protocol, parties must register with
the system. To do so, a party first invokes the Greg functionality and receives a certificate cert. The
party then prepares a transaction with the certificate and its identity tx = (REG, (Pi, cert)) and sends
it to the Gsmartchain functionality. The Gsmartchain functionality checks if the message is valid (by running
a ValidateTxn function) and if so, updates the state. If the message is invalid it ignores it. Hereafter
we don’t repeat the Gsmartchain operations since it is the same for all transactions.

Once registered a party updates its profile as a customer or supplier. When updating as a customer,
a party must indicate which customer’s group it wants to be associated with. We assume that groups
are determined when the system is bootstrapped. Since each group will be associated to a group
signature, we identify a group by Ggsign[GID]. To join a group, the party sends gENROLL command
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to Ggsign[GID]. Once joined the party interacts with Greg to get a certificate that its profile has been
updated. When updating as a supplier interacts with the Greg functionality to update its profile with
the resources it possesses and get a certificate.

Interest If I = (INTRST,RID) Interest If I = (INTRST,RID)
1. Read PREREQ message from state with RID.
2. Create interest message (RID, pki) and create a signature σ = Sigski(RID, pki).
3. Send (INTRST, ((RID,ContractID, pki), σ)) to Gsmartchain and receive (ACCEPTED, b)
Bid If I = (BID, bid)
1. Parse (REQ,RID, ·) from state to get (RID, pkbid, {C

j
key}j∈bidders, Cd, Ccontract, hash1, nonce0)

2. Ignore if i /∈ bidders
3. Else compute k∗

RID = Dec(ski, C
i
key) and compute (design∗, contract∗, r∗) = Dec(kRID, Cd)

4. Check that Ccontract = Com(contract∗; r). If not, abort.
5. Encrypt bid as Cbid = Enc(pkbid, bid) and commit CMbid = Com(bid, r), where r ∈ {0, 1}λ
6. Send (BID,Sigski((RID,ContractID,CMbid, Cbid))) to Gsmartchain and receive (ACCEPTED, b)
Key generation
1. Run Protocol KGen2(1

λ) with the customer P to receive (skS , pk)
2. Computes cS = EncpkM(skS) and sends (PROVE, (cS , pkM), skS) to Fnizk to Fnizk and receives a

ZKP πB that proves that cS = EncpkM(skS).
3. Create a pre-transaction that requires both skB and skS to redeem it: txB such that pays S the

amount price and send (txB, cB, πB) to P .
Fulfill If I = SFILL

1. Compute unique identifier of product - digProd
2. Compute CdeliveryPrf = Com(deliveryPrf; r)
3. Create σ = Sigski(SFILL, CdeliveryPrf ,RID, digProd).
4. Send (SFILL, (digProd,RID, CdeliveryPrf ,ContractID, σ)) to Gsmartchain and receive (ACCEPTED, b)
Dispute If I = DISPUTE

1. Send (DISPUTE,ContractID, reason, cB) toM and receive (σM, “supplier”, skB) if P
∗ is the winner

or receive (σM, “customer”)
2. Compute σ = Sig(ski, (“dispute”,ContractID)). Send

tx = (DISPUTE, (“dispute”,ContractID,RID, σ) to Gsmartchain and receive (ACCEPTED, b)

Fig. 12. Supplier protocols

Supplier: interest, bid, fulfill and dispute

Request for service. A customer who wishes to request resources to implement a private design,
that we denote by design, put forth a request in two steps. First, the customer prepares an anonymous
PREREQ transaction which only includes the resources it would require for the service (without the
design), and the id RID of the request. This transaction is signed using a group signature, and will be
associated to the GID of the group the customer belongs to. Suppliers who are interested in fulfilling
this request, send an INTRST transaction.

The customer then picks a set of suppliers from the interested set of suppliers and creates the REQ
transaction, referring to request RID, such that only the chosen set of suppliers can see the private
input design. To this end, the design must be encrypted. We implement this efficiently, by having the
customer encrypts the design with a fresh key kRID and (anonymously) post the encrypted design on a
web location that it controls (this way, it can remove it when necessary). Next, in the REQ transaction,
indexed by the request ID RID, the customer will add encryptions of the key kRID under the public
key of each of the selected suppliers. In the REQ transaction, the customer also adds a freshly sampled
public key pkRID. This will be used by the suppliers in the next stage to encrypt their private bids.

As explained in Sec. 1 we chain transactions for the same RID using puzzles. Hence, every transac-
tion from the customer for a specific RID contains the output y of a collision-resistant hash function
(CRHF), and any follow up transaction must contain the pre-image of y.
Bidding and matching. To bid on a request, a supplier first decrypts the encrypted keys to retrieve
the symmetric key kRID with which they decrypt the ciphertext and get the design. The supplier
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then encrypts its bid using the public key pkRID, and create BID transaction contained the encrypted
bid. The Gsmartchain functionality locks the resources of the bidders at this point. The customer then
decrypts the encryptions to get the bids, perform its local decision to select a winner, and finally
creates a transaction with the identity of the winner. Once confirmed, the resources of the suppliers
that were not selected as winner are unlocked.

The customer is denoted as B and the supplier as S.
Key Generation: Run (pk, sk)← Enc.KGen(1λ) to get encryption keys and announce pk
Dispute resolution: Upon receiving (DISPUTE,ContractID, reason, pType) from some party P :
1. Send READ to Gsmartchain and receive state
2. Let T be the set of transactions with id ContractID
3. Send (GET-DELIVERY,ContractID) to S and receive d = (deliveryPrf, rS). Send

(GET-CONTRACT,ContractID) to B and receive c = (contract, rB)
4. Run b← transactionCheck(T , pType, c, d). If b = 1, send (GET-PRODUCT,ContractID) to B and S

and receive ProductB and deliveryPrf respectively.
5. Send TIME to GrefClock and receive back currTime.
6. Run b1 = PhysicalCheck(T ,B,ProductB, deliveryPrf, reason, currTime).
7. Let P ′ = {B,S} \ P If b1 = 1, compute skP ′ = Dec(skM, cP ′), else skP ′ = ⊥
8. Compute σM = SignM(W ), where W ∈ {“customer”, “supplier”}
9. Send (σM,W, skP ′) to P

Fig. 13. Mediator protocol for dispute resolution

Mediator protocol

Dispute and fulfillment of requests Our idea to resolve disputes is inspired by the encrypt-and-
swap escrow protocol presented in [18]. The protocol has the following entities: a buyer B, a seller S
and a (trusted) mediatorM. The main idea of this protocol is the following:

1. The buyer and seller agree on a transaction txB that pays the seller some amount of its funds when
the buyer receives the product from the seller. They also agree on a refund transaction txS in the
case that the buyer is not satisfied with this product. Crucially, the secret keys of both the buyer
and the supplier are required to redeem these transactions. This can be implemented using the
2-of-2 threshold signing protocol of Gennaro et. al. [16]. We do not specify how these transactions
will be implemented, but one could use the Bitcoin blockchain (Gledger [5]) to make these payments.
The buyer first submits a transaction tx that sends the amount bid to the 2-of-2 address. Note that
if the transaction txB does not pay the amount bid to the supplier , then it simply does not proceed
with the production.

2. Each party encrypts its secret key under the public key of the mediator and sends the ciphertext
to the other party.

3. In the case of a dispute, the party submits the reason of dispute along with the ciphertext it
received from the counter-party. The mediator determines the winner of the dispute by running
a transactionCheck (that checks that all the transactions submitted on the blockchain with id
ContractID are computed correctly) and PhysicalCheck (a physical check to determine if the product
was correctly created with respect to the contract). The mediator then decrypts the ciphertext of
the counter-party and announces the secret key to the winner. Now the winner has both the secret
keys and can redeem its transaction to claim the funds.
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1. Parse T as (REQ, RFILL, SFILL)
2. Parse (contract, rB)← c
3. Parse (deliveryPrf, rS)← d
4. If no RFILL, and pType = “customer”, output 0.
5. If no SFILL and pType = “supplier”, output 0.
6. Contract check, if pType = “customer”

(a) If issue = “contract” in RFILL check that Com(contract, rB) = Ccontract as posted with REQ.
(b) Else if issue = TIME check that currTime > contract[time] +matchtime and no SFILL is in T
(c) If either of the two are false, output 0.

7. Timeout check, if pType = “supplier”
(a) Check Com(deliveryPrf, rS) = CdeliveryPrf as posted with SFILL. If not return 0.
(b) If no RFILL and if currTime < contract[time] +matchtime, return 0.

8. Return 1

Fig. 14. Checking consistency of transactions

Function transactionCheck(T , pType, c, d)

These are non-cryptographic checks that the mediator needs to do
1. Physical check of product Check that productCheck(Product, reason, contract) = 1
2. Payment check If reason = (“payment”, sk′, c′), the mediator checks if DecskM (c′) = sk′ and if

that is the case output 1, else output 0
3. Wrong payment If reason = (“wrong-bid”,CMbid, bid, r, tx), the mediator checks if the

CMbid = Com(bid, r) and if the transaction in Gledger corresponds to bid. If yes output 1, else
output 0.

4. Delivery check Check that the deliveryPrf is valid, and is within the date specified in contract.

Fig. 15. Winner checking function

PhysicalCheck(T, pType,Product, deliveryPrf, reason)

Before we present our proofs we present the definition of the function ValidateTxn. This is the
function run by Gsmartchain to ensure that each transaction it receives is valid.

This function takes as input a message which contains solution to a puzzle noncei and the RID and
the state of the chain stateb. Let hashi be the puzzle that was posted to the state.
If hashi = H(noncei), output 1, else output 0.

Fig. 16. Check if two tx are from the same requester

Predicate VrfSame
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Unlock Resources As is done in FPrivateMatch.
Validate registration and updates If tx = (REG, v, cert, roles) or (UPD, v, cert, roles), send
Vrf(cert, Pi, roles) to Greg. Output the bit returned.
Validate pre-request If tx = (PREREQ,m, σ) from a party Pi, send (gVERIFY,m, σ) to Ggsign[GID].
Output the bit returned.
Validate interest : Upon receiving (INTRST,m, σ) from a party Pi, check Sig.Vrf(vki,m, σ) = 1. If
res ⊂ resi, retrun 1.
Validate request : If tx = (REQ,m, σ) Send (gVERIFY, (m,σ)) to Ggsign[GID]. If 1, check
VrfSame(m, state) = 1, if yes, return 1.
Validate bid: If tx = (BID,m, σ)
Check Sig.Vrf(vki,m, σ) = 1. Get RID from m and check canServe(Pi, state,RID, LOCKS), add
(Pi,RID, res) to LOCKS[RID], update TIMER[RID] = currTime and return 1.
Validate Match: If tx = (WINNER,m, σ) send (gVERIFY,m, σ) to Ggsign[GID]. If 1 returned, check
VrfSame(m, state) = 1, if yes, return 1. Let P ∗ be the winner according to m and res be the resource
for RID. For all Pj ̸= P ∗, remove (Pj , ·) from the LOCKS[RID] and update TIMER[RID] = currTime
Validate requester fulfill : If tx = (RFILL,m, σ), check VrfSame(m, state) = 1. If yes, , send
(gVERIFY,m) to Ggsign[GID]. If 1 returned, output 1.
Validate supplier fulfill : If tx = (SFILL,m, σ): Get RID from m. Check Sig.Vrfvki(m). If yes, then
return 1, and remove (Pj , ·) from LOCKS
Validate requester dispute : If tx = (DISPUTE, (GID, (nonce3,DProof,RID, P

∗), σ))
1. send (gVERIFY, (nonce3,DProof,RID, P

∗), σ) to Ggsign[GID].
2. If 1 returned, check VrfSame(m, state) = 1. If not, return 0.
3. Parse DProof to get contract and ContractID
4. Compute b = Sig.VrfvkM(DProof)
5. Return b.
Validate supplier dispute: If tx = (DISPUTE, (“dispute”,ContractID,RID, σ)
1. Parse DProof to get contract and ContractID
2. Compute b = Sig.VrfvkM(DProof)
3. If b = 1, send (gOPEN,m, σ) where (m,σ) correspond to any previous message with id RID abd

receive P
4. Update tx = tx∥P
5. Return b.

Fig. 17. The validation function

Function ValidateTxn

The predicate takes as inputs a supplier Pj , state, a request identifier RID and the list LOCKS.
1. Get P from state. And get res from the PREREQ message for RID. Check that Pj ∈ P. If not,

return 0.
2. Let AllResourcej = resj s.t. (UPD, (Pj , resj , [roles], cert)) ∈ state is the latest UPD transaction for Pj

in state
3. Let Lockedj =

⋃
resj s.t. (Pj , ·, resj) in LOCKS.

4. If res not in AllResourcej \ Lockedj , return 0, where (Pj ,AllResource) ∈ P. Else return 1.

Fig. 18. Predicate to check if an interested supplier can service a request.

Predicate canServe

4.1 Security Proof

We present an overview of the proofs below. The formal proofs are presented in Appendix A

Theorem 1. (Security in Presence of Malicious Customers) The protocol PrivateMatch UC
realizes the FPrivateMatch ideal functionality in the Ggsign,Greg,Gsmartchain-hybrid world assuming collision-
resistant hash functions [22], secure “special” symmetric key encryption [27], EUF-CMA signature
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[22], secure commitment schemes [22] and CPA-secure encryption [22] in the presence of a PPT
adversary that corrupts a subset of the customers .

Overview of the simulator In order to prove UC security we show that there exists a simulator
interacting with FPrivateMatch that generates a transcript that is indistinguishable from the transcript
generated by the real-world adversary running protocol PrivateMatch. We give a high-level description
of the simulator Sr and give an intuition why security is guaranteed. In this case, we assume that the
adversary corrupts a set of requesters only.

The REG, UPD and gJOIN commands are simulated by internally simulating the Ggsign,Greg and
Gsmartchain functionalities.

For a PREREQ command, the simulator only receives the GID and not the identity of the party calling
the PREREQ command. The simulator samples a random nonce0 and computes H(nonce0∥RID) =
hash0. And then the simulator simulates the Ggsign functionality and records the message-signature
pair without the identity of the party. Since the simulator is able to simulate a transaction that is
indistinguishable from the real-world with only the GID we claim that the party Pi is anonymous
within the group GID. For the REQ command, the simulator needs to simulate the REQ transaction as
in the real-world without knowing the design. To this end, the simulator encrypts to 0 instead of design.
By CPA security of the encryption scheme the simulation is indistinguishable from the real-world and
thus we achieve service confidentiality. In the case that A sends the REQ transaction, the simulator
aborts if it is able to create a transaction that corresponds to the RID of an honest user. Since we
use CRHF, the probability of this happening is negligible. Thus we guarantee requester soundness.
For the BID command the simulator needs to simulate a bid transaction that is indistinguishable from
the real-world transaction without knowing the bid value. To this end the simulator encrypts to the
0 string. By the CPA security of the encryption scheme the simulated encryption and the real-world
encryptions are indistinguishable. This guarantees the property of bid confidentiality For a DISPUTE
transaction, the simulator receives from the FPrivateMatch functionality the reason and the ContractID.
This information is enough to simulate the DISPUTE command in the real world. Note that since
we assume that the mediator is a trusted party, the simulator simulates this mediator towards the
adversary. In the case of a malicious customer, the simulator simulates a key-exchange and sends
an encryption of 0 to the customer instead of encryption of its secret key. By the CPA security of
the encryption scheme, the adversary cannot learn the secret key of the supplier. Upon receiving a
dispute message on behalf of the mediator, the simulator creates a DISPUTE command and forwards it
to the FPrivateMatch functionality. Upon receiving a GET-PRODUCT command from the functionality the
simulator on behalf of the mediator sends the adversary a GET-PRODUCT command and receives back
the Product. The simulator sends the Product to the FPrivateMatch functionality and creates a signature
on the winner determined by the functionality. This guarantees the properties of fairness in our
protocols.

Theorem 2. (Security in Presence of Malicious Suppliers) The protocol PrivateMatch UC re-
alizes the FPrivateMatch ideal functionality in the Ggsign,Greg,Gsmartchain-hybrid world assuming collision-
resistant hash functions [22], EUF-CMA signature [22], secure commitment schemes [22] and CPA-
secure encryption [22] in the presence of a PPT adversary that corrupts a subset of the suppliers.

Overview of the simulator Like the malicious requesters case we need to show that there exists a
simulator (Ss) interacting with FPrivateMatch that generates a transcript that is indistinguishable from
the transcript generated by the real-world adversary running protocol PrivateMatch.

For an INTRST transaction from a corrupt Pi, the simulator checks that the signature can be verified.
If it corresponds to that of an honest party, then the simulator aborts with UnforgeabilityError. By
the unforgeability property of the signature schemes, this abort occurs with negligible probability.
Moreover, when the command is sent to the FPrivateMatch functionality, it checks the supplier is capable
of fulfilling the request. This guarantees the supplier completeness property

Remark 1. In our protocols we do not specify how the parties are punished if found guilty of misbe-
having. Here we discuss one potential punishment mechanism. Upon registration, each party creates a
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collateral transaction that sends a fixed amount to an address that is owned by the set of validators.
That is, to spend this transaction, a threshold number of validators will need to collaborate. In case
of misbehavior, each of the validators sign a transaction that spends the collateral amount associated
with the misbehaving party to a new address. The new address is such that no party in the system
knows the secret key to this address and can therefore spend the funds associated to this address.
Such an address is called a burn addresses [21]. Using collateral as a punishment mechanism is well
known in the literature and is used in Ethereum to punish validators [10]. Identifying a misbehaving
supplier is straightforward, since the validators can simply observe the transactions on the blockchain.
On the other hand, a misbehaving customer will first be de-anonymized via the gOPEN command to
Ggsign functionality. Once the party is de-anonymized its collateral is then burned by the mechanism
described above.

4.2 Implementing auxiliary functionalities

We present intuition on how to realize the functionalities - Greg, Ggsign and Gsmartchain.

Registration functionality Greg. The Greg functionality will be implemented by a registration au-
thority which need to verify that a registering party has valid credentials. If verified the authority
sends a certificate that allows other parties to verify that the party is registered. This verification
can be done with existing systems like CanDID [29]. CanDID leverages decentralized oracles like
DECO [48] or Town Crier [47] that allows parties to port credentials from legacy systems. For e.g.
a registering party can use the profile page of their Social Security Administration (SSA) account to
generate a credential attesting to their Social Security Number (SSN). CanDID is run by a committee
that together store a secret key skC which is used to issue credentials to users. The corresponding pkC
can be used by the registration authority to verify the credentials. When a party registers as a supplier
the registration authority evaluates the validResource predicate which determines if the supplier has
the resources it claims to own. This can be implemented via auditing authorities that sign a message
stating the exact resources owned by the suppliers. The supplier then sends these signatures and list
of resources it owns to the registration authority. The registration authority simply verifies if there
exist some threshold number of signature that certify this list of resources.

Group signing functionality Ggsign. We use the Ggsign functionality as defined in the work by Ateniese
et al. [4] and the protocol realizing this functionality is presented in Section 5 of [4]. gJOIN: The group
manager gives the user a re-randomizable signature on the user’s public key. gSIGN is done by attaching
the re-randomized signature, a re-randomized public key, and a key-private signature on the message.
For the gOPEN protocol, the group manager uses a tracing value (that they would have received in the
gJOIN protocol per user), to identify the party who signed a particular message. Note that this single
GM goes against the spirit of a decentralized setting. In settings where a single GM is undesirable
one can replace the GM with multiple managers that enable threshold group signatures. 3 A naive
idea would be to share the tracing value among all the group managers. To de-anonymize, the group
managers will have to collaborate to reconstruct the tracing value. There exist other implementations
of threshold group signatures. For instance, [7] present a fair traceable group signature scheme that
introduces new entities called fairness authorities that are responsible for the opening and revealing
procedures. The main intuition is that during the gJOIN protocol the group manager encrypts the
identity of the party under the pk of the fairness authorities, and to open, the fairness authorities
run a threshold decryption protocol to determine the identity of the signer. Similarly [9, 17] present
protocols for distributed tracing using tag-based encryption to open the signatures of parties.

Clock functionality GrefClock. The GrefClock functionality provides an exact clock. This functional-
ity presents a global reference clock which is monotonic and increasing. This clock functionality is
presented in Section 3.1 of [13].

3 In threshold group signatures, a signature can be de-anonymized only if a threshold of managers all agree
to perform de-anonymization
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SmartChainDB functionality Gsmartchain. The ideal functionality Gsmartchain consists of two parts:
the validation part and the consensus part. The validators first collect transactions, validate them and
then run the consensus protocol to agree on a set of validated messages. The consenus algorithm may
be implemented by a consensus algorithm such as Tendermint [26], and the validation rules for each
transaction are determined by the cases described in Figure 17.

5 Implementation

Our implementation framework for PrivateMatch focuses on implementing (i.) transactional behavior
that captures general marketplace business logic e.g., requesting for quotes, bidding, etc; (ii.) trans-
action anonymity using group signatures.

In traditional blockchain environments such as Ethereum, Hyperledger Fabric, “Smart Contracts”
are used to implement general business logic. Intuitively, a smart contract parallels a real-world con-
tract process between parties that are assumed to at least be in some communication about the
details of the contract. However, because smart contracts are owned by a single entity, each cus-
tomer/requestor would have to bear the burden of implementing their own contract and face the
risks of errors and high economic costs (gas fees) for inefficient implementation. In addition, each
supplier/provider would need to discover and study smart contracts as they are made available and
make the effort to fully understand their terms since smart contracts are binding and irreversible. We
observe that there would be sufficient commonality in behavior in such marketplace smart contracts
that they could be generalized and provided as system level operations (i.e. first-class blockchain
transactions) which can be reused and parameterized any users as needed. An additional advantage
of this approach is that moving functionality away from the smart contract layer into the blockchain
transaction layer, avoids the significant additional economic costs of such applications because of the
high costs of smart contracts.

Fig. 19. A Sample Request Transaction for the supply of 50 plastic cellphone covers.

Consequently, our implementation approach focused on introducing new blockchain transaction
types into an open-source blockchain platform that was amenable to the desired extensions that
we sought. BigchainDB [30] is a blockchain database that possesses blockchain characteristics. Its
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architecture involves a fixed set of nodes - validators, and is Byzantine Fault Tolerant (BFT) (up to a
third nodes may fail). Its key architectural components include Tendermint [26] (for consensus), the
BigchainDB Server (for syntactic and semantic validation of transactions), and a local MongoDB [3]
database (for blockchain storage) on every validator node. BigChainDb also has a rich permissioning
model allowing for the implementation of both public and private blockchains.

Extending BigChainDB’s Transaction Model. A core functionality that is supported by BigChainDB
out-of-the-box is the ability to transfer assets (including validation checks e.g. double spend). BigChainDB’s
transaction model is a “declarative”, attribute/key-value model, where transaction structure is de-
fined by a schema and therefore is naturally extensible. We refer to our extension of BigChainDB as
SmartChainDB.

For each new transaction introduced by SmartChainDB, a schema is introduced (semantic tech-
nologies like ontologies are also used to support terminological expansions and variations). Figure 19
shows an example of one SmartChainDB transaction REQUEST.

SmartChainDB extends the validator algorithms in BigChainDB according to the ValidateTxn. For
the BID transaction where validation involves “locking” of resources, it is implemented as a transfer of
resources to an “escrow” account (a designated non-user account used for holding resources). As part
of the validation of the match transaction - WINNER, when resources are to be released, the validator
initiates transactions back to the non-winners. The key components of the SmartChainDB architecture
and the lifecycle of a transaction is shown in Figure 20. The components in purple indicate either newly
introduced software components or the BigChainDB software components that were modified.)

Fig. 20. Overview of SmartchainDB

Extending BigChainDB’s Privacy Model. Each transaction in BigChainDB includes Conditions
specified on a transaction’s output that must be satisfied. These Conditions are specified using the
cryptoconditions specification [1]. In general these are signatures that must be verified. The vanilla
BigChainDB implementation uses the Ed25519 public-key signature.
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Mean Median Std. Dev

gSIGN ( [8] + [35]) 7.3 6.6 4.4

BigchainDB Sign 1.2 0.9 1.1

gVERIFY ( [8] + [35]) 8.9 7.1 5.4

BigchainDB Verify 0.9 0.7 0.7
Table 1. Comparing group signatures and BigchainDB signatures

New conditions can be composed using boolean operators to create more complex conditional
logical circuits. BigChainDB includes a reference implementation [2] of cryptoconditions used to check
the fulfilment of conditions.

Group Signature Implementation and Integration. We implemented the group signature
scheme due to Bichsel and Camenisch [8] and integrated it into the set of possible signature schemes
available in SmartChainDB as a cryptocondition. The core building block of this scheme is a re-
randomizable signature scheme. They use CL signature [11] in their protocol. We replace this with
re-randomizable signatures of Pointcheval & Sanders (PS) [35] as described in [34]. To implement the
group signature we use (i.) the Hyperledger Ursa library [19] that provides an implementation for
the PS signatures. We rely on the same library for digital signature signing and proof of knowledge
functions that are the necessary backbones of gSIGN and gVERIFY in [8]. Our implementation is in
Rust and used python-based Cherrypy server as a wrapper to call the Rust cryptographic functions
as a service.

In Tendermint, there are multiple phases to processing a transaction, which is interpreted as mode:
– broadcast tx async: No-processing. It will return right away without waiting to hear if the transac-

tion is even valid. If no mode is specified, broadcast tx async mode is used.
– broadcast tx sync: Processing-through-the-mempool. It will return with the result of running the

transaction through CheckTx.
– broadcast tx commit: Processing-through-a-block. It will wait until the transaction is committed in

a block or until some timeout is reached, however, it will return immediately if the transaction does
not pass CheckTx.

6 Evaluation

The objective of our evaluation of SmartChainDB was twofold: (i.) verify that the newly introduced
transaction types can support simulated marketplace workloads under the reasonable performance
bounds and (ii.) that the overhead of the group signature implementation was not a limitation when
compared with the existing signature scheme

Experimental Setup Although BigChainDB has a publicly-available test network, this could not
be used for our experiments because the vanilla platform would be unable to process our transactions.
Therefore, a private network was set up on 16 machines with an Intel Westmere E56 Quad-core 3.46
GHz CPU, 8 GB memory, running 64-bit Ubuntu with kernel v4.15.0. We set up 12 validator nodes,
with each node running its SmartchainDB server, Tendermint v0.31.5, and MongoDB v3.6 instances.
For workload simulations, we set up the driver on 4 VM instances, running the customer and supplier
code to trigger different transaction types – REG, PREREQ, INTRST, REQ, BID, and WINNER.

We developed a workload generator, packaged inside the driver, to produce random transaction
sequences and test the blockchain setup. Each driver produces 20-25 transactions per second, i.e.
80-100 transactions per second in total(due to 4 driver instances), and sends them to the available
validator nodes for the commit process. Driver instances act both as customer and supplier and create
2000 transactions for each transaction type during the experiment run, i.e. 8000 total transactions per
transaction type. For the CREATE and TRANSFER transactions are evaluated under the same workload.
The resource attributes within the transaction payload are randomly populated using the ManuService
[28] ontology. The experimental results are described in the next subsections in detail.

Latency Overhead We compare the CREATE and TRANSFER transaction that are available in the
vanilla BigchainDB implementation with the transactions used in our protocol.
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Fig. 21. Performance Comparison of Transactions

Mean Median Std. Dev

gSIGN ( [8] + [35]) 9.77 9.65 0.92

BigchainDB Sign 0.75 0.52 0.84

gVERIFY ( [8] + [35]) 11.13 11.03 0.30

BigchainDB Verify 1.00 0.76 0.64

Table 2. Comparing group signatures and BigchainDB signatures (ms)

We measure the commit latency ( time between a validator node receiving a transaction and
its commit into the blockchain. We compare the PREREQ and REQ with CREATE transactions because
those transactions are semantically closest but the former more complex since they require additional
validations – valid PREREQ input transaction in the case of REQ, ensuring that the REQ initiator is
same as the PREREQ, etc. Similarly, the vanilla TRANSFER transaction has some similarity to INTRST

and BID transaction. However, INTRST adds a check to verify that the supplier has declared asset
with capabilities required to service the request and sbid goes beyond this to actually hold a suppliers
resources (an embedded TRANSFER transaction) in an escrow to limit supplier overbidding.

Figure 21 shows the average commit latency for every transaction types under the workload dis-
cussed above. The blue bars are for the native transactions and the orange ones for the new transac-
tions. Overall, the results show the expected trend with the newer, more complex transactions having
higher latency than their traditional ”counterparts” due to the required additional validation over-
head. We observe a similar pattern when we compare PREREQ and REQ with CREATE results, i.e. the
request transactions require a few more seconds to carry out protocol-specific validations. Likewise,
INTRST and bid take longer to commit than the vanilla TRANSFER. In practical terms, these latency
differences can be considered as a relatively minor trade-off for supporting more involved market-place
events. Note that, these experiments were carried out in the non-private and non-anonymous settings,
where we do not consider group signatures, encryptions, etc.Group SignaturesWe measure the time
taken to sign and verify messages using our implementation of group signatures with the signature
scheme used in BigchainDB (eddsa-sha512). We ran 200 sign and verify algorithms and observe that
the group signature signing and verification take 10× that of regular signatures. We attribute the high
costs of group signing and verifying to the computation of Tate pairings done in our implementations.
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23. Klems, M., Eberhardt, J., Tai, S., Härtlein, S., Buchholz, S., Tidjani, A.: Trustless intermediation in

blockchain-based decentralized service marketplaces. In: International Conference on Service-Oriented
Computing. pp. 731–739. Springer (2017)

24. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts. In: 2016 IEEE symposium on security and privacy (SP). pp.
839–858. IEEE (2016)

25. Kumar, G., Saha, R., Buchanan, W.J., Geetha, G., Thomas, R., Rai, M.K., Kim, T.H., Alazab, M.:
Decentralized accessibility of e-commerce products through blockchain technology. Sustainable Cities and
Society 62, 102361 (2020)

26. Kwon, J.: Tendermint: Consensus without mining. Draft v. 0.6, fall 1(11) (2014)
27. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party computation (2006)
28. Lu, Y., Wang, H., Xu, X.: Manuservice ontology: a product data model for service-oriented business

interactions in a cloud manufacturing environment:. Journal of Intelligent Manufacturing 33, 317–334 (01
2019). https://doi.org/10.1007/s10845-016-1250-x

29. Maram, D., Malvai, H., Zhang, F., Jean-Louis, N., Frolov, A., Kell, T., Lobban, T., Moy, C., Juels, A.,
Miller, A.: Candid: Can-do decentralized identity with legacy compatibility, sybil-resistance, and account-
ability. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1348–1366. IEEE (2021)

26

https://medium.com/@VitalikButerin/ minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/ minimal-slashing-conditions-20f0b500fc6c
https://github.com/hyperledger/ursa/tree/master/libzmix/src/signatures/ps
https://github.com/hyperledger/ursa/tree/master/libzmix/src/signatures/ps
https://doi.org/10.1007/s10845-016-1250-x


30. McConaghy, T., Marques, R., Müller, A., De Jonghe, D., McConaghy, T., McMullen, G., Henderson,
R., Bellemare, S., Granzotto, A.: Bigchaindb: a scalable blockchain database. white paper, BigChainDB
(2016)

31. Montecchi, M., Plangger, K., Etter, M.: It’s real, trust me! establishing supply chain provenance using
blockchain. Business Horizons 62(3), 283–293 (2019)

32. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2012), 28 (2008), https://bitcointalk.
org/index.php?topic=321228.0
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A Formal Proofs

A.1 The malicious requester case

Theorem 1 (restated) : The protocol PrivateMatch UC realizes the FPrivateMatch ideal functionality in
the Ggsign,Greg,Gsmartchain-hybrid world assuming collision-resistant hash functions [22], secure “special”
symmetric key encryption [27], EUF-CMA signature [22], secure commitment schemes [22] and CPA-
secure encryption [22] in the presence of a PPT adversary that corrupts a subset of the customers
.
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Global state : state
1. (Simulate Gsmartchain) Update state = state||tx.
2. Let tx′ = Idealify(tx), where Idealify returns the transaction that FPrivateMatch sends to S.
3. Send (UPDATE, tx′) to FPrivateMatch.

UpdateState(tx)

Simulator - Sr
Sets maintained :
LREG : To keep track of the certificates that are registered.
D : Maintain groups IDs of parties.
L : Keep track of signatures received

Registration.
Upon receiving (REG, Pi, [roles]) from FPrivateMatch:
1. Activate Pi and if “supplier” ∈ roles : generate encryption and signature keys (Sig.pki,Sig.ski), (Enc.pki,Enc.ski).
2. (Simulate Greg) : Send (Pi, roles) to A and receive certi.
3. Store (Pi, certi) in LREG.
4. Call UpdateState(tx).
Upon receiving (REG, [roles]) from a party Pi (corrupted) :
1. Send (REG, Pi, [roles]) to FPrivateMatch. If REG, Pi, [roles] not received from FPrivateMatch, ignore request.

Else continue.
2. (Simulate Greg) Send (Pi, roles) to A and receive back certi
3. Store certi in LREG, send (certi, roles) to Pi.
4. (Simulating Gsmartchain) Upon receiving tx = (Pi, certi) from Pi, check if certi in LREG. If yes, call

UpdateState.
5. Send (CORRUPTED, 1) to FPrivateMatch

Join Group.
Upon receiving (gJOIN, Pi,GID) from FPrivateMatch (Simulate Ggsign[GID]) :
1. Send (GKGen, Pi) to A
2. Add (Pi, 1,GID) to D
Upon receiving GKGen from Pi, send GKGen, Pi to A
Upon receiving (gENROLL,GID) from some party Pi

1. Send (gJOIN,GID) on behalf of Pi to FPrivateMatch.
2. If gJOIN, Pi,GID received, Send (GKGen, Pi) to A, add (Pi, 1,GID) to D and send gENROLL,GID to

Pi.

Signing by corrupt Pi. Upon receiving (Sign,GID,m) on behalf of Ggsign[GID]:
1. Check (Pi, 1,GID) exists in D
2. If yes, send (GID,m) to A and receive back σ
3. Store (Pi,m, σ) in list L and send σ to Pi.

Update Profile.
Upon receiving (UPD, Pi, prof) from the FPrivateMatch :
1. (Simulate Greg) : Send (Pi, prof, roles) to A and receive certi.
2. Store (Pi, roles, certi) in LREG.
3. Call UpdateState(tx), where tx = (UPD, (Pi, cert)).
Upon receiving (UPD, prof, roles) from Pi (corrupted) on behalf of Greg
1. If prof = GID, check that Pi ∈ D. If not, ignore. Else continue.
2. Send (UPD, prof, roles) to FPrivateMatch. If (UPD, Pi, prof) not received from FPrivateMatch, ignore request.

Else continue.
3. (Simulate Greg) Send (Pi, prof, roles) to A and receive back certi
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4. Store certi in LREG, send (certi, roles) to Pi.
5. (Simulating Gsmartchain) Upon receiving tx = (Pi, prof, certi) from Pi, check if certi in LREG. If yes,

call UpdateState(tx).

Pre-request.
Upon receiving PREREQ, (RID, res,GID) from FPrivateMatch:
1. Sample nonce0 ← {0, 1}λ and compute the hash function H(nonce0∥RID) = hash0
2. (Simulate Ggsign[GID]) Send (GID,m = (hash0, res,RID)) to A and receive back σ. Store (·,m, σ) in
L.

3. Call UpdateState(tx), where tx = (PREREQ,m, σ)
Upon receiving (gSIGN,GID,m) from Pi on behalf of Ggsign[GID], where m = (hash0, res,RID):
1. Send (GID,m = (hash0, res,RID)) to A and receive back σ. Store (Pi,m, σ) in L.
Upon receiving tx = (PREREQ,m, σ) from Pi, where m = (hash0, res,RID,GID)
1. If (Pi,m, σ) ∈ L, send (PREREQ,GID, res,RID) to FPrivateMatch.
2. Upon receiving (PREREQ, (RID, res,GID)) from FPrivateMatch, call UpdateState(tx).

Interest.
Upon receiving (INTRST,RID, Pj) from FPrivateMatch:
1. Compute σ = Sig(skj , (RID, pkj))
2. Call UpdateState(tx), where tx = (INTRST, σ,RID, pkj)

Request.
Upon receiving tx = (REQ,RID,GID, bidders) from FPrivateMatch

1. Generate design encryption key kRID ← PrivKGen(1λ). Encrypt design - Cd ← Enc(kRID, 0).
2. Sample random r ← {0, 1}λ and compute Ccontract = Com(0; r)
3. For each Pj ∈ bidders - create Cj

key ← Enc(pkj , 0)

4. Generate bid encryption keys (pkbid, skbid)← KGen(1λ).
5. Sample nonce1 ← {0, 1}λ and compute the hash function H(nonce1∥RID) = hash1
6. (Simulate Ggsign[GID]) Send (gSIGN,GID, (RID, pkbid, {C

j
key}j∈bidders, Cd, Ccontract, hash1, nonce0)) to A

and receive σ. Let signedRequest = (GID, (RID, pkbid, {C
j
key}j∈bidders, Cd, Ccontract, hash1, nonce0), σ).

Call UpdateState(tx), where tx = (REQ, signedRequest).
Upon receiving (gSIGN,GID, (RID, pkbid, {C

j
key}j∈bidders, Cd, Ccontract, hash1, nonce0)) from Pi

1. If hash0 = H(nonce0∥RID) and RID, hash0 corresponds to an honest party - then ABORT with
CRHFError.

2. (Simulating Ggsign[GID]) Check that (Pi, 1,GID) ∈ D. If yes, send GID,m to A and receive σ, Send
σ to Pi and store (Pi,m, σ) ∈ L.

Upon receiving tx = (REQ,m, σ) from Pi , wherem = (RID, pkbid, {C
j
key}j∈bidders, Cd, Ccontract, hash1, nonce0)

1. Check that (·,m, σ) ∈ L
2. For each j ∈ bidders :

(a) Get kjRID = Dec(skj , C
j
key)

(b) Compute designj , contractj , rj = Dec(kjRID, Cd), which includes either ⊥ or design, if not
PrivEncError.

(c) Check Ccontract = Com(contractj , rj). If not, stop the execution as an honest supplier would
do.

(d) Send REQ, (RID, [designj ]j∈bidders,GID, bidders) to FPrivateMatch.

Bidding.
Upon receiving (BID, (RID, Pj)) from FPrivateMatch:

CASE 1 : Honest requester
1. Compute Cbid = Enc(pkbid, 0)
2. Compute signedBid = Sig(ski, Cbid)
3. Call UpdateState(tx), where tx = (BID, signedBid)

CASE 2 : Malicious Requester
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1. Receive (BID, (RID, Pj , bidj)) from the FPrivateMatch

2. Compute Cbid = Enc(pkbid, bidj)
3. Compute signedBid = Sig(ski, Cbid) and call UpdateState(tx), where tx = (BID, signedBid).

Match.

Upon receiving (tx = WINNER,GID,RID) from FPrivateMatch:

1. Sample nonce2 ← {0, 1}λ and compute the hash function H(nonce2∥RID) = hash2
2. Send m = (hash2, nonce1,ContractID,RID, P

∗),GID to A and receive σ
3. Call UpdateState(m,σ)

Upon receiving (gSIGN,m) , where m = (hash2, nonce1,ContractID,RID, P
∗).

1. If nonce1 corresponds to RID of an honest party - ABORT with CRHFError
2. Send m,GID to A and receive back σ. Store (m,σ) in L and send to Pi

Upon receiving tx = (WINNER,m, σ) from Pi, where m = (hash2,ContractID, nonce1,RID, P
∗)

1. Check that m,σ in L
2. If yes, send (WINNER,RID, P ∗) to FPrivateMatch

3. Upon receiving (WINNER,RID,GID, P ∗) from FPrivateMatch, call UpdateState(tx)

Simulating key generation.

Receiving encryption of key from malicious party:

1. On behalf of Fnizk receive (PROVE, (cB, pk), skB). Store skB and send (PROVE, (cB, pk)) to A and
receive back (PROOF, (cB, pk), π). Send to malicious party the message (PROOF, (cB, pk), π)

2. Receive txB, cB, π on behalf of the supplier P ∗

3. If txB is not valid, abort the request as an honest seller would do.

Sending encryption of key to malicious party:

1. Compute cS = Enc(pkM, 0)
2. Send (PROVE, cS , pkM) to A and receive back PROOF, cS , pkM, π
3. Create txS and send txS , cS , π to A

Customer Fulfill.

Upon receiving (tx = RFILL,GID,RID, P ∗) from FPrivateMatch:

1. Send m = (nonce2,RID, P
∗),GID to A and receive σ

2. Call UpdateState(tx), where tx = (m,σ)

Upon receiving (gSIGN,GID, (nonce2,RID, P
∗)) from Pi

1. If nonce2 corresponds to a RID of an honest party, ABORT with CRHFError
2. Send m = (nonce2,RID, P

∗),GID to A and receive σ. Store (m,σ) in L and send σ to Pi

Upon receiving tx = (RFILL,m, σ) where m = (nonce2,RID, P
∗)

1. Check if (m,σ) in L
2. If yes, send (RFILL,RID, P ∗) to FPrivateMatch

3. Upon receiving (RFILL,GID,RID) from FPrivateMatch, call UpdateState(tx)

Supplier Fulfill.

Upon receiving (SFILL,RID) from FPrivateMatch:

1. Compute σ = Sig(ski, (RID)), where i is the winner of the bid.
2. Call UpdateState(tx), where tx = (SFILL,RID, σ)

Requester Dispute.

Upon receiving (DISPUTE,ContractID,GID,RID, reason) from FPrivateMatch:

1. Send m = (GID, (DProof, nonce3,ContractID,RID, P
∗)) to Ggsign[GID] and receive σ

2. Call UpdateState(tx), where tx = (DISPUTE,m, σ)

Upon receiving (DISPUTE, Pi,RID, 0) from FPrivateMatch:

1. Create a tx = (DISPUTE,RID, Pi, 0) and call UpdateState(tx)

Upon receiving (gSIGN, (GID, (DProof, nonce2,RID, P
∗))) from a corrupt party Pi on behalf of Ggsign:

1. If nonce2 corresponds to a RID of an honest party, ABORT with CRHFError
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2. Send m = (GID, (DProof, nonce2,RID, P
∗)),GID to A and receive σ. Store (m,σ) in L and send σ

to Pi

Upon receiving tx = (DISPUTE,m = (DProof, nonce2,RID, P
∗), σ) on behalf of Gsmartchain:

1. Check if (m,σ) ∈ L
2. If yes, send (DISPUTE,RID,GID,DProof) to FPrivateMatch

3. If (DISPUTE,DProof,RID, 1) received, call UpdateState(tx), where tx = (DISPUTE,m, σ)
4. If (DISPUTE, Pj ,RID, 0) received, send (gOPEN,m, σ) to Ggsign and receive P ∗. If Pj ̸= P ∗, abort with

GroupSignatureFailure. Else set tx = (DISPUTE,RID, Pj , 0) and call UpdateState(tx).

Supplier Dispute.
Upon receiving (DISPUTE, Pi,DProof,RID, (1, P

∗)) from FPrivateMatch:
1. Compute σ = Sig(ski,DProof)
2. Set tx = (DISPUTE,RID, P ∗,DProof, 1)

Supplier Messages.
Upon receiving (·, ·σ) from the adversary on behalf of a supplier Pi, such that Vrf(pki, σ) = 1, then

abort with UnforgeabilityError

A.2 Proof by Hybrids

Our strategy to prove that the real world and the ideal world are indistinguishable is by starting from
the real world and through a series of hybrid worlds we reach the ideal world. More specifically, we
prove that Hybridi and Hybridi− 1 are indistinguishable for all i from the real world to the ideal world
then we prove that the real and ideal worlds are indistinguishable.

Hybrids.
1. Hybrid0 is the real world execution.
2. Hybrid1 is the same as Hybrid0 except that the simulation can now ABORT with CRHFErrormessage.

We prove in Lemma 1 that by the collision resistance property of collision-resistant hash functions
Hybrid1 and Hybrid0 are indistinguishable.

3. Hybrid2 is the same as Hybrid1 except that the simulation may now abort with GroupSignatureFailure
message. Since we use an ideal groups signature functionality Ggsign, we note the gOPEN command
will always return the correct party P ∗. This P ∗ is the same party in the real world and the
simulated world and therefore the two hybrid worlds are indistinguishable, since the simulator will
never abort with GroupSignatureFailure.

4. Hybrid3 is the same as Hybrid2 except that the simulation may abort with the UnforgeabilityError
message. We prove in Lemma 2 that simulator aborts with negligible probability and therefore
Hybrid3 is indistinguishable from Hybrid2

5. Hybrid4 is the same as Hybrid3 except that the simulation can now ABORT with PrivEncError
message. We prove in Lemma 3 that by the elusive range property of the “Special” private key
encryption scheme that Hybrid4 and Hybrid3 are indistinguishable.

6. Hybrid5 is the same as Hybrid4 except that the encryptions to the decryption keya replaced with
encryptions to 0. We prove in Lemma 4 that Hybrid5 is indistinguishable from Hybrid4 by CPA
security of the encryption scheme.

7. Hybrid6 is the same as Hybrid5 except that the encryptions to the design for the suppliers are now
replaced with encryptions to 0. And this is equivalent to the ideal world. We prove in Lemma 5
that Hybrid6 is indistinguishable from Hybrid5 by CPA security of the encryption scheme.

Lemma 1. Assuming the collision resistance of hash functions, Hybrid1 and Hybrid0 are indistin-
guishable.

Proof. The difference between Hybrid1 and Hybrid0 is that the simulator may abort with a CRHFError.
Now the simulator aborts with an CRHFError if an adversary (A) is able to guess the nonce for a H
that was computed by the simulator for an honest party.
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Now let D be a distinguisher that distinguishes between Hybrid1 and Hybrid0 with non-negligible
probability :

Pr[D(Hybrid1) = 1]− Pr[D(Hybrid0) = 1] > negl(n)
As noted above,
Pr[D(Hybrid1) = 1]− Pr[D(Hybrid0) = 1] = Pr[Sr(Hybrid1) = CRHFError]
and,
Pr[Sr(Hybrid1) = CRHFError] = Pr[A(hash) = nonce ∧H(nonce∥RID)
Thus Pr[D(Hybrid1) = 1]− Pr[D(Hybrid0) = 1] = Pr[A(hash) = nonce ∧H(nonce∥RID) = hash]
Now a hash function is collision resistant if the advantage of the adversary in the HashColl exper-

iment is negligible.
We now show a reduction B that uses A and wins the HashColl experiment.

1. Activate the adversary Aand execute the PrivateMatch protocol as in Hybrid1.
2. Receive H from the challenger.
3. Upon receiving a command for the requester from the FPrivateMatch functionality (PREREQ, REQ, WINNER),

simulate the real world transaction with hashi. Note that hashi = H(x∥RID), where x is randomly
sampled.

4. Upon receiving gSIGN,GID, ·, hashi+1, noncei)) from A, check that puzi = H(noncei∥RID) and
noncei ̸= x.

5. Output (x∥RID) and noncei∥RID to the challenger.
This implies that the reduction wins the HashColl game with non-negligble probability. But this is

a contradiction since we assume collision resistant hash functions.
Therefore Pr[A(hash) = nonce ∧ H(nonce∥RID) = hash] = negl(n) and hence Pr[D(Hybrid1) =

1]− Pr[D(Hybrid0) = 1] = negl(n)

Lemma 2. Assuming unforgeable signatures, Hybrid3 and Hybrid2 are indistinguishable.

Proof. The difference between Hybrid3 and Hybrid2 is that the simulator may abort with a UnforgeabilityError.
Now the simulator aborts with an UnforgeabilityError if an adversary (A) is able to compute a signature
for an honest supplier.

Let D be a distinguisher that distinguishes between Hybrid3 and Hybrid2 with non-negligble prob-
ability.

As noted above Pr[D(Hybrid3) = 1]− Pr[D(Hybrid2) = 1] = Pr[Sr(Hybrid3) = UnforgeabilityError]
Moreover, Pr[Sr(Hybrid3) = UnforgeabilityError] = Pr[A outputs valid (m,σ) pair]
We construct a reduction B that uses A to break the unforgeability game for signature schemes,

assuming that the reduction has access to a signature oracle.
1. Activate the adversary A
2. Upon receiving any INTRST, BID, SFILL or DISPUTE command for the supplier from FPrivateMatch,

update state with the corresponding tx that includes a signature for supplier Pi, where the signatures
are created using the signature oracle.

3. Upon receiving any INTRST, BID, SFILL or DISPUTE transaction for the supplier from A, extract m
and σ from the transaction and output (m,σ)
Since we assume secure unforgeable signatures, we note that Pr[B outputs (m,σ) s.t. Vrf(pk, σ,m) =

1] < negl(n).
Thus we arrive at a contradiction.
Thus Pr[A outputs valid (m,σ) pair] < negl(n), implying that Pr[Sr(Hybrid3) = UnforgeabilityError] <

negl(n) and hence Pr[D(Hybrid3) = 1]− Pr[D(Hybrid2) = 1] < negl(n). Thus completing our proof.

Lemma 3. Assuming the elusive range property of “special” private key encryption, Hybrid4 and
Hybrid3 are indistinguishable.

Proof. Note that the difference between Hybrid4 and Hybrid3 is that in Hybrid4 the simulator aborts
with a message PrivEncError.
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Assume a distinguisher D can distinguish between Hybrid4 and Hybrid4, i,e. Pr[D(Hybrid4) =
1]− Pr[D(Hybrid3) = 1] > negl(n)

As noted above,
Pr[D(Hybrid4) = 1]− Pr[D(Hybrid3) = 1] = Pr[Sr(Hybrid4) = PrivEncError]
Now Pr[Sr(Hybrid4) = PrivEncError] = Pr[A outputs Cd s.t. Cd = Enc(k1, x1) = Enc(k2, x2) ∧

k1 ̸= k2 ∧ x1 ̸= x2 ̸= ⊥]
Now we describe a reduction B that breaks the elusive-range property of the encryption scheme

using the adversary A
1. Activate adversary A
2. Simulate Hybrid4. Upon receiving REQ transaction from the A, compute kjRID = Dec(skj , C

j
key) for

each j ∈ bidders
3. If there exists, kaRID and kbRID, such that kaRID ̸= kbRID, compute designa = Dec(kaRID, Cd) and designb =

Dec(kaRID, Cd). If designa ̸= designb ̸= ⊥, simply return Cd.
Note that the reduction outputs Cd that is a valid encryption and in Range(kaRID) and Range(kbRID).
Now by the elusive range property Prk←G(1n)[A(1n) ∈ Rangen(k)] <

1
p(n) .

This implies we arrive at a contradiction, since we assume the “special” private key encryption
with the elusive range property and therefore Pr[Sr(Hybrid4) = PrivEncError] < 1

p(n) , which implies

Pr[D(Hybrid4) = 1]− Pr[D(Hybrid3) = 1] < 1
p(n)

Lemma 4. Assuming the CPA security of our public key encryption scheme Hybrid5 and Hybrid4 are
computationally indistinguishable.

Proof. Note that the difference between Hybrid4 and Hybrid5 is that in Hybrid5 the encryptions to the
keys (Ckey) are replaced by encryptions to 0.

Assume a distinguisher D can distinguish between Hybrid4 and Hybrid5, i,e. Pr[D(Hybrid5) =
1]− Pr[D(Hybrid4) = 1] > negl(n)

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.
1. Activate the distinguisher D
2. The reduction simulated PrivateMatch and upon receiving a REQ command from FPrivateMatch, sim-

ulate the command.
3. Send m0 = kRID,m1 = 0 to the challenger and receive Ckey.
4. Update state with the REQ transaction where the encryption to the key is Ckey

5. Output whatever D outputs.
Note that in the case Ckey was the encryption of m0 the distinguisher sees the hybrid world -

Hybrid4 and on the other when encryption of m1 is returned the distinguisher sees the hybrid world
Hybrid5.

Now since Pr[D(Hybrid5) = 1]−Pr[D(Hybrid4) = 1] > negl(n), we have the adversary winning the
CPA with probability > 1/2+negl(n) which is a contradiction since we assume CPA secure encryption.
This implies Pr[D(Hybrid5) = 1]− Pr[D(Hybrid4) = 1] < negl(n).

Lemma 5. Assuming the CPA security of our public key encryption scheme Hybrid6 and Hybrid5 are
computationally indistinguishable.

Proof. Note that the differnce between Hybrid6 and Hybrid5 is that in Hybrid6 the encryptions to the
design (Cd) are replaced by encryptions to 0.

Assume a distinguisher D can distinguish between Hybrid6 and Hybrid5, i,e. Pr[D(Hybrid6) =
1]− Pr[D(Hybrid5) = 1] > negl(n)

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.
1. Activate the distinguisher D
2. The reduction simulated PrivateMatch and upon receiving a REQ command from FPrivateMatch, sim-

ulate the command.
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3. Send m0 = design,m1 = 0 to the challenger and receive Ckey.
4. Update state with the REQ transaction where the encryption to the key is Cd

5. Output whatever D outputs.
Note that in the case Cd was the encryption of m0 the distinguisher sees the hybrid world - Hybrid5

and on the other when encryption of m1 is returned the distinguisher sees the hybrid world Hybrid6.
Now since Pr[D(Hybrid6) = 1]−Pr[D(Hybrid5) = 1] > negl(n), we have the adversary winning the

CPA with probability > 1/2+negl(n) which is a contradiction since we assume CPA secure encryption.
This implies Pr[D(Hybrid6) = 1]− Pr[D(Hybrid5) = 1] < negl(n).

A.3 The malicious supplier case

Theorem 2 (restated) : The protocol PrivateMatch UC realizes the FPrivateMatch ideal functionality
in the Ggsign,Greg,Gsmartchain-hybrid world assuming collision-resistant hash functions [22], EUF-CMA
signature [22], secure commitment schemes [22] and CPA-secure encryption [22] in the presence of a
PPT adversary that corrupts a subset of the suppliers.

Proof. Simulator - Ss
Registration

Same as Sim Sr
Join Group Upon receiving (gJOIN, Pi,GID) from FPrivateMatch (Simulate Ggsign[GID]) :
1. Send (GKGen, Pi) to A
2. Add (Pi, 1,GID) to D
Update Profile

Same as Sim Sr
Pre-request.
Upon receiving PREREQ, (RID,RequestResource,GID) from FPrivateMatch:
1. Sample nonce0 ← {0, 1}λ and compute the hash function H(nonce0∥RID) = hash0
2. (Simulate Ggsign[GID]) Send (GID,m = (hash0,RequestResource,RID)) to A and receive back σ. Store

(·,m, σ) in L.
3. Call UpdateState(tx), where tx = (PREREQ,m, σ)

Interest.
Upon receiving (INTRST,RID, Pj) from FPrivateMatch:
1. Compute σ = Sig(skj , (RID, pkj))
2. Call UpdateState(tx), where tx = (INTRST, σ,RID, pkj)
Upon receiving INTRST, ((RID, pki), σ) from a party Pi (on behalf of Gsmartchain)
1. Send (INTRST,RID) on behalf of Pi to FPrivateMatch

2. If tx = (INTRST,RID, Pi) received back, then call UpdateState(tx)

Request.
Upon receiving tx = (REQ,RID,GID, bidders) from FPrivateMatch, for all malicious Pi ∈ bidders also receive
(REQ,RID, design):
1. For honest suppliers, generate design encryption key kRID ← PrivKGen(1λ). Encrypt design - Cd ←

Enc(kRID, 0). For malicious suppliers Pi, Cd ← Enc(kRID, design).
2. For each honest Pj ∈ bidders - create Cj

key ← Enc(pkj , 0) and for each malicious Pi ∈ bidders -

create Ci
key ← Enc(pki, kRID)

3. Generate bid encryption keys (pkbid, skbid)← KGen(1λ).
4. Sample nonce1 ← {0, 1}λ and compute the hash function H(nonce1∥RID) = hash1
5. (Simulate Ggsign[GID]) Send (gSIGN,GID, (RID, pkbid, {C

j
key}j∈bidders, Cd, hash1, nonce0)) to A and re-

ceive σ. Let signedRequest = (GID, (RID, pkbid, {C
j
key}j∈bidders, Cd, hash1, nonce0), σ). Call UpdateState(tx),

where tx = (REQ, signedRequest).
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Bidding.
Upon receiving (BID, (RID, Pj)) from FPrivateMatch:
1. Compute Cbid = Enc(pkbid, 0)
2. Compute signedBid = Sig(ski, Cbid)
3. Call UpdateState(tx), where tx = (BID, signedBid)
Upon receiving tx = (BID, signedBid) from Pi on Gsmartchain :
1. Verify that signedBid = Sigski(RID, Cbid) is verified using pki
2. Decrypt Cbid using skbid and get bid.
3. Send (BID, (RID, bid)) on behalf of Pi to FPrivateMatch. Upon receiving (BID, (RID, Pi)) from FPrivateMatch,

call UpdateState(tx).

Match.
Upon receiving (tx = WINNER,GID,RID, P ∗) from FPrivateMatch:
1. Sample nonce2 ← {0, 1}λ and compute the hash function H(nonce2∥RID) = hash2
2. Send m = (hash2, nonce1,RID, P

∗
j ),GID to A and receive σ

3. Call UpdateState(m,σ)

Requester Fulfill.
Upon receiving (tx = RFILL,GID,RID, P ∗j ) from FPrivateMatch :
1. Send m = (nonce2,RID, P

∗
j ),GID to A and receive σ

2. Call UpdateState(tx), where tx = (m,σ)

Supplier Fulfill.
Upon receiving (SFILL,RID) from FPrivateMatch:
1. Compute σ = Sig(ski, (RID)), where i is the winner of the bid.
2. Call UpdateState(tx), where tx = (SFILL,RID, σ)
Upon receiving (SFILL, signedFulfillS) from a party Pi on behalf of Gsmartchain:
1. Verify signedFulfillS = (RID, σ) can be verified using pki
2. Send (SFILL, “fulfill”,RID) to FPrivateMatch and upon receiving (SFILL,RID) from FPrivateMatch, call

UpdateState(tx).

Requester Dispute. Upon receiving (DISPUTE,DProof,RID, 1) from FPrivateMatch:
1. Send m = (GID, (DProof, nonce2,RID, P

∗)) to Ggsign[GID] and receive σ
2. Call UpdateState(tx), where tx = (DISPUTE,m, σ)

Supplier Dispute. Upon receiving (DISPUTE, Pi,DProof,RID, (1, P
∗)) from FPrivateMatch:

1. Compute σ = Sig(ski,DProof)
2. Set tx = (DISPUTE,RID, P ∗,DProof, 1)
Upon receiving tx = (DISPUTE, (DProof,RID, σ)) from a party Pi on behalf of Gsmartchain

1. Send (DISPUTE,RID,DProof) on behalf of Pi to FPrivateMatch

2. If (DISPUTE, Pi,DProof,RID, (1, P
∗)) received, set tx = (DISPUTE,RID, P ∗,DProof, σ, 1) and call

UpdateState(tx)
3. Else ignore the message.

A.4 Proof by Hybrids

Our strategy to prove that the real world and the ideal world are indistinguishable is by starting from
the real world and through a series of hybrid worlds we reach the ideal world. More specifically, we
prove that Hybridi and Hybridi− 1 are indistinguishable for all i from the real world to the ideal world
then we prove that the real and ideal worlds are indistinguishable. Hybrids.

1. Hybrid0 is the real world execution.
2. Hybrid1 is the same as Hybrid0 except that the simulation can now ABORT with CRHFErrormessage.

Similar to the proof in Lemma 1 we can prove that by the collision resistance property of Collision
Resistant Hash Functions functions Hybrid1 and Hybrid0 are indistinguishable.
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3. Hybrid2 is the same as Hybrid1 except that the simulation may abort with the UnforgeabilityError
message. Similar to the proof in Lemma 2 we prove that simulator aborts with negligible probability
and therefore Hybrid2 is indistinguishable from Hybrid1

4. Hybrid3 is the same as Hybrid2 except that the encryptions to the decryption keya replaced with
encryptions to 0. Similar to the proof in Lemma 4 we can prove that Hybrid3 is indistinguishable
from Hybrid2 by CPA security of the encryption scheme.

5. Hybrid4 is the same as Hybrid3 except that the encryptions to the design for the suppliers are now
replaced with encryptions to 0. And this is equivalent to the ideal world. Similar to the proof
in Lemma 5 we can prove that Hybrid4 is indistinguishable from Hybrid3 by CPA security of the
encryption scheme.
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