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Abstract. An “Authorised Push Payment” (APP) fraud refers to the case where fraudsters deceive
a victim to make payments to bank accounts controlled by them. The total amount of money stolen
via APP frauds is swiftly growing. Although regulators have provided guidelines to improve victims’
protection, the guidelines are vague and the victims are not receiving sufficient protection. To facilitate
victims’ reimbursement, in this work, we propose a protocol called “Payment with Dispute Resolution”
(PwDR) and formally define it. The protocol lets an honest victim prove its innocence to a third-party
dispute resolver while preserving the protocol participants’ privacy. It makes black-box use of a standard
online banking system. We evaluate its asymptotic cost and runtime via a prototype implementation.
Our evaluation indicates that the protocol is efficient. It imposes only O(1) overheads to the customer
and bank. Also, it takes a dispute resolver 0.09 milliseconds to settle a dispute between the two parties.

1 Introduction

An “Authorised Push Payment” (APP) fraud is a type of cyber-crime where a fraudster tricks a victim
into making an authorised online payment into an account controlled by the fraudster. It is defined by the
“Financial Conduct Authority” (FCA) as “a transfer of funds by person A to person B, other than a transfer
initiated by or through person B, where: (1) A intended to transfer the funds to a person other than B but
was instead deceived into transferring the funds to B; or (2) A transferred funds to B for what they believed
were legitimate purposes but which were in fact fraudulent” [8]. The APP fraud has various variants, such
as romance, investment, CEO, or invoice frauds [42]. The total amount of money lost to APP frauds is
substantial. According to a report produced by “UK Finance”, only in the first half of 2021, a total of £355
million was lost to APP frauds, which has increased by 71% compared to losses reported in the same period
in 2020 [41]; for the first time, the amount of money stolen via APP frauds overtook even card fraud losses
[41]. The UK Finance report suggests that online payment is the type of payment method the victims used
to make the authorised push payment in 98% of cases. The true cost of APP frauds often extends beyond
the immediate financial loss, to additional fees imposed by investigating the event, remediation of internal
banks’ processes, and dealing with the emotional fallout of the fraud. APP fraud is a global phenomenon.
According to the FBI’s report, victims of APP frauds reported to it at least a total of $419 million losses1,
in 2020 [18]. Recently, Interpol warned its member countries about a variant of APP fraud called investment
fraud via dating software [40], also known as “pig butchering” in China [45]. According to Europol’s notice,
at least five variants of APP fraud are among the seven most common types of online financial fraud [36].

Although the amount of money lost via APP frauds and the number of cases have been significantly
increasing, the victims are not receiving enough protection. In the first half of 2021, only 42% of the stolen
funds returned to victims of APP frauds in the UK [41]. Previous years had even lower rates than that.
Despite the UK’s financial regulators (unlike US and EU) having provided specific reimbursement regulations
(e.g., CRM code) to financial institutes to improve APP frauds victims’ protection, these regulations are
ambiguous and open to interpretation. Furthermore, there exists no transparent and uniform mechanism via
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is likely that the total sum of losses due to APP frauds reported to the FBI is higher than our estimation.



which honest victims can prove their innocence. Currently, each bank uses its own ad-hoc (manual) dispute
resolution process which is not transparent to customers, regulators, or consumer protection organisations
and is not uniform among all banks and even among those organisations that settle disputes between banks
and customers. The APP frauds are not specific to the regular online banking systems, they will eventually
find their way into other payment systems, such as cryptocurrency. To date, the APP fraud problem has
been overlooked by the information security and cryptography research communities.

In this work, to facilitate the compensation of APP frauds’ victims for their loss, we propose a protocol
called “Payment with Dispute Resolution” (PwDR), present its formal definition, and prove the protocol’s
security. The PwDR lets an honest victim (of an APP fraud) independently prove its innocence to a (poten-
tially semi-honest) third-party dispute resolver, in order to be reimbursed. We identify three crucial properties
that such a scheme should possess; namely, (a) security against a malicious victim: a malicious victim who
is not qualified for the reimbursement should not be reimbursed, (b) security against a malicious bank: a
malicious bank cannot disqualify an honest victim from being reimbursed, and (c) privacy: the customer’s
and bank’s messages remain confidential from non-participants of the scheme, and a party which resolves
dispute learns as little information as possible. The PwDR makes black-box use of a standard online banking
system, hence it does not require significant changes to the existing online banking systems. It automates the
implementation of the reimbursement regulations where possible, and distributes the role of making more
subjective decisions among multiple auditors.

The PwDR offers transparency by (i) accurately formalising reimbursements’ conditions: it presents an
accurate publicly available formalisation capturing the circumstances under which a customer is reimbursed,
(ii) offering traceability: it lets parties’ performance be tracked, and (iii) providing an evidence-based final
decision: it requires the reasons leading to the final decision to be accessible and consistent with the re-
imbursements’ conditions and parties’ actions. It also offers accountability, as it is equipped with auditing
mechanisms that help identify the party liable for an APP fraud loss. The auditing mechanisms themselves
are accompanied by our lightweight privacy-preserving threshold voting protocols, which let auditors vote
privately without having to worry about being retaliated against, for their votes. Our voting protocols can
be of independent interest. We analyse the PwDR’s cost via both asymptotic and runtime evaluation (via
a prototype implementation). The evaluation indicates that the protocol is indeed efficient. The customer’s
and bank’s complexity are constant, O(1). It only takes 0.09 milliseconds for a dispute resolver to settle a
dispute between the two parties. We make the implementation source code publicly available. We hope that
our result lays the foundation for future solutions that will protect victims of this concerning type of fraud.

In summary, our contributions are three-fold, we (1) propose an efficient protocol called Payment with
Dispute Resolution (PwDR), (2) formally define and prove the PwDR, and (3) analyse both asymptotic and
concrete costs of it.

The rest of this paper has been organised as follows. In Section 2, we provide a background on how APP
frauds drew regulators’ attention and outline related guidelines. In Section 3, we explain the threat model
and the tools we use. In Section 4, we briefly explain the challenges that we need to overcome when designing
the PwDR scheme. In Section 5, we provide a formal definition of payment with dispute resolution notion.
In Section 6, we give an overview of the PwDR protocol, present a few subroutines along with the detailed
PwDR protocol. In Section 7, we formally analyse the security of this protocol. In Section 8, we evaluate
the PwDR protocol’s costs, while in Section 9, we provide a set of future research directions. In Section
10, we provide the related work. In Section 11, we conclude the paper. In Appendices A and B, we present
the proofs of the first and second variants of our threshold voting protocol respectively. In Appendix C, we
provide further discussion on these threshold voting protocols.

2 Background

Liability for APP frauds has largely remained with victims who authorise payments. In the UK, there have
been efforts to protect the victims. In 2016, the UK’s consumer protection organisation, called “Which?”,
submitted a super-complaint to the “Financial Conduct Authority” (FCA) and raised its concerns that
despite the APP frauds victims’ rate is growing, the victims do not have enough protection [20]. Since then,
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the FCA has been collaborating with financial institutions to develop several initiatives that could improve
the response when frauds occur. As a result, the “Contingent Reimbursement Model” (CRM) code [27] was
proposed. It lays out a set of requirements and explains under which circumstances customers should be
reimbursed by their financial institutions when they fall victim to an APP fraud, e.g., when customers were
not grossly negligent, did not ignore effective warnings, or were among a vulnerable group. So far, at least
nine firms, comprising nineteen brands (e.g., Barclays, HSBC, Lloyds) signed up to the code.

Although the CRM code is a vital guideline towards protecting the frauds’ victims, some aspects of it
are vague, and open to interpretation. For instance, in 2020, the “Financial Ombudsman Service” (that
settles complaints between consumers and businesses) had an “overall impression” that firms are applying
the CRM code inconsistently and in some cases incorrectly, which resulted in failing to reimburse victims in
cases anticipated by this code [39]. As another example, one of the conditions in the CRM code that allows
a bank to avoid reimbursing the customer is clause R2(1)(e) which states: “The Customer has been grossly
negligent. For the avoidance of doubt, the provisions of R2(1)(a)-(d) should not be taken to define gross
negligence in this context”. Nevertheless, neither the CRM code nor the “Payment Services Regulations” [38]
explicitly define under which circumstances the customer is considered “grossly negligent” in the context
of APP frauds. In the CRM code, the only terms that discuss customers’ misbehaviour are the provisions
of R2(1)(a)-(d); however, as stated above, they should be excluded from the definition of the term gross
negligence. On the other hand, in the Payment Services Regulations, this term is used three times, i.e., twice
in regulation 75 and once in regulation 77. Nevertheless, in all three cases, it is used for frauds related to
unauthorised payments which are different types of frauds from APP ones. Hence, there is a pressing need
for an accurate solution to help and protect APP frauds’ victims.

Unlike the UK which has already recognised APP frauds and developed regulations for that, the US’s
financial industry has not distinguished between APP fraud and other types of fraud when labelling their
overall fraud losses [1]. Thus, there exist no publicly available accurate reports and regulations concerning
APP frauds provided by the financial industry in the US yet. To address the issue, in 2020, the Federal
Reserve introduced the “FraudClassifier Model” which classifies payment frauds more granularly [37]. It is
yet to be seen how regulations related to APP frauds will be developed and how the payment industry will
implement these regulations, in the US. Similarly, in the EU, there exists no specific regulation developed
to explicitly capture APP frauds and protect the victims [24,28].

3 Preliminaries

3.1 Notations

We summarise our notations in Table 1.

3.2 Informal Threat Model and Assumptions

A payment with dispute resolution scheme involves six types of parties. Below, we informally explain each
type of party’s role. We will provide a formal definition of the scheme in Section 5.

• Customer (C): it is a regular customer of a bank. We call a customer a victim after it falls victim to an
APP fraud. We assume a victim is corrupted by a non-colluding active (or malicious) adversary.
• Bank (B): it is a regular bank providing online banking. We assume it is corrupted by a non-colluding

active adversary. Note that in the real world a bank is not usually an active adversary and cares about
its reputation, such as a “rational” or “covert” adversary which is weaker than the active one. However,
to ensure our solution offers a strong security guarantee, we assume the adversary is strong too, i.e.,
active one. We also assume any change to the online banking system’s source code is transparent and
can be detected.
• Smart contract (S): it is a standard smart contract of a public blockchain (e.g., Ethereum). It mainly

acts as a tamper-proof public bulletin board to store different parties’ messages.
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Table 1: Notation Table.
Symbol Description

Enc(.) Encryption algorithm of symmetric key encryption

Dec(.) Decryption algorithm of symmetric key encryption

~Enc(.) Encryption algorithm of asymmetric key encryption

~Dec(.) Decryption algorithm of asymmetric key encryption

˜keyGen(.) Key generator algorithm of asymmetric key encryption

Sig.keyGen(.) Key generator algorithm of digital signature scheme

verStat(.) Algorithm to determine B’s message status

checkWarning(.) Algorithm to check a warning’s effectiveness

pay(.) B’s internal algorithm to transfers money

Com(.) Commitment’s commit algorithm

Ver(.) Commitment’s verify algorithm

H(.) Hash function

PRF(.) Pseudorandom function

C Customer

B Bank

D1, ...,Dn Auditors

DR Dispute resolver

S Smart contract

G Certificate generator

SAP Statement agreement protocol

PVE Private verdict encoding protocol

FVD Final verdict decoding protocol

GPVE Generic private verdict encoding protocol

GFVD Generic final verdict decoding protocol

⊕ XOR operator

∆ Time parameter

addI Address of I

aux, aux′ Auxiliary information

BF Bloom filter

z1 C’s complaint about B’s message status

z2 C’s complaint about a warning’s effectiveness

z3 C’s complaint about payment message inconsistency

g := (g1, g2) Commitment values

Symbol Description

l C’s payees list

l̂ C’s encoded payees list

k0 A secret key of PRF

f New payee’s detail

inf Payment detail

â Encoded a

m̂
(C)
1 C’s encoded update request

m̂
(C)
2 C’s encoded payment request

m̂
(B)
1 B’s encoded warning message

m̂
(B)
2 B’s encoded payment message

sk and pk Secret and public keys

skD Auditors’ secret key

pp Public parameter

j Auditor’s index, 1 ≤ j ≤ n
T, T1, T2 Tokens, where T := (T1, T2)

w1 Output of verStat(.)

(w2, w3) Output of checkWarning(.)

w̄j Output of PVE(.)

v Output of FVD(.)

e Threshold

wi,j Auditor’s plain verdict

o Offset

rj Pseudorandom value

λ Security parameter

µ(.) Negligible function

inp The input of pay(.)

π Private statement

Pr Probability

φ Null

n Total number of auditors

z C’s complaint, where z := (z1, z2, z3)

pwdr payment with dispute resolution notion

PwDR payment with dispute resolution protocol

• Certificate generator (G): it is a trusted third party (e.g., hospital, registry office) which provides signed
digital certificates (e.g., certificate of disability, divorce) to customers.
• A committee of auditors (D1, ...,Dn): it consists of trusted third-party authorities or regulators (e.g.,

FCA, financial ombudsman service). They compile complaints and provide their verdicts. If needed, they
can access the banking backend software to conduct investigations. We assume they interacted with each
other once, to agree on a secret key, k̄0, and a pair of keys (pkD, skD) of an asymmetric key encryption.
• Dispute resolver (DR): it is an aggregator of auditors’ votes (e.g., public court). Given a collection of

votes, it extracts and announces the final verdict. We assume it is corrupted by a non-colluding passive
adversary. We assume C and B use a secure channel when they send a message directly to DR.

3.3 Digital Signature

A digital signature is a scheme for verifying the authenticity of digital messages. Below, we restate its formal
definition, taken from [23].

Definition 1. A signature scheme involves three algorithms, Signature := (Sig.keyGen, Sig.sign, Sig.ver),
that are defined as follows.
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• Sig.keyGen(1λ)→ (sk, pk). A probabilistic algorithm run by a signer. It takes as input a security param-
eter. It outputs a key pair (sk, pk), consisting of secret key sk, and public key pk.

• Sig.sign(sk, pk, u) → sig. An algorithm run by the signer. It takes as input key pair (sk, pk), and a
message u. It outputs a signature sig.

• Sig.ver(pk, u, sig) → h ∈ {0, 1}. A deterministic algorithm run by a verifier. It takes as input public
key pk, message u, and signature sig. It checks the signature’s validity. If the verification passes, then it
outputs 1; otherwise, it outputs 0.

A digital signature scheme should meet the following properties:

• Correctness. For every input u it holds that:

Pr
[

Sig.ver(pk, u, Sig.sign(sk, pk, u)) = 1 : Sig.keyGen(1λ)→ (sk, pk)
]

= 1

• Existential unforgeability under chosen message attacks. A probabilistic polynomial time (PPT) adver-
sary that obtains pk and has access to a signing oracle for messages of its choice, cannot create a valid
pair (u∗, sig∗) for a new message u∗ (that was never a query to the signing oracle), except with a small
probability, σ. More formally:

Pr

[
u∗ 6∈ Q ∧
Sig.ver(pk, u∗, sig∗) = 1

:
Cer.keyGen(1λ)→ (sk, pk)

ASig.sign(k,)(pk)→ (u∗, sig∗)

]
≤ µ(λ)

where Q is the set of queries that A sent to the certificate generator oracle.

3.4 Smart Contract

Cryptocurrencies, such as Bitcoin [29] and Ethereum [43], beyond offering a decentralised currency, support
computations on transactions. In this setting, often a certain computation logic is encoded in a computer
program, called a “smart contract”. Although Bitcoin, the first decentralised cryptocurrency, supports smart
contracts, the functionality of Bitcoin’s smart contracts is very limited, due to the use of the underlying pro-
gramming language that does not support arbitrary tasks. To address this limitation, Ethereum, as a generic
smart contract platform, was designed. Thus far, Ethereum has been the most predominant cryptocurrency
framework that lets users define arbitrary smart contracts. This framework allows users to create an account
with a unique account number or address. Such users are often called external account holders, which can
send (or deploy) their contracts to the framework’s blockchain. In this framework, a contract’s code and
its related data are held by every node in the blockchain’s network. Ethereum smart contracts are often
written in a high-level Turing-complete programming language called “Solidity”. The program execution’s
correctness is guaranteed by the security of the underlying blockchain components. To prevent a denial of
service attack, the framework requires a transaction creator to pay a fee, called “gas”.

3.5 Commitment Scheme

A commitment scheme involves two parties, sender and receiver, and includes two phases: commit and open.
In the commit phase, the sender commits to a message: x as Com(x, r) = Comx, that involves a secret value:

r
$← {0, 1}λ. In the end of the commit phase, the commitment Comx is sent to the receiver. In the open phase,

the sender sends the opening ẍ := (x, r) to the receiver who verifies its correctness: Ver(Comx, ẍ)
?
= 1 and

accepts if the output is 1. A commitment scheme must satisfy two properties: (a) hiding : it is infeasible for an
adversary (i.e., the receiver) to learn any information about the committed message x, until the commitment
Comx is opened, and (b) binding : it is infeasible for an adversary (i.e., the sender) to open a commitment
Comx to different values ẍ′ := (x′, r′) than that was used in the commit phase, i.e., infeasible to find ẍ′, s.t.
Ver(Comx, ẍ) = Ver(Comx, ẍ

′) = 1, where ẍ 6= ẍ′. There exist efficient non-interactive commitment schemes
both in (a) the standard model, e.g., Pedersen scheme [32], and (b) the random oracle model using the
well-known hash-based scheme such that committing is : H(x||r) = Comx and Ver(Comx, ẍ) requires checking:

H(x||r) ?
= Comx, where H : {0, 1}∗ → {0, 1}λ is a collision resistant hash function; i.e., the probability to find

x and x′ such that H(x) = H(x′) is negligible in the security parameter, λ.
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3.6 Statement Agreement Protocol

Recently, a scheme called “Statement Agreement Protocol” (SAP) has been proposed in [4]. It lets two
mutually distrusted parties, e.g., B and C, efficiently agree on a private statement, π. Informally, the SAP
satisfies the following four properties: (1) neither party can convince a third-party verifier that it has agreed
with its counter-party on a different statement than the one both parties previously agreed on, (2) after they
agree on a statement, an honest party can (almost) always prove to the verifier that it has the agreement, (3)
the privacy of the statement is preserved (from the public), and (4) after both parties reach an agreement,
neither can deny it. The SAP uses a smart contract and commitment scheme. It assumes that each party
has a blockchain public address, adrR (where R ∈ {B, C}). Below, we restate the SAP, taken from [4].

1. Initiate. SAP.init(1λ, adrB, adrC, π)
The following steps are taken by B.
(a) Deploys a smart contract that explicitly states both parties’ addresses, adrB and adrC. Let adrSAP

be the deployed contract’s address.
(b) Picks a random value r, and commits to the statement, Com(π, r) = gB.
(c) Sends adrSAP and π̈ := (π, r) to C, and gB to the contract.

2. Agreement. SAP.agree(π, r, gB, adrB, adrSAP)
The following steps are taken by C.
(a) Checks if gB was sent from adrB, and checks locally Ver(gB, π̈) = 1.
(b) If the checks pass, it sets b = 1, computes locally Com(π, r) = gC, and sends gC to the contract.

Otherwise, it sets b = 0 and gC = ⊥.

3. Prove. For either B or C to prove, it sends π̈ := (π, r) to the smart contract.

4. Verify. SAP.verify(π̈, gB, gC, adrB, adrC)
The following steps are taken by the smart contract.
(a) Ensures gB and gC were sent from adrB and adrC respectively.
(b) Ensures Ver(gB, π̈) = Ver(gC, π̈) = 1.
(c) Outputs s = 1, if the checks, in steps 4a and 4b, pass. It outputs s = 0, otherwise.

3.7 Pseudorandom Function

Informally, a pseudorandom function is a deterministic function that takes a key of length Λ and an input;
and outputs a value indistinguishable from that of a truly random function. In this paper, we use the
pseudorandom function: PRF : {0, 1}Λ × {0, 1}∗ → Fp, where p is a large prime number, |p| = λ, and (Λ, λ)
are the security parameters. In practice, a pseudorandom function can be obtained from an efficient block
cipher. We refer readers to [23] for a formal definition of a pseudorandom function.

3.8 Bloom Filter

A Bloom filter [10] is a compact data structure for probabilistic efficient elements’ membership checking. A
Bloom filter is an array of m̄ bits that are initially all set to zero. It represents n̄ elements. A Bloom filter
comes along with k̄ independent hash functions. To insert an element, all the hash values of the element are
computed and their corresponding bits in the filter are set to 1. To check an element’s membership, all its
hash values are re-computed and checked whether all are set to one in the filter. If all the corresponding
bits are one, then the element is probably in the filter; otherwise, it is not. In Bloom filters false positives
are possible, i.e., it is possible that an element is not in the set, but the membership query shows that it is.

According to [12], the upper bound of the false positive probability is: q = p̄k̄(1 +O( k̄p̄

√
ln m̄−k̄ ln p̄

m̄ )), where

p̄ is the probability that a particular bit in the filter is set to 1 and calculated as: p̄ = 1 − (1 − 1
m̄ )k̄n̄. The

efficiency of a Bloom filter depends on m̄ and k̄. The lower bound of m̄ is n̄ log2 ē · log2

1
q , where ē is the base

of natural logarithms, while the optimal number of hash functions is log2

1
q , when m̄ is optimal. In this paper,

we only use optimal k̄ and m̄. In practice, we would like to have a predefined acceptable upper bound on
false positive probability, e.g., q = 2−40, and can adjust such a parameter. Given q and n̄, we can determine
the rest of the parameters. In this work, we require that a Bloom filter uses cryptographic hash functions.
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4 Challenges to Overcome

Our starting point in defining and designing a payment with dispute resolution scheme is the CRM code,
as this code (although vaguely) sets out the primary requirements a victim must meet to be reimbursed. To
design such a scheme, we need to address several challenges. The rest of this section outlines these challenges.

4.1 Challenge 1: Lack of Transparent Logs

In the current online banking system, during a payment journey, the messages exchanged between customer
and bank are usually logged by the bank and are not accessible to the customer without the bank’s collab-
oration. Even if the bank provides access to the transaction logs, there is no guarantee that the logs have
remained intact. Due to the lack of a transparent logging mechanism, a customer or bank can wrongly claim
that (a) it has sent a certain message or warning to its counter-party or (b) it has never received a certain
message. Thus, it would be hard for an honest party to prove its innocence. To address this challenge, our
scheme will use a smart contract to which each party sends its messages.

4.2 Challenge 2: Lack of Effective Warning’s Accurate Definition in Banking

One of the determining factors in the process of allocating liability to an APP fraud victim is following
“warning(s)”, according to the CRM code. However, there exists no publicly available study on the effec-
tiveness of banks’ warnings. So, we cannot hold a customer accountable for becoming the fraud’s victim,
even if the related warnings are ignored. Furthermore, currently, banks assess whether their own warnings
are effective. But, in a fair process, such an assessment is conducted by a third party. To address these
challenges, we let a warning’s effectiveness be determined on a case-by-case basis after an APP fraud occurs;
the protocol lets a victim challenge a certain warning whose effectiveness will be assessed by a committee,
i.e., a set of auditors. In this setting, each auditor provides its (encoded) verdict to the smart contract,
from which a dispute resolver retrieves all verdicts to learn the final one. The scheme ensures that the final
verdict is in the customer’s favour if at least a threshold of the auditors voted so. Thus, unlike the traditional
setting where a central party determines a warning’s effectiveness, which is error-prone, we let a collection
of auditors determines it.

4.3 Challenge 3: Linking Off-chain Payments with a Smart Contract

Recall that an APP fraud occurs when a payment is made. In the case where a bank sends (to the smart
contract) a confirmation of payment message, it is not possible to automatically validate such a claim, as
the money transfer occurs outside of the blockchain network. To address this challenge, our scheme lets a
customer raise a dispute and report it to the smart contract when it detects an inconsistency. In this case,
the above auditors investigate and provide their verdicts to the smart contract. Then, dispute resolver DR
extracts them and announces the final verdict.

4.4 Challenge 4: Preserving Privacy

Although the use of a public logging mechanism is essential in resolving disputes transparently, if it does
not use a privacy-preserving mechanism, then parties’ privacy would be violated. To protect the privacy of
the bank’s and customers’ messages against the public, our scheme lets them provably agree on encoding-
decoding tokens with which they can encode their messages. Later, either party can provide the token to a
third party (e.g., Di) which checks the token’s correctness, and decodes the messages. To protect the privacy
of the committee members’ verdicts from DR, the scheme ensures that DR can learn only the final verdict
without being able to link a verdict to a specific auditor or even learn the number of yes/1 and no/0 votes.
To this end, we develop and use novel threshold voting protocols.
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5 Payment with Dispute Resolution Definition

In this section, we present a formal definition of the payment with dispute resolution (pwdr) notion. Below,
we first provide its syntax. Then, we formally define its correctness and security properties.

Definition 2. A payment with dispute resolution (pwdr) involves six types of entities; namely, bank B,
customer C, smart contract S, certificate generator G, set of auditors D : {D1, ...,Dn}, and dispute resolver
DR. It includes the following algorithms pwdr := (keyGen, bankInit, customerInit, genUpdateRequest,
insertNewPayee, genWarning, genPaymentRequest, makePayment, genComplaint, verComplaint,
resDispute). Below, we define these algorithms.

• keyGen(1λ) → (sk, pk). It is a probabilistic algorithm run independently by G and one of the auditors, Dj.
It takes as input a security parameter 1λ. It outputs a pair of secret keys sk := (skG, skD) and public keys
pk := (pkG, pkD). The public key pair, pk, is sent to all participants.

• bankInit(1λ)→ (T, pp, l). It is run by B. It takes as input security parameter 1λ. It sets private parameters
π̈1 and π̈2. It generates an encoding-decoding token T , where T := (T1, T2), each Ti contains a secret parameter
π̈i and its public witness gi. Given a value and its witness anyone can check if they match. It also generates
a set of (additional) public parameters, pp, one of which is e that is a threshold parameter. It generates an
empty list, l. It outputs T, pp, and l. Party B sends (π̈1, π̈2) to C and sends (g1, g2, pp, l) to S.

• customerInit(1λ, T, pp)→ a. It is a deterministic algorithm run by C. It takes as input security parameter
1λ, token T , and set pp of public parameters. It checks the correctness of the elements in T and pp. If the
checks pass, it outputs 1. Otherwise, it outputs 0.

• genUpdateRequest(T, f, l)→ m̂(C)
1 . It is a deterministic algorithm run by C. It takes as input token T , new

payee’s detail f , and empty payees’ list l. It generates m(C)
1 which is an update request to the payees’ list.

It uses T1 ∈ T and encoding algorithm Encode(T1, .) to encode m(C)
1 which results in m̂(C)

1 . It outputs m̂(C)
1 .

Party C sends the output to S.

• insertNewPayee(m̂(C)
1 , l)→ l̂. It is a deterministic algorithm run by S. It takes as input C’s encoded update

request m̂(C)
1 , and C’s payees’ list l. It inserts the new payee’s detail into l and outputs an updated list, l̂.

• genWarning(T, l̂, aux) → m̂(B)
1 . It is run by B. It takes as input token T , C’s encoded payees’ list l̂, and

auxiliary information aux, e.g., a set of policies. Using T1 ∈ T , it decodes and checks all elements of the
list, e.g., whether they comply with the policies. If the check passes, it sets m(B)

1 = “pass”; otherwise, it sets
m(B)

1 = warning, where the warning is a string containing a warning detail along with the string “warning”.
It uses T1 and Encode(T1, .) to encode m(B)

1 which yields m̂(B)
1 . It outputs m̂(B)

1 . Party B sends m̂(B)
1 to S.

• genPaymentRequest(T, inf , l̂, m̂
(B)
1 )→ m̂(C)

2 . It is run by C. It takes as input token T , a payment detail inf ,

encoded payees’ list l̂, and encoded warning message, m̂(B)
1 . Using T1 ∈ T , it decodes l̂ and m̂(B)

1 yielding l
and m(B)

1 respectively. It checks the warning. It sets m(C)
2 = φ, if it does not want to proceed. Otherwise, it

sets m(C)
2 according to the content of inf and l, e.g., the amount of payment and payee’s detail. It uses T1

and Encode(T1, .) to encode m(C)
2 resulting in m̂(C)

2 . It outputs m̂(C)
2 . Party C sends m̂(C)

2 to S.

• makePayment(T, m̂(C)
2 ) → m̂(B)

2 . It is a deterministic algorithm run by B. It takes as input token T , and
encoded payment detail m̂(C)

2 . Using T1 ∈ T , it decodes m̂(C)
2 and checks the result’s validity, e.g., ensures it

is well-formed or C has enough credit. If the check passes, it makes the payment and sets m(B)
2 = “paid”.

Otherwise, it sets m(B)
2 = φ. It uses T1 and Encode(T1, .) to encode m(B)

2 yielding m̂(B)
2 . It outputs m̂(B)

2 . Party
B sends m̂(B)

2 to S.

• genComplaint(m̂(B)
1 , m̂(B)

2 , T, pk, auxf)→ (ẑ, ˆ̈π). It is run by C. It takes as input the encoded warning mes-
sage m̂(B)

1 , encoded payment message m̂(B)
2 , token T , public key pk, and auxiliary information auxf . It initially

sets fresh strings (z1, z2, z3) to null. Using T1 ∈ T , it decodes m̂(B)
1 and m̂(B)

2 and checks the results’ content.
If it wants to complain that (i) “pass” message should have been a warning or (ii) no message was provided,
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it sets z1 to “challenge message”. If its complaint is about the warning’s effectiveness, it sets z2 to a com-
bination of an evidence u ∈ auxf , the evidence’s certificate sig ∈ auxf , the certificate’s public parameter,
and “challenge warning”, where the certificate is obtained from G via a query, Q. In certain cases, the cer-
tificate might be empty. If its complaint is about the payment, it sets z3 to “challenge payment”. It uses T1

and Encode(T1, .) to encode z := (z1, z2, z3) and uses pkD and another encoding algorithm ¯Encode(pkD, .) to
encode π̈ := (π̈1, π̈2) ∈ T . This results in ẑ and ˆ̈π respectively. It outputs (ẑ, ˆ̈π). Party C sends the pair to S.

• verComplaint(ẑ, ˆ̈π, g, m̂, l̂, j, skD, aux, pp)→ ŵj. It is run by every auditor Dj. It takes as input C’s encoded
complaint ẑ, encoded private parameters ˆ̈π, the tokens’ public parameters g := (g1, g2), encoded messages

m̂ = [m̂(C)
1 , m̂(C)

2 , m̂(B)
1 , m̂(B)

2 ], encoded payees’ list l̂, the auditor’s index j, secret key skD, auxiliary information
aux, and set of public parameters pp. It uses skD to decode ˆ̈π that yields π̈ := (π̈1, π̈2). It uses π̈1 to decode

ẑ, m̂, and l̂ that results in z := (z1, z2, z3),m, and l respectively. It checks if π̈i matches gi. If the check
fails, it aborts. It checks if m(C)

1 and m(C)
2 are non-empty; it aborts if the checks fail. It sets fresh parameters

(w1,j, w2,j, w3,j, w4,j) to φ. If “challenge message” ∈ z1, given l, it checks whether “pass” message (in m(B)
1 )

was given correctly or the missing message did not play any role in preventing the fraud. If either checks
passes, it sets w1,j = 0; otherwise, it sets w1,j = 1. If “challenge warning” ∈ z2, it verifies the certificate in
z2. If it is invalid, it sets w3,j = 0. If it is valid, it sets w3,j = 1. It determines the effectiveness of the warning
(in m(B)

1 ), by running an algorithm which determines that, i.e., checkWarning(.) ∈ aux. If it is effective,
i.e., checkWarning(m(B)

1 ) = 1, it sets its verdict to 0, i.e., w2,j = 0; otherwise, it sets w2,j = 1. If “challenge
payment” ∈ z3, it checks if the payment was made (with the help of m(B)

2 ). If the check passes, it sets w4,j = 1;
otherwise, it sets w4,j = 0. It uses π̈2 to encode wj = [w1,j, w2,j, w3,j, w4,j] yielding ŵj = [ŵ1,j, ŵ2,j, ŵ3,j, ŵ4,j].
It outputs ŵj. Party Dj sends ŵj to S.

• resDispute(T2, ŵ, pp)→ v. It is a deterministic algorithm run by DR. It takes as input token T2, auditors’
encoded verdicts ŵ = [ŵ1, ..., ŵn], and public parameters set pp. It checks if the token’s parameters match. If
the check fails, it aborts. It uses π̈2 ∈ T2 to decode ŵ and from the result it extracts final verdicts v = [v1, ..., v4].
The extraction procedure ensures each vi is set to 1 only if at least e auditors’ original verdicts (i.e., wi,j,) is
1, where e ∈ pp. It outputs v. If v4 = 1 and (i) either v1 = 1 (ii) or v2 = 1 and v3 = 1, then C is reimbursed.

Informally, pwdr has two properties; namely, correctness and security. Correctness requires that, in the
absence of a fraudster, the payment journey is completed without the need for the honest customer to
complain and the honest bank to reimburse the customer. Below, we formally state it.

Definition 3 (Correctness). A pwdr scheme is correct if the key generation algorithm produces keys
keyGen(1λ) → (sk, pk) such that for any payee’s detail f , payment’s detail inf , and auxiliary information
(aux, auxf), if bankInit( 1λ) → (T, pp, l), customerInit(1λ, T, pp) → a, genUpdateRequest(T, f, l) →
m̂(C)

1 , insertNewPayee(m̂(C)
1 , l) → l̂, genWarning(T, l̂, aux) → m̂(B)

1 , genPaymentRequest(T, inf , l̂, m̂
(B)
1 ) →

m̂(C)
2 , makePayment(T, m̂(C)

2 )→ m̂(B)
2 , genComplaint(m̂(B)

1 , m̂(B)
2 , T, pk, auxf)→ (ẑ, ˆ̈π), ∀j ∈ [n] :(

verComplaint(ẑ, ˆ̈π, g, m̂, l̂, j, skD, aux, pp) → ŵj

)
, resDispute(T2, ŵ, pp) → v, then (z1 = z2 = z3 =

φ) ∧ (v = 0), where g := (g1, g2) ∈ T , m̂ = [m̂(C)
1 , m̂(C)

2 , m̂(B)
1 , m̂(B)

2 ], ŵ = [ŵ1, ..., ŵn], and z := (z1, z2, z3) is
the result of decoding ẑ.

A pwdr scheme is secure if it satisfies three main properties; namely, (a) security against a malicious
victim, (b) security against a malicious bank, and (c) privacy. Below, we formally define them. Intuitively,
security against a malicious victim requires that the victim of an APP fraud that is not qualified for the
reimbursement should not be reimbursed (even if it tries to be). More specifically, a corrupt victim cannot
(a) make at least the threshold of the committee members, Djs, conclude that B should have provided a
warning, although B has done so, or (b) make DR conclude that the pass message was incorrectly given or a
vital warning message was missing despite only less than the threshold of Djs believing so, or (c) persuade at
least the threshold of Djs to conclude that the warning was ineffective although it was effective, or (d) make
DR believe that the warning message was ineffective although only less than the threshold of Djs believe
that, or (e) convince Djs to accept an invalid certificate, or (f) make DR believe that at least the threshold
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of Djs accepted the certificate although they did not, except for a negligible probability. Below, we formally
state it.

Definition 4 (Security against a malicious victim). A pwdr scheme is secure against a malicious vic-
tim, if for any security parameter λ, auxiliary information aux, and probabilistic polynomial-time adversary
A, there exists a negligible function µ(·), such that for an experiment ExpA1 :

ExpA1 (1λ, aux)

keyGen(1λ)→ (sk, pk)
bankInit(1λ)→ (T, pp, l)
A(1λ, T, pp, l)→ m̂(C)

1

insertNewPayee(m̂(C)
1 , l)→ l̂

genWarning(T, l̂, aux)→ m̂(B)
1

A(T, l̂, m̂(B)
1 )→ m̂(C)

2

makePayment(T, m̂(C)
2 )→ m̂(B)

2

A(m̂(B)
1 , m̂(B)

2 , T, pk)→ (ẑ, ˆ̈π)
∀j, j ∈ [n] :(
verComplaint(ẑ, ˆ̈π, g, m̂, l̂, j, skD, aux, pp)→ ŵj = [ŵ1,j, ŵ2,j, ŵ3,j, ŵ4,j]

)
resDispute(T2, ŵ, pp)→ v = [v1, ..., v4]

it holds that:

Pr



(
(m(B)

1 = warning) ∧ (
n∑
j=1

w1,j ≥ e)
)

∨
(

(
n∑
j=1

w1,j < e) ∧ (v1 = 1)
)

∨
(

(checkWarning(m(B)
1 ) = 1) ∧ (

n∑
j=1

w2,j ≥ e)
)

∨
(

(
n∑
j=1

w2,j < e) ∧ (v2 = 1)
)

∨
(
u /∈ Q ∧ Sig.ver(pk, u, sig) = 1

)
∨
(

(
n∑
j=1

w3,j < e) ∧ (v3 = 1)
)

: ExpA1 (input)


≤ µ(λ),

where g := (g1, g2) ∈ T , m̂ = [m̂(C)
1 , m̂(C)

2 , m̂(B)
1 , m̂(B)

2 ], (w1,j, .., w3,j) are the result of decoding (ŵ1,j, .., ŵ3,j) ∈
ŵ, checkWarning(.) determines a warning’s effectiveness, input := (1λ, aux), skD ∈ sk, and n is the to-
tal number of auditors. The probability is taken over the uniform choice of sk, randomness used in the
blockchain’s primitives (e.g., in signatures), randomness used in the encoding, and the randomness of A.

Note, in the above experiment, we did not explicitly pass payment detail (i.e., f and inf) and auxiliary
information (i.e., auxf) onto the adversary, to let the adversary pick them arbitrarily, on the client’s behalf.

Intuitively, security against a malicious bank requires that a malicious bank should not be able to dis-
qualify an honest victim of an APP fraud from being reimbursed. Specifically, a corrupt bank cannot (a)
make DR conclude that the “pass” message was correctly given or an important warning message was not
missing despite at least the threshold of Djs do not believe so, or (b) convince DR that the warning message
was effective although at least the threshold of Djs do not believe so, or (c) make DR believe that less than
the threshold of Djs did not accept the certificate although at least the threshold of them did that, or (d)
make DR believe that no payment was made, although at least the threshold of Djs believe the opposite,
except for a negligible probability. Below, we formally state it.
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Definition 5 (Security against a malicious bank). A pwdr scheme is secure against a malicious bank,
if for any security parameter λ, auxiliary information aux, and probabilistic polynomial-time adversary A,
there exists a negligible function µ(·), such that for an experiment ExpA2 :

ExpA2 (1λ, aux)

keyGen(1λ)→ (sk, pk)
A(1λ)→ (T, pp, l, f, inf , auxf)
customerInit(1λ, T, pp)→ a
genUpdateRequest(T, f, l)→ m̂(C)

1

insertNewPayee(m̂(C)
1 , l)→ l̂

A(T, l̂, aux)→ m̂(B)
1

genPaymentRequest(T, inf , l̂, m̂
(B)
1 )→ m̂(C)

2

A(T, m̂(C)
2 )→ m̂(B)

2

genComplaint(m̂(B)
1 , m̂(B)

2 , T, pk, auxf)→ (ẑ, ˆ̈π)
∀j, j ∈ [n] :(
verComplaint(ẑ, ˆ̈π, g, m̂, l̂, j, skD, aux, pp)→ ŵj = [ŵ1,j, ŵ2,j, ŵ3,j, ŵ4,j]

)
resDispute(T2, ŵ, pp)→ v = [v1, ..., v4]

it holds that:

Pr



(
(
n∑
j=1

w1,j ≥ e) ∧ (v1 = 0)
)

∨
(

(
n∑
j=1

w2,j ≥ e) ∧ (v2 = 0)
)

∨
(

(
n∑
j=1

w3,j ≥ e) ∧ (v3 = 0)
)

∨
(

(
n∑
j=1

w4,j ≥ e) ∧ (v4 = 0)
)

: ExpA2 (input)


≤ µ(λ),

where g := (g1, g2) ∈ T , m̂ = [m̂(C)
1 , m̂(C)

2 , m̂(B)
1 , m̂(B)

2 ], (w1,j, .., w3,j) are the result of decoding (ŵ1,j, .., ŵ3,j) ∈
ŵ, input := (1λ, aux), skD ∈ sk, n is the total number of auditors. The probability is taken over the uniform
choice of sk, randomness used in the blockchain’s primitives, randomness used during the encoding, and the
randomness of A.

Now we move on to privacy. Informally, a pwdr is privacy-preserving if it protects the privacy of (1) the
customers’, bank’s, and auditors’ messages (except public parameters) from non-participants of the scheme,
including other customers, and (2) each auditor’s verdict from DR which sees the final verdict. Below, we
formally state it.

Definition 6 (Privacy). A pwdr preserves privacy if the following two properties are satisfied.

1. For any probabilistic polynomial-time adversary A1, security parameter λ, and auxiliary information aux,
there exists a negligible function µ(·), such that for any experiment ExpA1

3 :
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ExpA1
3 (1λ, aux)

keyGen(1λ)→ (sk, pk)
bankInit(1λ)→ (T, pp, l)
customerInit(1λ, T, pp)→ a

A1(1
λ, pk, a, pp, g, l)→

(
(f0, f1), (inf0 , inf1 ), (auxf0 , auxf1)

)
γ

$← {0, 1}
genUpdateRequest(T, fγ , l)→ m̂(C)

1

insertNewPayee(m̂(C)
1 , l)→ l̂

genWarning(T, l̂, aux)→ m̂(B)
1

genPaymentRequest(T, infγ , l̂, m̂
(B)
1 )→ m̂(C)

2

makePayment(T, m̂(C)
2 )→ m̂(B)

2

genComplaint(m̂(B)
1 , m̂(B)

2 , T, pk, auxfγ )→ (ẑ, ˆ̈π)

∀j, j ∈ [n] :(
verComplaint(ẑ, ˆ̈π, g, m̂, l̂, j, skD, aux, pp)→ ŵj

)
resDispute(T2, ŵ, pp)→ v

it holds that:

Pr
[
A1(g, m̂, l̂, ẑ, ˆ̈π, ŵ)→ γ : ExpA1

3 (input)
]
≤ 1

2
+ µ(λ).

2. For any probabilistic polynomial-time adversaries A2 and A3, security parameter λ, and auxiliary infor-
mation aux, there exists a negligible function µ(·), such that for any experiment ExpA2

4 :

ExpA2
4 (1λ, aux)

keyGen(1λ)→ (sk, pk)
bankInit(1λ)→ (T, pp, l)
customerInit(1λ, T, pp)→ a
A2(1

λ, pk, a, pp, l)→ (f, inf , auxf)
genUpdateRequest(T, f, l)→ m̂(C)

1

insertNewPayee(m̂(C)
1 , l)→ l̂

A2(T, l̂, aux)→ m(B)
1

Encode(T1,m
(B)
1 )→ m̂(B)

1

genPaymentRequest(T, inf , l̂, m̂
(B)
1 )→ m̂(C)

2

A2(T, pk, auxf , m̂
(B)
1 , m̂(C)

2 )→ (m(B)
2 , z, π̈)

Encode(T1,m
(B)
2 )→ m̂(B)

2

Encode(T1, z)→ ẑ
¯Encode(pkD, π̈)→ ˆ̈π

∀j, j ∈ [n] :(
verComplaint(ẑ, ˆ̈π, g, m̂, l̂, j, skD, aux, pp)→ ŵj

)
resDispute(T2, ŵ, pp)→ v

it holds that:

Pr
[
A3(T2, pk, pp, g, m̂, l̂, ẑ, ˆ̈π, ŵ,v)→ wj : ExpA2

4 (input)
]
≤ Pr′ + µ(λ),

where g := (g1, g2) ∈ T , m̂ = [m̂(C)
1 , m̂(C)

2 , m̂(B)
1 , m̂(B)

2 ], ŵ = [ŵ1, .., ŵn], input := (1λ, aux), T1 ∈ T , pkD ∈
pk, skD ∈ sk, n is the total number of auditors. Moreover, Pr′ is defined as follows. Let auditor Di output
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0 and 1 with probabilities Pri,0 and Pri,1 respectively. Then, Pr′ is defined as Max(Pr1,0, P r1,1, ..., P rn,0,
P rn,1). In the above privacy definition, the probability is taken over the uniform choice of sk, the prob-
ability that each Dj outputs 0 or 1, the randomness used in the blockchain’s primitives, the randomness
used during the encoding, and the randomness of A1 in ExpA1

3 and A2 in ExpA2
4 .

Definition 7 (Security). A pwdr is secure if it meets security against a malicious victim, security against
a malicious bank, and preserves privacy with respect to definitions 4, 5, and 6 respectively.

6 Payment with Dispute Resolution Protocol

In this section, first we provide an outline of the PwDR protocol. Then, we present several subroutines that
will be used in this protocol. After that, we describe the PwDR protocol in detail.

6.1 An Overview of the PwDR Protocol

In this section, we provide an overview of the PwDR. Initially, C and B agree on a smart contract S. They
also use the SAP to agree on two private statements including two secret keys that will be used to encrypt
outgoing messages. When C wants to transfer money to a new payee, it signs into its online banking. It
generates an update request (that specifies the new payee’s detail), encrypts it, and sends the result to S.
Then, B decrypts and checks the request, e.g., whether it meets its internal policy. Depending on the request,
B generates a pass or warning message. It encrypts the message and sends the result to S. Next, C checks
B’s message and decides whether to make payment. If it decides to do so, it sends an encrypted payment
detail to S. After that, B decrypts the message and locally transfers the amount of money specified in C’s
message. Once the money is transferred, B sends an encrypted “paid” message to S.

Once C realises that it has fallen victim, it raises a dispute. Specifically, it generates an encrypted
complaint that can challenge the effectiveness of the warning and/or any payment inconsistency. It can
include in the complaint an evidence/certificate, e.g., asserting that it falls into the vulnerable customer
category as defined in the CRM code. C encrypts the complaint and sends to S the result and a proof
asserting the secret key’s correctness. Then, each auditor verifies the proof. If the verification passes, it
decrypts and compiles C’s complaint to generate a (set of) verdict. Each auditor encodes its verdict and
sends the encoded verdict’s encryption to S. To resolve a dispute between C and B, either of them invokes
DR. To do so, it directly sends to DR one of the above secret keys and a proof asserting that key was
generated correctly. DR verifies the proof. If approved, it locally decrypts the encrypted encoded verdicts
(retrieved from S) and finds out the final verdict. If the final verdict indicates the legitimacy of C’s complaint,
then C must be reimbursed. Note, the verdicts are encoded in a way that even after decrypting them, DR
cannot link a verdict to a committee member or even figure out how many 1 or 0 verdicts were provided
(except when all verdicts are 0). However, it can find out whether at least the threshold of the auditors voted
in favour of C.

6.2 A Subroutine for Determining Bank’s Message Status

In the payment journey, the customer may receive a “pass” message or even nothing at all, e.g., due to
a system failure. In such cases, a victim must be able to complain that if the pass or missing message
was a warning, then it would have prevented it from falling victim. To assist the auditors to deal with
such complaints deterministically, we propose verStat(.) algorithm, which is run locally by each committee
member. This algorithm is presented in Figure 1.

6.3 A Subroutine for Checking a Warning’s Effectiveness

To help the auditors deterministically compile a victim’s complaint about a warning’s effectiveness, we
propose an algorithm, called checkWarning(.) which is run locally by each auditor. It also allows the victims
to provide (to the auditors) a certificate/evidence as part of their complaints. This algorithm is presented in
Figure 2.

13



verStat(addS ,m
(B), l, ∆, aux)→ w1

– Input. addS : the address of smart contract S, m(B): B’s warning message, l:
customer’s payees’ list, ∆: a time parameter, and aux: auxiliary information,
e.g., bank’s policy.

– Output. w1 = 0: if the “pass” message had been given correctly or the missing
message did not play any role in preventing the fraud; w1 = 1: otherwise.

1. reads the content of S. It checks if m(B) =“pass” or the encrypted warning
message was not sent on time, i.e., never sent or sent after t0 +∆. If one of the
checks passes, it proceeds; Otherwise, it aborts.

2. checks the validity of customer’s most recent payees’ list l, with the help of aux.
• if l contains an invalid element, it sets w1 = 1.
• otherwise, it sets w1 = 0.

3. returns w1.

Fig. 1: Algorithm to Determine a Bank’s Message Status

checkWarning(addS , z,m
(B), aux′)→ (w2, w3)

– Input. addS : the address of smart contract S, z: C’s complaint, m(B): B’s warning
message, and aux′: auxiliary information, e.g., guideline on warnings’ effective-
ness.

– Output. w2 = 0: if the given warning message is effective; w2 = 1: if the warning
message is ineffective. Also, w3 = 1: if the certificate in z is valid or no certificate
is provided; w3 = 0: if the certificate is invalid.

1. parse z = m||sig||pk||“challenge warning”. If sig is empty, it sets w3 = 0 and
goes to step 2. Otherwise, it:
(a) verifies the certificate: Sig.ver(pk,m, sig)→ h.
(b) if the certificate is rejected (i.e., h = 0), it sets w3 = 0. It goes to step 4.
(c) otherwise (i.e., h = 1), it sets w3 = 1 and moves onto the next step.

2. checks if “warning” ∈ m(B). If the check is passed, it proceeds to the next step.
Otherwise, it aborts.

3. checks the warning’s effectiveness, with the assistance of the evidence m and
auxiliary information aux′.
• if it is effective, it sets w2 = 0.
• otherwise, it sets w2 = 1.

4. returns (w2, w3).

Fig. 2: Algorithm to Check Warning’s Effectiveness
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6.4 Subroutines for Encoding-Decoding Verdicts

In this section, we present verdict encoding and decoding protocols. They let a third party I, e.g., DR,
learn if a threshold of the auditors voted 1, while satisfying the following requirements. The protocols (1)
generate unlinkable verdicts, (2) do not require auditors to interact with each other for each customer, and
(3) are efficient. Since the second and third requirements are self-explanatory, we only explain the first one.
Informally, the first property states that the protocols generate encoded verdicts and final verdict in a way
that I, given these values, cannot (a) link a verdict to an auditor (except when all verdicts are 0), and
(b) learn the total number of 1 or 0 verdicts when they provide different verdicts. Shortly, we present two
variants of verdict encoding and decoding protocol. The first variant is highly efficient and suitable when
the threshold is 1. The second variant is generic and works for any threshold (but is less efficient).

Variant 1: Efficient Verdict Encoding-Decoding Protocol. This variant has two protocols, Private
Verdict Encoding (PVE) and Final Verdict Decoding (FVD). They let I learn if at least one auditor voted
1. This variant relies on our observation that if a set of random values and 0s are XORed, then the result
reveals nothing, e.g., about the number of non-zero and zero values. Below, we formally state it. We refer
readers to Appendix A for the proof.

Theorem 1. Let set S = {s1, ..., sm} be the union of two disjoint sets S′ and S′′, where S′ contains non-zero
random values picked uniformly from a finite field Fp, S′′ contains zeros, |S′| ≥ c′ = 1, |S′′| ≥ c′′ = 0, and

pair (c′, c′′) is public information. Then, r =
m⊕
i=1

si reveals nothing beyond the public information.

At a high level, PVE and FVD work as follows. The auditors only once (for all future customers) agree
on a secret key. This key will let each of them, in PVE, generate a pseudorandom masking value such that if
all masking values are XORed, they would cancel out each other.2 In PVE, each auditor encodes its verdict
by (i) representing it as a parameter which is set to 0 if the verdict is 0, or to a random value if the verdict
is 1, and then (ii) “masking” this parameter with the above pseudorandom value. It sends the result to I. In
FVD, party I XORs all encoded verdicts. This removes the masks and XORs all verdicts’ representations.
If the result is 0, I concludes that all auditors voted 0; therefore, the final verdict is 0. But, if the result is
not 0, it knows that at least one of the auditors voted 1, so the final verdict is 1. Figures 3 and 4 present
PVE and FVD protocols in detail.

Intuitively, the primary reason this variant meets property 1 is that each masked verdict reveals nothing
about the verdict (and its representation) and given the final verdict, I cannot distinguish between the case
where there is exactly one auditor that voted 1 and the case where multiple auditors voted 1, as in both cases
I extracts only a single random value, which reveals nothing about the number of auditors which voted 0 or
1 (due to Theorem 1). It is evident that this variant meets property 2 as the auditors interact with each other
only once (to agree on a key) for all customers. It also meets property 3 as it involves pseudorandom function
invocations and XOR operations which are highly efficient operations. Note, the protocols’ correctness holds
with an overwhelming probability, i.e., 1 − 1

2λ
. Specifically, if two auditors represent their verdict by an

identical random value, then when they are XORed they would cancel out each other which can affect the
result’s correctness. The same holds if the XOR of multiple verdicts’ representations results in a value that
can cancel out another verdict’s representation. Nevertheless, the probability that such an event occurs is
negligible in the security parameter |p| = λ, i.e., the probability is at most 1

2λ
.

2 This is similar to the idea used in the XOR-based secret sharing [34].

15



PVE(k̄0, ID, wj, o, n, j)→ w̄j

– Input. k̄0: a key of pseudorandom function PRF(.), ID: a unique identifier, wj: a
verdict, o: an offset, n: the total number of auditors, and j: an auditor’s index.

– Output. w̄j: an encoded verdict.
Auditor Dj takes the following steps.

1. computes a pseudorandom value, as follows.
• if j < n : rj = PRF(k̄0, o||j||ID).

• if j = n : rj =
n−1⊕
i=1

ri.

2. sets a fresh parameter, w′j, as below.

w′j =

{
0, if wj = 0

αj
$← Fp, if wj = 1

3. encodes w′j as follows. w̄j = w′j ⊕ rj.
4. outputs w̄j.

Fig. 3: Private Verdict Encoding (PVE) Protocol

FVD(n, w̄)→ v

– Input. n: the total number of auditors, and w̄ = [w̄1, ..., w̄n]: a vector of all
auditors’ encoded verdicts.

– Output. v: final verdict.
A third-party I takes the following steps.

1. combines all auditors’ encoded verdicts, w̄j ∈ w̄, as follows. c =
n⊕
j=1

w̄j

2. sets the final verdict v depending on the content of c. Specifically,

v =

{
0, if c = 0

1, otherwise

3. outputs v.

Fig. 4: Final Verdict Decoding (FVD) Protocol
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Variant 2: Generic Verdict Encoding-Decoding Protocol. This variant also includes two protocols,
Generic Private Verdict Encoding (GPVE) and Generic Final Verdict Decoding (GFVD) which let I learn
if at least e auditors voted 1, where e is an integer in [1, n]. It uses a novel combination of Bloom filter
and combinatorics. It relies on our observation that a Bloom filter encoding a set of random values reveals
nothing about the set’s elements. We formally state it in Theorem 2 whose proof is given in Appendix B.

Theorem 2. Let S = {s1, ..., sm} be a set of random values picked uniformly from finite field Fp, where the
cardinality of S is public information and constant with regard to the security parameter |p| = λ. Let BF be a
Bloom filter encoding all elements of S. Then, BF reveals nothing about any element of S, beyond the public

information, except with a negligible probability in λ, i.e., with a probability at most |S|
2λ

.

Now we present an overview of this variant. In this variant also, the auditors initially agree on a secret
key used to generate a pseudorandom masking value. Each auditor Dj represents its verdict by a parameter,
such that if its verdict is 0, it sets the parameter to 0; but, if the verdict is 1, it sets the parameter to a
fresh pseudorandom value αj (instead of a random value used in Variant 1) where this pseudorandom value
is also derived from the above key. Thus, there would be a set A = {α1, ..., αn} from which Dj would pick αj
to represent its verdict 1. Each Dj masks its verdict representation by its masking value. It sends the result
to I. Also, (only) auditor Dn generates a set W of all combinations of auditors’ verdict 1’s representations
that satisfy the threshold, e. Specifically, for every integer i in [e, n], it computes the combinations (without
repetition) of i elements from A = {α1, ..., αn}. If multiple elements are taken at a time (i.e., i > 1), they
are XORed with each other. Note, Dn computes these values regardless of what a specific auditor votes. Let
W = {(α1 ⊕ ... ⊕ αe), (α2 ⊕ ... ⊕ αe+1), ..., (α1 ⊕ ... ⊕ αn)} be the result. For instance, if the total number
of auditors, n, is 3 and the threshold, e, is 2, then W = {(α1 ⊕ α2), (α2 ⊕ α3), (α1 ⊕ α3), (α1 ⊕ α2 ⊕ αn)}.
After that, it generates an empty Bloom filter and inserts all elements of W into this Bloom filter. Let BF

be the Bloom filter that encodes W ’s elements. It sends BF to I. Note that inserting the combinations into
BF ensures that the privacy of each vote’s representation (e.g., αj) is protected from I.

In GFVD, to decode and extract the final verdict, I XORs all masked verdict representations which
removes the masking values and XORs the representations. Let c be the result. If c = 0, then I concludes
that all auditors voted 0; in this case, it sets the final verdict to 0. If c 6= 0, then it checks if c ∈ BF. If it is,
then it concludes that at least the threshold of the auditors voted 1; in this case, it sets the final verdict to
1. Otherwise (c /∈ BF), it learns that less than the threshold of the auditors voted 1; in this case, it sets the
final verdict to 0. Figures 5 and 6 present the GPVE and GFVD protocols in detail.

Note also that the total number of the combinations (i.e., the cardinality of W ) is relatively small when
the number of auditors is not very high. In general, due to the binomial theorem, the cardinality of W is
determined as follows:

|W | =
n∑
i=e

n!

i!(n− i)!
(1)

For instance, when n = 10 and e = 6, then W ’s cardinality is only 386, according to Equation 1. In the
above scheme, instead of inserting the combinations into BF we could simply hash the combinations and give
the hash values to I. However, using a Bloom filter allows us to save considerable communication costs. For
instance, when n = 10, e = 6, and SHA-256 is used, then Dn needs to send 98816 = 386 × 256 bits to I,
whereas if they are inserted into a Bloom filter, then it only needs to send 22276 bits to I. Thus, by using a
Bloom filter, it can save communication costs by at least a factor of 4. We refer readers to Appendix C for
further discussion on the verdict encoding-decoding protocols.
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GPVE(k̄0, ID, wj, o, e, n, j)→ (w̄j, BF)

– Input. k̄0: a key of pseudorandom function PRF(.), ID: a unique identifier, wj: a
verdict, o: an offset, e: a threshold, n: the total number of auditors, and j: an
auditor’s index.

– Output. w̄j: an encoded verdict, and BF: Bloom filter.
Auditor Dj takes the following steps.

1. computes a pseudorandom value, as follows.
• if j < n : rj = PRF(k̄0, 1||o||j||ID).

• if j = n : rj =
n−1⊕
i=1

ri.

Note, the above second step is taken only by Dn.
2. sets a fresh parameter, w′j, that represents a verdict, as below.

w′j =

{
0, if wj = 0

αj = PRF(k̄0, 2||o||j||ID), if wj = 1

3. masks w′j as follows. w̄j = w′j ⊕ rj.
4. if j = n, computes a Bloom filter that encodes the combinations of verdict

representations (i.e., w′j) for verdict 1. In particular, it takes the following steps.
• for every integer i in the range [e, n], computes the combinations (without

repetition) of i elements from set {α1, ..., αn}. In the case where multiple
elements are taken at a time (i.e., i > 1), the elements are XORed with each
other. Let W = {(α1 ⊕ ... ⊕ αe), (α2 ⊕ ... ⊕ αe+1), ..., (α1 ⊕ ... ⊕ αn)} be the
result.
• constructs an empty Bloom filter. Then, it inserts all elements of W into this

Bloom filter. Let BF be the Bloom filter encoding W ’s elements.
5. outputs (w̄j, BF).

Fig. 5: Generic Private Verdict Encoding (GPVE) Protocol

GFVD(n, w̄, BF)→ v

– Input. n: the total number of auditors, w̄ = [w̄1, ..., w̄n]: a vector of all auditors’
encodes verdicts, and BF: Bloom filter.

– Output. v: final verdict.
A third-party I takes the following steps.

1. combines all auditors’ encoded verdicts, w̄j ∈ w̄, as follows. c =
n⊕
j=1

w̄j

2. checks if c is in the Bloom filter, BF.
3. sets the final verdict v depending on the content of c. Specifically,

v =

{
0, if c = 0 or c /∈ BF

1, if c ∈ BF

4. outputs v.

Fig. 6: Generic Final Verdict Decoding (GFVD) Protocol
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6.5 The PwDR Protocol

In this section, we present the PwDR protocol in detail.

1. Generating G’s and Dj’s Parameters: keyGen(1λ)→ (sk, pk).
Parties G and Dj take steps 1a and 1b respectively.

(a) calls Sig.keyGen(1λ)→ (skG, pkG) to generate secret key skG and public key pkG. It publishes pkG.
(b) calls ˜keyGen(1λ)→ (skD, pkD) to generate decrypting secret key skD and encrypting public key pkD.

It publishes the public key pkD and sends skD to the rest of the auditors.

Let sk := (skG, skD) and pk := (pkG, pkD). Note, this phase takes place only once for all customers.

2. Bank-side Initiation: bankInit(1λ)→ (T, pp, l).
Bank B takes the following steps.

(a) picks secret keys k̄1 and k̄2 for the symmetric key encryption scheme and pseudorandom function PRF

respectively. It sets two private statements as π1 = k̄1 and π2 = k̄2.
(b) calls SAP.init(1λ, adrB, adrC, πi)→ (ri, gi, adrSAP) to initiate agreements on statements πi ∈ {π1, π2}

with C. Let Ti := (π̈i, gi) and T := (T1, T2), where π̈i := (πi, ri) is the opening of gi. It also sets
parameter ∆ as a time window between two specific time points, i.e., ∆ = ti − ti−1. Briefly, it is used
to impose an upper bound on a message delay.

(c) sends π̈ := (π̈1, π̈2) to C and sends public parameter pp := (adrSAP, ∆) to smart contract S.

3. Customer-side Initiation: customerInit(1λ, T, pp)→ a.
Customer C takes the following steps.

(a) calls SAP.agree(πi, ri, gi, adrB, adrSAP) → (g′i, bi), to check the correctness of parameters in Ti ∈ T
and (if accepted) to agree on these parameters, where (πi, ri) ∈ π̈i ∈ Ti and 1 ≤ i ≤ 2. Note, if both
B and C are honest, then gi = g′i. It also checks ∆ in S, e.g., to see whether it is sufficiently large.

(b) if the above checks fail, it sets a = 0 and aborts. Otherwise, it sets a = 1. It sends a to S.

4. Generating Update Request : genUpdateRequest(T, f, l)→ m̂(C)
1 .

Customer C takes the following steps.

(a) sets its request parameter m(C)
1 as below.

• if it wants to set up a new payee, then it sets m(C)
1 := (φ, f), where f is the new payee’s detail.

• if it wants to amend the existing payee’s detail, it sets m(C)
1 := (i, f), where i is an index of the

element in l that should change to f .
(b) at time t0, sends to S the encryption of m(C)

1 , i.e., m̂(C)
1 = Enc(k̄1,m

(C)
1 ).

5. Inserting New Payee: insertNewPayee(m̂(C)
1 , l)→ l̂.

Smart contract S takes the following steps.

• if m̂(C)
1 is not empty, it appends m̂(C)

1 to the payee list l̂, resulting in an updated list, l̂.
• if m̂(C)

1 is empty, it does nothing.

6. Generating Warning : genWarning(T, l̂, aux)→ m̂(B)
1 .

Bank B takes the following steps.

(a) checks if the most recent list l̂ is not empty. If it is empty, it halts. Otherwise, it proceeds to the next
step.

(b) decrypts each element of l̂ and checks its correctness, e.g., checks whether each element meets its
internal policy stated in aux. If the check passes, it sets m(B)

1 = “pass”. Otherwise, it sets m(B)
1 =

warning, where the warning is a string that contains a warning’s detail concatenated with the string
“warning”.

(c) at time t1, sends to S the encryption of m(B)
1 , i.e., m̂(B)

1 = Enc(k̄1,m
(B)
1 ).

7. Generating Payment Request : genPaymentRequest(T, inf , l̂, m̂
(B)
1 )→ m̂(C)

2 .
Customer C takes the following steps.
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(a) at time t2, decrypts l̂ and m̂(B)
1 . Depending on the warning’s content, it sets a payment request m(C)

2

to φ or inf , where inf contains the payment’s detail, e.g., the payee’s detail in l̂ and the amount it
wants to transfer.

(b) at time t3, sends to S the encryption of m(C)
2 , i.e., m̂(C)

2 = Enc(k̄1,m
(C)
2 ).

8. Making Payment : makePayment(T, m̂(C)
2 )→ m̂(B)

2 .
Bank B takes the following steps.
(a) at time t4, decrypts m̂(C)

2 , i.e., m(C)
2 = Dec(k̄1, m̂

(C)
2 ).

(b) at time t5, checks the content of m(C)
2 . If m(C)

2 is non-empty, i.e., m(C)
2 = inf , it checks if the payee’s

detail in inf has already been checked and the payment’s amount does not exceed the customer’s
credit. If the checks pass, it runs the off-chain payment algorithm, pay(inf). In this case, it sets
m(B)

2 =“paid”. Otherwise (i.e., if m(C)
2 = φ or neither checks pass), it sets m(B)

2 = φ. It sends to S the
encryption of m(B)

2 , i.e., m̂(B)
2 = Enc(k̄1,m

(B)
2 ).

9. Generating Complaint : genComplaint(m̂(B)
1 , m̂(B)

2 , T, pk, auxf)→ (ẑ, ˆ̈π).
Customer C takes the following steps.
(a) decrypts m̂(B)

1 and m̂(B)
2 ; this results in m(B)

1 and m(B)
2 respectively. Depending on the content of the

decrypted values, it sets its complaint’s parameters z := (z1, z2, z3) as follows.

• if C wants to make one of the two below statements, it sets z1 =“challenge message”.

(i) the pass message (in m(B)
1 ) should have been a warning.

(ii) B did not provide any message and if B provided a warning, the fraud would have been
prevented.

• if C wants to challenge the effectiveness of the warning (in m(B)
1 ), it sets z2 = m||sig||pkG||

“challenge warning”, where m is a piece of evidence, sig ∈ auxf is the evidence’s certificate
(obtained from G), and pkG ∈ pk.

• if C wants to complain about the payment’s inconsistency, it sets z3 = “challenge payment”;
otherwise, it sets z3 = φ.

(b) at time t6, sends ẑ = Enc(k̄1, z) and ˆ̈π = ˜Enc(pkD, π̈) to S.

10. Verifying Complaint : verComplaint(ẑ, ˆ̈π, g, m̂, l̂, j, skD, aux, pp)→ ŵj.
Every Dj ∈ {D1, ...,Dn} acts as follows.
(a) at time t7, decrypts ˆ̈π, i.e., π̈ = ˜Dec(skD, ˆ̈π).
(b) checks the validity of (π̈1, π̈2) in π̈ by locally running the SAP’s verification, i.e., SAP.verify(.), for

each π̈i. It returns s. If s = 0, it halts. If s = 1 for both π̈1 and π̈2, it proceeds to the next step.
(c) decrypts m̂ = [m̂(C)

1 , m̂(C)
2 , m̂(B)

1 , m̂(B)
2 ] using Dec(k̄1, .), where k̄1 ∈ π̈1. Let [m(C)

1 ,m(C)
2 ,m(B)

1 ,m(B)
2 ] be

the result.
(d) checks whether C made an update request to its payee’s list. To do so, it checks if m(C)

1 is non-empty
and (its encryption) was registered by C in S. Also, it checks whether C made a payment request, by
checking if m(C)

2 is non-empty and (its encryption) was registered by C in S at time t3. If either check
fails, it halts.

(e) decrypts ẑ and l̂ using Dec(k̄1, .), where k̄1 ∈ π̈1. Let z := (z1, z2, z3) and l be the result.
(f) sets its verdicts according to the content of z := (z1, z2, z3), as follows.

• if “challenge message” /∈ z1, it sets w1,j = 0. Otherwise, it runs verStat(addS ,m
(B)
1 , l, ∆, aux)→

w1,j, to determine if a warning (in m(B)
1 ) should have been given (instead of the pass or no message).

• if “challenge warning” /∈ z2, it sets w2,j = w3,j = 0. Otherwise, it runs checkWarning(addS , z2,m
(B)
1 ,

aux′)→ (w2,j, w3,j), to determine the effectiveness of the warning (in m(B)
1 ).

• if “challenge payment” ∈ z3, it checks if the payment was made. If it passes, it sets w4,j = 1. If it
failes, it sets w4,j = 0. If “challenge payment” /∈ z3, it checks if “paid” ∈ m(C)

2 . If it passes, it sets
w4,j = 1. Otherwise, it sets w4,j = 0.

(g) encodes its verdicts (w1,j, w2,j, w3,j, w4,j) as follows.
i. locally maintains a counter, oadrc , for each C. It sets its initial value to 0.

ii. calls PVE(.) to encode each verdict. In particular, it performs as follows. ∀i, 1 ≤ i ≤ 4 :
• calls PVE(k̄0, adrC, wi,j, oadrc , n, j)→ w̄i,j.
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• sets oadrc = oadrc + 1.
By the end of this step, a vector w̄j of four encoded verdicts is computed, i.e., w̄j = [w̄1,j, ..., w̄4,j].

iii. uses k̄2 ∈ π̈2 to further encode/encrypt PVE(.)’s outputs as follows. ŵj = Enc(k̄2, w̄j).
(h) at time t8, sends to S the encrypted vector, ŵj.

11. Resolving Dispute: resDispute(T2, ŵ, pp)→ v.
Party DR takes the below steps at time t9, if it is invoked by C or S which sends π̈2 ∈ T2 to it.

(a) checks π̈2’s validity by locally running the SAP’s verification, i.e., SAP.verify(.), that returns s. If
s = 0, it halts.

(b) computes the final verdicts, as below.
i. uses k̄2 ∈ π̈2 to decrypt the auditors’ encoded verdicts, as follows. ∀j, 1 ≤ j ≤ n : w̄j = Dec(k̄2, ŵj),

where ŵj ∈ ŵ.
ii. constructs four vectors, [u1, ...,u4], and sets each vector ui as follows. ∀i, 1 ≤ i ≤ 4 : ui =

[w̄i,1, ..., w̄i,n], where w̄i,j ∈ w̄j.
iii. calls FVD(.) to extract each final verdict, as follows. ∀i, 1 ≤ i ≤ 4 : calls FVD(n,ui)→ vi.

(c) outputs v = [v1, ..., v4].

In this protocol, customer C must be reimbursed if the final verdict is that (i) the “pass” message or
missing message should have been a warning or (ii) the warning was ineffective and the provided evidence
was not invalid, and (iii) the payment has been made. Stated formally, the following relation must hold:(

(v1 = 1)︸ ︷︷ ︸
(i)

∨ (v2 = 1 ∧ v3 = 1)︸ ︷︷ ︸
(ii)

)
∧
(
v4 = 1︸ ︷︷ ︸

(iii)

)
Note, in the above PwDR protocol, even C and B that know the decryption secret keys, (k̄1, k̄2), cannot link
a certain verdict to an auditor, for two main reasons; namely, (a) they do not know the masking random
values used by auditors to mask each verdict and (b) the final verdicts (v1, ..., v4) reveal nothing about the
number of 1 or 0 verdicts, except when all auditors vote 0. Moreover, in the PwDR, we used PVE and FVD
only because they are highly efficient. However, it is easy to replace them with GPVE and GFVD.

Theorem 3. The above PwDR protocol is secure, with regard to definition 7, if the digital signature is
existentially unforgeable under chosen message attacks, the blockchain, SAP, and pseudorandom function
PRF(.) are secure, the encryption schemes are semantically secure, and the correctness of verdict encoding-
decoding protocols (i.e., PVE and FVD) holds.

7 Security Analysis of the PwDR Protocol

In this section, we present the proof sketch of the PwDR protocol’s security theorem, i.e., Theorem 3. To
prove the theorem, we show that the PwDR satisfies all security properties defined in Section 5. We first
prove that it meets security against a malicious victim.

Lemma 1. If the digital signature is existentially unforgeable under chosen message attacks, and the SAP
and blockchain are secure, then the PwDR scheme is secure against a malicious victim, with regard to
Definition 4.

Proof. First, we focus on event I :
(

(m(B)
1 = warning)∧ (

n∑
j=1

w1,j ≥ e)
)

which considers the case where B has

provided a warning message but C manages to convince at least the threshold of the auditors to set their

verdicts to 1, that ultimately results in
n∑
j=1

w1,j ≥ e. We argue that the adversary’s success probability in this

event is negligible in the security parameter. Specifically, due to the security of SAP, C cannot convince an
auditor to accept a different decryption key, e.g., k′ ∈ π̈′, that will be used to decrypt B’s encrypted message
m̂(B)

1 , other than what was agreed between C and B in the initiation phase, i.e., k̄1 ∈ π̈1. To be more precise,
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it cannot persuade an auditor to accept a statement π̈′, where π̈′ 6= π̈1, except with a negligible probability,
µ(λ). This ensures that honest B’s original message (and accordingly the warning) is accessed by every

auditor with a high probability. Next, we consider event II :
(

(
n∑
j=1

w1,j < e) ∧ (v1 = 1)
)

that captures the

case where only less than the threshold of the auditors approved that the pass message was given incorrectly
or the missing message could prevent the APP fraud, but the final verdict that DR extracts implies that
at least the threshold of the auditors approved that. We argue that the probability that this event occurs is
negligible in the security parameter too. Specifically, due to the security of the SAP, C cannot persuade (a)
an auditor to accept a different encryption key and (b) DR to accept a different decryption key other than
what was agreed between C and B in the initiation phase. More precisely, it cannot persuade them to accept
a statement π̈′, where π̈′ 6= π̈2, except with a negligible probability, µ(λ).

Now, we move on to event III :
(

(checkWarning(m(B)
1 ) = 1) ∧ (

n∑
j=1

w2,j ≥ e)
)

. It captures the case where

B has provided an effective warning message but C manages to make at least the threshold of the auditors

set their verdicts to 1, that ultimately results in
n∑
j=1

w2,j ≥ e. The same argument provided to event I is

applicable to this even too. Briefly, due to the security of the SAP, C cannot persuade an auditor to accept a
different decryption key other than what was agreed between C and B in the initiation phase. Therefore, all
auditors will receive the original message of B, including the effective warning message, except a negligible

probability, µ(λ). Now, we consider event IV :
(

(
n∑
j=1

w2,j < e) ∧ (v2 = 1)
)

which captures the case where

at least the threshold of the auditors approved that the warning message was effective but the final verdict
that DR extracts implies that they approved the opposite. The security argument of event II applies to this
event as well. In short, due to the security of the SAP, C cannot persuade an auditor to accept a different
encryption key, and cannot convince DR to accept a different decryption key other than what was initially
agreed between C and B, except a negligible probability, µ(λ).

Now, we analyse event V :
(
u /∈ Q ∧ Sig.ver(pk, u, sig) = 1

)
. This even captures the case where the

malicious victim comes up with a valid signature/certificate on a message that has never been queried to
the signing oracle. Nevertheless, due to the existential unforgeability of the digital signature scheme, the

probability that such an event occurs is negligible, µ(λ). Next, we focus on event VI :
(

(
n∑
j=1

w3,j < e)∧ (v3 =

1)
)

that considers the case where less than the threshold of the auditors indicated that the signature (in C’s
complaint) is valid, but the final verdict that DR extracts implies that at least the threshold of the auditors
approved the signature. This means the adversary has managed to switch the verdicts of those auditors who
voted 0 to 1. However, the probability that this even occurs is negligible as well. Because, due to the SAP’s
security, C cannot convince an auditor and DR to accept different encryption and decryption keys other
than what was initially agreed between C and B, except a negligible probability, µ(λ). Therefore, with only
a negligible probability the adversary can switch a verdict for 0 to the verdict for 1.

Moreover, a malicious C cannot frame an honest B for providing an invalid message by manipulating the
smart contract’s content, e.g., by replacing an effective warning with an ineffective one in S, or excluding
a warning from S. To do that, it has to either forge the honest party’s signature, so it can send an invalid
message on its behalf, or fork the blockchain so the chain comprising a valid message is discarded. In
the former case, the adversary’s probability of success is negligible as long as the signature is secure. The
adversary has the same success probability in the latter case because it has to generate a long enough chain
that excludes the valid message which has a negligible success probability, under the assumption that the
hash power of the adversary is lower than those of honest miners and due to the blockchain’s liveness property
an honestly generated transaction will eventually appear on an honest miner’s chain [21].

Now, we first present a lemma formally stating that the PwDR protocol is secure against a malicious
bank and then prove this lemma.
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Lemma 2. If the SAP and blockchain are secure, and the correctness of verdict encoding-decoding protocols
(i.e., PVE and FVD) holds, then the PwDR protocol is secure against a malicious bank, with regard to
Definition 5.

Proof. We first focus on event I :
(

(
n∑
j=1

w1,j ≥ e)∧ (v1 = 0)
)

which captures the case where DR is convinced

that the pass message was correctly given or an important warning message was not missing, despite at least
the threshold of the auditors do not believe so. We argue that the probability that this event takes place is
negligible in the security parameter. Because B cannot persuade DR to accept a different decryption key,
e.g., k′ ∈ π̈′, other than what was agreed between C and B in the initiation phase, i.e., k̄2 ∈ π̈2, except with a
negligible probability. Specifically, it cannot persuade DR to accept a statement π̈′, where π̈′ 6= π̈2 except with
probability µ(λ). Also, as discussed in Section 6.4, due to the correctness of the verdict encoding-decoding
protocols, i.e., PVE and FVD, the probability that multiple representations of verdict 1 cancel out each other
is negligible too, i.e., it is at most 1

2λ
. Thus, event I occurs only with a negligible probability, µ(λ). To assert

that events II :
(

(
n∑
j=1

w2,j ≥ e)∧ (v2 = 0)
)
, III :

(
(
n∑
j=1

w3,j ≥ e)∧ (v3 = 0)
)

, and IV :
(

(
n∑
j=1

w4,j ≥ e)∧ (v4 = 0)
)

occur only with a negligible probability, we can directly use the above argument provided for event I. To
avoid repetition, we do not restate them in this proof. Moreover, a malicious B cannot frame an honest C
for providing an invalid message by manipulating the smart contract’s content, e.g., by replacing its valid
signature with an invalid one or sending a message on its behalf, due to the security of the blockchain.

Next, we prove the PwDR protocol’s privacy. As before, we first formally state the related lemma and
then prove it.

Lemma 3. If the encryption schemes are semantically secure, and the SAP and encoding-decoding schemes
(i.e., PVE and FVD) are secure, then the PwDR protocol is privacy-preserving with regard to Definition 6.

Proof. We first focus on property 1, i.e., the privacy of the parties’ messages from the public. Due to the
privacy-preserving property of the SAP, that relies on the hiding property of the commitment scheme, given
the public commitments, g := (g1, g2), the adversary learns no information about the committed values,
(k̄1, k̄2), except with a negligible probability, µ(λ). Thus, it cannot find the encryption-decryption keys used

to generate ciphertext m̂, l̂, ẑ, and ŵ. Moreover, due to the semantical security of the symmetric key and
asymmetric key encryption schemes, given ciphertext (m̂, l̂, ẑ, ˆ̈π, ŵ) the adversary cannot learn anything
about the related plaintext, except with a negligible probability, µ(λ). Thus, in experiment ExpA1

3 , adversary
A1 cannot tell the value of γ ∈ {0, 1} significantly better than just guessing it, i.e., its success probability is
at most 1

2 + µ(λ).
Now we move on to property 2, i.e., the privacy of each verdict from DR. Due to the privacy-preserving

property of the SAP, given g1 ∈ g, a corrupt DR cannot learn k̄1. So, it cannot find the encryption-decryption
key used to generate ciphertext m̂, l̂, and ẑ. Also, public parameters (pk, pp) and token T2 are independent
of C’s and B’s exchanged messages (e.g., payment requests or warning messages) and Djs verdicts. Further-
more, due to the semantical security of the symmetric key and asymmetric key encryption schemes, given
ciphertext (m̂, l̂, ẑ, ˆ̈π) the adversary cannot learn anything about the related plaintext, except with a negli-
gible probability, µ(λ). Also, due to the security of the PVE and FVD protocols, the adversary cannot link
a verdict to a specific auditor with a probability significantly better than the maximum probability, Pr′,
that an auditor sets its verdict to a certain value, i.e., its success probability is at most Pr′ + µ(λ), even if
it is given the final verdicts, except when all auditors’ verdicts are 0. We conclude that, excluding the case
where all verdicts are 0, given (T2, pk, pp, g, m̂, l̂, ẑ, ˆ̈π, ŵ,v), adversary A3’s success probability in experiment
ExpA2

4 to link a verdict to an auditor is at most Pr′ + µ(λ).

Theorem 4. The PwDR protocol is secure according to Definition 7.

Proof. Due to Lemma 1, the PwDR protocol is secure against a malicious victim. Also, due to lemmas 2
and 3 it is secure against a malicious bank and is privacy-preserving, respectively. Thus, it satisfies all the
properties of Definition 7, meaning that the PwDR protocol is indeed secure according to this definition.

23



8 Evaluation

8.1 Asymptotic Cost Analysis

In this section, we analyse the PwDR protocol’s computation and communication asymptotic cost. Table 2
summarises the analysis result.

Table 2: The PwDR’s asymptotic cost. In the table, n is the number of auditors and e is the threshold.

Party
Setting

Computation Cost Communication Cost
e = 1 e > 1

Customer C X X O(1) O(1)

Bank B X X O(1) O(1)

Auditor D1, ...,Dn−1 X X O(1) O(1)

X O(n) O(1)
Auditor Dn

X O(
n∑
i=e

n!
i!(n−i)! ) O(

n∑
i=e

n!
i!(n−i)! )

Dispute resolver DR X X O(n) O(1)

Computation Cost. We first analyse C’s cost. In Phase 3, C invokes a hash function twice to check the
correctness of the private statements’ parameters. In Phase 4, it invokes the symmetric encryption once to
encrypt its update request. In Phase 7, it invokes the symmetric encryption twice to decrypt B’s warning
message and to encrypt its payment request. In Phase 9, it runs the symmetric encryption three times to
decrypt B’s warning and payment messages and to encrypt its complaint. In the same phase, it invokes
the asymmetric encryption once to encrypt the private statements’ opening. Therefore, C’s complexity is
constant, O(1), i.e., independent of n. Next, we analyse B’s cost. In Phase 2, it invokes the hash function
twice to commit to two statements. In Phase 6, it calls the symmetric key encryption once to encrypt its
outgoing warning message. In Phase 8, it also invokes the symmetric key encryption once to encrypt the
outgoing payment message. Thus, B’s complexity is O(1) too.

Next, we analyse each auditor’s cost. In Phase 10, each Dj invokes the asymmetric key encryption once
to decrypt the private statements’ openings. It also invokes the hash function twice to verify the openings. It
invokes the symmetric key encryption six times to decrypt C’s and B’s messages that were posted on S (this
includes C’s complaint). Recall, in the same phase, each auditor encodes its verdict using a verdict encoding
protocol. Now, we evaluate the verdict encoding complexity of each auditor for two cases: (a) e = 1 and
(b) e ∈ (1, n]. Note, in the former case the PVE is invoked while in the latter GPVE is invoked. In case
(a), every auditor Dj, except Dn, invokes the pseudorandom function once to encode its verdict. However,
auditor Dn invokes the pseudorandom function n−1 times and XORs the function’s outputs with each other.
Thus, in case (a), auditor Dn’s complexity is O(n) while the rest of auditors’ complexity is O(1). In case (b),
every auditor Dj, except Dn, invokes the pseudorandom function twice to encode its verdict. But, auditor
Dn invokes the pseudorandom function n−1 times and XORs the function’s outputs with each other. It also
invokes the pseudorandom function n times to generate all auditors’ representations of verdict 1. It computes

all y =
n∑
i=e

n!
i!(n−i)! combinations of the representations that meet the threshold which involves O(y) XORs.

It also inserts y elements into a Bloom filter that requires O(y) hash function evaluations. So, in case (b),
auditor Dn’s complexity is O(y) while the rest of the auditors’ complexity is O(1). To conclude, in Phase 10,
auditor Dn’s complexity is either O(n) or O(y), while the rest of the auditors’ complexity is O(1).

Now, we analyse DR’s cost in Phase 11. It invokes the hash function once to check the private statement’s
correctness. It also performs O(n) symmetric key decryption to decrypt auditors’ encoded verdicts. Now, we
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evaluate the verdict decoding complexity of DR for two cases: (a) e = 1 and (b) e ∈ (1, n]. In the former
case (in which FVD is invoked), it performs O(n) XOR to combine all verdicts. Its complexity is also O(n)
in the latter case (in which GFVD is invoked), with a small difference that it also invokes the Bloom filter’s
hash functions, to make a membership query to the Bloom filter. Thus, DR’s complexity is O(n).

Communication Cost. Now, we analyse the communication cost of the PwDR protocol. Briefly, C’s
complexity is O(1) as in total it sends only six messages to other parties. Similarly, B’s complexity is O(1)
as its total number of outgoing messages is only nine. Each auditor Dj sends only four messages to the
smart contract, so its complexity is O(1). However, if GFVD is invoked, then auditor Dn needs to send also
a Bloom filter that costs it O(y). Moreover, DR’s complexity is O(1), as its outgoing messages include only
four binary values.

8.2 Concrete Performance Analysis

In this section, we study the PwDR protocol’s concrete performance. As we saw in the previous section, the
customer’s and bank’s complexity is very low and constant; however, one of the auditors, i.e., auditor Dn,
and the dispute resolver have non-constant complexities. These non-constant overheads were mainly imposed
by the verdict encoding-decoding protocols. Therefore, to study these parties’ runtime in the PwDR, we
implemented both variants of the verdict encoding-decoding protocols (that were presented in Section 6.4).
They were implemented in C++. The source code of variants 1 and 2 is available in [2] and [3] respectively.
To conduct the experiment, we used a MacBook Pro laptop with quad-core Intel Core i5, 2 GHz CPU,
and 16 GB RAM. We ran the experiment on average 100 times. The prototype implementation uses the
“Cryptopp” library3 for cryptographic primitives, the “GMP” library4 for arbitrary precision arithmetic,
and the “Bloom Filter” library 5. In the experiment, we set the false-positive rate in a Bloom filter to 2−40

and the finite field size to 128 bits. Table 3 presents Dn’s and DR’s runtime for various numbers of auditors
in two cases; namely, when the threshold is 1 and when it is greater than 1. In the former case, we used the
PVE and FVD protocols. In the latter case, we used the GPVE and GFVD ones.

Table 3: The PwDR’s runtime (in ms). Broken-down by parties. In the table, n is the number of auditors and e is
the threshold.

Party
n = 6 n = 8 n = 10 n = 12

e = 1 e = 4 e = 1 e = 5 e = 1 e = 6 e = 1 e = 7

Auditor Dn 0.019 0.220 0.033 0.661 0.035 2.87 0.052 10.15

Dispute resolver DR 0.001 0.015 0.001 0.016 0.001 0.069 0.003 0.09

As the table depicts, the runtime of Dn increases gradually from 0.019 to 10.15 milliseconds when the
number of auditors grows from n = 6 to n = 12. In contrast, the runtime of DR grows slower; it increases
from 0.001 to 0.09 milliseconds when the number of auditors increases. Nevertheless, the overall cost is very
low. Specifically, the highest runtime is only about 10 milliseconds which belongs to Dn when n = 12 and
e = 7. It is also evident that the parties’ runtime in the PVE and FVD protocols is much lower than their
runtime in the GPVE and GFVD ones.

3 https://www.cryptopp.com
4 https://gmplib.org
5 http://www.partow.net/programming/bloomfilter/index.html
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Fig. 7: Parties’ runtime in the PwDR.

To compare the parties’ runtime, we also fixed the threshold to 6 (in GPVE and GFVD protocols) and
ran the experiment for different values of n. Figure 7 summarises the result. As this figure indicates, the
runtime of Dn and DR almost linearly grows when the number of auditors increases. Moreover, Dn has a
higher runtime than DR has, and its runtime growth is faster than that of DR.

9 Future Research

In this section, we highlight a set of future research directions in the context of APP frauds.

9.1 Improving Warnings’ Effectiveness

As we stated in Section 4.2, one of the determining factors in the process of allocating liability to APP
fraud victims is if they follow warnings. However, there exists no publicly available study on the effectiveness
of warnings in the context of APP frauds. There exists a comprehensive research line in determining the
effectiveness of warnings in general, e.g., in [13,19,26]. These traditional research line studies which factors
make warnings effective and how a warning recipient is attracted to and follows the warning message.
Nevertheless, in the context of APP frauds, there is a vital unique factor that can directly influence a
warning’s effectiveness. The factor is the ability of fraudsters to interact directly with their victims. This lets
a fraudster actively try to negate the effectiveness of a bank’s warning and persuade the warning recipient
to ignore the warning (and make payment). Such a factor was not (needed to be) taken into account in the
traditional study of warnings. The current high rate of APP frauds occurrence suggests that there exists a
huge room for improving warnings’ effectiveness. Thus, future research can investigate (via users studies)
and identify key factors that can improve the effectiveness of warnings in this context.

9.2 Protecting APP Fraud Victims of Alternative Payment Platforms

To date, there is no official report on the occurrence of APP frauds on any payment platforms (e.g., cryp-
tocurrency) other than regular banking. This can be due to a lack of an oversight organisation which collects
fraud-related data or due to a low rate of such frauds taking place in these platforms because these platforms
are not popular enough. Nevertheless, with the increase in the popularity of alternative payment platforms,
including “Central Bank Digital Currency”(CBDC), it is likely that APP fraudsters will target these plat-
forms’ users. Hence, another interesting future research direction would be to design secure dispute resolution
protocols to protect APP frauds victims in these platforms as well. Future solutions could also benefit from
smart contracts and delegate a portion of decision-making processes to them.
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9.3 Studying Users’ Compliance with the CRM Code’s Guidelines

Currently, customers are expected to comply with the CRM code’s guidelines. Users’ compliance with these
guidelines could help lower the rate of APP frauds occurrence. Also, if victims fail to comply with such
guidelines, then banks can claim that customers’ have been negligent which ultimately could cost the victims.
Such guidelines would be effective when they are known and followed by customers. Recently, Van Der Zee
[44] has conducted an interesting study to find out whether customers of the “Dutch Banking Association”
(in the Netherlands) are aware of the bank’s digital payments guidelines and if so, whether they comply with
these guidelines. But, there exists no systematic study to investigate whether customers are aware of and
comply with the CRM code’s guidelines. Therefore, another research direction is to fill in the above void.

9.4 Ensuring Security Against Exploitative Victims

Having in place a transparent deterministic procedure (e.g., the PwDR protocol) for evaluating victims’
requests for reimbursement could potentially create opportunities for exploitation. In particular, an honest
victim of an APP fraud that had been reimbursed in the past due to the payment system’s vulnerability
(e.g., an ineffective warning) may be tempted to exploit the same known vulnerability multiple times. Hence,
future research can investigate how to secure the online banking system against such exploitative victims.

10 Related Work

10.1 Authorised Push Payment Fraud

Anderson et al. [6] provide an overview of APP frauds and highlight that although the (CRM) code would
urge banks to accept more liability for APP frauds, it remains to be seen how this will evolve as fraudsters will
continuously try to figure out how bank systems can facilitate misdirection attacks. Taylor et al. [35] analyses
the CRM code from legal and practical perspectives. They state that this code’s proper implementation would
make considerable advances to protect victims of APP frauds. They also highlight this code’s shortcomings
and argue that the code is still ambiguous. Specifically, they refer to a part of the CRM code stating that for
a victim to be liable for reimbursement, it needs to take an appropriate level of care when an APP fraud has
been taking place, and argue that this code does not clarify (i) the level of care needed, and (ii) how to verify
that the victim has taken adequate steps. Our PwDR can be considered as a remedy for the above issues.
Moreover, Kjorven [24] investigates whether banks or customers should be liable for customers’ financial
loss to online frauds including APP ones, under Scandinavian and European law. The author states that
consumers are often left to deal with the losses caused by APP frauds. She concludes that this should change
and a larger portion of the losses should be allocated to financial institutions.

10.2 Dispute Resolution

In payment platforms, dispute resolution approaches can be broadly categorised into two classes, (a) cen-
tralised and (b) decentralised. In the former class, at any point in time, a single party tries to settle the
dispute. In particular, if a customer disputes having made or authorised a transaction, then the related bank
tries directly settle the dispute with the customer. However, the banks’ terms and conditions can complicate
the dispute resolution process. In 2000, Bohm et al. [11] analysed different terms of banks in the UK. They
argued that the approach taken by banks is unfair to their customers in some cases. Later, Anderson [7]
points out that the move to online banking led many financial institutions to impose terms and conditions on
their customers that ultimately would shift the burden of proof in dispute to the customer (who often cannot
provide the required proof due to lack of training or related skills). In the UK, if banks and customers cannot
settle a dispute directly, upon the customers’ request, the Financial Ombudsman Service would step in to
resolve the dispute. If the customer is not satisfied with the decision of this third party, it can take a step
further and take the matter to court, which will be a tedious process. Later, Becker et al. [9] investigate to
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what extent bank customers know the terms and conditions (T&C) they signed up to. Their study suggests
that only 35% fully understand T&C and 28% find important parts of T&C are unclear. They also point
out that payment regulations in the US are more customer-friendly and mostly are in customers’ favor in
disputes than those regulations in the EU and UK.

Now we turn our attention to the latter class, i.e., decentralised dispute resolution. After the invention of
the (decentralised) blockchain technology and especially its vital side-product, smart contract, researchers
considered the possibility of resolving disputes in a decentralised manner by relying on smart contracts. Such
a possibility has been discussed and studied by the law research community, e.g., in [14,30,31]. Moreover,
various ad-hoc blockchain-based cryptographic protocols have been proposed to resolve disputes in different
contexts and settings. We briefly explain a few of them. Dziembowski et al. [16] propose FairSwap, an efficient
protocol that allows a seller and buyer to fairly exchange digital items and coins. It is mainly based on a
Merkle tree and Ethereum smart contracts which can efficiently resolve a dispute between the seller and buyer
when the two parties disagree. Recently, researchers in [17] propose OPTISWAP that improves FairSwap’s
performance. Similar to FairSwap, OPTISWAP uses a Merkle tree and smart contract, but it relies on an
interactive dispute resolution protocol. Recently, Abadi et al. [5] propose a privacy-preserving protocol that
allows a fair exchange of digital coins and a certain digital service, called “proofs of data retrievability”.
To settle disputes between the seller and buyer efficiently, the protocol uses a combination of blockchain,
modified Merkle tree, symmetric key encryption, and a third-party arbiter. In the context of verifiable (cloud)
computation, Dong et al. [15] use a combination of smart contracts, game theory (incentivization), and a
third-party arbiter to design an efficient protocol that lets a client outsource its expensive computation to the
cloud servers such that it can efficiently check the result’s correctness. In the case of dispute, the protocol lets
the parties invoke the arbiter which efficiently settles the dispute with the assistance of the smart contract.
Green et al. [22] propose a variant of payment channel [33] (which improves cryptocurrencies’ scalability)
while preserving the users’ anonymity. In this scheme, in the case of a dispute between two parties, they can
send a set of proofs to a smart contract that settles the disputes between the two.

Although various dispute resolution solutions have been proposed, to date, there exists no secure (cen-
tralised or decentralised) solution designed to resolve disputes in the context of APP frauds. Our PwDR is
the first protocol that fills in the gap.

11 Conclusion

An APP fraud takes place when fraudsters deceive a victim to make a payment to a bank account controlled
by the fraudsters. Although APP frauds have been growing at a concerning rate, the victims are not receiving
a sufficient level of protection and the reimbursement rate is still low. Authorities and regulators have
provided guidelines to prevent APP frauds occurrence and improve victims’ protection, but these guidelines
are still vague and open to interpretation. In this work, to facilitate APP frauds victims’ reimbursement,
we proposed the notion of payment with dispute resolution. We identified the vital properties that such a
notion should possess and formally defined them. We also proposed a candidate construction, PwDR, and
proved its security. The PwDR not only offers transparency and accountability but also acts as a data hub
providing sufficient information that could help regulators examine whether the reimbursement regulations
have been applied correctly and consistently among financial institutions. We also studied the PwDR’s cost
via asymptotic and concrete runtime evaluation. Our cost analysis indicated that the construction is efficient.
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A Variant 1 Encoding-Decoding Protocol’s Proof

Theorem 1. Let set S = {s1, ..., sm} be the union of two disjoint sets S′ and S′′, where S′ contains non-zero
random values picked uniformly from a finite field Fp, S′′ contains zeros, |S′| ≥ c′ = 1, |S′′| ≥ c′′ = 0, and

pair (c′, c′′) is public information. Then, r =
m⊕
i=1

si reveals nothing beyond the public information.

Proof. Let s1 and s, be two random values picked uniformly at random from Fp. Let s̄ = s1 ⊕ 0⊕ ...⊕ 0︸ ︷︷ ︸
|S′′|

.

Since s̄ = s1, two values s̄ and s have identical distribution. Thus, s̄ reveals nothing in this case. Next,
let s̃ = s1 ⊕ s2 ⊕ ...⊕ sj︸ ︷︷ ︸

|S′|

, where si ∈ S′. Since each si is a uniformly random value, the XOR of them is a

uniformly random value too. That means values s̃ and s have identical distribution. Thus, s̃ reveals nothing
in this case as well. Also, it is not hard to see that the combination of the above two cases reveals nothing
too, i.e., s̄⊕ s̃ and s have identical distribution.
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B Variant 2 Encoding-Decoding Protocol’s Proof

Theorem 2. Let S = {s1, ..., sm} be a set of random values picked uniformly from finite field Fp, where the
cardinality of S is public information and constant with regard to the security parameter |p| = λ. Let BF be a
Bloom filter encoding all elements of S. Then, BF reveals nothing about any element of S, beyond the public

information, except with a negligible probability in λ, i.e., with a probability at most |S|
2λ

.

Proof. First, we consider the simplest case where only a single element of S is encoded in BF. In this case, due
to the pre-image resistance of the Bloom filter’s hash functions and the fact that the set’s element was picked
uniformly at random from Fp, the probability that BF reveals anything about the original element is at most
1

2λ
. Now, we move on to the case where all elements of S are encoded in BF. In this case, the probability that

BF reveals anything about at least an element of the set is |S|
2λ

, due to the pre-image resistance of the hash
functions, the fact that all elements were selected uniformly at random from the finite field, and the union
bound. Nevertheless, when a BF’s size is set appropriately to avoid false-positive without wasting storage,
this reveals the number of elements encoded in it, which is public information. Thus, the only information
BF reveals is the public one.

C Further Discussion on the Verdict Encoding-decoding Protocol

Recall that each variant of our verdict encoding-decoding protocol is a voting mechanism. It lets a third
party, I, find out if a threshold of the auditors voted 1, while (i) generating unlinkable verdicts, (ii) not
requiring auditors to interact with each other for each customer, (iii) hiding the number of 0 or 1 verdicts
from I, and (iv) being efficient. Therefore, it is natural to ask:

Is there any e-voting protocol that can simultaneously satisfy all the above requirements?

The short answer is no. Recently, a provably secure e-voting protocol that can hide the number of 1
and 0 votes has been proposed by Kusters et al. [25]. Although this scheme can satisfy the above security
requirements, it imposes a high computation cost, as it involves computationally expensive primitives such
as zero-knowledge proofs, threshold public-key encryption scheme, and generic multi-party computation. In
contrast, our verdict encoding-decoding protocols rely on much more lightweight operations such as XOR and
hash function evaluations. We also highlight that our verdict encoding-decoding protocols are in a different
setting than the one in which most of the e-voting protocols are. Because the former protocols are in the
setting where there exists a small number of auditors (or voters) which are trusted and can interact with
each other once; whereas, the latter (e-voting) protocols are in a more generic setting where there is a large
number of voters, some of which might be malicious, and they are not required to interact with each other.

Note that each variant of our verdict encoding-decoding protocol requires every auditor to provide an
encoded vote in order for I to extract the final verdict. To let each variant terminate and I find out the
final verdict in the case where a set of auditors do not provide their vote, we can integrate the following
idea into each variant. We define a manager auditor, say Dn, which is always responsive and keeps track of
missing votes. After the voting time elapses and Dn realises a certain number of auditors did not provide
their encoded vote, it provides 0 votes on their behalf and masks them using the auditors’ masking values.
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