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Abstract

Security of the many keyed hash-based cryptographic constructions (such as
HMAC) depends on the fact that the underlying compression function g(H,M)
is a pseudorandom function (PRF). This paper presents key-recovery algorithms for
7 rounds (of 12) of Streebog compression function. Two cases were considered, as a
secret key can be used: the previous state H or the message block M . The proposed
methods implicitly show that Streebog compression function has a large security
margin as PRF in the above-mentioned secret-key settings.
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1 Introduction

Hash function is one of the most commonly used cryptographic primitives.
Usually, the following three security properties are expected from a non-keyed
hash function:

1) preimage resistance (for a given value Hash(Msg) it is hard to obtain
Msg);

2) second preimage resistance (for a given message Msg it is difficult to
find a different Msg′ such that Hash(Msg) = Hash(Msg′));

3) collision resistance (it is hard to construct a nontrivial message pair
(Msg,Msg′) such that Hash(Msg) = Hash(Msg′)).

For hash functions based on the Merkle-Damg̊ard scheme [3, 2], sim-
ilar requirements are imposed on the underlying compression function
g(Hprev,M) = Hnext (where M is a fixed-length block of the hashed message,
Hprev and Hnext are the previous and the next internal states respectively).

Russian hash function Streebog [1], like many others, uses slightly mod-
ified Merkle-Damg̊ard approach. Its compression function is based on a 12-
rounds AES-like [22] block cipher in Miyaguchi-Preneel mode. The previous
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internal state is transformed to 13 round keys for the block cipher. The in-
ternal state consists of 8×8 bytes (n = 512 bits). The output length of hash
function can be either 512 or 256-bit.

Over recent years, Streebog (as well as its compression function and block
cipher) was subjected to a thorough analysis by many experts. We cite papers
devoted to the preimage [11, 12, 16, 9], the second preimage [7], various types
of collisions [10, 11, 12, 13, 14]. Many articles describe so-called «known-key»
(and «chosen-key») distinguishers [8, 13, 12, 17, 18] demonstrating some non-
random structural properties of the transformation (a compression function
or a block cipher) by constructing the corresponding set of input-output
pairs.

Keyless hash function is often used as part of the secret-key cryptoal-
gorithms. Some of the most well-known examples are HMAC and NMAC
[6]. The security of such algorithms depends significantly on the fact that the
compression function is a PRF. Let one of the arguments g(H,M) be a secret
key and an adversary can adaptively choose blocks for the other input and
observe outputs. It is clear that a simple key guessing with time-complexity
about t = 2n can be used to distinguish between g(H,M) and a random
function. In some cases, straightforward birthday-paradox distinguisher with
data-complexity q = 2n/2 can also be mounted. Is it possible to construct
more efficient algorithms for a specific instance of g(H,M)? In our paper we
consider round-reduced Streebog compression function.

To the best of our knowledge, there is only one paper [15] on the subject1.
The authors [15] utilize impossible differential properties to mount secret-
state (secret-IV) recovery attacks on 6.75-rounds.

Next, we present key-recovery algorithms for 7-round Streebog compres-
sion function.

In section 3 we describe algorithm for the secret-state case. The proposed
method is based on polytopic approach [5]. A naive algorithm for «generalized
birthday problem» [23] is also an important part of the method.

In section 4 the second secret-message case is considered. The rebound
technique [25] is used to obtain usable pairs of non-secret states. The trun-
cated differential [20] method is then applied to recover the secret message.

Comparative characteristics of algorithms are presented in table 1. Note
also that the initial data processing was not taken into account when calcu-
lating the complexity of attacks [15] (so t < q, «Time» is less than «Data»).

1For completeness, it is worth noting that key-recovery attack on HMAC-Streebog was presented in [24]
as the extension of the generic state-recovery attack on HMAC with an arbitrary Merkle-Damg̊ard hash-
function. Data-complexity of attack [24] is significantly more than HMAC allowable «provable secure»
bounds [6]. The attack also does not depend on the properties of the compression function.
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Our results provide an additional argument showing that Streebog com-
pression function (as a PRF) has a significant security margin.

Setting Rounds Time Memory Data Description

secret H

6.75 2399.5 2349 2483 [15]
6.75 2261.5 2205 2495.5 [15]
7 2421 2354 264 Section 3
12 2256 2256 2256 birthday-paradox distinguisher
12 2512 ∼ 2 key guessing

secret M 7 2240 220 2113 Section 4
12 2512 ∼ 2 key guessing

Table 1: Attacks on Streebog compression functions in secret-key settings. «Time» (t) in
g computations, «Memory» in n-bit blocks, «Data» (q) in chosen message-output pairs.

2 Definitions

Let F28 be a finite field. Each element of F28 can be interpreted as an
integer or binary vector. Denote v × v matrix space over F28 by Fv×v

28 (we
also use symbol Fv

28 as a vector space). Elements from Fv×v
28 will be denoted

by capital letters: A, B. Blocks of states and messages also belong to Fv×v
28 .

Elements of a matrix are indexed by 0 ≤ i, j ≤ v−1 (for example, a = A[0, 0]
is an element from the upper-left corner of the matrix). A[i, ·] is i-th row of
A, A[·, j] is j-th column of A.

Denote bitwise xor operation by symbol ⊕. This operation is defined
naturally for all the objects under consideration.

Let us have a sequence of blocks

B0, ..., Bd ∈ Fv×v
28 , d ∈ N,

then we refer to ∆B = B0 ⊕B1 ∈ Fv×v
28 as a difference and to a sequence

δB = (B0 ⊕B1, B0 ⊕B2, ..., B0 ⊕Bd) ∈
(
Fv×v

28

)d (1)

as a d-difference. Differences are indicated in bold text: δM , ∆K4.
The d-difference δB ∈

(
Fv×v

28

)d can also be interpreted as v×v «columns»
of d bytes each: δB ∈

(
Fd

28

)v×v, δB[i, j] ∈ Fd
28. If ∆B[i, j] 6= 0 (resp.

δB[i, j] 6= 0) then we say that the position (i, j) is active, otherwise inactive,
0 ≤ i, j ≤ v − 1.

The differential (resp. polytopic) trail is the sequence of the differences
(resp. d-differences) after each transformation in the cipher.

The transformations over Fv×v
28 (also over Fv

28 and F28) are denoted by sans
serif font: f, S, L. The notation LS indicates a composition of transformations,
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where S applies first (the reverse order «left-to-right» is used on the figures).
The inverse transformations are specified by f−1.

Streebog

Streebog compression function gN(H,M) employs AES-like XSPL-cipher
E in the Miyaguchi-Preenel mode

gN(H,M) = E(H ⊕N,M)⊕H ⊕M = R, where

H ∈ Fv×v
28 is the previous state of the hash function;

M ∈ Fv×v
28 is the message block;

N ∈ Fv×v
28 is the number of previously hashed bits;

R ∈ Fv×v
28 is the output (the next state of hash function).

The block cipher E consists of 12 rounds and a post-whitening key addi-
tion. Each round consists of four operations:

X – modulo 2 addition of an input block with a round key;
S – parallel application of the fixed bijective substitution s to each byte

of the state;
P – transposition of the state;
L – parallel application of the linear transformation l to each row of the

state. In [22], it was shown that l-transformation can be represented as the
MDS matrix L over F8×8

28 .
The block cipher formula is

E(K,M) = X[K13]LPSX[K12] . . . LPSX[K2]LPSX[K1](M).

The state size consists of n = 512 bits (v × v = 8× 8 bytes).
The key schedule uses round constants Ci ∈ Fv×v

28 , i = 1, 2, . . . , 12, and
round keys Ki ∈ Fv×v

28 , i = 1, 2, . . . , 13 are derived from a master key K0 as
follows:

K0 = H ⊕N, K1 = LPS(H ⊕N), Ki+1 = LPS(Ki ⊕ Ci), i = 1, 2, . . . , 12.

We also denote the intermediate states before X, S, P, L transformations
in i-th round as Xi, Yi, Zi, Wi correspondingly (X1 = M , Y1 = M ⊕ K1,
Z1 = S(Y1), W1 = P(Z1), etc.). The states in the key schedule are denoted
in a similar way HXi = Ki, HYi, HZi, HWi, where H = HX0, HX1 =
LPS(H ⊕N) etc.

We define an r-round compression function with r + 1 round keys as:

g(H,M) = (X[Kr+1]LPSX[Kr] . . . LPSX[K1](M))⊕H ⊕M.

Next, we also assume that N is an arbitrary constant C0.
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3 State as a secret key

Let the state H be a secret. An adversary knows a message M and an
output R.

g(H,M) = E(H,M)⊕H ⊕M = R.

Hence, the analysis is reduced to the block cipher

E(H,M)⊕H = R⊕M = R̃,

E(H,M)⊕H = X[Kr+1 ⊕H]LPSX[Kr] . . . LPSX[K1](M),

where the last round key is K̃r+1 = Kr+1 ⊕H.
A secure block cipher can be used as a secure PRF up to about q = 2n/2

queries [19]. Thus, any algorithm that requires more message-output pairs
can’t be considered as a direct threat to a PRF. The generic limit of the time
complexity t = 2n is defined by straightforward key guessing.

We propose the polytopic (multidimensional differential) based key-
recovery algorithm against 7-rounds. The method consists of the following
steps:

1. Choose structure of 264 messages M ;
2. Guess 64 bits of the first key K1. Partially encrypt all messages up to

the second L-transformation;
3. Choose about 27 blocks (of 264) and obtain d-difference δW2 with only

one active S-box;
4. Propagate δW2 forward to δW5[0, 0] by guessing 136 bits of the

intermediate states;
5. Propagate δR̃ backward to δX6[0, 0] by guessing 72 bits of the inter-

mediate states (similarly and independently for δX6[0, 1],...,δX6[0, 7]);
6. Check by using a naive algorithm for «generalized birthday prob-

lem» that δW5[0, 0] can be obtained via inverse linear transformation
l−1(δX6[0, 0], . . . , δX6[0, 7]);

7. If the check failed in the previous step then go back to step 2 and try
another bits of K1. If the check is passed then the key bits and the state bits
are guessed correctly.

Let’s look at the steps in more detail.
The first and second steps are designed to bypass the first round (figure 1).

We use the structure of 264 messages. One column in each message takes all
possible values (M [·, 0] in the picture). All other seven columns are arbitrary
constants (M [·, 1], ..., M [·, 7] in the picture). For any values of K1 and K2,
this will also be true for the columns in W2 = PSX[K2]LPSX[K1](M).
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Guess columnK1[·, 0] and compute rowK2[0, ·]. In this case, all the values
in column W2[·, 0] are exactly known.

Figure 1: Steps 1-2. Guessed bits are highlighted with green. Computed or known values
are denoted by gray cells. The formulas are given in reverse (left-to-right) notation.

Recall that for each of the 264 states W2 in the structure, columns
W2[·, 1], ..., W2[·, 7] are unknown constants. It is easy to find such 27 states
W

(0)
2 ,W (1)

2 ,...,W (d)
2 , d = 27 − 1 that d-difference

δW2 = (W
(0)
2 ⊕W

(1)
2 ,W

(0)
2 ⊕W

(2)
2 , ...,W

(0)
2 ⊕W

(d)
2 ) ∈

(
Fv×v

28

)d
will have only one active byte δW2[0, 0]. In other words, we select states
W2 so that the bytes W2[1, 0],...,W2[7, 0] are also constants. We choose the
corresponding outputs R̃ and compute d-difference δR̃.

The difference (and d-difference) is unambiguously propagated through
X, L and P transformations, but we have to guess the state bytes to propagate
the difference through S. Obviously, zero difference remains the same after
any transformation.

If the bytes fromK1[·, 0] are guessed correctly, then the trail from δW2 to
δR̃ must exist. Otherwise, it’s possible to check that there are no appropriate
trails (or almost none).

The d-difference δW2 propagates through L and X[K3] to δY3, which
contains eight active bytes δY3[0, ·] (see figure 2). Recall that this is true
due to the MDS property of L [22]. We guess Y3[0, ·] and obtain 264 possible
d-differences δZ3. Next, δY4 is computed by linear propagation through P,
L, X[K4]. All byte positions in δY4 are active.

By guessing only one column Y4[·, 0] we obtain 2128 possible d-differences
δZ4[·, 0]. The remaining seven columns in δZ4 are active but unknown to
us.
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Figure 2: Steps 4-5. Forward and backward d-difference propagations.

The d-difference δY5[0, ·] is calculated in the same way for each δZ4[·, 0].
Another byte Y5[0, 0] allows us to compute δZ5[0, 0] ∈ Fd

28 and δW5[0, 0] =
δZ5[0, 0].

Thus, we have 264 ·264 ·28 = 2136 values of δW5[0, 0], stored in the array
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Lfrw. Each d-difference corresponds to the sequence of bytes

Y3[0, 0], Y3[0, 1], . . . , Y3[0, 7], Y4[0, 0], Y4[1, 0], . . . , Y4[7, 0], Y5[0, 0].

Consider the backward direction. We know d-difference δR̃ and can com-
pute δZ7 by backward propagation through X[K8 ⊕H], L−1, P−1.

Guess one row of Z7 (bytes Z7[1, 0],...,Z7[1, 7] on figure 2). We obtain
264 values of corresponding column in δZ6. Guess one byte in Z6 (byte
Z[0, 1] on figure). Hence, we can compute 272 possible values of δY6[0, 1]
and δX6[0, 1] = δY6[0, 1].

Similar actions are performed in parallel for the other seven rows in δZ7.
As a result, we computed values of δX6[0, 0], δX6[0, 1], ..., δX6[0, 7].
Eight lists L0, L1, ...,L7 of 272 values (d-difference) each were stored.

Hypothetically, all (272)8 = 2576 values of δX6[0, ·] can be computed,
and therefore, δW5[0, ·] = l−1(δX6[0, ·]). Next, each variant of δW5[0, 0]
can be checked by searching among previously computed ones in the forward
direction. Obviously, this way is much expensive.

Let’s rewrite the expression for the inverse linear transformation

W5[0, ·]× L = X6[0, ·],

W5[0, ·] = X6[0, ·]× L−1,

W5[0, 0] = c0 ·X6[0, 0]⊕ c1 ·X6[0, 1]⊕ . . .⊕ c7 ·X6[0, 7],

where: L ∈ F8×8
28 (resp. L−1) is the MDS matrix of the linear transformation l

(resp. the inverse transformation l−1); c0, c1, . . . , c7 ∈ F28 are the coefficients
from the column of L−1. The matrix representation from [22] is implicitly used
here, but the expressions can be rewritten for the binary 64× 64 matrix.

The same equality is also true for the correct pairs of the differences
(d-differences)

δW5[0, 0] = c0 · δX6[0, 0]⊕ c1 · δX6[0, 1]⊕ . . .⊕ c7 · δX6[0, 7],

where ci·δX6[0, i] = (ci·∆x1, ci·∆x2, . . . , ci·∆xd), ∆xj ∈ F28, i = 0, ..., 7,
j = 1, ..., d, δX6[0, i] ∈ Fd

28. Therefore, we can proceed to the simpler
problem

Lfrw[pfrw] = c0 · L0[p0]⊕ c1 · L1[p1]⊕ . . .⊕ c7 · L7[p7], (2)

we should find the indexes p0, p1, ..., p7, pfrw so that the equation is correct, or
prove that there are no such indexes. We obtain some example of a generalized
birthday problem [23], but we have no task to find at least some «collision».
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Our goal is to build only one unique correct solution. All others should be
discarded. Because of this, we apply a naive approach.

Rearrange the components of the equation

Lfrw[pfrw]⊕c0 ·L0[p0]⊕c1 ·L1[p1]⊕c2 ·L2[p2] = c3 ·L3[p3]⊕. . .⊕c7 ·L7[p7]. (3)

Combine all lists from the left side (3) into one. We obtain an array Lleft

containing 2136 ·
(
272
)3

= 2352 elements (d-differences) from Fd
28. The hash

table is used to store items. The d-difference is the «key», the guessed state
bits are the «value». Hence, each item requires (8 · d + 352) < 3n bits of
memory to be stored (in total, less than 2354 n-bit states).

It’s not hard to see, that the right side (3) generates (272)5 = 2360 items
(Lright) that can be constructed dynamically by iterating through 360 bits.

If the arbitrary element from Lright is found in Lleft, then we assume that
the trail from δW2 to δR̃ exists and all the bits (K1[·, 0], Y3[0, ·], Y4[·, 0],
Y5[0, 0], Z6[0, ·], Z7) are guessed correctly. What is the average number of
false assumptions? We have 2360+352 = 2712 pairs of d-differences (8d-bit
values). Thus, under the hypothesis of a random and uniform distribution,
we get 264 · 2352 · 2360 · 2−d·8 = 2−240 ≈ 0 false solutions (the factor 264

emerges due to the key guessing at step 2, the probability of two random
d-byte vectors matching is 2−d·8). The value of d can be reduced, but this
does not significantly affect the estimation of the time complexity.

If no element from Lright is found in Lleft then we guess the next value of
K1[·, 0]. Steps 3-6 are repeated again.

The last round key K̃8 = K8 ⊕ H is computed via the known state Z7

and the corresponding output R̃

K̃8 = R̃⊕ LP(Z7).

In this way, the challenge is reduced to six rounds.
There is a different approach. The bytes of the other seven rows in Z6

are determined by parallel guessing of (Y5[0, 1], Z6[1, ·]), (Y5[0, 2], Z6[2, ·]),
..., (Y5[0, 7], Z6[7, ·]). The correct values are obtained via similar check of the
trail from δX6[i, ·] to δW5[i, 0] through inverse linear transformation l−1,
i = 1, 2, . . . 7. Next, we use simple relation Z7 = S(K7⊕LP(Z6)) and recover
the round key

K7 = S−1(Z7)⊕ LP(Z6).

The secret H is computed due to the invertibility of the key schedule.
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By the end, the time complexity of the key-recovery algorithm is

t = 264︸︷︷︸
K1[·,0]

·

16 · 264︸ ︷︷ ︸
step 2

+ d′ · 2136︸ ︷︷ ︸
step 4

+ d′ · 8 · 272︸ ︷︷ ︸
step 5

+ d′ · 2352︸ ︷︷ ︸
Lleft

+ d′ · 2360︸ ︷︷ ︸
Lright

+ 7 · d′ · 272︸ ︷︷ ︸
Z6 recovery

 ,

where d′ = d+1 = 27. In total, t ≈ 2431 Sbox computations. We estimate the
computation complexity of the 7-round compression function as 2·7·64 ≈ 210

Sbox computations (memory access operations). As a result, we get time
complexity t = 2431 · 2−10 = 2421. The proposed method requires less than
2354 (n-bit states) of memory. The data complexity is 264 chosen pairs (M,R).

The described algorithm is deterministic – the probability of success is
equal to one. Meanwhile, the most effective method [21] against 7-round
AES-128 uses a rare event (truncated differential).

Note also that the ideas of the proposed method can be applied to 6
rounds of AES-128 (similar to steps 3-7 above). We were able to build an
attack with time complexity about 2120 memory access operations and a
small amount of the chosen plaintexts q = d+ 1 < 25. Due to the relatively
high time complexity, we were unable to extend the attack to 7 rounds (as
in steps 1-2).

4 Message as a secret key

Let the message M be a secret

g(H,M) = E(H,M)⊕H ⊕M = R.

An adversary has a full control over the master-key H and the round keys
of the underlying block cipher

E(H,M)⊕M = R⊕H = R̃.

The function E(H,M) ⊕M with secret M is a secure PRF in the ideal
cipher model (i.e. if E is a family of random permutations). The proof can
be found, for example, in [4, Theorem 8.5]. In this case, there is no sim-
ple birthday-paradox distinguisher. Only brute-force key search is applicable
attack.

Consider the algorithm against seven rounds, which consists of two stages.
«Offline» stage. Following the rebound approach [25], about 2112 pairs

(H,H ′) are formed (q = 2113). Each pair generates a truncated differential
trail ∆K1 →∆K2 → . . .→∆K8 with the pattern

«8− 1− 8− 64− 16− 16− 64− 64» of the active S-boxes.
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«Online» stage. For each H, we get the output R̃ (resp. for H ′ and R̃
′).

The truncated related-key differential trail ∆M → . . . → ∆R̃ is realized
with a probability of at least 2−112. The pattern of the active S-boxes is
«8−0−8−0−16−16−64−64». For each pair (R̃, R̃

′
) we construct about

2128 possible values of the unknown internal state. Each solution is checked
directly. If the rare event actually occurred, then among the constructed
solutions there will be a true one.

In more detail.
We should construct the suitable round keys for the block cipher. Choose

arbitrary nonzero bytes in one column of the difference ∆HW3 (highlighted
with green on figure 3). Propagate forward to ∆HY4 = XL(∆HW3). Sim-
ilarly in the backward direction ∆HZ4 = P−1L−1(∆K5). We choose two
nonzero columns in ∆K5. Almost all bytes in ∆HZ4 are active. Thus, we
have 2558 · (216−10 ·255−1)8 ≈ 2191.6 pairs (∆HY4,∆HZ4), where (216−
10 · 255− 1) corresponds to the number of pairs (∆HW4[0][·],∆K5[0][·])
with the required pattern «8 – 2» (this number is derived from the proper-
ties of the MDS code or by direct computations). Solve equation S(HY4 ⊕
∆HY4) ⊕ S(HY4) = ∆HZ4. We get a total of about 2190.4 solutions (see
also Appendix A).

Figure 3: «Offline» stage. Truncated differential trail over round keys.
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Next, in so-called «outbound phase» we compute

K8 = LPSX[C7] . . . LPS(HY4) and K1 = X[C1]S
−1 . . .P−1L−1X[C4](HY4).

We expect almost all trails ∆K6 → ∆K7 → ∆K8 match the pattern «16
– 64 – 64». The trails with smaller number of active S-boxes are also appro-
priate. We assume that the part ∆K1 ←∆K2 ←∆K3 of the constructed
trail match the pattern «8 – 1 – 8» with probability 255/2558 ≈ 2−56 due to
the transition «1← 8».

As a result we obtain about 2134.4 = 2190.4−56 pairs (H,H ′).
We request (R̃, R̃

′
) for each (H,H ′) from the «oracle». Consider the prop-

agation of the differences with secret M (figure 4). Obviously, M = M ′ and
∆M = 0. Before the first non-linear layer ∆Y1 = ∆K1 ⊕∆M = ∆K1.
We hope that ∆HZ1 = ∆Z1. The transition ∆HY1 → ∆HZ1 is possi-
ble, hence, the probability ∆Y1 →∆Z1 is not less than (2/256)8 = 2−56. If
actually ∆HZ1 = ∆Z1 then

∆Y2 = ∆K2 ⊕∆X2 = LP(∆HZ1)⊕ LP(∆Z1) = 0.

Figure 4: «Online» stage. Truncated related-key differential trail. The first round.

The same is true for ∆Y3 = ∆K3 and «parallel» transitions
∆HY3 → ∆HZ3, ∆Y3 → ∆Z3 (figure 5). We also assume that
Pr (∆Z3 = ∆HZ3) ≥ 2−56.
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Figure 5: «Online» stage. The third round.

Thus, in the fifth round Pr(∆X5 = 0) = Pr(∆K5 = ∆Y5) ≥ 2−56·2.
So both differences ∆HW6 and ∆W6 have only two active columns each
(figure 6). Each row in ∆Y7 belongs to a set of 216 differences (not 264)

∆Y7[i, ·] = l(∆W6[i, 0])⊕l(∆HW6[i, 0]) = l(∆W6[i, 0]⊕∆HW6[i, 0]),

where the difference (∆W6[i, 0] ⊕ ∆HW6[i, 0]) contains no more than
two active bytes, i = 0, 1, ..., 7. For simplicity, it is assumed that all the
rows in ∆Y7 are active (this is not the case with a probability of only about
1− (1− 2−16)8 ≈ 2−13).

Figure 6: «Online» stage. Propagation to ∆Y7.

Recall that ∆K8 and the output difference ∆R̃ are known, ∆M = 0.
Therefore, the equation

S(∆Y7 ⊕ Y7)⊕ S(Y7) = P−1L−1(∆R̃⊕∆K8 ⊕∆M )

can be solved row-by-row. We expect an average (see also Appendix A)
2128 = 216·8 solutions Y7. The possible secret valueM is calculated by knowing
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Y7 and the round keys. The truth of each value M is checked on an arbitrary
input-output pair (H,R).

The time complexity of the proposed method is

t = 2128 · 264︸ ︷︷ ︸
”offline”

+ 2112 · 2128︸ ︷︷ ︸
”online”

≈ 2240 operations.

«Offline» and «Online» stages can be performed simultaneously. Hence, the
memory is only used to store the possible values of ∆Y7 and similar tables (no
more than 220 states). The described algorithm is probabilistic. We estimate
the lower bound of the success probability as 1− (1− 2−112)q/2 ≈ 1− e−1 ≈
0.63 with q = 2113 chosen pairs (H,R).

5 Conclusion

In this paper we examine Streebog compression function as preudo-
random function (PRF). Each of the two inputs (the previous state and
the message block) can be used as a secret parameter and these two cases
were considered.

We present two key-recovery algorithms for 7 rounds (of 12).

Setting Rounds Time Memory Data Method
secret state 7 2421 2354 264 impossible polytopic

secret message 7 2240 220 2113 truncated differentials

The security proofs of many keyed hash-based cryptoalgorithms rely on
PRF-properties of the underlying compression function. Our results demon-
strate a great security margin of the Streebog 12-round compression function
as a PRF in the above-mentioned secret-key settings. Thus, we have another
yet informal argument that Streebog-based keyed algorithms are secure.
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A Differential properties of Streebog’s S-box

The differential distribution table (DDT) is defined as follows
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DDT[∆x][∆y] = |{x : s(x)⊕ s(x⊕∆x) = ∆y}| ,
where s : F28 → F28, x,∆x,∆y ∈ F28.

The distribution of the number of solutions for Streebog’s S-box is shown
in the table below.

Solutions 0 2 4 6 8 256

Number 38235 22454 4377 444 25 1

For random non-zero ∆x,∆y ∈ F28\0 the probability that at least some
solution exists is

p = Pr (|{x : ∆y = s(x)⊕ s(x⊕∆x)}| > 0) =
22454 + 4377 + 444 + 25

2552
.

Let ∆x 6= 0, ∆y 6= 0, and it is also known that the equation

s(x)⊕ s(x⊕∆x) = ∆y

has a solution x. Then we get a conditional distribution of the number of
solutions (

2 4 6 8
22454

27300

4377

27300

444

27300

25

27300

)
.

The expected value of such a distribution (i.e., the average number of solu-
tions provided that at least one solution exists) is

1

27300
(2 · 22454 + 4 · 4377 + 6 · 444 + 8 · 25) = 216 − 28

27300
= 2.39 . . . = z.

The case «S(∆HY4 ⊕HY4)⊕ S(HY4) = ∆HZ4»
We assume, that ∆HZ4 is a random difference. We also know that

∆HZ4 consisting only of non-zero bytes.
Each row in ∆HY4 is also completely non-zero and belongs to a set of

255 elements.
The probability that a single byte matches is p ≈ 0.419. Hence a row

matches with a probability of p8 ≈ 2−10.
The probability that among the allowed ∆HY4[0, ·] there is a suitable

one 1− (1− p8)255 ≈ 2−2.2.
Therefore the probability for a match of all 8 rows equals to 2−2.2·8 =

2−17.6.
Each pair (∆HY4,∆HZ4) for which the equation is solvable gives an

average of z64 ≈ 280.4 solutions.
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We have (216− 10 · 255− 1)8 ≈ 2127.6 possible values ∆HZ4. As a result
we obtain about

2127.6+80.4−17.6 = 2190.4

valid states HY4.
The case «S(∆Y7 ⊕ Y7)⊕ S(Y7) = ∆Z7»
The case is similar to the previous one. We also assume, that ∆Z7 is a

random fully active difference.
Each row in ∆Y7 belongs to a set of u = (216 − 1) elements.
We expect that about u · p8 ≈ 26 suitable ∆Y7[i, ·] for each i = 0, . . . , 7.
In total, we have about (26)8 = 248 possible variants of ∆Y7.
Thus, the average number of solutions Y7 is equal to z64 · 248 ≈ 2128.
The assumptions and estimates presented in the Appendix were also ex-

perimentally verified using software from [14].
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