
K-XMSS and K-SPHINCS+:
Hash based Signatures with

Korean Cryptography Algorithms

Minjoo Sim1, Siwoo Eum1, Gyeongju Song1,
HyeokDong Kwon1, Kyungbae Jang1, HyunJun Kim1,

HyunJi Kim1, Yujin Yang1, Wonwoong Kim1,
Wai-Kong Lee2[0000−0003−4659−8979], and Hwajeong Seo1[0000−0003−0069−9061]

1IT Department, Hansung University, Seoul (02876), South Korea,
{minjoos9797, shuraatum, thdrudwn98, korlethean,

starj1023, khj930704, khj1594012, yujin.yang34,

dnjsdndeee, hwajeong84}@gmail.com
2Department of Computer Engineering,

Gachon University, Seongnam, Incheon (13120), Korea,
waikonglee@gachon.ac.kr

Abstract. Hash-Based Signature (HBS) uses a hash function to con-
struct a digital signature scheme, where its security is guaranteed by
the collision resistance of the hash function used. To provide sufficient
security in the post-quantum environment, the length of hash should
be satisfied. Modern HBS can be classified into stateful and stateless
schemes. Two representative stateful and stateless HBS are XMSS and
SPHINCS+, respectively. In this paper, we propose two HBS schemes: K-
XMSS and K-SPHINCS+, which replace internal hash functions of XMSS
and SPHINCS+ with Korean cryptography algorithms. K-XMSS is a
stateful signature, while K-SPHINCS+ is its stateless counterpart. We
also showcase the reference implementation of K-XMSS and K-SPHINCS+

employing LSH and two hash functions based on block ciphers (i.e.
CHAM and LEA) as the internal hash function. The reference code
is developed as a proof-of-concept, which can be optimized for better
performance using advanced implementation techniques (e.g. AVX2 and
NEON).

Keywords: XMSS · SPHINCS+ · Korean Cryptography Algorithms ·
Hash based Signatures · Software Implementations.

1 Introduction

Recently, interest in the security of existing cryptographic schemes against the
rising threat from quantum computers is emerging. Accordingly, quantum-resistant
cryptography has received attention by the “Post-Quantum Cryptography Stan-
dardization” initiated by the National Institute of Standards and Technology
(NIST) [1]. Hash-Based Signature (HBS) [2] schemes guarantee the security

2 Sim et al.

with collision resistance of the hash function used. HBS schemes are signature
schemes that rely solely on the existence of a secure one-way function (i.e. hash
function). HBS schemes were developed in the 1970s by Lamport [3] and ex-
tended by Merkle [4]. As the threat to quantum computers increases, interest in
the field is also on the rise. The hash function can respond to the threat of quan-
tum computers by increasing the output length. For this reason, HBS schemes
have attracted attention, and XMSS has proven the feasibility of HBS. Recently,
stateless SPHINCS [5], a variant of XMSS that does not need to maintain state,
has been proposed. For the NIST Post-Quantum Cryptography standardiza-
tion project, SPHINCS+, an improved version of SPHINCS, has been proposed.
SHA2, SHAKE, and HARAKA hash functions were used in the implementation
of XMSS and SPHINCS+.

In this paper, we show variants of XMSS and SPHINCS+ (i.e. K XMSS
and K-SPHINCS+) by replacing the current hash function setting with Korean
cryptography algorithms (i.e. LSH hash function and hash function based on
Korean block ciphers). Main contributions of this work are summarized below:

1.1 Contributions

K-XMSS The original XMSS produce HBS through the use SHA2 and SHAKE
hash functions. In response, we performed HBS using Korean hash functions (i.e.
LSH, CHAM, and LEA). This is why we call K-XMSS. Finally, we evaluate the
performance of XMSS and K-XMSS. As a result of the evaluation, among the
Korean hash functions, LSH had the best performance.

K-SPHINCS+ The original SPHINCS+ produces HBS using the SHA2, SHAKE,
and HARAKA hash functions. In response, we proposed to generate HBS using
Korean hash functions (i.e. LSH, CHAM, and LEA). This is why we call the algo-
rithm as K-SPHINCS+. Finally, we evaluate the performance of SPHINCS+ and
K-SPHINCS+. As a result of the evaluation, LSH showed the best performance
among Korean hash functions in K-SPHINCS+ as in K-XMSS.

Hash Function Based on Korean Block cipher We implemented a hash
function using Korean block ciphers. Tandem DM scheme was applied to use
the Korean block cipher as a hash function. Tandem DM can generate a hash
value having a length of 2m-bit by applying a block cipher algorithm using an
m-bit block length and a 2m-bit key length. In this approach, we implemented
hash functions using Korean block ciphers by applying LEA and CHAM Korean
block ciphers.

The summary of this paper is as follows:

– To the best of our knowledge, this is the first trial to implement Korean ver-
sion of hash-based cryptography schemes (i.e. K-XMSS and K-SPHINCS+)
with Korean hash functions.

K-XMSS and K-SPHINCS+ 3

– We modify the Korean block ciphers (i.e., CHAM and LEA) into hash func-
tions and employ them on the existing XMSS and SPHINCS+ to construct
proposed K-XMSS and K-SPHINCS+ HBS schemes.

– We evaluate the performance of the original XMSS, SPHINCS+, and pro-
posed algorithms (K-XMSS, K-SPHINCS+).

2 Related Works

2.1 eXtended Merkle Signature Scheme(XMSS)

XMSS [6] is a stateful Hash-Based-Signature (HBS) scheme based on the Merkle
Signature Scheme (MSS) [7], and uses WOTS+ [8] as the main building block.
XMSS uses one key pair (i.e. private key and public key), and the tree height is
H. XMSS can generate up-to 2H signatures, which is illustrated on Figure 1. To
ensure the security of XMSS, the used key pair (i.e. WOTS+ key) should not be
used again. Definitions of parameters used in XMSS are given in Table 1.

Table 1. Symbols of XMSS parameters.

Symbols Descriptions

w Winternitz parameter (w); Power of two; 16 in XMSS.

l Length in bytes

c Hash function chain

h Hash function

C Checksum

m Length of binary message

r Randomization elements; r = (r1, · · ·, rw−1)

	𝑵𝒐𝒅𝒆𝒊,	𝒋

𝑁𝑜𝑑𝑒!"#$,	'($𝑵𝒐𝒅𝒆𝟐𝒊,	𝒋(𝟏

⨁

𝑵𝒐𝒅𝒆𝟐𝒊#𝟏,	𝒋(𝟏

⨁𝑏𝑖𝑡𝑚𝑎𝑠𝑘-,	' 𝑏𝑖𝑡𝑚𝑎𝑠𝑘.,	'

ℎ

𝑗	 = 	𝐻

𝑗	 = 0

Fig. 1. Tree structure of XMSS; H is height of the tree; Bitmask is chosen uniformly
at random from (bl,j ||br,j ∈ {0, 1}2n).

4 Sim et al.

Winternitz One Time Signature (WOTS) WOTS scheme [7,9] efficiently
signs the message digest. The private key is used for signing, where the key
should not be used again. In other words, it is infeasible to sign more than one
message using a single private key. The signature size of WOTS is smaller than
Lamport OTS [3], because the message digest is signed at the same time. WOTS
is based on security against collision resistance of one-way hash function.

In the signature of WOTS, w representing the number of bits to be signed,
is used as a number of 2 or more. The signature key consists of a randomly
selected l-bit string of length n, where l is computed as Equation 1. Equation 1
is calculated based on the selected w.

l = l1 + l2, l1 = ⌈ m

log2(w)
⌉, l2 = ⌊ log2(l1(w − 1))

log2(w)
⌋+ 1 (1)

The m-bit message M is based on w, and the checksum C for the message
is calculated as Equation 2.

C =

l1∑
i=1

(w − 1−Mi) (2)

The hash function chain of WOTS is given in Equation 3. Using the signature
key l as an input to the function chain, we get the public key of WOTS as a
result of Equation 3.

ci(x) = hk(c
i−1(x)) = hk ◦ hk ◦ · · · ◦ hk ◦ hk, x ∈ {0, 1}n, c0(x) = x (3)

Winternitz One Time Signature Plus (WOTS+) WOTS+ [8] is a descen-
dent of WOTS scheme. WOTS+ increases the security by adding a random value,
r, as shown in the process of applying the one-way function h in the Winternitz
one-time signature technique. The function chain of WOTS+ is expressed by the
following Equation 4. Unlike WOTS, WOTS+ is based on the security against
secondary pre-image resistance.

ci(x) = hk(c
i−1(x)⊕ri) = (hk⊕ri)◦ (hk⊕r1)◦ · · ·◦ (hk⊕ri−2)◦ (hk⊕ri−1) (4)

XMSS uses a Merkle hash tree of height h and a binary L-tree of height
⌈log2l⌉ to reduce the size of the public key. Two trees are used to reduce 2H

WOTS+ verification keys to one XMSS public key. The overall structure can
be found in Figure 2. The public key of WOTS+ obtained using WOTS+ as
described above constructs the leaf of the L-tree, which is an unbalanced binary
tree. If there is no power of 2 leaves, a node without a right sibling is moved up
until it becomes a right sibling of another node. In the case of the L-tree, the
same structure as in Figure 1 is used. However, a bitmask different from that of
the Merkle tree is used. The upper leaf node of the L-tree created in this way
becomes the lower leaf node of the Merkle hash tree.

K-XMSS and K-SPHINCS+ 5

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

WOTS
signatures

⋯

⋯

l chains l chains l chains l chains

L-trees

Merkle
tree

height	h

2h WOTS	key	pairs	and	L-trees

height	
𝑙𝑜𝑔!(l)

w-1	steps

Fig. 2. Overview of L-trees and WOTS+ chains; Orange block indicates WOTS+ sig-
nature key, blue block indicates WOTS+ public key, yellow block indicates L-tree root,
and gray block indicates XMSS public key [10].

As a result, the root node of the Merkle tree becomes the final XMSS public
key. The bit length of this XMSS public key is 2(H+⌈log2l⌉+1)n, the signature
length of XMSS is (l +H)n, and the private key of XMSS is less than 2n.

2.2 SPHINCS+

SPHINCS+ [11] is a stateless hash-based signature framework that improves the
speed and signature size of SPHINCS [5]. The main contribution of SPHINCS+

is the introduction of FORS (i.e. few-time signature scheme). The second con-
tribution is the method of selecting leaf nodes. SPHINCS+ uses functions with
cryptographic properties and each parameter is defined as follows:

– h, d: parameters of Hyper-Tree
– b, k: parameters of FORS
– w: parameter of Winternitz

SPHINCS+ with specific parameters (n=192, h=51, d=17, b=7, k=45, and
w=16) showed 25% shorter signatures and 1.7× faster signature routines than
those of SPHINCS+. The structure of SHPINCS+ is shown in Figure 3. SPHINCS+

is a hyper-tree of height h and consists of d tree. The height of each tree is h/d,
where d is involved in the signature time and the signature size. In a hyper-tree,
layer(d − 1) has a single tree and layer(d − 2) has 2h/d trees. The root of the
layer(d − 2) tree is signed using the WOTS+ key pair in the layer(d − 1) tree.
Key pairs of Layer 0 WOTS+ are used to sign the FORS public key. Internal
values are determined through seed and bitmask, and the entire structure is
not computed. For this reason, it is referred to as a “virtual structure”. More
information on SPHINCS+ can be found in [11].

6 Sim et al.

Fig. 3. Overview of SPHINCS+ structure.

FORS: Forest of Random Subsets SPHINCS+ defines and uses FORS, a
few-time signature improved from HORST [11]. FORS is used to sign the ka
bit string, which is defined as the integer (k, t = 2a). The private key of FORS
consists of kt random bit values. It is divided by k set of t values. Overall,
it is deterministically derived from SK.seed using the pseudo-random function
(PRF) and the key address of the hypertree. To obtain the FORS public key, k
binary hash trees are constructed on the set of private key elements. Each t value
is used as a leaf node and k binary hash trees with height a are created. Figure
4 shows the hash tree of FORS with k = 6 and a = 3 for message (100 010 011

001 110 111). FORS uses H, which is addressed using the location of the FORS
key pair and the location of the function call within the tree. With WOTS+, the
root node compresses using the Tweakable hash function (Thk). Th is an efficient
function that maps α-bit message M to λ-bit hash value MD using a function
key of public parameter P and tweak T , and is expressed as Equation 5. The
FORS public key is an n-bit value. The signing process of FORS is as follows.
Given a message of ka bits, the k string of a bits is extracted. This bit string k
has the index of each single leaf node of FORS. The signature consists of these
nodes (indexes) and authentication paths (See Figure 4). The verifier validates
the public key by reconstructing the root using the certification path. Since
the public key is used as a message, it is implicitly verified with the WOTS+

signature.

Th : P × T × {0, 1}α → {0, 1}λ,
Th(P, T,M) = H(P ||T ||M)

(5)

XMSSMT XMSSMT [12] is an extension of XMSS. The original XMSS scheme
has a disadvantage in key generation. When the height (H) of the tree exceeds

K-XMSS and K-SPHINCS+ 7

Fig. 4. Hash tree of FORS with k = 6 and a = 3 for message {100 010 011 001 110
111}.

20, the execution time could be slow. To accelerate the performance, XMSSMT

uses a multi-layered XMSS tree called a hyper-tree. A hyper-tree consists of 2
or more XMSS trees, and all XMSS trees have the same height. The tree of the
lowest layer of the hyper-tree is used to sign the actual message. The rest of the
tree is used to sign the root node of the XMSS tree in each layer.

2.3 Hash Function

The hash function is used by XMSS and SPHINCS+ to construct the signa-
ture schemes. In this subsection, we briefly describe the LSH hash function and
another hash function based on Korean block cipher [13].

LSH Hash Function LSH is a high-speed hash function developed in Korea
that generates a hash value through initialization, compression, and comple-
tion processes. The initialization process padding the message and separating
the message by the size of the block. The compression process digests the mes-
sage through message expansion, addition, mixing, and word-by-word circulation
functions. The completion process outputs the result of the compression process
as a hash value of a specific length. Figure 5 shows the LSH hash function struc-
ture.

Hash Function Based on Block cipher An iterated hash function is de-
termined by an easily computable function h(·,·). The function h is called hash
round function. The input message is divided into block sizes, and the hash
round function calculates the next hash value using the divided message block
and the previous hash value. The number of iterations of the hash round func-
tion is repeated by the number of message blocks to obtain the final hash value.
Equation 6 is a modification of the iterative hash function.

8 Sim et al.

PAD

M(0) M(1) M(𝑙-1). . .

CF CF CFIV . . . FINn n16𝑤 16𝑤 16𝑤 16𝑤

32𝑤 32𝑤 32𝑤

Message m

Hash value
16𝑤

Fig. 5. Overview of LSH hash function.

Hi = h(Hi−1, Mi) i = 1, 2, ..n. (6)

Hash function based on block cipher uses a block cipher algorithm instead
of a hash round function [14]. Several structures have been proposed to output
the desired length of hash. We utilized the Tandem DM structure to implement
hash functions using block ciphers. Tandem DM structure applies a block cipher
algorithm using a key length of 2m-bit when the block length is m-bit, and the
output hash length is 2m-bit. Figure 6 shows the Tandem DM Scheme.

Encryption
key Generate

Hi-1

Encryption

key Generate

Hi

Mi
Wi

Gi-1 Gi

Fig. 6. 2m-bit hash round function based on m-bit block cipher with 2m-bit key.

In each iteration, two m-bit values (Gi and Hi) are computed from the pre-
vious values Hi−1 and Gi−1 and from an m-bit message block Mi as follows:

Wi = EGi−1,Mi
(Hi−1) (7)

Hi = Wi ⊕Hi−1 (8)

Gi = Gi−1 ⊕ EMi,Wi
(Gi−1) (9)

K-XMSS and K-SPHINCS+ 9

In this paper, LEA and CHAM block cipher algorithms were used for the
hash round function.

– LEA Block Cipher LEA is a lightweight block cipher developed in Korea
in 2013 to provide confidentiality not only in high-speed environments (e.g.
big data and cloud), but also in lightweight environments, (e.g. IoT devices
and mobile devices) [15]. The algorithm structure of LEA uses the ARX
structure, and encryption proceeds by dividing the input block into four
32-bit. The ARX structure uses Addition, Rotation, and XOR operations.
Figure 7 shows the LEA Block cipher structure. For the usage in the Tandem
DM Scheme, we implemented the hash function using the LEA-128-256.

𝑋![0] 𝑋![1]

⨁ ⨁

⊞

𝑅𝐾![0] 𝑅𝐾![1]

𝑋![2]

⨁

⊞

𝑅𝐾![3]⨁𝑅𝐾![2]

𝑋![3]

⨁

⊞

𝑅𝐾![5]⨁𝑅𝐾![4]

𝑋!"#[0] 𝑋!"#[1] 𝑋!"#[2] 𝑋!"#[3]

<<<9 >>>5 >>>3

Fig. 7. Overview of LEA block cipher.

– CHAM Block Cipher CHAM is a lightweight block cipher announced in
ICISC’17 [16]. Subsequently, the revised version of the CHAM Block cipher
was announced in ICISC’19 [17]. The revised CHAM differs from the original
CHAM only in the number of rounds, and the other specifications are iden-
tical. The CHAM has different operations of odd rounds and even rounds.
The CHAM of the generalized 4-branch Feistel structure is based on ARX
operations. Figure 8 shows the CHAM Block cipher Structure. To apply
this to the Tandem DM scheme, we utilized the CHAM-128-256.

3 Proposed Method

3.1 Hash Function Based on Block cipher

In this paper, we construct hash function based on the Tandem DM scheme and
utilize LEA and CHAM as the underlying block ciphers. Tandem DM scheme
and block ciphers are described in Section 2.3. Algorithm 1 is a description for
Figure 6.

The process of Algorithm 1 is as follows. The message received as input is
divided into block size to proceed by the number of iterations. The iteration
is repeated by the message length divided by the block size. In this paper, the
message length is assumed to be a multiple of the block size. Lines 4 and 7

10 Sim et al.

𝑋![0] 𝑋![1] 𝑋![3]𝑋![2]

𝑅𝑂𝐿"

𝑅𝑂𝐿#

𝑋!$#[0] 𝑋!$#[1] 𝑋!$#[3]𝑋!$#[2]

𝑅𝑂𝐿#

𝑅𝑂𝐿"

⊕

⊞

𝑖

⊕
𝑅𝐾[𝑖	𝑚𝑜𝑑	2𝑘/𝑤]

⊕

⊞

𝑖+1

⊕
𝑅𝐾[(𝑖 + 1)	𝑚𝑜𝑑	2𝑘/𝑤]

𝑋!$%[0] 𝑋!$%[1] 𝑋!$%[3]𝑋!$%[2]

Round
𝑖

Round
𝑖 + 1

Fig. 8. Overview of CHAM block cipher.

perform key initialization. In line 4, Gi for the upper bit and M [i] for the lower
bit are used as a key. In line 7, M [i] for the upper bit and W for the lower
bit are used as a key. The initialized key generates a roundkey to be used for
encryption through the Roundkey generate function. Then, Hi and Gi generate
an encrypted value through an Encryption function, and finally XOR with W
and Gi. If the CHAM and LEA algorithms are applied to the Roundkey generate
function and Encryption function, hash values can be obtained through LEA
and CHAM block ciphers.

Algorithm 1 Tandem DM scheme of hash function based on block cipher

Input: M (Message), ML (Message Length)
Output: Hash value
1: n = Block size

2: for i = 0 to ML/n do
3: M [i]: Size of Block size

4: Key ← Gi,M [i] (if G0, use a initialization Vector)

5: RK ← RoundKey Generate(Key)
6: W ← Encrytion(Hi, RK) (if H0, use a initialization Vector)

7: Key ←M [i],W
8: RK ← RoundKey Generate(Key)
9: TEMP ← Encrytion(Gi, RK) (if G0, use a initialization Vector)

10: Hi+1 ← Hi ⊕Wi

11: Gi+1 ← Gi ⊕ TEMP
12: end for
13: return Hash value← H,G

K-XMSS and K-SPHINCS+ 11

3.2 K-XMSS

In this paper, we replaced the hash functions (i.e. SHA2 and SHAKE) used in the
original XMSS to Korean cryptography algorithms (i.e. K-XMSS). In particular,
LSH hash function and hash function based on block cipher (CHAM and LEA)
are utilized, which are given in Section 2.3. We developed the code based on the
basic C reference 1 provided by [18].

Since XMSS has a tree height of h (10, 16, and 20), which determines the
number of signatures with one key pair, K-XMSS adopted same parameters and
structures utilized in XMSS. LSH provides the value of n only for 256 and 512.
The hash function based on CHAM and LEA provides the value of n only for
256. In other words, Korean hash functions do not support the n value of 192, in
K-XMSS. K-XMSS is performed on security parameters n of 256 and 512. Since
the Winternitz parameter w of the original XMSS is fixed to 16, the value of w
is also fixed to 16.

For the n = 32 setting, K-XMSS uses Equation 10, 12, and 13 for LSH-256,
CHAM, and LEA, respectively. For the n = 64 setting, K-XMSS use Equation
11 for LSH-512.

Functions used in K-XMSS are organized as follows:

– F: Key encryption hash function; F accepts and returns byte strings of length
n using keys of length n.

– H: Encryption hash function; H accepts n-byte keys and byte strings with
a length of 2n and returns an n-byte string.

– Hmsg: Encryption hash function;Hmsg accepts 3n-byte keys and byte strings
of arbitrary length and returns n-byte strings.

– PRF: Pseudo-random function; PRF has an n-byte key and a 32-byte index
as input and generates pseudo-random value (length n).

– toByte(x, n): n-byte string contains a binary representation of x (in the
order of big-endian bytes);

Parameters used in K-XMSS are organized as follows:

– KEY: Keys with length in bytes.

– M: Strings with length in bytes.

K-XMSS LSH256 For K-XMSS LSH256 we define:

F = LSH256(toByte(0, 32)||KEY ||M),
H = LSH256(toByte(1, 32)||KEY ||M),
Hmsg = LSH256(toByte(2, 32)||KEY ||M), and
PRF = LSH256(toByte(3, 32)||KEY ||M).

(10)

1 https://github.com/XMSS/xmss-reference

https://github.com/XMSS/xmss-reference

12 Sim et al.

K-XMSS LSH512 For K-XMSS-LSH512 we define:

F = LSH512(toByte(0, 64)||KEY ||M),
H = LSH512(toByte(1, 64)||KEY ||M),
Hmsg = LSH512(toByte(2, 64)||KEY ||M), and
PRF = LSH512(toByte(3, 64)||KEY ||M).

(11)

K-XMSS CHAM For K-XMSS CHAM256 we define:

F = CHAM(toByte(0, 32)||KEY ||M),
H = CHAM(toByte(1, 32)||KEY ||M),
Hmsg = CHAM(toByte(2, 32)||KEY ||M), and
PRF = CHAM(toByte(3, 32)||KEY ||M).

(12)

K-XMSS LEA For K-XMSS LEA256 we define:

F = LEA(toByte(0, 32)||KEY ||M),
H = LEA(toByte(1, 32)||KEY ||M),
Hmsg = LEA(toByte(2, 32)||KEY ||M), and
PRF = LEA(toByte(3, 32)||KEY ||M).

(13)

3.3 K-SPHINCS+

Similar to XMSS, we changed the hash functions (SHA2, SHAKE, and HARAKA)
used in the existing SPHINCS+ to Korean hash functions (LSH, CHAM, and
LEA). LSH is a Korean hash function, and CHAM and LEA are utilized for
the hash function. Since CHAM and LEA are block ciphers, they were used as
hash functions through the method described in Section 3.1. Notations used in
K-SPHINCS+ are organized as follows:

Functions used in K-SPHINCS+ are organized:

– Hmsg: Additional key hash function that can handle messages of arbitrary
length.

– PRF: Pseudo-random function for generating pseudo-random keys.
– PRFmsg: Using PRF to generate randomness for message compression.
– F: Second-preimage resistant, undetectable one-way function; Bn × B32 ×

Bn → Bn

– H: Second-preimage resistant hash function; Bn ×B32 ×B2n → Bn

– Tl: Weakable hash functions of the form mapping an ln-byte message M to
an n-byte hash value md; Bn ×B32 ×Bln → Bn

Parameters used in K-SPHINCS+ are organized:

– R: Random values generated based on messages and SK.prf
– PK.seed: Public seed which is part of the SPHINCS+ public key.
– PK.root: Top root node which is part of the SPHINCS+ public key.

K-XMSS and K-SPHINCS+ 13

– ADRS: 32-byte value representing an address in five defined structures.
– SK.prf : As one of the private key elements, the value used to deterministi-

cally generate a randomized value for a randomized message hash.
– Optrand: Value added when making the value ofR optionally non-deterministic.

We set the hash function parameters (i.e. n, h, d, k, w) used in SPHINCS+

to be the same in K-SPHINCS+. LSH is applicable to 256 and 512-bit outputs,
and CHAM and LEA are applicable to 256-bit outputs. For this reason, we
implement it based on hash function-256.

K-SPHINCS+−LSH256 For K-SPHINCS+−LSH256 we define:

Hmsg(R,PK.seed, PK.root,M) = LSH256(R||PK.seed||PK.root||M, 8m),
PRF(SEED,ADRS) = LSH256(SEED||ADRS, 8n),
PRFmsg(SK.prf,Optrand,M) = LSH256(SK.prf ||Optrand||M, 8n),

F(PK.seed,ADRS,M1) = LSHE256(PK.seed||ADRS||M1, 8n),
H(PK.seed,ADRS,M1||M2) = LSHE256(PK.seed||ADRS||M1||M2, 8n)
Tl(PK.seed,ADRS,M) = LSHE256(PK.seed||ADRS||M, 8n).

(14)

K-SPHINCS+−CHAM256 For K-SPHINCS+−CHAM we define:

Hmsg(R,PK.seed, PK.root,M) = CHAM(R||PK.seed||PK.root||M,m),
PRF(SEED,ADRS) = CHAM(SEED||ADRS, n),
PRFmsg(SK.prf,Optrand,M) = CHAM(SK.prf ||Optrand||M,n),

F(PK.seed,ADRS,M1) = CHAM(PK.seed||ADRS||M1, 8),
H(PK.seed,ADRS,M1||M2) = CHAM(PK.seed||ADRS||M1||M2, n)
Tl(PK.seed,ADRS,M) = CHAM(PK.seed||ADRS||M,n).

(15)

K-SPHINCS+−LEA256 For K-SPHINCS+−LEA we define:

Hmsg(R,PK.seed, PK.root,M) = LEA(R||PK.seed||PK.root||M,m),
PRF(SEED,ADRS) = LEA(SEED||ADRS, n),
PRFmsg(SK.prf,Optrand,M) = LEA(SK.prf ||Optrand||M,n),

F(PK.seed,ADRS,M1) = LEA(PK.seed||ADRS||M1, 8),
H(PK.seed,ADRS,M1||M2) = LEA(PK.seed||ADRS||M1||M2, n)
Tl(PK.seed,ADRS,M) = LEA(PK.seed||ADRS||M,n).

(16)

4 Evaluation

4.1 K-XMSS vs XMSS

XMSS was evaluated using test/speed.c included in the basic C reference code
provided by [18]. K-XMSS was also evaluated on the same setting by changing

14 Sim et al.

existing hash functions to Korean hash functions. Since K-XMSS performed only
for tree height h of 10, which determines the number of messages that can be
signed with one key pair. In XMSS, the smallest of the heights is 10. As described
in Section 3.2, only 256 and 512 are provided for the security parameter n of the
Korean hash functions. Therefore, n of K-XMSS is 256 and 512, the comparison
target XMSS was also measured only for n values of 256 and 512.

The performance evaluation of the proposed K-XMSS can be shown in Ta-
ble 2.

Table 2. K-XMSS evaluation on MacBook Pro (Intel i7-9750H@2.6GHz); GK: Gen-
erating Keypair, CS: Creating Signature, VS: Verifying Signature, mid: median, avg:
average, Algorithm indicates XMSS-[Hash function] [h] [n in bits].

Algorithm
GK CS VS

[sec] [109cc] mid [106cc] avg [106cc] mid [106cc] avg [106cc]

LSH 10 256 8.28 21.45 31.64 44.78 10.91 11.22

LSH 10 512 17.17 44.52 65.86 93.00 21.69 22.37

CHAM 10 256 47.67 123.60 179.06 256.36 63.39 63.63

LEA 10 256 103.65 268.68 388.48 553.72 154.91 152.95

Among Korean Hash Functions, it was confirmed that LSH was signifi-
cantly faster than other hash ciphers. The comparison was based on [Hash func-
tion] [10] [256].

The operation speed of the LSH Generating Keypair is 8.28sec, which is
5.75× faster than CHAM and 18.70× faster than LEA. The clock cycle of the
LSH Generating Keypair is 21.45 ∗ 109cc, which is 2.07× less than CHAM and
12.53× less than LEA.

The median clock cycle of LSH signature generation is 31.64 ∗ 106 cc, which
is 5.66× less than CHAM and 12.28× less than LEA. The average clock cycle of
the LSH generating signature is 44.78 ∗ 106 cc, which is 5.72× less than CHAM
and 12.36× less than LEA. As a result, with respect to signature generation, it
was confirmed that LSH was about 6 times less than CHAM and about 12 times
less than LEA.

The median clock cycle of LSH signature verification is 10.91×106 cc, which
is 5.81× faster than CHAM and 14.20× less than LEA. The average clock cycle
of an LSH verifying a signature is 11.22× 106 cc. 5.67× faster than CHAM and
13.63× less than LEA. As a result, with respect to signature generation, it was
confirmed that LSH was about 6 times less than CHAM and about 14 times less
than LEA.

In the case of CHAM and LEA, it is not a separate reference code, but a
code we implemented ourselves. LSH used the basic C reference code as it is.
Therefore, it is judged that LSH is faster than CHAM and LEA.

Lastly, LEA256 and LEA512 are approximately 2 times as fast as LEA256
for all processes. It was confirmed that if the security parameter n is twice as
large, all operation processes are also about twice as slow.

K-XMSS and K-SPHINCS+ 15

Table 3. Original XMSS evaluation on MacBook Pro (Intel i7-9750H@2.6GHz); GK:
Generating Keypair, CS: Creating Signature, VS: Verifying Signature, mid: median,
avg: average, Algorithm indicates XMSS-[Hash function] [h] [n in bits].

Algorithm
GK CS VS

[sec] [109cc] mid [106cc] avg [106cc] mid [106cc] avg [106cc]

SHA2 10 256 3.53 9.17 13.54 19.13 4.62 4.63

SHA2 10 512 7.22 18.71 27.47 39.19 9.58 9.79

SHAKE 10 256 1.50 3.89 5.62 8.20 2.16 2.23

SHAKE 10 512 6.19 16.04 28.40 36.00 8.07 8.15

The performance evaluation of proposed XMSS can be shown in Table 3.

In the case of the original XMSS, the same comparison was made based on
[Hash function] [10] [256]. As a result, it was confirmed that the performance of
SHAKE was about 2 times faster than that of SHA2. However, if the value of
the security parameter n is 512, the hash function that is twice as slow as the
operation process is SHA2. Therefore, we compare the performance of K-XMSS-
LSH, which had the best performance among XMSS-SHA2 and K-XMSS. As a
result of comparing the speed and clock cycle of the Generating Keypair, it was
confirmed that LSH was 2.35× sec slower than SHA2 and 2.34× cc more. In
the case of median and average of the clock cycle of Creating Signature, it was
confirmed that LSH was 2.34× cc and 2.34× cc more than SHA2, respectively. In
the case of median and average of the clock cycle of Verifying Signature, it was
confirmed that LSH was 2.36× cc and 2.42× cc more than SHA2, respectively.

As a result, it was confirmed that the LSH performance was about 2 times
lower than that of the SHA2 during the entire operation process. SHA2 in original
XMSS used the OpenSSL library, and in the case of SHAKE, the optimally
implemented code for XMSS operates. In contrast, for the hash function in our
implementation, K-XMSS, the hash function LSH uses a basic C reference and
uses hash function implementations based on block ciphers (CHAM and LEA).
In the case of CHAM and LEA, there was no reference code implemented as a
hash function using the existing block function. The implementation using the
[14] technique was used. The performance of K-XMSS can be further optimized
by adopting the optimal implementation code of the Korean hash function.

In this paper, it is confirmed for the first time that a hash function other than
the hash function used in XMSS can be applied to XMSS, and the feasibility of
the Korean hash function was confirmed. The performance of K-XMSS can be
further optimized by adopting the optimal implementation code of the Korean
hash function.

4.2 K-SPHINCS+ vs SPHINCS+

We evaluated the performance by replacing hash functions (i.e. SHAKE, SHA,
and HARAKA) used in the SPINCS+ with the Korean hash functions (i.e. LEA,
CHAM, and LSH). SPHINCS+ was evaluated based on the simple code of PQ-

16 Sim et al.

Clean project 2, and K-SPHINCS+ was evaluated by changing the hash function
to a Korean hash function (i.e. LSH, CHAM, and LEA) for the same code. Ta-
ble 4 and Table 5 show the performance evaluation results of K-SPHINCS+ and
SPHINCS+.

Table 4. K-SPHINCS+ evaluation on MacBook Pro (Intel i7-9750H@2.6GHz); GK:
Generating Keypair, CS: Creating Signature, VS: Verifying Signature, mid: median,
avg: average, Algorithm indicates SPHINCS+-[Hash function] [n in bits].

Algorithm
GK CS VS

avg[sec] mid[106cc] avg [sec] mid [109cc] avg [sec] mid [106cc]

LSH 256 0.04 108.54 0.88 2.29 0.02 60.88

CHAM 256 0.24 637.79 4.95 12.90 0.13 328.60

LEA 256 0.52 1,341.08 10.59 27.11 0.28 733.32

Among Korean hash functions, it was confirmed that LSH was significantly
faster than other hash ciphers. The comparison was based on SPHINCS+[Hash
function] [256].

The average speed of the LSH Generating Keypair is 0.04sec, which is 6.00×
faster than CHAM and 13.00× faster than LEA. The median clock cycle of the
LSH Generating Keypair is 108.54 ∗ 106cc, which is 5.88× faster than CHAM
and 12.36× faster than LEA. As a result, with respect to signature generation,
it was confirmed that LSH was about 6 times less than CHAM and about 12
times less than LEA.

The average speed of signature generation of LSH is 0.88sec, which is 5.63×
faster than CHAM and 12.03× faster than LEA. The median clock cycle of the
LSH Creating Signature is 2.29× 109cc, which is 5.63× faster than CHAM and
11.84× faster than LEA. As a result, it was confirmed that the LSH creating the
signature was about 6 times less than the CHAM and about 12 times less than
the LEA.

The average speed of the LSH Verifying Signature is 0.02sec, which is 6.50×
faster than CHAM and 14.00× faster than LEA. The median clock cycle of the
LSH Verifying Signature is 60.88×106cc, which is 5.31× faster than CHAM and
12.05× faster than LEA. As a result, it was confirmed that the LSH verifying
the signature was about 6 times less than the CHAM and about 13 times less
than the LEA.

As mentioned in XMSS, CHAM and LEA are not separate reference codes,
but directly implemented codes. LSH utilized the default C reference code.
Therefore, it is judged that LSH is faster than CHAM and LEA for the same
reason as XMSS.

The performance evaluation of proposed SPHINCS+ can be shown in Table 5.
In the case of the original SPHINCS+, the same comparison was made based

on [Hash function] [256].

2 https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

K-XMSS and K-SPHINCS+ 17

Table 5. Original SPHINCS+ evaluation on MacBook Pro (Intel i7-9750H@2.6GHz);
GK: Generating Keypair, CS: Creating Signature, VS: Verifying Signature, mid: me-
dian, avg: average, Algorithm indicates SPHINCS+-[Hash function]-256f-simple.

Algorithm
GK CS VS

avg[sec] mid[106cc] avg [sec] mid [109cc] avg [sec] mid [106cc]

SHA256 0.02 44.19 0.35 0.92 0.01 24.74

SHAKE256 0.04 94.63 0.07 1.79 0.02 49.19

HARAKA 0.03 89.10 0.76 2.01 0.02 52.70

As a result, it was confirmed that the performance of SHA2 was about 2 faster
than that of SHAKE or HARAKA. Therefore, the performance of SPHINCS+-
SHA2 and K-SPHINCS+LSH was compared. As a result of comparing the aver-
age speed and median clock cycle of the Generating Keypair, it was confirmed
that LSH was 2.00× sec slower than SHA2 and 2.46× cc more than SHA2.

In the case of the average speed and median clock cycle of Creating Signature,
it was confirmed that LSH was 2.51× sec slower than SHA2 and 2.49× cc more
than SHA2. In the case of median and average speed and median clock cycle of
Verifying Signature, it was confirmed that LSH was 2.00× sec slower than SHA2
and 2.46× cc more than SHA2. As a result, it was confirmed that the LSH
performance was about 2 times lower than that of SHA2 in the entire operation
process.

Original SPHINCS+ used code with optimal implementations of internal hash
functions (i.e. SHA2, SHAKE, and HARAKA) for SPHINCS+ to work. In con-
trast, our implementation used the same Korean hash function as K-XMSS. The
performance of K-SPHINCS+ can be further optimized for the same reasons as
K-XMSS.

5 Conclusion

We proposed K-XMSS, K-SHPINCS+, which changed the hash functions of
XMSS and SHPINCS+ (i.e. SHA2, SHAKE, and HARAKA) to Korean hash
functions (i.e. LSH, CHAM, and LEA). In particular, we used Korean block
ciphers (i.e. CHAM and LEA) by changing them into hash functions. Finally,
we evaluated the proposed K-XMSS and K-SPHINCS+. Internal hash functions
used in K-XMSS and K-SPHINCS+ used reference codes from LSH. However,
there was no code implemented for hash functions based on block ciphers CHAM
and LEA. Therefore, in this paper, we used the CHAM and LEA hash function C
code we implemented. As a result of the evaluation, LSH, CHAM, and LEA were
not optimized for XMSS and SPHINCS+. Their performance was evaluated to
be lower than that of SHA2, SHAKE, and HARAKA. This paper focused on the
feasibility of Korean variant of HBS. For that reason, the performance metric is
not optimal. In the current version, we utilized the basic C reference version. We
believe that this performance can be further optimized by adopting the optimal
implementation code (e.g. AVX2 or NEON).

18 Sim et al.

References

1. L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, Report on post-quantum cryptography, vol. 12. US Department of
Commerce, National Institute of Standards and Technology, 2016.

2. J. Buchmann, E. Dahmen, and M. Szydlo, Hash-based Digital Signature Schemes,
pp. 35–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

3. L. Lamport, “Constructing digital signatures from a one-way function,” tech. rep.,
Citeseer, 1979.

4. R. C. Merkle, “A certified digital signature,” in Conference on the Theory and
Application of Cryptology, pp. 218–238, Springer, 1989.

5. D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn, “SPHINCS:
practical stateless hash-based signatures,” in Annual international conference on
the theory and applications of cryptographic techniques, pp. 368–397, Springer,
2015.

6. J. Buchmann, E. Dahmen, and A. Hülsing, “XMSS-a practical forward secure sig-
nature scheme based on minimal security assumptions,” in International Workshop
on Post-Quantum Cryptography, pp. 117–129, Springer, 2011.

7. R. C. Merkle, “A digital signature based on a conventional encryption function,” in
Conference on the theory and application of cryptographic techniques, pp. 369–378,
Springer, 1987.

8. A. Hülsing, “W-OTS+–shorter signatures for hash-based signature schemes,” in
International Conference on Cryptology in Africa, pp. 173–188, Springer, 2013.

9. S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital signatures,” Journal
of Cryptology, vol. 9, no. 1, pp. 35–67, 1996.

10. W. Wang, B. Jungk, J. Wälde, S. Deng, N. Gupta, J. Szefer, and R. Niederhagen,
“XMSS and embedded systems,” in International Conference on Selected Areas in
Cryptography, pp. 523–550, Springer, 2019.

11. D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe,
“The SPHINCS+ signature framework,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 2129–2146, 2019.

12. A. Hülsing, L. Rausch, and J. Buchmann, “Optimal parameters for XMSS MT,”
in International Conference on Availability, Reliability, and Security, pp. 194–208,
Springer, 2013.

13. D.-C. Kim, D. Hong, J.-K. Lee, W.-H. Kim, and D. Kwon, “LSH: a new fast
secure hash function family,” in International Conference on Information Security
and Cryptology, pp. 286–313, Springer, 2014.

14. B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based on block
ciphers: A synthetic approach,” in Annual international cryptology conference,
pp. 368–378, Springer, 1993.

15. D. Hong, J.-K. Lee, D.-C. Kim, D. Kwon, K. H. Ryu, and D.-G. Lee, “LEA: A
128-bit block cipher for fast encryption on common processors,” in International
Workshop on Information Security Applications, pp. 3–27, Springer, 2013.

16. B. Koo, D. Roh, H. Kim, Y. Jung, D.-G. Lee, and D. Kwon, “CHAM: A fam-
ily of lightweight block ciphers for resource-constrained devices,” in International
Conference on Information Security and Cryptology, pp. 3–25, Springer, 2017.

17. D. Roh, B. Koo, Y. Jung, I. W. Jeong, D.-G. Lee, D. Kwon, and W.-H. Kim, “Re-
vised version of block cipher CHAM,” in International Conference on Information
Security and Cryptology, pp. 1–19, Springer, 2019.

K-XMSS and K-SPHINCS+ 19

18. A. Hülsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen, “XMSS: eX-
tended Merkle signature scheme,” in RFC 8391, IRTF, 2018.

	K-XMSS and K-SPHINCS+:Hash based Signatures withKorean Cryptography Algorithms

