
A Novel Framework for Explainable Leakage
Assessment

Si Gao and Elisabeth Oswald

Digital Age Research Center (D!ARC), University of Klagenfurt, Austria
firstname.lastname@aau.at

Abstract. Non-specific leakage detection (initially introduced as “Test
Vector Leakage Assessment”, short TVLA) plays a vital role in practice
because it detects (potential) leaks independently of assumptions about
the leakage model and any specific attack vector. However, the non-
specific nature means detected leaks might not be exploitable, and thus
the current state of the art is to employ a battery of specific attacks to
confirm the detection outcomes.
We propose a novel leakage assessment framework which enables to link
non-specific leakage detection outcomes with size of the key guess that
is necessary to exploit them. We therefore solve the problem of deciding
if or not a leak is exploitable without the need for specific attacks. Our
methodology furthermore enables (for a detected leak) to reveal the spe-
cific key bytes, and with that, it allows the construction of confirmatory
attacks. This novel approach is enabled by proposing to cast the leak-
age detection problem as the statistical task of building key-dependent
regression models: if such a model exists, then we know that the point
leaks, and depending on the size and nature of the model, we can judge
exploitability and provide a concrete attack vector.

Keywords: Leakage detection, Side channel analysis

1 Introduction

In the past two decades, the threat of side channel attacks has prompted academia
and industry to come up with different ways to evaluate real-world products. Two
evaluation philosophies have emerged: attack based evaluations (e.g. Common
Criteria [1] and EMVCo [2]) versus compliance testing (e.g. FIPS 140-3 which
is based on ISO 17825 [3]).

Attack based evaluation regimes require the evaluation lab to attempt “all”
of the most effective known attacks to date. With new attacks developed each
year, testing “all attacks”1 quickly becomes increasingly infeasible.

1 We use inverted commas here to indicate that in practice a sophisticated system
of negotiation between certification authorities, evaluation labs and manufacturers
who form the JHAS group takes place that results in a shared understanding of how
to rate and assess attacks [4, 5]

A compliance testing based approach based on a “non-specific” leakage detec-
tion test — called Test Vector Leakage Assessment (TVLA)—was proposed back
in 2011 by Cryptography Research, Inc. (now Rambus) [6]. Instead of testing
whether an attack (targetting a specific state that occurs during a cryptographic
operation) succeeds, TVLA searches for statistical evidence of any potential side
channel leak (i.e. it is not specific to any intermediate state). This is achieved via
the “fixed-versus-random” test: for a fixed key, side channel measurements are
taken for a fixed plaintext input and for random plaintext inputs. A statistical
procedure then decides if or not the two datasets come from the same distribu-
tion (if they do not, this indicates dependence on the plaintext and thereby side
channel leakage). An implementation is then seen as insecure if the fixed-versus-
random test shows any leakage.

At first glance, the non-specific detection based approach appears consider-
ably more attractive than doing lots of specific attacks: using this non-specific
detection, any type of leak is revealed with a single statistical procedure that re-
quires few assumptions about the device and little control over the inputs. Upon
closer inspection though, there is a serious shortcoming when relying (solely) on
this non-specific detection: a detected leak may not necessarily be exploitable in
an attack. For example, a leak that corresponds to a step in the second round
of a block cipher may require a key guess that is too large to be practical for an
attack.

Since the popularisation of the detection based evaluation paradigm, a num-
ber of papers have appeared that discuss and aim to improve the status quo,
often focussing on another shortcoming (the probability of false positives) [7, 8].
In addition to these, papers suggested using a test statistic with more advanta-
geous properties like χ2 [9] or by looking at tweaks to the fixed-versus-random
strategy leading to the fixed-versus-fixed strategy or moving towards more spe-
cific tests/attacks [10, 11]. Confirming TVLA results with specific attacks, im-
plies though that the evaluator has to revert back to trying different attacks
targetting different intermediate steps with different power models because none
of the existing tests is able to give any indication what leaks. Evidently then,
following non-specific detection with a barrage of attacks that require a large
amount of guessing what leaks and how to exploit it is, after all, against the
very intention of a non-specific leakage assessment.

1.1 Our contributions

In this paper, we propose a novel technique for leakage assessment that is the
first to bridge the gap between non-specific leakage detection tests and specific
attacks/tests without the need for guessing. It is based on a new application
of key-dependent leakage modelling [12] (using the F -test on so-called collapsed
inputs) as a non-specific leakage detection technique. This adaptation essentially
gathers evidence in relation to statistical hypotheses that seek to explain the
observed side channel data with key dependent models. If much of the observed
data can be explained, then the observed data must show key dependence, and
thus have side channel key leakage. Because of how we construct the test, we can

2

infer the size of the necessary key guess to do a practical side channel attack (our
assessment methodology explains if or not a detected leak is exploitable), and
set up an exemplar attack for any leak in question without having to randomly
guess target functions (our assessment methodology identifies exploitable key
bytes which can be linked easily with intermediate steps).

Our technique can be used as a stand-alone methodology, or it can be used as
a second step after a fixed-versus-random analysis. In the latter case, one would
subject any leakage point that is flagged by the fixed-versus-random test to our
novel method. Our method then clarifies if the leakage point depends on any key
material (and the amount of effort required to exploit it).

Limitations. Our methodology enables to explain if and how observed leaks
depend on secret key material, but it does not help to explain why the leakage
is there. The reasoning for why there is leakage typically has to look at the
interplay between the specific implementation option that we chosen and the
(micro)architectural leakage of a device. Thus whilst our test helps to narrow
down which intermediate computation step is the likely culprit of the leakage, it
cannot explain why it is the culprit.

Our method is, like the TVLA framework, set up as a univariate method:
if leakage depends on more than a single intermediate, then this cannot be
dealt with as such. Like within the context of the TVLA framework, one must
initially preprocess the traces, and only afterwards a fixed-versus-random test
can succeed: the same constraint holds for our method. We leave it as future
work to consider multivariate extensions.

Outline. The following section presents some basic background knowledge, in-
cluding non-specific leakage detections, regression modelling and how the F -test
can be utilised in side-channel applications. Section 4 describes our retrospective
leakage analysis step by step using a simulated AES as an explanatory example.
We further challenge our novel technique with measurements from a realistic
masking implementation in Section 5, testing its efficacy in both theoretical
and practical use cases. Section 6 demonstrates how our technique can be eas-
ily extended to higher order analyses, revealing valuable information as well as
deriving trivial attacks.

2 Preliminaries

For ease of reading, we recall several basic statistical facts about two pertinent
statistical tools: the Student t-test and the Fisher F -test. Alongside recalling
their principles, we introduce the notation that we maintain throughout this
papers.

2.1 Non-specific leakage detection

The adjective “non-specific” in the context of leakage detection means that the
statistical test does target any specific intermediate state of the device. This in

3

contrast to attacks or specific detection tests, which always work by targetting
a specific intermediate device state. Non-specific procedures hence promise to
detect all leaks, whereas any specific test can only ever confirm a leak that
directly relates to the targetted (specific) intermediate state.

The TVLA document [6] suggests using a “fixed-versus-random” test can
potentially ensure the test is not only non-specific about a target intermediate
state, but also not restricted by any device leakage model assumptions (e.g. the
Hamming Weight model). The document is in fact a compact set of engineering
guidelines that, alongside explaining the statistical method for leakage detection,
also touch on the setup and the data collection.

The statistical process works as follows. The evaluator collects two trace
sets: Qf and Qr. The set Qf consists of traces where the plaintext and key
to the cryptographic algorithm are fixed to some (arbitrary) value. The set Qr

consists of traces where the plaintexts to the cryptographic algorithm are chosen
randomly, but the key remains at a fixed value.

We denote by nf and nr the corresponding sample sizes (i.e. number of traces
in Qf/ Qr), µf and µr the sample means and s2f and s2r the sample variances.
TVLA now deploys Welch’s t-test, which is a univariate hypthesis test, with the
following hypotheses (H0 indicates no leak, which is the hypothesis that we are
trying to refute):

H0 : µf = µr

against
H1 : µf ̸= µr

To refute H0 one computes the t-test statistic and the corresponding degrees
of freedom v:

t =
µf − µr√
s2f
nf

+
s2r
nr

v =

(
s2f
nf

+
s2r
nr

)2

(
s2
f

nf

)2

nf−1 +

(
s2r
nr

)2

nr−1

The p-value can be derived from the quantile function of Student’s t-distribution:
smaller p-values give evidence to reject the null hypothesis which leads to con-
clude that a potential leakage is detected. The original proposal of [6] simplified
the computation of the quantile function by using the threshold t = ±4.5 [6],
which is close to p = 10−6 for a large number of traces.

Because the test statistic is univariate, application of it to traces where key
dependencies are only evident via multivariate statistics is doomed to fail. How-
ever, the well known mean-free product combining trick can circumvent this
issue, and has been successfully applied to masked implementations (e.g. [13]).

2.2 Regression modelling and F -test

To date, the primary use of regression modelling in the side channel community
has been to estimate the leakage distribution associated with some intermedi-

4

ate computation of a device (aka template building). We call the relevant n-bit
intermediate state as X, and any concrete value that X takes by x. A tem-
plate [14] for x is simply an estimate of the distribution of the leakage of x. For
instance, assuming the leakage of x follows a Gaussian distribution, the template
for x is given by N (µx, σ

2
x). Instead of estimating the parameters of a Gaussian

distribution, one can use linear regression to derive an equivalent model [15].
More specifically, any real valued function of X as can be written as a polyno-
mial L(X) =

∑
j βjuj(X). In this expression, the explanatory variables uj(x) are

monomials of the form
∏n−1

i=0 xji
i where xi denotes the i-th bit ofX and ji denotes

the i-th bit of j. Regression modelling then estimates the (linear) coefficients βj .
As a result the leakage model of X is now expressed as L(X) =

∑
j βjuj(X)

(and we evaluate it by setting X = x). Evidently, without any restriction on uj ,
there are exactly 2n parameters to estimate in the regression equation, which is
equivalent to estimating 2n Gaussian distributions. However, when only certain
parts of uj are allowed (e.g. we only include linear terms where HW (j) = 1),
then the regression approach requires the estimation of fewer parameters, which
leads to a better estimation quality given some fixed size trace set.

Evaluating the “quality” of a regression-built model is a well understood chal-
lenge: a commonly used metric is the coefficient of determination (R2), which
portrays the ratio of explained/unexplained data variance. However, the princi-
ple of Least Squares Estimation (LSE) implies that when adding a new explana-
tory variable uj to an existing model, R2 will increase. In other words, R2 is
not a sensible comparison metric between models that have different numbers
of parameters. A special case, that is of particular interest to us, is the case of
models that are “nested” (i.e. one restricted model consists of only a subset of
explanatory variables in the other full model).

Given two “nested” models, the F -test becomes the more suitable solution
to compare two regression models. Specifically, with N measurements, if we are
aiming to compare a full model Lf (X) =

∑
j βjuj(X), j ∈ Jf and a restricted

model Lr(X) =
∑

j βjuj(X), j ∈ Jr ⊂ Jf , we can construct the following
hypothesis test:

– H0: {uj |j ∈ Jf \ Jr} have coefficients 0 in Lf (X)
– H1: {uj |j ∈ Jf \ Jr} have non-zero coefficients in Lf (X)

Informally, if the test above rejects H0, we can conclude the missing explana-
tory variables have a significant contribution (i.e. Lf (X) is statistically superior
than Lr(X)). Denote zr = #{Jr}, zf = #{Jf} and the number of available
measurements as N , we compute the F-statistic as

F =

RSSr−RSSf

zf−zr
RSSf

N−zf

.

where the residual sum of squares (RSS) is defined as

RSS =

N∑
i=1

(y(i) − L̃(x(i)))2

5

where y(i)/x(i) represents the i-th measurement/the corresponding x.

The resulting value F follows the F distribution with (zf−zr, N−zf) degrees
of freedom. A p-value below a statistically motivated threshold rejects the null
hypothesis (i.e. the two models are equivalent) and hence suggests that at least
one of the removed variables is potentially useful.

Using the ratio between variance estimates from different models was identi-
fied as a potential distinguisher called NICV (normalized inter-class variance)[16],
which (as all distinguishers) can be used for specific leakage detection (or in other
words, a known key attack).

3 A Novel Non-Specific Leakage Assessment Framework
based on Key-Dependent Nested Models

Our framework consists of several steps, which we detail in the subsequent sec-
tions. These steps are refinements of the initial step, which identifies if there is
key-dependent leakage or not. So far instantiations of the non-specific leakage de-
tection method have all relied on the “fixed plaintext versus random plaintext”
principle and suggested different statistical tests, e.g. [9, 6, 8]. However a core
issue with the fixed-versus-random plaintext approach is that it targets plaintext
dependencies: of course, cryptographic algorithms early on mix the plaintext
and the key material, and thus side channel leaks reveal key dependencies in an
encryption round implicitly. However leakage from the key schedule for instance
cannot be revealed in any shape or form. Therefore in our framework we fix a
plaintext, and then perform a“fixed-key versus random-key” detection process.
We propose to rephrase the task of leakage detection as the task of deciding if
the observed leakage can be explained by key-dependent regression models. If
the data can be explained via a key-dependent regression model, then the data
must be key dependent, and therefore a side channel key recovery attack could
succeed.

Varying the key allows us to detect all key dependencies (the first step in our
framework), whilst ignoring pure plaintext dependencies (i.e. no secret involved).
However, this step alone does not give us any additional information about
whether or not an indicated leak is exploitable by an actual side channel attack.
Similar to conventional cryptanalysis, we consider a strategy as a valid attack
only if it requires a key guess that is smaller than the full key space. Different to
conventional cryptanalytic attacks, a side channel attack would not be considered
as practical if it requires an unrealistically large key guess.

In the next step of our framework we assess if or not the indicated leaks from
a non-specific detection test can be exploited in concrete attacks. We do this via
assessing “restricted regression models”. The last two steps of our framework
allows identifying the exact key bytes (that are leaking) and with that derive
some actual attack vectors. The first two steps of this framework deliver the non-
specific detection of exploitable key leakage. Thus they provide a sound basis on
which to reject (or accept) an implementation in an evaluation. The second two

6

steps enable to explain what leaks and how to exploit it. Therefore they are
helpful in identifying and fixing an implementation.

We now translate this informal description into mathematical formalism. Our
setting here is compatible with the assumptions of the original TVLA process: we
have control over the device (i.e. we control input and key, but not any internal
randomness), and we treat side channel traces by testing each trace point inde-
pendent of all other trace points (i.e. a univariate setting). Each of the following
subsections details one of the steps in our leakage assessment framework.

3.1 Non-specific detection via key-dependent models (step 1)

We consider the two nested key-dependent models:

Lf (K) =
∑
j

βjuj(K), j ∈ J

L0(K) = β0

The coefficients βj are estimated from the side channel traces via least square
estimation. The full model Lf fits a model as function of the key K to the
observed data. The reduced model L0 now contains only a constant term (i.e.
the null model), which represents the case where there is no dependency on
K. We test the null hypothesis H0 (both models explain the observed data
equally well) versus the alternative hypothesis H1 (Lf explains that observed
data better) with the F -test. If the F -test rejects H0 (i.e. no key dependence),
we conclude that the measurements are depending on K.

Whilst this is mathematically sound, the complexity of this test depends on
the size of K. For a modern cryptographic scheme, this usually leads to a practi-
cally infeasible space to work with (e.g. |K| = 2128). Recently, a workaround has
been proposed to deal with this problem [12]. This work shows that it is sound
to map the full key space into a smaller space, by collapsing each key byte to a
smaller space2. For instance a single key byte can be represented by just a single
bit of randomness, i.e. a byte is either 0 or 255 (all zeros or all ones), in which
case the corresponding collapsed full model captures interactions between differ-
ent key bytes. It is also possible to represent a key byte with more randomness
in which case the corresponding full model then captures interactions between
key bytes and within key bytes.

In the following analysis, we always use AES as our target cipher: as most
operations in AES work on a byte level, we collapse each key byte to a single bit
of randomness (the key independent model remains the same)

Lcf (Kc) =
∑
j

βjuj(Kc), j ∈ [0, 216)

L0(K) = β0

2 We adopt the notation and language from [12] although this trick can work for
arbitrary “chunks” of bits of key material.

7

Thus our non-specific leakage detection test consists of estimating Lcf and
L0, from the observed side channel traces (point by point), and testing H0 (the
models explain the data equally well) versus H1 (Lcf explains the data better
than L0) via the F -test. If our test finds enough evidence to reject H0 for a trace
point in this collapsed setting, we may conclude this point’s leakage relies Kc.
Considering Kc is a part of K, we can directly infer it also depends on K in the
original un-collapsed setting (formal analysis see [12]).

Note. The collapsing setting relies on the target cipher, implementation as well
as the acceptable complexity. The byte-to-bit strategy here suits AES’s nature,
while ensuring the complexity of the collapsed model is still acceptable (i.e.
216). Depending on the target ciphers and goals, users may choose a nibble-to-bit
strategy (e.g. nibble-based ciphers), or even a bit-by-bit, but divide-and-conquer
analysis.

Choice of statistical parameters We have yet to determine the number of
side channel observations that are necessary for this test to succeed with high
confidence. The confidence in test outcomes are reflected in the percentage of
false positives α (i.e. trace points are identified as leaky although they are not)
and the percentage of false negatives β (i.e. trace points that are leaky but that
are not identified).

All parameters in any statistical test interact with each other, thus the α, the
1 − β, the difference between the two statistical hypothesis (aka the effect size
f2), and the number of observations N , need to be considered jointly. Luckily,
the F -test is extremely widely used and there are explicit formulae for the α and
β [17]. With these it is possible to set the decision threshold for rejecting the
null hypothesis:

Fth = QF (df1, df2, 1− α) ,

where QF is the quantile function of the central F distribution. Considering
the tested full model contains zf estimated parameters, while the null model L0

always contains only one parameter , these two degrees of freedom are defined
as:

df1 = zf − 1, df2 = N − zf .

Thus, the statistical power 1− β can be computed as

β = Fnc(Fth, df1, df2, λ),

λ = f2(df1 + df2 + 1),

where Fnc is the cumulative distribution function of the non-central F distribu-
tion.

Given a selected set of (α,N, f2), one can verify if the underlying statistic
power (1 − β) reaches his/her expectation. As the case in compliance based
testing based on TVLA, users may initially agrees on the number of traces, e.g.

8

N = 10.000 for FIPS Level 3 or N = 100.000 for FIPS Level 4, or N = 1.000.000
for a higher level of security as would be aimed for in CC [1], and also an
acceptable level of α. Users can then determine if the statistical power 1− β is
acceptable via the supplied equations.

Take our leakage detection test above for instance, we compare the collapsed
full model and the null model, where df1 = 216−1 and df2 = N−216. For a small
effect size f2 = 0.02 [17] with N = 1.000.000, α = 10−6, we have 1−β ≈ 1, which
suggests our test has highly effective for many realistic side channel leaks [18].

Note. As explained before, when examining an implementation with a coun-
termeasure such as masking, any univariate test is likely to be ineffective when
applied naively. In such a scenario, the traces must be processed prior to any
statistical evaluation, by the so-called centred product combining technique [19]
(multivariate case) or centred moment technique [13] (univariate case).

3.2 Degree Analysis (step 2)

In contrast to existing leakage detection processes, our statistical tooling enables
us to determine how large a key guess is required to exploit an identified leak.
We can do this by further restricting the degree of the key-dependent model that
we are estimating from the side channel observations.

Lcf (Kc) =
∑
j

βjuj(Kc); j ∈ [0, 216)

Lcr(Kc) =
∑
j

βjuj(Kc); j ∈ [0, 216), deg(uj(Kc) ≤ d)

We test again H0 (both models explain the data equally well) versus H1 (Lcf

explains the data better than Lcr). If there is enough evidence to refute H0, we
can conclude that a model with only d or fewer key bytes suffices to explain the
data. By successively reducing d we can therefore determine the maximum key
guess that is required to explain the observed side channel data.

Note. Restricting d implies that all combinations of at most d key elements are
included in the model. It is also possible to narrow down a specific combination
of d key elements. In the latter case we need to test

(
16
d

)
different models (cor-

responding to any d combinations of key bytes. In order to reduce the implied
effort, it is advisable to consider what key guesses are practically possible. In the
literature there exist attacks that exploit key guesses up to 32 bits [20]. Assum-
ing that we are considering key bytes, then, we should definitely consider d ≤ 4.
When allowing for some extra margin, it seems sensible to consider d ≤ 6, or if
particularly conservative to consider d ≤ 8.

9

Algorithm 1 Subkey Identification and Mapping to Attackable State

Require: the collapsed master key K
Require: Corresponding traces Tr
Require: Degree d
1: for i = 0 to 15 do ▷ Check for not contributing subkeys
2: K′ = K − {ki}
3: F -test with X ′ = K′ and X = K
4: if pv > α then
5: K = K′

6: end if
7: end for
8: l = |K|
9: J = [0, 1, ..., 2l − 1]
10: Sort J with the ascending order of the Hamming Weight
11: Delete any j from J if HW (j) > d ▷ Restrict order to d
12: while J is not empty do
13: j = J [0], construct uj(K)
14: Specific test on uj(K), producing a statistic p-value pv
15: if pv < α then
16: Find one potential leakage, return j
17: end if
18: Delete j from J
19: end while

3.3 Subkey Identification (step 3)

Using the technique of further restricting the reduced model (as hinted at in the
note before), we can narrow down precisely which and how many key bytes are
required to explain an identified leak. We do this by placing further constraints
on the reduced model, e.g. by restricting its degree and including or excluding
specific terms (corresponding to specific key bytes). We then test this further
reduced model against the collapsed full model to check if these further restric-
tions are relevant or not. Algorithm 1 provides a high level description of this
processes: we initially check if any subkey does not contribute to the overall joint
leakage, and then based on the supplied maximum degree d we remove any term
that exceeds the maximum degree to narrow in on the subkeys that actually
leak. The while loop then tests every remaining term if it individually explains
leakage better than the null model (if so, it become a candidate for a specific
attack in the next step).

Note. In modern encryption schemes it is apparent from the description how
key bytes interact, and at which point the full secret key has been mixed in with
the plaintext, e.g. in AES it takes two rounds to achieve full diffusion of the key.
Consequently, in the inner encryption rounds leaks are often non-exploitable in
any efficient way. Clearly this knowledge is algorithm specific, but public, and it
can be taken into account when identifying subkeys.

10

3.4 Converting to specific attacks(step 4)

If an evaluation regime requires an evaluator to demonstrate an actual attack
against an identified leakage point (i.e. a point that was confirmed to depend on
the key using our statistical tooling), we can now establish a relatively easy link
towards a concrete profiled attack. More specifically, for any j found in Alg. 1,
we can trivially build templates for all relevant subkey (i.e. at most 8d-bit) and
perform matching those key bytes in a realistic attack (as shown in Section 5.2).

However, considering there is little cipher-specific construction in this trivial
attack, its efficiency is often far from ideal. We argue that in practice, a more
sensible solution is taking advantage of the information revealed by j (alongside
users’ knowledge about the cipher and implementation) to design more efficient
attacks. Specially, following the working principle of the encryption algorithm,
we can link the relevant key bytes with involved plaintext bytes. Furthermore
there will be only a very limited number of intermediate computation steps that
depend on the identified combination of plaintext bytes and key bytes, which
enables us to have a short list of potential target intermediate states.

Consequently, we can now construct a specific attack by either attacking the
assumed intermediate states with known power models, or, if the size of the
key guess allows this, directly performing template matching for all relevant key
bytes. In order to verify the derived attack, we switch back to the typical“fixed
secret key, chosen plaintext” scenario where an “attack” trace set can be gen-
erated in a more practical setup (i.e. without varying key or collapsed inputs).
Since the leakage detection setting allows chosen plaintext access, we can even
set all irrelevant key/plaintext bytes to zero, thereby enabling a much higher
signal to noise ratio (SNR) to showcase subtle security concerns that could be
easily overlooked otherwise.

4 Leakage Assessment: Example for Simulated Skeleton
AES

For clarity, we illustrate our methodology using simulated leaks at first. The
simulation corresponds to two rounds of AES (with a key size of 128 bits). We
record six leakage points across the two rounds. Unlike in the experiments in
Section 5 and 6, which are based on a real world device, we know exactly how
each simulated trace point is generated. Consequently, this enables to test (and
also demonstrate) our novel leakage assessment process.

4.1 Simulation setup

Our simulation consists of two rounds of AES. An AES round consists of the
execution of four intermediate steps (AddRoundKey, SubBytes, ShiftRows, and
MixColumns), and we create from these intermediate steps six leakage points,
using the Hamming weight (HW) as a leakage function, as detailed in the list
below. The selection of leakage points is meant to enable an interesting analy-
sis: thus we choose intermediate states and leakage functions that are of some

11

practical interest (any indices though where chosen arbitrarily and they have no
impact on the actual analysis). Note that in a real world leakage evaluation, the
evaluator does not know the exact correspondence between leaking intermediate
variables and trace points (which is the very reason for needing an additional
analysis after leakage detection).

– l0 = HW (Plain[0 : 3]): this trace point is the leakage from the plaintext
input. We consider a modern 32-bit processor, thus we return Hamming
weight of the 32-bit word.

– l1 = HW (Rkey[0 : 3]): similarly, this trace point is the leakage from the first
word of the first round key (i.e. the master key for AES)

– l2 = HW (Sout[4]): this sample represents a typical target for a side channel
attack, i.e. the leakage from the output of one specific S-box (the index here
is irrelevant, and was selected at random).

– l3 = HD(Sout[6], Sout[10]): this trace point is an example of typical Ham-
ming Distance (HD) leakage on the memory bus (between two randomly
selected SubBytes results). This type of leakage often exists in modern pro-
cessors, and it is often not trivial to determine in practice which two values
are involved in generating it (i.e. compiler specified ordering, register alloca-
tion etc.).

– l4 = HW (MCout[8]): this trace point represents the leakage of the Mix-
Columns output. It represents exploitable leakage that requires a large key
guess.

– l5 = HW (MCout[12]): l5 also relates to a MixColumns output, but from
the second round.

Some independent Gaussian noise is added to each sample, drawn from
N(0, σ2) where σ2 = 16. Our goal here is to demonstrate how our technique
reveals the relevant key bytes for each sample. For the typical 8-bit HW leakage
samples (i.e. l2, l3, l4 and l5), the Signal-to-Noise-Ratio (SNR) is 2/16 = 0.125
(this corresponds to what is observed in modern microprocessors).

To emulate a typical leakage detection scenario within a “high stakes” eval-
uation (such as CC) we assume that we can sample 1.000.000 traces.

4.2 Applying TVLA

Since the AES implementation is unprotected, no trace processing is necessary
prior to the application of TVLA. Using the conventional plaintext-based fixed-
versus-random t-test, all the samples are reported as “leaky” (see the “TVLA”
column in 1), except for l1. This result is entirely expected: anything related to
computations on the round keys cannot be detected by varying plaintexts. Since
the correspondence between trace points and intermediate states is missing, no
conclusion beyond “there is potentially some leakage” can be drawn.

4.3 Leakage assessment via key dependent models

We now demonstrate our assessment framework by following the statistical anal-
yses laid out in Sections 3.1-3.4.

12

Table 1. Example: Simulated AES

Samples \Tests TV LA
Key-Dependent Model-Based Leakage Assessment
Non-spec. Detect Degree Key Bytes Specific

l0 = HW (Plain[0 : 3]) ✓ - - -

l1 = HW (Rk0[0 : 3]) ✓ 1 k0, k1, k2, k3 k0
l2 = HW (Sout[4]) ✓ ✓ 1 k4 k4

l3 = HD(Sout[6], Sout[10]) ✓ ✓ 2 k6, k10 (k6, k10)

l4 = HW (MCout[8]) ✓ ✓ 4 k2, k7, k8, k13 (k2, k7, k8)

l5 = HW (MCout[12]) ✓ ✓ > 4 all n.a.

Non-specific detection. Since our simulation is unprotected, all key-dependent
trace points li can be written as functions of K.

However, a key challenge for performing such analysis is the size of K and
thus we use the collapsing trick explained in Section 3.1: we use a single bit (e.g.
the least significant bit) to represent one byte. Applying the same restriction
on all 16 bytes, the entire 128-bit key space can be represented by a 16-bit
collapsed key state Kc. In this collapsed model, Lf (Kc) represents all possible
leakage, yet only requires the number of traces N to be several times of 216.
For our simulation experiments in this section, we stick with the same setting
as TVLA (i.e. N = 106).

We want to emphasise at this point that there are multiple options of how
to collapse the full key space, and one has to be familiar with the cryptographic
scheme that is implemented. For instance, because the AES round function
mainly works on the byte-level (except for the xtime function in MixColumn),
using one bit to represent each byte is a natural choice. As consequence, some
intra-byte leakage cannot be detected this way, e.g. the bit-interaction leakage
within a software processor [21]. For such cases (or bit oriented block ciphers),
a single byte should be represented by two bits, enabling the detection of inter-
actions within a byte.

In addition, the actual values of the collapsed representation affect the effi-
ciency of the test. For instance we can choose the values 0 and 1 to represent
a byte, but the leakage may be harder to exploit than when choosing 0 and
255 (aka all bits are set to one). For AES-128, 00...0 and 11...1 usually produce
signifiant leakage before the S-box; however, after the S-box, these values are
mapped to the values 0x63 and 0x16, which only have only 5 bits difference.
Considering MixColumn intensively mixes various bytes, in the following we use
one-bit to represents each key byte ki as 0x52 or 0x7d: by sacrificing some power
before the S-box, we gain full power after the S-box as each byte becomes 0 or
255.

We can now set up the leakage detection test as:

13

Lf (Kc) =
∑
j

βjuj(K), j ∈ [0, 216]

Lr(K) = β0

The third column in Table 1 shows the analysis results of our simulated
traces. All samples are determined as true “leaks”, except for l0, which indeed
does not depend on the key.

Remark. There is a difference between our overall F -test here and individually
testing all 16 key bytes ki. For instance, l3 in Table 1 jointly depends on k6 and
k10, but it does not depend on any single key byte.

Degree analysis. We now limit the degree of the regression function to d and
test the resulting reduced model:

Lf (Kc) =
∑
j

βjuj(Kc), j ∈ [0, 216)

Lr(Kc) =
∑
j

βjuj(Kc), j ∈ [0, 216), deg(uj(Kc)) ≤ d

If the null hypothesis is rejected, we can conclude the tested trace point
contains some leakage that requires deg(uj(X)) > d. In our collapsed model,
this implies the leakage jointly depends on more than d key bytes. Although it
is possible to test any d ∈ [1, 15], we argued before that based on knowledge
for the encryption scheme, effort can be saved. Thus, within the context of this
example, we test d = 1, 2, 4: d = 1 represents the unprotected value before the
MixColumn, d = 2 often occurs when transition leakage appears between two
individual bytes, while d = 4 represents the first MixColumn output as well as
the attack enumeration complexity (232) which we are willing to accept.

The fourth column (labelled “Degree”) gives the results on our simulated
traces. Both l1 and l2 are marked with degree 1. This is because although l1
does involve 4 key bytes, they do not interact with each other and therefore the
attacker can directly recover k0 and ignore the other 3 (i.e. treat as noise). The
trace point l3 has d = 2 (which is correct because it jointly depends on both k6
and k10). After the first round MixColumn, each state byte depends on 4 key
bytes, therefore l4 shows degree 4. After the second round, the degree of l5 lies
between 5 to 16, where we did not further explore as it is unlikely l5 can be
easily exploited.

Subkey Identification The degree of the key-dependent model already enables
to judge if a leakage point can be exploited in practice. We can now use our
statistical methodology again to determine which key bytes contribute to the
leakage.

14

We do this by further restricting Lr(Kc) in order to find the minimal set
of uj(K) that is “enough” to explain the leakage. For instance, we can simply
delete one key byte ki from the 16-bit state Kc and construct

Lr(K
′
c) =

∑
j

βjuj(K
′
c), j ∈ [0, 215),K ′

c = Kc − {ki}

If Lr(K
′
c) is not rejected, we conclude this key byte is irrelevant for the

observed leakage. The second-to-last column (labelled “Key Bytes”) shows the
results of this analysis. For instance, we identify correctly that the key bytes
k2, k7, k8, k13 contribute to the degree four leakage of l4: the other 12 key bytes
are rejected by our test, therefore irrelevant for l4.

Deriving specific attacks. At this point we know the dependency between
each trace point and the key bytes. With this information, and a further trace set
that has variable inputs, we can now build templates for the identified leaking
points. Whilst template attacks are information theoretically optimal, templates
that require four or more key bytes are perhaps not achievable for general ad-
versaries. In this case attacks based on standard power models, or simplified
templates, could be attempted.

The final column in Table 1 shows the lowest degree model that was identified
by Alg. 1. These serve as the basis for confirmatory attacks (if desirable). For
instance for l0 we identify k0 is a candidate for a specific attack: this means
that an attack involving a plaintext byte that interacts with this key byte is
highly likely to succeed; for l3 we identify that the leakage can be explained only
by involving two plaintext bytes that interact with an intermediate value that
jointly depends on (k6, k10).

Confirmation must happen in the uncollapsed setting. A suspicious result in Ta-
ble 1 is that our analysis claims l4 can be exploited with the joint distribution of
(k2, k7, k8). This could be generally possible due to some implementation choice
in MixColumns, but our implementation only leaks on the MixColumns output.
Similar to the discussion in [12], for some collapsing parameters, the reported
leak (in the collapsed setting) can be a degenerated version of the correspond-
ing leak in uncollapsed setting (i.e. requiring only part of the relevant subkey,
as some vanish in the collapsing procedure). Consequently we know that the
identification of the least leaking term that we do in the collapsed setting has
produced a too optimistic outcome, and an actual attack would require four key
bytes. One can mitigate this issue with a different set of collapsing parameters
(e.g. more bits for each byte). Nonetheless, we recommend to always run a con-
firmatory attack in an uncollapsed setting, for any specific attack derived from
our framework.

15

5 Leakage Assessment: Example for a Boolean masked
AES on a 32-bit processor

We now apply our leakage assessment framework to an implementation of AES
that utilises a well known Boolean masking scheme [22]. The original code was
written by Ermin Sakic [23]. It was then re-written by the Secure Embedded
Systems Research group at Virginia Tech as a more general C-based imple-
mentation [24]. The entire AES encryption uses 6 bytes of randomness: a pair of
(input/output) masks for masking the S-box input/output, while the other 4 pro-
tect the MixColumns as suggested by [22]. The masked S-box is pre-computed
before each encryption according to the pair of input/output masks, then all
S-box look-up(-s) use exactly the same mask.

We port this implementation on an ARM M3 core (NXP LPC 1313). The
target core is running at 12 MHz, so each cycle takes approximately 83 ns. In
order to capture the entire round, we adjusted the sampling rate to 12.5 MSa/s,
i.e. close to one sample per cycle. The 10 rounds’ masked encryption (excluding
initialisation and key schedule) takes around 556 µs. As a consequence, our scope
(Picoscope 5243D) captures 7000 samples per trace. Our analysis proceeds in the
same sequence of steps as detailed in the two previous sections.

5.1 Applying TVLA

The results of the non-specific fixed-versus-random plaintext TVLA is shown in
the upper half of Figure 1: nearly 20% of the samples on the traces are identified
as “leakage”3: considering that our target implementation is a Boolean masking
scheme that reuses masks across state bytes and is written completely in C,
it is understandable that many leaks may appear [25]. The red asterisk in the
following (Figure 1 and 2) marks a target point for our specific attack, which
will be discussed in detail later.

5.2 Leakage assessment via key dependent models

Following the same routine as Section 4, we now embark on a leakage assessment
using our novel methodology. Because our target implementation is again a byte-
wise AES-128, we stick with similar collapsing parameters as Section 4, namely:

– Each key byte collapses to 1 bit.
– Plaintext set to 16 bytes of 0.
– Each key bit represents two values, hexidecimal 0x52 and 0x7d, which en-

sures after the S-box we get 0x00 and 0xff .

With this we set up the exact same detection test by building the key depen-
dent (collapsed) model and checking via the F -test if or not explains the data
variance (we do this for each trace point). The results (one value for each point)

3 The red line is the threshold at which we refute the null hypothesis (no leakage).

16

1000 2000 3000 4000 5000 6000 7000

Time(*80ns)

0

10

20

30

40

50

60

70

-lo
g(

p-
va

lu
e)

1st order Fixed-versus-Random TVLA

1000 2000 3000 4000 5000 6000 7000

Time(*80ns)

0

10

20

30

40

50

60

70

-lo
g(

p-
va

lu
e)

Leaks from the collapsed key-byte F-test

Fig. 1. Top figure: TVLA, Bottom figure: F -test

are plotted as the bottom figure in Figure 1. Like the TVLA test, we find many
leaks, but we identify considerably more leaks at the beginning of the execution,
i.e. the first round. Even more interestingly, the F -test finds considerably more
leaks towards the end of the first round than TVLA does. Thus, although this
implementation would be (rightfully) judged as leakage by both tests, TVLA
misses a lot of leakage.

Furthermore we notice that the F -test (as well as TVLA) reports fewer leaks
in the last rounds. This is likely caused by the strong diffusion of the algorithm
in conjunction with having only a limited number of traces: TVLA only needs
to sample from two groups whereas the F -test samples from more groups. With
a fixed number of traces, it is then clear that TVLA has more traces per group
than the F -test statistic4.

Degree analysis. From the working principle of AES encryption, we know
that it is likely to see leakage degrees of one or two prior to the execution of
MixColumns, at which point we expect to see leakage models of degree four. We
next run the degree analysis by dropping terms from the full (collapsed) model

4 For better results on the last round, one has to therefore (in both cases) adapt the
choice of key (F -test) or plaintext (TVLA) to ensure a good grouping in the final
round

17

in order to determine the degree of the model (and thereby the size of the key
guess that would be needed to exploit a leak). We do this analysis for each point
of the trace, and produce Fig. 2.

1000 2000 3000 4000 5000 6000 7000

Time(*80ns)

No leak
Degree 1
Degree 2

Degree 2-4

Degree>4
Degree of leakage for the entire encryption

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

100 200 300 400 500 600 700 800 900 1000

Time(*80ns)

No leak
Degree 1
Degree 2

Degree 2-4

Degree>4
Zoom into the first round

AddRoundKey0 Sbox0

S
hi

ftR
ow

0

MixColumn0 AddRoundKey1

Fig. 2. Analysing the degree of the leakage function in a collapsed model

Our analysis results in Figure 2 are quite consistent with our theoretical
justification. The leakage starts with d = 1, then expanded to d ≥ 4 after the
first round’sMixColumns. After the second round, all leakage depends on at least
4 key bytes, which suggests the trivial attack becomes quite time consuming.
However, when zooming into the first round (bottom plot of Fig. 2), we see
some interesting behaviour:

– Even before the first round S-box, there are some leaks that depend on 2 key
bytes: a plausible explanation is those are leaks caused by the register/bus
bit-flips, where the random masks are accidentally cancelled out. Although
exploiting those sample takes a bit of extra effort (possibly with 16-bit key
guesses), their existence in realistic implementations highlights the limitation
of following up a non-specific test with a specific test with one plaintext
byte as the target state (e.g. [10]). Since no specific single-byte test is able
to exploit this leakage, an evaluator would falsely conclude that the flagged
trace point is a false positive.

– Some trace points show exploitability in one plaintext byte test (e.g. the
ρ-test/NICV, see Appendix A)), yet have d = 2 in F -test: this implies that
although these points can be exploited with only one key byte, they also
contain information that can only be exploited with 2 key bytes.

18

Subkey identification. In an evaluation setting a device is rejected if a single
realistic attack succeeds (the exact definition of realistic depends on the type
of evaluation as we explained in our introduction). Thus we now select a single
trace point and use our statistical tooling to determine which key bytes explain
the leakage in this point, and then derive a concrete, realistic attack.

We choose as our point for deeper analysis the trace point at index 213,
which is marked with a red asterisk in our figures. According to Figure 1 and
2: the leakage on this sample can be expressed with a model that includes the
interaction of no more than two key bytes. Thus, we perform Algorithm 1 on
the to find which byte(-s) is/are relevant for this trace point’s leakage.

This analysis proceeds as explained in Section 3.3, which corresponds to the
first step (line 1-7) in Algorithm 1. It shows that in total four key bytes contribute
to the leakage in this point, which are the key bytes (k0, k1, k2, k3). This may
seem surprising, because prior to MixColumns all AES round functions operate
on single bytes. However, we are executing this algorithm on a 32-bit device: any
load or store may operate on an entire 32-bit word [26, 12]. Thus, it is expected
that an 8-bit S-box look-up returns not just the 8-bit result, but also the adjacent
three 8-bit values in the corresponding table. We also know from our previous
degree analysis, that only the combination of two out of these four key bytes
suffices to explain the observed leakage.

Consequently the steps (line 8-19) in Algorithm 1 can be efficiently computed.
Table 2 documents all the combinations of two bytes that statistically contribute
to the leakage of trace point 213. As we are testing on single point on the trace
(i.e. no multiple correction issue in [7]), we simply set α = 0.01 and reject any
−log10(p− value) > 2. If the p− value exceeds the precision of our computation
script using numpy, we simply note these values as > 324 (i.e. the maximal
precision for numpy’s float64 on our PC).

Key bytes −log10(p− value)

(k0, k1) 14.93

(k0, k2) > 324

(k1, k2) > 324

(k0, k3) 140.26

(k1, k3) 93.12

(k2, k3) > 324
Table 2. Potential target pairs of bytes from Algorithm 1

Converting to a specific attack Among the identified key byte pairs, the pair
(k0, k2) has the highest significance level. For demonstrating a specific attack for
trace point 213, we now take a further set of measurements, with a fixed key
and varying inputs, and create Gaussian templates for this trace point.

In this templating step we can trade off trace efficiency for templating and
trace efficiency during the actual attack. We know that trace point 213 depends

19

on (x0 = k0 ⊕ p0, x2 = k2 ⊕ p2): thus we build 2562 templates. Moreover, to
reduce the noise, we take advantage our ability to choose plaintexts and set all
other plaintext bytes to 0. In practice, if the chosen-plaintext access is not given,
the attacker needs more traces in their exploit.

We build templates and then perform 100 repeat attacks in order to derive
the average rank of (k0, k2), which is documented in Figure 3. Based on some
pre-existing knowledge, we further make another educated guess and build (with
the same trace set) templates for S(x0 = k0 ⊕ p0) ⊕ S(x2 = k2 ⊕ p2). Figure 3
confirms that trace point 213 reveals plenty of information about (k0, k2) (left
plot); with some luck or insight an adversary can mount an even more efficient
attack (right plot)5. We note that both attacks only use a single trace point,
thus are univariate. They may appear simple, but finding them would require
exhaustive guessing without our novel assessment framework. We re-emphasize
our statistical analysis cannot reveal why the implementation leaks S(x0) ⊕
S(x2)

6: one plausible explantation could be the byte-wise interaction within a
word (see [26]).

1 2 3 4 5 6

Num of attack traces 104

0

0.5

1

1.5

2

2.5

3

C
o
r
r
e
c
t

k
e
y

r
a
n
k

104

1 2 3 4 5 6

Num of attack traces 104

0

0.5

1

1.5

2

2.5

3

C
o
r
r
e
c
t

k
e
y

r
a
n
k

104

Fig. 3. Specific Attack Vectors

6 Leakage Assessment: Example for an affine masked
AES on a 32-bit processor

A limit of TVLA and any univariate, moment-based test statistic is that it
cannot capture multivariate leaks. Thus if an implementation is analysed that
uses a more complex masking scheme, then traces have to be processed before
the statistical test can be used. This was detailed in [13].

5 The maximum rank here is 216, the more generic attack on the key pair reaches
a rank of around 500 after 65k traces. The more specific attack on the SubBytes
output reveals the pair after 10k traces

6 The byte order in the code does not compute x2 after x0, therefore it is unlikely this
is due to some bit-flip(-s).

20

To show that our statistical tooling has enough power to deal with such pro-
cessed traces, we now analyse the affine masking implementation from ANSSI [27].
We stick with the same ARM Cortex M3 core (NXP LPC1313) as Section 5. The
working frequency is still 12 MHz, while our trace set is recorded by a Picoscope
2205A running at 100 MSa/s. Considering the masked encryption takes longer
than before, we directly focus on (a part of) the first round Sbox computations,
which take about 1 500 samples on each trace. We turn off shuffling in their im-
plementation: shuffling only scales the effort of an attack, but it does not change
the nature of the attack strategy. Confirming the analysis of ANSSI, we did not
find any leak with TVLA on the raw traces (i.e. no 1st order univariate leak).

6.1 Applying TVLA after trace processing

Our target device features a three-stage pipeline. This implies that three in-
structions are executed simultaneously (the instruction at time t is fetched, the
instruction at time t − 1 is decoded, and the instruction at time t − 2 is exe-
cuted). Consequently there exist leaks from instructions being executed in close
succession (so they leak in parallel) and there exist leaks from instructions being
executed multiple time points apart (so they leak in sequence).

We first pinpoint exploitable leakage that is due to the parallel processing of
instructions. For this purpose we processes the traces by computing y′ = (y − ȳ)

2

(y denotes a trace point). As the affine masking scheme does not offer security
beyond the first statistical moment, our result in the upper plot of Figure 4 is
hardly surprising. Two samples (point 360 and 1428, i.e. the red/blue asterisk)
clearly exceed the TVLA threshold and could be exploitable.

We then pinpoint exploitable leakage from the sequential processing of two
instructions. Of course any combination of two trace points could be the source
of such leakage, but in an evaluation it suffices to demonstrate one realistic
attack. Consequently we check if the already identified leakage in point 1428 is
also involved in sequential leakage. Thus we fix j = 1428 and then process our
traces as: y′i = (yi − ȳi) (yj − ȳj). The lower plot in Figure 4 shows that a TVLA
test on these processed traces also leads to points that exceed the threshold.

6.2 Parallel leakage assessment

Because the implementation is again byte oriented, we are using the same col-
lapsing parameters as before. Our analysis now focuses on the leakage in time
point 360.

We perform the degree analysis for this time point, which indicates that the
leakage can be exploit by a combination of two key bytes. We then identify the
subkey bytes, and show the outcomes in Table 3. As we are focusing on one
single point, we simply set α = 0.01 and reject any −log10(p− value) > 2.

Converting to an attack. Table 3 suggests trace point 360 can be exploited if we
use certain key byte combinations as the basis for a template (or other) attack;
the pair (k0, k3) seems the most promising target as it exceeds the threshold

21

200 400 600 800 1000 1200 1400

Time(*10ns)

0

5

10

15

20

-lo
g(

p-
va

lu
e)

Univariate 2nd order Fixed-versus-Random TVLA

200 400 600 800 1000 1200 1400

Time(*10ns)

0

5

10

15

20

-lo
g(

p-
va

lu
e)

Bivariate 2nd order Fixed-versus-Random TVLA (* point 1428)

Fig. 4. 2nd order TVLA on affine masking implementation

Table 3. Potential target pairs of bytes from Algorithm 1, parallel leakage of affine
masking

Key bytes −log10(p− value)

(k0, k1) 20.29

(k0, k2) 4.62

(k1, k2) 14.41

(k0, k3) 31.09

(k1, k3) 6.26

(k2, k3) 8.59

22

Table 4. Leaking key pairs from Algorithm 1, sequential leakage of affine masking.

Key bytes −log10(p− value)

(k0, k4) 46.23

(k1, k4) 6.61

(k2, k4) 4.15

(k3, k4) 5.18

(k0, k5) 10.62

(k0, k6) 10.60

(k0, k7) 10.52

most. We can now adopt the same strategy as in Section 5.2. However, we notice
our result here fits well with the analysis in [12], where the authors stated there
is a collision attack on this particular implementation (left plot, Fig. 2 in [12]).
From Figure 4 and Table 3, it is likely we have re-produced the same issue from
a leakage detection perspective.

6.3 Sequential leakage assessment

We used point 1428 (the blue asterisk in Figure 4) as yj and identified that
together with trace point 364 it leads to the leakage that exceeds the TVLA
threshold in the lower plot of Figure 4. We now perform our leakage assessment
on the joint leakage of these two trace points (as represented by the resulting
point in the lower plot of Figure 4). The degree analysis shows a combination
of two key bytes can explain the leakage, and we can identify a subset of key
pairs that contribute to the leakage (Table 4). Similar to the parallel case, we
set α = 0.01 here.

Technically speaking, Table 4 represents the bivariate version of the previ-
ous collision attack. However, unlike the previous case, only some pairs can be
exploited: namely, the leakage is only significant if the pair include k0 or k4. A
concrete attack exploiting these key bytes was in fact given in [12] (i.e. Section
4, Figure 2 Bivariate case).

7 Conclusion

Leakage detection without device leakage assumptions or selection of interme-
diate targets is an extremely powerful concept and the foundation of the sound
assessment of crypto implementations. So far, such a “non-specific” assessment
has always implied that the detected leaks had to be confirmed by actual attacks,
because the assessment process was based on identifying plaintext dependencies.

Our novel approach is set up to identify leakage that depends on the key
and it does so by casting the detection problem as a key-dependent model build-
ing problem. This enables to detect key-dependent leaks and, through gradual
refinement of the built models, to determine the number of key bytes that are
required to explain an identified leak, and finally the exact key bytes that leak.

23

Once we know exactly which key bytes leak (we distinguish between independent
and joint leakage) there is only a small step towards establishing precise attack
vectors for confirmatory attacks.

Acknowledgements

The authors were funded in part by the ERC via the grant SEAL (Project
Reference 725042).

References

1. Common Criteria: The Common Criteria for Information Technology Security
Evaluation. https://www.commoncriteriaportal.org/cc/ (2017)

2. EMVCo, LLC: EMVCo Security Evaluation Process.
https://www.emvco.com/wp-content/uploads/2017/04/EMVCo-SEWG-14-
P02-V5-1 EMVCo Security Evaluation Process 20160725082101992.pdf (2016)

3. ISO/IEC: Testing methods for the mitigation of non-invasive attack classes against
cryptographic modules. https://www.iso.org/obp/ui/#iso:std:iso-iec:17825:ed-
1:v1:en (2016)

4. SOG-IS: Application of attack potential to smartcards and similar devices (2019)
5. SOG-IS: Attack methods for smartcards and similar devices (2020)
6. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for

side-channel resistance validation. In: NIST non-invasive attack testing workshop.
Volume 7. (2011) 115–136

7. Whitnall, C., Oswald, E.: A Critical Analysis of ISO 17825 (’Testing Methods for
the Mitigation of Non-invasive Attack Classes Against Cryptographic Modules’).
In: Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference
on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, December 8-12, 2019, Proceedings, Part III. (2019) 256–284

8. Bronchain, O., Schneider, T., Standaert, F.X.: Multi-Tuple Leakage Detection and
the Dependent Signal Issue. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2019(2) (Feb. 2019) 318–345

9. Moradi, A., Richter, B., Schneider, T., Standaert, F.: Leakage Detection with the
x2-Test. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1) (2018) 209–237

10. Durvaux, F., Standaert, F.: From Improved Leakage Detection to the Detection of
Points of Interests in Leakage Traces. In Fischlin, M., Coron, J., eds.: Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I. Volume 9665 of Lecture Notes in Computer Science.,
Springer (2016) 240–262

11. Standaert, F.: How (Not) to Use Welch’s T-Test in Side-Channel Security Evalu-
ations. In: Smart Card Research and Advanced Applications, 17th International
Conference, CARDIS 2018, Montpellier, France, November 12-14, 2018, Revised
Selected Papers. (2018) 65–79

12. Gao, S., Oswald, E.: A Novel Completeness Test and its Application to
Side Channel Attacks and Simulators. IACR Cryptol. ePrint Arch. (2021)
https://eprint.iacr.org/2021/756.

24

13. Schneider, T., Moradi, A.: Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In Güneysu, T., Handschuh, H., eds.: Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings. Volume 9293 of Lecture
Notes in Computer Science., Springer (2015) 495–513

14. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers. (2002) 13–28

15. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side
Channel Cryptanalysis. In Rao, J.R., Sunar, B., eds.: Cryptographic Hardware
and Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh,
UK, August 29 - September 1, 2005, Proceedings. Volume 3659 of Lecture Notes
in Computer Science., Springer (2005) 30–46

16. Bhasin, S., Danger, J., Guilley, S., Najm, Z.: Side-channel leakage and trace com-
pression using normalized inter-class variance. In Lee, R.B., Shi, W., eds.: HASP
2014, Hardware and Architectural Support for Security and Privacy, Minneapolis,
MN, USA, June 15, 2014, ACM (2014) 7:1–7:9

17. Cohen, J.: CHAPTER 9 - F Tests of Variance Proportions in Multiple Regres-
sion/Correlation Analysis. In Cohen, J., ed.: Statistical Power Analysis for the
Behavioral Sciences. Academic Press (1977) 407 – 453

18. Whitnall, C., Oswald, E.: A Cautionary Note Regarding the Usage of Leakage De-
tection Tests in Security Evaluation. Cryptology ePrint Archive, Report 2019/703
(2019)

19. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In Wiener, M., ed.: ”Advances in Cryptology
— CRYPTO’ 99”, Berlin, Heidelberg, Springer Berlin Heidelberg (1999) 398–412

20. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: Pushing DPA
beyond the limits of a desktop computer. In Sarkar, P., Iwata, T., eds.: Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the The-
ory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I. Volume 8873 of Lecture Notes
in Computer Science., Springer (2014) 243–261

21. Gao, S., Marshall, B., Page, D., Oswald, E.: Share-slicing: Friend or Foe? IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020(1) (Nov.
2019) 152–174

22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer-Verlag, Berlin, Heidelberg (2007)

23. Sakic, E.: SmartCard Firmware Implementation with AES-128 decryption support.
https://github.com/ermin-sakic/smartcard-aes-fw/ (2013)

24. Yao, Y., Yang, M., Patrick, C., Yuce, B., Schaumont, P.: Fault-assisted side-channel
analysis of masked implementations. In: 2018 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2018, Washington, DC, USA, April
30 - May 4, 2018, IEEE Computer Society (2018) 57–64

25. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.: On the Cost of
Lazy Engineering for Masked Software Implementations. In: Smart Card Research
and Advanced Applications - 13th International Conference, CARDIS 2014, Paris,
France, November 5-7, 2014. Revised Selected Papers. (2014) 64–81

26. Marshall, B., Page, D., Webb, J.: MIRACLE: micro-architectural leakage evalu-
ation A study of micro-architectural power leakage across many devices. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2022(1) (2022) 175–220

25

27. Benadjila, R., Khati, L., Prouff, E., Thillard, A.: Hardened Library for AES-128 en-
cryption/decryption on ARM Cortex M4 Achitecture. https://github.com/ANSSI-
FR/SecAESSTM32

28. Bellizia, D., Whitnall, C.: Leakage Detection Tutorial, Part 2: Detection on Real
World Traces. http://reassure.eu/leakage detection tutorial part2/ (2018)

A Why not specific tests?

ρ-test As stated in [28], reporting non-exploitable plaintext-dependent leakage
is a well-known issue of TVLA. A workaround would be switching to some more
specific techniques, for instance, the ρ-test [10]. The ρ-test is basically a profiling
Correlation Power Analysis (CPA), where the leakage model is estimated from
the trace set (rather than using the Hamming Weight directly in the non-profiled
case) [10]. In a k-fold scenario, users should divide the trace set into k subsets,
then repeating using one set as the test set and all others as the training sets.
The averaged correlation ρ can be converted to a statistical p-value through the
Fisher z-transformation. Unlike the TVLA, this test is closely linked to profiling
CPA: for any detected leakage, there is at least one profiling CPA that can
exploit such leakage. Considering the profiling setup does not restrict the leakage
function (i.e. the determined function L), this approach detects all leakage that
depends on the target input X.

We stress that “all leakage” and “all leakage that depends on the target input
X” are not always the same. In order to compute the model for this test, we must
compute the mean for each input x. As demonstrated in [10, 28], the common
choice is using one byte plaintext as the input X. If the leakage depends on this
byte alone, it can be detected in any form. However, if the leakage explicitly
depends on two plaintext byte pi and pj , then testing pi (or pj) cannot illustrate
such leakage. This drawback can be resolved if the model building considers both
pi and pj as input; however, the required size of trace set grows quickly beyond
feasible. Besides, the attacker needs some a priori knowledge to purposely build
such models: in other words, a specific test degenerates to the situation where
the attacker must know his/her target state in advance, while scarifying the
ability to detect arbitrary unknown leaks like non-specific detections. Thus, we
argue using specific tests to replace non-specific detections is never an option,
as those two approaches serve for different purposes.

For clarity, we replot the 1st order TVLA result from Figure 1 in the upper
graph of Figure 5. The middle graph shows the 10-fold ρ-test results for all 16
AES plaintext bytes with 50k traces. Only 2 bytes are identified as leakage, while
each lasts for only 2 samples on the trace.

NICV Similarly, Bhasin, Danger, Guilley et al. proposed the Normalized Inter-
Class Variance (NICV) as an alternative technique to detect point of interest
or potential leakage [16]. Technically, NICV represents the R2 of is the overall
F -test, which can be converted to a statistical p-value from the F -distribution.
Considering the F -test is strongly related to the coefficient of determination
(R2), which is also defined as the square of the correlation coefficient ρ, it is

26

Fig. 5. Non-specific vs. specific: TVLA, ρ-test and NICV

hardly surprising to see that NICV gives exactly the same result as the ρ-test in
Figure 5. Meanwhile, our computation of NICV in Figure 5 is also restricted to
each byte of the plaintext, not detecting any leakage that is jointly determined
by multiple plaintext bytes.

27

