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Abstract

Zero-knowledge (ZK) protocols enable one party to prove to others that it knows a fact without
revealing any information about the evidence for such knowledge. There exist ZK protocols for all prob-
lems in NP, and recent works developed highly efficient protocols for proving knowledge of satisfying
assignments to Boolean formulas, circuits and other NP formalisms. This work shows an efficient pro-
tocol for the the converse: proving formula unsatisfiability in ZK (when the prover posses a non-ZK
proof). An immediate practical application is efficiently proving safety of secret programs.

The key insight is to prove, in ZK, the validity of resolution proofs of unsatisfiability. This is effi-
ciently realized using an algebraic representation that exploits resolution proofs’ structure to represent
formula clauses as low-degree polynomials, combined with ZK random-access arguments. Only the
proof’s dimensions are revealed.

We implemented our protocol and used it to prove unsatisfiability of formulas that encode combina-
toric problems and program correctness conditions in standard verification benchmarks, including Linux
kernel drivers and Intel cryptography modules. The results demonstrate both that our protocol has prac-
tical utility, and that its aggressive optimizations, based on non-trivial encodings, significantly improve
practical performance.

1 Introduction

Zero-knowledge proofs enable one party, the prover, to convince a second party, the verifier, that they
know the validity of a claim, without revealing information about their evidence for the claim. There exist
zero-knowledge protocols for proving knowledge of solutions to all problems in NP [GMW91] and perhaps
beyond [BOGG+90]. In recent years, numerous efficient protocols and optimized implementations have
been developed for ZK proofs of NP problems such as circuit satisfiability, correct execution of programs
(e.g., [Gro16, GGPR13, PGHR13, BCG+13, BCTV14b, WSR+15, HMR15, MRS17, AHIV17, BCG+18,
BHR+20, HK20, BHR+21, HYD+21, FKL+21]). These found a rapidly-expanding set of applications,
including: blockchain privacy [BCG+14, KMS+16, BCG+20] and scalability [BMRS20, VGS+21], legal
systems [FPS+18] and anonymous networks [ACBM08].

However, there are plenty of hard problems of practical interest outside of NP, and in particular, instances
of the UNSAT problem. UNSAT is the decision problem of determining if a given Boolean formula does
not have any satisfying assignment. Beside its theoretical interest as the quintessential coNP-complete
problem, UNSAT also naturally captures the task of proving that program is secure (under various desirable
definitions of security). Indeed, various approaches to program and system verification essentially reduce
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program verification (i.e., proving that a program does not have a vulnerability) to proving that a given SAT
formula is unsatisfiable.

Thus, proving UNSAT in zero knowledge would enable applications such as the following:

1. A system verification firm wishes convince a client of program safety without revealing the structure of
the proof itself, which may reveal the firm’s sensitive intellectual property;

2. A code producer wishes to convince a code consumer that a secret program is both safe and functional,
by providing a zero knowledge proof of unsatisfiability of a formula that itself is kept secret [FDNZ21].

In principle, a party who knows that a formula is unsatisfiable and has a certificate for this fact, can
prove knowledge of this certificate using generic ZK for NP [GMW91] applied to the certificate-checker.
However, such approaches would be too inefficient to be used in practice because reducing UNSAT to these
problems that are provable in ZK directly incurs a high, albeit polynomial, overhead. An approach that
would compile programs (of bounded runtime) to Boolean circuits [HFKV12] would also need to include
a proof of the circuit’s unsatisfiability. Similarly, an approach that would perform static analysis of general
programs in zero knowledge based on abstract interpretation [FDNZ21] would critically rely on efficient im-
plementations of operations over SAT formulas, including the validation of proofs of their logical entailment
or equivalence.

In this work, we designed and implemented a novel, efficient protocol for proving UNSAT in zero-
knowledge. In general, our protocol can be used directly to efficiently prove knowledge of solutions to any
problem in coNP, once the problem has been reduced to proving UNSAT. In particular, our protocol can
be used as highly efficient backend for proving safety of potentially-secret programs in zero knowledge,
either by validating proofs of SAT formulas generated by model checkers, or by efficiently implementing
primitives required by analyses based on abstract interpretation.

The key insight behind our approach is to efficiently validate an additional argument for UNSAT in the
form of a resolution proof, a sequence of clauses that can be derived from the given formula and which
concludes in a contradiction. Such proofs are both well-understood in principle and efficiently supported
in practice. In principle, they are a sound and complete proof system for proving UNSAT. Although short
resolution proofs may not always exist for UNSAT formulas in general, they are often found efficiently by
state-of-the-art SAT solvers applied to encodings of practical problems in planning and program verification.
Thus, we can develop ZK protocol for instances of UNSAT by requiring the resolution proof as advice,
revealing its length (the number of clauses in the derivation), and validating the resolution proof by executing
a RAM program in ZK [BCG+13, BFR+13, BCTV14b, WSR+15, HMR15, MRS17, BCG+18, BHR+20,
HK20, BHR+21, HYD+21, FKL+21].

A second insight, critical for efficiency, is that in practice resolution proofs usually have low width in
addition to short length: i.e., each clause in the derivation contains only a small number of literals. By
revealing the proof’s width along with its length, we can implement a significantly optimized protocol that
represents clauses in the derivation as low-degree polynomials and validates the derivation itself by checking
a small number of polynomial equalities. The resulting protocol’s performance is essentially independent of
the number of literals, and depends only on the width and length of the proof. It outperforms the previous
one (which hides the width) when clauses are sparse, e.g., when there are more than 1000 variables but each
clause contains at most 100 literals.

We evaluated our protocol empirically by implementing it via the EMP framework [WMK16] and using
it to prove unsatisfiability of formulas that encode problems in combinatorial optimization, planning, and
the verification of safety-critical programs drawn from the SV-COMP [Bey17] benchmark set. This includes
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1 int1 sum3(int1 a0, int1 a1, int1 a2
) {

2 int1 acc = a0;
3 if (acc <= MAX - a1)
4 acc = acc + a1;
5 if (acc <= MAX - a2)
6 acc = acc + a2;
7 return acc;
8 }

(a) sum3: program that sums three 1-bit numbers with-
out overflow.

acc0 ↔ a0 ∧ b0 ↔ (acc0 → (>⊕ a1)) ∧
acc1 ↔ acc0 ⊕ a1 ∧ o1 ↔ b0 ∧ acc0 ∧ a1 ∧
acc2 ↔ b0 ? acc1 : acc0 ∧ b1 ↔ (acc2 → (>⊕ a2)) ∧
acc3 ↔ acc2 ⊕ a2 ∧ o2 ↔ b1 ∧ acc2 ∧ a2 ∧
acc4 ↔ b1 ? acc3 : acc2 ∧
ret↔ acc4

(b) A Boolean formula ϕ that models the semantics of
sum3.

Figure 1: An example program and Boolean formula that characterizes its executions.

verification of Linux device drivers, Windows NT device drivers, and C implementations of floating-point
computation.

Our contribution

• We initiate the study of the practicality of proving the unsatisfiability of Boolean formulas in zero knowl-
edge, and its applications to proving properties of programs in zero knowledge.

• Bringing together formal methods and cryptography, we propose ZK-friendly algebraic encodings of
Boolean formulas and of (relaxed) resolution proof of formula unsatisfiability.

• Using these, we design and optimize concrete ZK proof schemes for UNSAT that are efficient enough to
support useful program-verification formula sizes.

• We present a prototype implementation, which will be open-sourced, and benchmark this implementation
on large formulas, including ones representing the safety of Linux kernel drivers and Intel cryptography
modules.

Organization The remainder of this paper is organized as follows: Section 2 presents an overview of our
protocol by example; Section 3 reviews foundational definitions and results on which our work is based;
Section 4 presents our protocol in technical detail; Section 5 describes our implementation and empirical
evaluation of the protocol; Section 6 compares our contribution to related work, and Section 7 concludes.

2 ZK program safety by example

This section describes how our protocol proves UNSAT efficiently and how it can be applied to prove safety
of a public program. To contextualize, we start with a brief tutorial to the standard techniques of proving
program properties using resolution proofs We then give an overview of the zero-knowledge protocol and
an optimization that significantly improves its performance.

Building a formula To illustrate the operation of the protocol, we use the small C program sum3 given
in Figure 1a. sum3 returns the sum of three integers, while avoiding integer overflows past the maximum
representable integer MAX. For simplicity we consider the case of single-bit integers and MAX=1 (in which
case sum3 is simply the OR of 3 bits).
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In this case the operators + and - over int1 both correspond to XOR, and <= corresponds to implica-
tion. We can thus write a Boolean formula ϕ, in Figure 1b, that describes the program execution. Within
ϕ, propositional variable acci denotes the value of C variable acc after the i-th update. Propositional vari-
ables bi are used to denote the branching condition; ret corresponds to the value returned by the program; o1
and o2 are Boolean values denoting that overflow occurs, and the other propositional variables correspond
to program parameters and local variables.

Every satisfying assignments of formula ϕ correspond to a valid execution of program sum3. A program
overflow happens iff any of oi are true, i.e., if the formula ϕo ≡ o1∨ o2 is also satisfied. Thus, verifying that
sum3 never overflows MAX can be done by proving unsatisfiability of the formula ϕ∧ϕo, which asserts that
in a correct execution (asserted by ϕ) an overflow occurred (asserted by ϕo).

Having a relatively low number of variables, we could simply enumerate all possible variable assign-
ments, evaluate ϕ∧ϕo on each assignment, and confirm that no assignments satisfies the formula. However,
this obviously does not scale, since the number of assignments grows exponentially in the number of vari-
ables.
Resolution refutation A better method of showing that a formula is unsatisfiable is a resolution refuta-
tion [Rob65]. A formula is unsatisfiable iff we can derive ⊥ (false) by applying resolution steps, according
to the fundamental theorem about refutational completeness of first-order logic [BG01] (which applies also
to the propositional logic we employ here). Resolution proofs are reviewed in formal detail in Section 3.2.1,
but we give here the details needed to follow the example:

Resolution is performed on formulas in the clausal normal form, i.e., a conjunction of disjunctions. Each
conjunct is called a clause. For example, (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x1) ∧ ¬x4 is in the clausal normal form
and it consists of three clauses. Negations can be applied only to variables. Every propositional formula can
be converted into an equivalent conjunctive normal form.

The resolution step is given by the following schema:

A ∨ p ¬p ∨B
A ∨B

This reads as follows: the resolution step takes as input two clauses A ∨ p and ¬p ∨ B, and derives a new
clause,A∨B, which is a logical consequence of two input clauses. The derived clause is called the resolvent,
and variable p is called the pivot. In the context of refutational completeness theorem, on the given set of
clauses, the resolution rule can be applied as many time as needed until it is either no longer possible to
derive new clauses, or the ⊥ formula has been derived.

Although simple, the resolution rule is the basis of modern automated first-order reasoners [RV01], and
their applications to program verification. Indeed, we proceed to show its use to prove that sum3 does not
overflow.

We show that ϕ ∧ ϕo is unsatisfiable through several steps. First, we convert ϕ ∧ ϕo into the clausal
normal form, denoting the resulting formula with ϕCNF . This results in a large formula. For readability, we
list here only four of its clauses, which suffice to derive ¬o1. These clauses are: ¬b0 ∨ ¬acc0 ∨ ¬a1, b0 ∨
¬o1, acc0 ∨ ¬o1 and a1 ∨ ¬o1. From these we can derive ¬o1 by applying the resolution rule 3 times, as
follows:

¬b0 ∨ ¬acc0 ∨ ¬a1 acc0 ∨ ¬o1
¬b0 ∨ ¬a1 ∨ ¬o1 a1 ∨ ¬o1

¬b0 ∨ ¬o1 b0 ∨ ¬o1
¬o1

Similarly, we can derive ¬o2. Finally, we can derive ⊥ by using the resolution rule twice more, applied
to ¬o1 and ¬o2 (whose derivations, above, are denoted by . . . below) and to the clause o1 ∨ o2 that is also in
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ϕCNF :
o1 ∨ o2

. . .
¬o1

o2 ¬
. . .
o2

⊥
We managed to derive ⊥, establishing that the original formula ϕ ∧ ϕo was unsatisfiable, hence sum3 does
not have integer overflows.1

Resolution proofs as non-ZK proofs of UNSAT The derivation of ⊥ (called the resolution proof ) is a
certificate of unsatisfiability. Indeed, given an alleged resolution proof, it can be efficiently checked by a
resolution-proof checker that follows a claimed derivation tree and verifies that: in every invocation of the
resolution rules, all inputs have appeared in the original formula or prior derivations, and the resolvent is
correctly derived with respect to some pivot; and the last resolvent is ⊥.

Thus, a trivial proof protocol for UNSAT is for the prover to hand over a resolution proof to the verifier.
However, this is far from zero knowledge. A resolution proof, constructed and derived as above, reveals
information about the program (which is encoded in the formula) and the analysis technique (which created
the derivations).

In general, resolution refutations can be hard artifacts to construct from a program: there is no efficient
algorithm to generate them and in fact no polynomial bound on the length that such derivations may have.
In the domain of Boolean formulas that correspond to program verification conditions, the structure of a
resolution proof may reflect the insights of a manual or automatic program analyzer. In particular, a valid
refutation of ϕ ∧ ϕo could include derived properties of the variables acc3 and acc4 or relating variables a1
and a3 (e.g., it could derive the clause

¬b0 ∨ ¬acc0 ∨ ¬a1. (1)

Indeed, one of the main technical challenges for first-order automated reasoners is to make sure that they
are deriving (mainly) goal-oriented clauses. Often it is the case that a reasoner will derive more and more
clauses that are indeed consequences of previous clauses but are not used in the proof of deriving the ⊥
clause.

In our example we produced a proof derivation that only derived clauses needed to derive⊥. Our clause
selection was guided by insights about the structure of sums3 and selecting only clauses relevant to refuting
the overflow clause o1 ∨ o2.

ZK proofs of UNSAT Our first ZK protocol for UNSAT mitigates the above information leakage, by proving
that a public formula is unsatisfiable while only revealing the number of clauses in one of its refutations.

Essentially, the prover uses a ZK proof system to prove that it locally executed the computation ”run
the resolution-proof checker on the given formula and a secret resolution proof”, and the checker accepted.
The resulting ZK proof, presented to the ZK verifier, is as convincing as the original resolution proof (by
the soundness property of the ZK proof system), but effectively redacts all details of the checker’s input and
execution trace.

Technically, this works by representing the resolution-proof checker as an algebraic constraint system,
and applying a suitable zero-knowledge proof scheme to this constraint system. Efficiency hinges on suitable
choice of ZK proof system, and careful encoding of the resolution-proof checker as algebraic constraints.
Details are given in Section 4.

1Had the formula been satisfiable, applying the resolution rules could never have derived ⊥, and moreover (for propositional
logic), the process would have eventually terminated and let us read a satisfying assignment out of the derived clauses [BG01],
revealing inputs to sum3 that cause an overflow.
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Optimization by revealing resolution width Implementing a resolution-proof checker requires a represen-
tation of formulas and clauses. The natural one is encoding clauses as vectors, whose length is the number of
propositional variables in the formula. For example: one binary vector specifying which variables appear in
the clause, and another specifying their polarity. Validating the proof then is reduced to Boolean operations
over the binary vectors that represent clauses.

Applying the aforementioned ZK transformation to this representation yields a scheme that is already
efficient enough to prove knowledge of resolution proofs for interesting formulas on a practical machine:
it takes about 80 seconds to verify a proof of 215 literals and 3000 resolvents. However, its limitations are
revealed in plenty of cases that arise in practice: according to our evaluation, it fails to prove that driver
benchmarks are safe up to 2000 steps as there are over 150K variables in the resulting formula.

A possible optimization is apparently already in the verification condition of sums3: ϕ∧ϕ′ are defined
over eleven propositional variables modeling all parameters, return values, local variables, and overflow
conditions, but each individual clause contains literals over at most three variables; i.e., the proof’s width is
three. Intuitively, this is because the two additions can be proved not to overflow by independently analyzing
them and the conditions that guard them. As discussed in Section 5, this is typical, and reputations of
verification conditions collected from practical programs indeed tend to width much lower than their total
number of variables.

Resolution proofs of low width w can be validated more efficiently than the general case by representing
each clause of the proof as a degree-w univariate polynomial, in a formal variable X , over a large-enough
finite field. For each literal a in a clause C, the polynomial representation of C, denoted pC , contains a
term X − φ(a), where φ(a) denotes a distinct field element that identifies a; identifiers of literals and their
negations satisfy a simple arithmetic relation that ensures that the laws of Boolean arithmetic are embedded
faithfully.

E.g., Clause (1) is represented as the degree-3 polynomial

(X − φ(b0))(X − φ(acc0))(X − φ(a1))

Under this representation, checking that some clauseC0 logically implies some clauseC1 amounts to check-
ing that the associated polynomial pC0 divides polynomial pC1 or equivalently, that there is some polynomial
q such that q · pC0 = pC1 . This correspondence can be applied to validate steps of resolution by checking
polynomial equalities: instead of checking polynomial division, we ask the prover to provide q and then
proving the equality between a given polynomial and the multiplication of polynomials. The equality can
be checked efficiently via the Schwartz-Zippel lemma, while polynomial multiplication can be done based
on any compatible ZK protocol. We describe this encoding in detail in Section 4.1.

Safety of secret programs in ZK via resolution The protocol described above uses ZK validation of
resolution refutations to enable a prover and verifier to prove that a public program is safe while revealing
only the size of the refutations. However, the protocol cannot be directly applied to prove knowledge of a
secret program that is safe. In App. C, we describe how ZK verification of resolution proofs can be used as
sub-protocols to verify statements that are much smaller than those generated by conventional approaches.
In this paper, we present only our protocol for validating resolution refutations in ZK and we evaluate
its practicality by using it to validate public formulas generated from safety-critical programs. We leave
complete definitions and evaluations of protocols for safety of secret programs as future work.
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3 Technical Preliminaries

3.1 Fields and polynomials

A field F is a set equipped with two binary operations, referred to as addition and multiplication, that forms a
commutative group under addition (with additive identity denoted 0F), has a multiplicative identity (denoted
1F), contains a multiplicative inverse for each non-zero element, and in which multiplication distributes over
addition. For field elements a, b ∈ F, the sum and product of a and b are denotes a+b and a ·b, respectively.

We will define protocols that use univariate polynomials over a given field F, which will be referred
to for the rest of the paper simply as “polynomials” and denoted F[X]. A root of polynomial p is a field
element a ∈ F for which p(a) = 0F. For polynomials p and q, the sum and product of p and q are denoted
p + q and p · q, respectively. If there is some polynomial r such that r · p = q, then p divides q, denoted
p | q. A polynomial that can be expressed as a product of linear polynomials is completely reducible. For
all polynomials p and q with root a ∈ F, the polynomial p · q has a as a repeated root. Each polynomial p
has a unique completely reducible divisor with no repeated roots that itself is divided by every completely
reducible divisor of p with no repeated roots; we denote this polynomial as p∗.

3.2 Boolean logic

In this work, we primarily consider Boolean formulas in a clausal form. A literal over a set of variables Vars
(whose elements are denoted using lowercase letters) is an element in Vars paired with a bit that denotes if
the variable occurs positively or negatively (the set of literals over Vars is denoted Lits = Vars×B, where B
denotes the Booleans); a positive occurrence of variable x ∈ Vars is denoted as simply x, while a negative
occurrence of x is denoted ¬x. A clause is a set of literals and it denotes the logical disjunction of the
literals that is contains. The empty clause is denoted ⊥; the union of clauses C and C ′ is denoted C ∨ C ′
and C extended with a single literal ` is denoted C ∨ `. Note that because clauses are sets of literals (and
not general multisets or sequences), a given clause can contain at most one occurrence of a given literal. As
one consequence,

(C ∨ `) ∨ ` = C ∨ `
for each clause C and literal `.

A formula is a set of clauses, which denotes their conjunction; the set of formulas is denoted F . An
assignment f : Vars → B, satisfies a positive (negative) literal l if it assigns l’s variable to True (False);
it satisfies a clause C if and only if it satisfies some literal in C. As such, an empty clause ⊥ cannot be
satisfied by any assignment. f satisfies formula ϕ ∈ F if and only if it satisfies each clause in ϕ, and the
formula ϕ is unsatisfiable if it is not satisfied by any assignment.

3.2.1 Resolution proofs

Resolution proofs are formal arguments that a given clause is implied by a given formula.

Definition 1. For clauses C and C ′, the resolvent of premise clauses x ∨ C and ¬x ∨ C ′ on pivot variable
x is the clause C ∨ C ′.

Resolution derivations are sequences of clauses in which each clause in the sequence is the resolvent of
the two preceding two clauses.
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Functionality FZK

Witness: On receiving (Witness, x) from the prover, where x ∈ F, store x and send [x] to each party.
Instance: On receiving (Instance, x) from both parties, where x ∈ F, store x and send [x] to each party. If the
inputs sent by the two parties do not match, the functionality aborts.
Circuit relation: On receiving (Relation, C, [x0], . . . , [xn−1]) from both parties, where xi ∈ F and C ∈ Fn →
Fm, compute y1, . . . , ym := C(x0, . . . , xn−1) and send {[y1], . . . , [ym]} to both parties.
Productions-of-polynomial equality check: On receiving (PoPEqCheck, n, {[Pi(X)]}i∈[n], {[Qi(X)]}i∈[n])
from both parties, where [Pi(x)] and [Qi(x)] are polynomials with their coefficient committed: if ΠiPi(x) 6=
ΠiQi(x), the functionality aborts.

Figure 2: Functionality for zero-knowledge proofs of circuit satisfiability and polynomials.

Definition 2. A (resolution) derivation from formula ϕ is a finite sequence of clauses 〈Ci〉 in which each Ci
is either (1) a clause in ϕ or (2) the resolvent of two clauses j, k < i. A (resolution) refutation of ϕ is a
derivation from ϕ in which the final clause is ⊥.

Resolution derivations are sound: i.e., if a clause C can be derived from a formula ϕ then each assign-
ment that satisfies ϕ also satisfies C. As an immediate consequence, if there is a refutation of ϕ, then ϕ is
unsatisfiable. Conversely, resolution is complete for proving unsatisfiability: if a formula ϕ is unsatisfiable,
then there is a refutation of ϕ [DP60]. However, unsatisfiable formulas may not have resolution refutations
that are short: there is an infinite set of unsatisfiable formulas with no resolution refutation of size bounded
by a polynomial over the size of the formula [Hak85]. The length of a derivation is the number of clauses
that it contains. The width of a derivation is the maximum number of literals that occur over all of its clauses;
the product of a refutation’s length with it’s width is the refutation’s area. In general, there is a trade-off
between a proof’s dimensions: there is an infinite set of formulas in which all refutations have length or
width exponential in the size of the formula [Tha16].

3.3 Efficient zero-knowledge protocols

The focus of this work is not to design a general-purpose zero-knowledge proof protocol but to apply existing
protocols to build applications with significant practical importance and to explore its efficiency. To this
end, we present in Figure 2 a ZK functionality (FZK) required for performing clause resolution in zero-
knowledge. The functionality is reactive and allows the prover to prove circuit satisfiability over the specified
field. The last two instructions in FZK prove relationships about polynomials. It is well known that the
equality of two committed polynomials over a large field can be efficiently checked in zero-knowledge
using Schwartz–Zippel lemma with the cost of evaluating a random point on two committed polynomials.
We include an extended instruction PoPDegCheck to prove that the products of two sets of polynomials
are equal. All ZK protocols in the commit-and-prove paradigm can be used to instantiate this functionality ,
with [x] representing a commitment of x. As a result, our clause resolution protocol has the potential to be
connected to many different ZK backends. In our implementation, we instantiate this functionality based on
the recent VOLE-based ZK protocols [WYKW20, DIO20, BMRS21, YSWW21].

Zero-knowledge proofs of random accesses. There has been a long line of works [BCG+13, BFR+13,
BCTV14b, WSR+15, HMR15, MRS17, BCG+18, BHR+20, HK20, BHR+21, HYD+21, FKL+21] in
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supporting ZK proofs over RAM programs. Here, we are only interested in the mechanisms that en-
able RAM accesses in ZK rather than the overall RAM architecture, which involves many other aspects
like designing an instruction set. Existing works enable RAM accesses in roughly two ways. Some prior
works [HMR15, MRS17, HK20, HYD+21] combine ZK protocols with oblivious RAMs [GO96]: the prover
proves in ZK the computation of an oblivious RAM client that translates each private access to a set of public
accesses. The second approach [BCG+13, BFR+13, BCTV14b, WSR+15, BCG+18, FKL+21] is to prove
all RAM accesses in a batch: by gathering all accesses and their results, the correctness validation can be
expressed in a circuit of quasi-linear size.

4 Encoding Scheme and Protocol

This section describes our protocol in technical detail. The protocol’s key correctness and security proper-
ties, along with key lemmas that support them, are stated as lemmas and theorems; their proofs are included
in Appendix A.

A proof of refutation of a formula φ can be viewed as a list of tuples, each of which specifies two clauses.
The process of a resolution derivation can be viewed as an iterative procedure. We start with a list of clauses
C that only contains all clauses in φ. In each iteration, we fetch two clauses from C as premise clauses,
compute their resolvent, and append the resulting clause to C. If the resolution completes, the last clause
added to C should be ⊥.

To perform the derivation in zero-knowledge, we need to pay attention to two core tasks: 1) efficiently
perform clause resolution given two clauses; and 2) efficiently fetch clauses from C in ZK while keeping
indices private. Below, we will introduce the technical details in how our solutions work and why they
improve efficiency. section 4.1 discusses our encoding methods for both literals and clauses. It provides
huge improvement compared to a bit-vector-based representation. In Section 4.2, we further improve the
efficiency of clause resolution by introducing a weakened version of resolution. It provides more flexibility
with prover when providing premise clauses and thus there fewer conditions to check in zero-knowledge
proof. Finally, in section 4.3, we discuss our solution for the second task.

4.1 Clause representation

To improve the efficiency of the aforementioned procedures, the central task is finding a suitable way to
represent clauses. Ideally the representation should be compact so that the overhead when storing in a
random-access array in ZK would not be too high; other the other hand, it should preserve the structure of a
clause so that clause resolution could be done efficiently.

4.1.1 Naive encoding methods

As discussed in Section 3.2, a clause is essentially a set (of literals). Therefore, clause encoding resembles
a lot in set encoding, which has been studied in numerous scenarios. Our first attempt was to use bit vectors
inspired by the bit-vector representation of sets. Assuming that |Lits| is public, then a clause can be repre-
sented as a bit vector of length |Lits|, such that the i-th bit indicates if the i-th literal appears in the clause.
This representation is very intuitive as Boolean operations on bit vectors are closely related to Boolean logic
on clauses: element-wise AND (resp., OR) on two vectors is the conjunction (resp., disjunction) of the un-
derlying clauses. However, the downside of this approach is also obvious. Every operation on a clause has
a complexity of O(|Lits|), even if the number of literals in the clause is significantly less. Therefore this
encoding does not really scale for large formulas.
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The bit vector representation is not good for sparse clauses (where the number of literals is much
less than |Lits|), but it can be improved using a better encoding. A natural next step is to instead use an
enumeration-based representation for a set (and thus clause). For example, if we map every literal ` ∈ Lits
to an integer in [Lits], any clause with d literals can be represented in log |Lits| bits. The downside of this
approach is that operations on this representation are more complicated to instantiate. For example, to com-
pute the conjunction of two clauses represented in this way, we would need to compute the intersection of
two sets.

4.1.2 Encoding clauses as polynomials

To enable compact representation and efficient operations at the same time, our protocol encodes clauses
as polynomials over some finite field. Such representation has a small encoding size while operations,
including clause resolution can still be done efficiently by representing them as operations on polynomials.

As the first step, we need to encode literals to field elements. In addition to completeness (i.e., different
literals should be encoded to different field elements), we also want the encoding to support efficient negation
of a literal, which is useful when doing clause resolution. For a field F where |F| > |Lits| = 2|Vars|, we
want to find an injective function φ : Lits→ F such that for each variable x ∈ Vars,

φ(x) + φ(¬x) = 1F (2)

The definition can be adjusted to use field elements a ∈ F other than 1F, so long as a ensures that φ is
injective. Each φ satisfying Equation (2) is a literal encoding into F.

For the rest of this paper, let F denote an arbitrary field that satisfies such conditions for Vars and let φ
refer to an arbitrary literal encoding of F.

Given a concrete encoding of literals as field elements, we can encode a clause (which is a set of literals)
as a field polynomial. From literal encoding φ, we define an encoding γφ : Clauses → F[X] of clauses as
(univariate) polynomials over F such that the image under φ of the literals in each clause C are the roots of
the image of C under γφ:

γφ(`0 ∨ · · · ∨ `d) = (X − φ(`0)) . . . (X − φ(`d))

for literals `0, . . . , `d ∈ Lits. As an important special case, the encoding of the clause ⊥ is γφ(⊥) = 1F,
where 1F denotes a polynomial with only a constant term, which is distinct from the field element in in
Equation 2.

For the rest of this paper, we will only be using only one field and one literal encodings; thus we will
omit the subscript and write simply γ(C) to denote the encoding of a clause C, whenever the field and literal
are unambiguous from the context.

The key property of φ and γφ introduced above is stated formally as follows. It only requires the fact
that φ is injective, not that φ additionally satisfies Equation (2).

Lemma 1. For each literal ` and clause C, ` ∈ C if and only if φ(`) is a root of the polynomial γ(C).

As a corollary, logical implication over clauses corresponds to divisibility of clauses, under literal and
clause encodings.

Corollary 1. For clauses C and C ′, if C → C ′, then

γ(C) | γ(C ′)
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Functionality FClause

Input: On receiving (Input, `0, · · · , `k−1, w) from prover and (Input, w) from verifier where `i ∈ Lits, the
functionality check that k ≤ w and abort if it does not hold. Otherwise store C = `0 ∨ · · · ∨ `k−1, and send [C]
to each party.
Equal: On receiving (Equal, [C0], [C1]) from both parties, check if C0 = C1; if not, the functionality aborts.
X-RES: On receiving (Xres, [C0], [C1], [Cr]) from both parties, check if {C0, C1} `X-RES Cr; if not the func-
tionality aborts.
IsFalse: On receiving (IsFalse, [C]) from both parties, check if C = ⊥; if not, the functionality aborts.

Figure 3: Functionality for ZK operations on clauses.

4.1.3 ZK operations on polynomial-encoded clauses

We are now ready to put clause operations inside a ZK protocol. The first operations is to allow the prover
to commit to a clause. A clause with d literals can be encoded as a degree-d polynomial; however, in some
cases even the degree could reveal information about the prover’s witness (i.e., the refutation proof). To
commit a clause C without revealing its real degree, the prover, after obtaining the coefficients of C(x),
can simply use zeros as high-order coefficients. Another caveat is that a cheating prover could potentially
commit an irreducible polynomials, which cannot be factorized; this would make witness-extraction fail. To
ensure extractability of clause commitments, we need the prover to commit all root of the polynomial again
and two parties can use FZK to ensure the validity of the polynomial.

Another important operation is clause resolution. To check that clause Cr is a resolvent of clauses C0

and C1, we must check that there is a variable x such that C0 = x ∨ C, C1 = ¬x ∨ C ′, and Cr = C0 ∨ C1.
When translated to our polynomial-based encoding, we need to check the above relationship on roots of the
polynomial. While polynomial division can be easily checked by the prover providing an extended witness
and proving the equality of polynomial product, checking intersection of the roots from two polynomials
would require extra effort, e.g., incorporating techniques from Papamanthou et al. [PTT11].

4.2 Improved resolution via weakening

This section proposes a more efficient way of ZK resolution derivation without hurting security at all. Our
key idea is a new way to weaken the properties checked by resolution while maintaining the soundness of
such a check.

4.2.1 Resolution with weakening

To define our encoding scheme, we first define a set of derivations of SAT formulas that slightly generalizes
resolution derivations (Section 3.2.1). The only differences are that in a weak resolution, (1) a pivot variable
need not necessarily occur in the premises and (2) the resolvent need only be implied by resolvent of the
premises (potentially weakened with literals built from the pivot variable).

Definition 3. A weak resolvent of clauses C and C ′ on pivot variable x is a clause C ′′ such that

C → C ′′ ∨ x and C ′ → C ′′ ∨ ¬x

11



As a special case, one weak resolvent of clauses C∨x and ¬x∨C ′ on pivot variable x is their resolvent,
C ∨ C ′ (Defn. 1).

A weakened resolution derivation is a sequence of weak resolvents, analogous to how a resolution deriva-
tion (Defn. 2) is a sequence of resolvents:

Definition 4. A weak (resolution) derivation from formula ϕ is a finite sequence of clauses 〈Ci〉 in which
each Ci is either (1) in ϕ or (2) a weak resolvent of two clauses j, k < i.

Weak refutations are similarly defined as instances of weak derivations. It is straightforward to show
that weak resolution derivations are both a sound and complete system for refuting Boolean formulas: i.e.,
a Boolean formula is unsatisfiable if and only if it has a weak refutation. Soundness follows from the fact
that resolution refutations are sound and every refutation is a weak refutation. Completeness can be proved
by interleaving each step of resolution in a given weak refutation with a (potentially empty) sequence of
resolutions that derives the weakening of a resolvent from the resolvent itself.

Compared to derivations, weak derivations do not have any apparent interesting proof-theoretic proper-
ties. However, in Section 4.2.2 we will introduce a scheme specifically for encoding and validating weak
resolvents; the validation cannot apparently be adjusted to validate exactly resolvents without more than
doubling the size of the encoding of each validation. Moreover, a practical consequence of the fact that
each refutation is a weak refutation is that any refutation generated by existing SAT theorem provers can be
directly encoded by our scheme. In principle, such refutations could potentially be minimized by replacing
multiple steps of resolution that derive a weakening of a resolvent with a single step of weak resolution;
however, our current implementation does not perform such an optimization.

4.2.2 Proving weakened resolution in ZK

A weak resolution derivation can be efficiently checked using field arithmetic: clauses in the derivation are
represented as polynomials and the fact that a clause is a weak resolvent of two clauses can be checked
efficiently by testing equality of polynomials. We present our protocol in Figure 4.

A clause can be checked to be a weak resolvent to two other clauses by checking equalities of the clauses
encodings as polynomials. The key idea behind the protocol is to check the implications over clauses that
define a weak resolution (Definition 4) by checking divisibility of polynomials, which itself is checked by
checking equality of polynomials using a secret witness divisor. The prover can efficiently construct such
witnesses, using the pivot variable of the step of resolution.

In detail, for the prover to prove that committed clause Cr is a weak resolvent of clauses C0 and C1 on
pivot variable X , the prover finds clauses W0 and W1 such that

W0 ∨ C0 = Cr ∨ x and W1 ∨ C1 = Cr ∨ ¬x

W0 and W1 can always be defined to be:

W0 = (Cr ∪ {x}) \ C0 and W1 = (Cr ∪ {¬x}) \ C1

The prover then commits polynomials p0, w0, p1, w1, and pr, that encode C0, W0, C1, W1, and Cr, respec-
tively, along with the following polynomial encodings of the literals with variable x:

ρ(X) = X − φ(`p) and ρ̄(X) = X − φ(¬`p)
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Protocol ΠClause

Parameters: A set Lits of all possible literals and a finite field F. An integer w and a set of clauses Cw that
contains all clauses no more than w literals of Lits. φ : Lits→ F is injective.
Inputs:

1. P holds a clauses C = `0∨ · · · ∨ `k−1 ∈ Cw, defines γ(C)(X) = (X−φ(`0)) · · · (X−φ(`k−1)) and locally
computes c0, . . . , cw such that γ(C)(X) =

∑
i∈[0,w] ciX

i.

2. For each i ∈ [0, w], two parties use FZK to get [ci]. Two parties output [γ(C)] = {[ci]}i∈[0,w]

Equal: Both parties send (PoPEqCheck, 1, [γ(C0)(X)], [γ(C1)(X)]) to FZK.
X-RES:

1. P locally computes W0(X),W1(X) and `p, such that W0(X) · γ(C0)(X) = γ(Cr)(X) · (X + φ(`p)) and
W1(X) · γ(C1)(X) = γ(Cr)(X) · (X + φ(¬`p)). Note that the degree of W0(X) and W1(X) are bounded
by w.

2. P locally computes ρ(X) = X − φ(`p), of which the degree is bounded by 1.

3. Two parties use FZK to authenticate all w + 1 polynomial coefficients in W0(X) and W1(X), and two poly-
nomial coefficients in ρ(X). As a result, two parties get [W0(X)], [W1(X)] and [ρ(X)].

4. Using FZK, two parties check that the highest coefficient in [ρ(X)] is non-zero, this make sense that [ρ(X)]
has degree exactly 1.

5. The prover locally computes polynomial ρ̄(X) = ρ(1F −X) and commits its 2 coefficients to obtain [ρ̄(X)].
Then two parties check that the committed coefficients satisfy ρ̄(X) = ρ(1F −X).

6. Both parties send (PoPEqCheck, 2, ([W0(X)], [γ(C0)(X)]), ([γ(Cr)(X)], [ρ(X)])) to FZK.

7. Both parties send (PoPEqCheck, 2, ([W1(X)], [γ(C1)(X)]), ([γ(Cr)(X)], [ρ̄(X)])) to FZK.

IsFalse: Both parties send (PoPEqCheck, 1F, [γ(C)(X)], [1]).

Figure 4: Our protocol to instantiate FClause.

The verifier validates the prover has committed encodings of clauses C0 and C1 with weak resolvent Cr
by attesting the following polynomial equalities over the committed polynomials:

w0 · q0 = qr · ρ (3)

w1 · q1 = qr · ρ̄ (4)

ρ(X) + ρ̄(1F −X) = 0F (5)

The verifier also attests that ρ and ρ̄ have degrees of at most one. Equations (3) to (5) combined with the
attestation of degrees are referred to as the weak resolution test.

The following lemma establishes that encodings of clauses in a step of weakened resolution, combined
with additional witness polynomials, are solutions to the weak resolution test. It is a key lemma used to
prove that the overall protocol (Figure 6) is complete.

Lemma 2. If clause Cr is a weak resolvent of clauses C0 and C1 on variable x, then there are polynomials
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ρ and ρ̄ of degree at most one, and polynomials w0 and w1 that combined with

q0 = γ(C0) q1 = γ(C1) qr = γ(Cr)

satisfy the weak resolution test.

The following lemma establishes that each solution to the weak resolution test corresponds to some step
of weakened resolution. It is a key lemma used to show that the overall protocol is sound in Section 4.4, and
uses maximal completely reducible divisors, introduced in Section 3.1.

Lemma 3. For polynomials q0 q1, qr, w0, w1, ρ, and ρ̄ that satisfy the weak resolution test, clause γ−1(q∗r )
is a weak resolvent of clause γ−1(q∗0) and clause γ−1(q∗1).

Appendix A contains a complete proof of Lemma 3 but to see that the lemma is well-defined, note
that for each polynomial p, the clause γ−1(p∗) is well-defined, because the polynomial p∗ is completely
reducible (Sec. 3.1) and γ is a bijection into the completely reducible polynomials.

4.3 Weakened random array access

Our protocol to check resolution proof requires an array to store all literals in all intermediate clauses and
the ability to access array elements where the index is private to the prover. This could be instantiated using
prior works discussed in Section 3.3. However, the overhead would be too high since the bit representation
of clause is fairly large: every clause contains up tow literals, each of which requires at least log |Lits| bits to
encode. As a result each clause needs at least w log |Lits| bits to represent. All existing RAM constructions
need some sort of bit decomposition on the payload of the array and thus this quickly becomes an huge
overhead.

We improved upon a recent prior work [FKL+21] for efficient RAM access in ZK in multiple ways.
First, as described at the beginning of this section, we only need two operations to the array: append a value
to the array and read. In the context of ZK, the prover could precompute all values and thus prepare the
whole array ahead of time. During the execution of the protocol, if we need to append v, we read from the
location to be written and check that the value equals to v. This way, we only need to support read.

Second, we relax the functionality so that the prover can freely choose the read indices as long it does
not read values not appended to the array yet; thus the functionality is significantly weakened. E.g., we can
no longer ensure if the prover read the same element twice or not. However, in the context of ZK refutation
proof, this weak functionality is sufficient: as long as the protocol arrives to⊥, we can always extract a valid
UNSAT proof of the formula.

Third, each memory cell contains a complete clause, which consists of w field elements. In [FKL+21],
the number of AND gates is proportional to the bit-length of the payload; so larger elements lead to a high
cost. We improve the access time by applying a universal hash function before the accesses are checked so
that the effective bit-length is much shorter. To ensure the soundness, the universal hash function is picked
only right before the batch checking.

4.4 Putting everything together

In Figure 6, we put together our main protocol in the (FZK, FClause, FFlexZKArray)-hybrid model. Our
protocol assumes that the number of steps in the refutation proof and the width of the proof are public. It
proves to the verifier in ZK that the prover has a valid refutation proof.
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Functionality FFlexZKArray

Array initialization: On receiving (Init, N, [m0], . . . , [mN−1]) from P and V , where mi ∈ F, store the {mi}
and set f := honest and ignore subsequent initialization calls.
Array read: On receiving (Read, `, d, t) from P , and (Read, t) from V , where d ∈ F and `, t ∈ N, send [d] to
each party. If d 6= m` or t from both parties do not match or ` ≥ t then set f := cheating.
Array check: Upon receiving (check) from V do: If P sends (cheat) then send cheating to V . If P sends
(continue) then send f to V .

Figure 5: Functionality for weak random access arrays in ZK.

Protocol CheckProof

Inputs: Both parties have formula φ = C0∧· · ·∧C|φ|−1. P has a proof of refutation ((k0, l0), . . . (kR−1, lR−1));
Both parties know the length of the refutation proof R and the width of the proof w = maxi{|Ci|}.
Protocol:

1. The two parties obtain [Ci]i∈[0,|φ|−1] using FClause; since φ is known to both parties, it uses instance to
authenticate the coefficients.

2. P locally runs the refutation proof verification process and gets C|φ|−1+i from the i-th iteration. The two
parties obtain [Ci]i∈[|φ|−1,|φ|−1+R] using FClause using witness authenticating the coefficients.

3. The two parties send (Init, |φ|+R− 1, [C0], . . . , [C|φ|+R−1]) to FFlexZKArray.

4. For the i-th iteration, the two parties advance the proof check by doing the following.

(a) The prover looks up the tuple (ki, li) from the refutation proof such that {Cki , Cli} `X-RES Ci.

(b) Fetching the premise: the prover sends (Read, li, Cli , i) to FFlexZKArray; V sends (Read, i) to FFlexZKArray,
from which the two parties obtain [Cli ]. Similarly, the two parties obtain [Cki ] and [Ci].

(c) Checking the inference: the two parties send (Xres, [Cli ], [Cki ], [Ci]) to FClause.

5. After R iterations, two parties use FClause to check that [CR] equals ⊥; if the functionality aborts, V aborts.

6. Two parties send (check) to FFlexZKArray, if the functionality aborts, V aborts.

Figure 6: Protocol for checking resolution proof.

The protocol consists of three parts: 1) the prover run the verification locally and prepareC1, . . . , CR+|ϕ|−1;
the first |ϕ| clauses are the original formula and the rest are intermediate clauses; In the i-th iteration, the
prover verifies one step of the refutation in ZK by: 2) fetching relevant existing clauses and 3) proving that
they derive to Ci. The proof is accepted if the last clause if False.

Theorem 1. The protocol in Figure 6 is a zero-knowledge proof of knowledge of refutation proof.

The goal of our work is to design efficient uses of zero-knowledge proofs, not a new generic protocol.
The protocol’s completeness and zero-knowledge properties can be verified easily. The simulation for a
corrupted verifier can be constructed easily, as well: the simulator in this case can extract the refutation
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proof (i.e., the indices of clause to fetch in each iteration) from FFlexZKArray so we need to show that the
extracted proof is indeed valid. Since FFlexZKArray ensures consistency, i.e., two read operations on the
same value return the same result, the validity of the whole proof in turn depends on the soundness of each
iteration, i.e., if two parties calling XRES does not cause FClause to abort, then the input clauses satisfy the
XRES relationship (Lemma 3).

5 Implementation and Evaluation

This section contains details of our implementation and the results of its empirical evaluation. We will
openly release our implementation to accompany the final publication of our results. All of our benchmarks
were performed on AWS instances of type r5b.2xlargewith 64 GB of memory, 16 vCPUs and a 10 Gbps
network connection between the prover and the verifier. We used an instance with a large amount of memory
because our largest benchmark (described below) uses more than 32 GB of memory.

5.1 Implementation and optimization

We implemented and evaluated our protocol as a tool, named ZKUNSAT, using the EMP-toolkit interac-
tive zero-knowledge proof library for Boolean/arithmetic circuits and polynomials [WMK16] and the high-
performance library NTL [S+01] for arithmetic on polynomials over finite fields. In ZKUNSAT, we instanti-
ated the protocol on the binary field F2128 , under which field operations can be efficiently implemented using
the CLMUL instruction; we represented the indices of clauses using 20-bit integers, which support refutation
proofs of length up to one million.

To verify refutations of practical formulas, we aggressively optimized our implementation’s mem-
ory usage. When verifying practical resolution proofs in the clear, memory usage is typically moderate;
however, when verifying them in ZK, it is significantly higher due to the use of information-theoretic
MACs [FKL+21]. We implemented protocol components to to store only data that is essential to com-
plete the rest of validation. Recall that for each resolvent, the prover must prepare and commit a set of
polynomials (see Section 4). Storing witnesses for all resolvents simultaneously would consume a pro-
hibitive amount of memory. However, the witness of a resolvent is only used when that resolvent is being
validated. Thus, in our implementation, the prover generates and commits the witness only before checking
the corresponding resolvents. Moreover, the witness is stored in memory only during the validation of its
corresponding resolvent.

5.2 Performance per phase

Verifying a refutation of a formula ϕ consists of three phases: (1) loading all clauses deduced in the refuta-
tion; (2) fetching clauses as premises; and (3) validating steps of deduction (see Figure 6). We empirically
evaluated the relationship between the cost of performing each of the phases and the size of practical refu-
tations, specifically the size of the formulas |ϕ|, the refutation’s length l, and the refutation’s width w, in
addition to their effect on overall performance.

Instance generation In order to benchmark the distinct phases of our protocol, we generated refutations of
particular sizes by repeating clauses in a small proof. In more detail, starting from a refutation of formula
ϕ of length l, we generated a refutation of formula ϕ′ with |ϕ′| ≥ |ϕ|, of length l′ ≥ l. To do so, we
added |ϕ′| − |ϕ| copies of an arbitrary clause in ϕ and added l′ − l copies of an arbitrary resolvent in the
proof. Because the width of a proof is a public parameter provided by the prover, we generated one proof
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Figure 7: Clause verification time vs. size of input formula. The total time for verifying a resolution proof changes
negligibly with an increase in the size of the input formula, under various fixed refutation lengths l and widths w.
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Figure 8: Verification time vs. refutation width. Plots of phase time and total performance vs. width w, for various
refutation lengths l ∈ [2, 000, 8, 000], with a fixed formula size of |ϕ| = 3, 000. The times spent inputting the proof,
fetching premises, and checking resolution steps are all linear in the width.

for each combination of formula size |ϕ| ∈ {2000, 2200, · · · , 3000}, small length l = 50 or large length
l ∈ {2000, 3000, · · · , 8000}, and width w ∈ {100, 150, 300, 450}. They cover a large range of parameters
that can be accurately evaluated and can also tell us the performance trend of our protocol.

Input formulas size We measured the growth of the total verification time when the size of input formulas
increase under fixed lengths l and widths w; Figure 7 contains the evaluation’s results. For each length
and width, verification time changes negligibly as the size of the input formula increases. Furthermore,
to demonstrate that showing unsatisfiability of a large formula in plaintext can be harder than verifying an
existing refutation proof in ZK, we constructed formulas where the former process takes more than 180
seconds using PicoSAT, whereas the latter takes roughly 5 seconds with ZKUNSAT (see Appendix B).

Refutation width A refutation’s width determines the degree of the polynomials that encode clauses main-
tained by the protocol. To evaluate the effect of width on protocol performance, we measured the protocol’s
verification time under varying widths, with fixed input formula size |ϕ| = 3000.

Figure 8 contains the evaluation’s results. In practice, verification time is linear in the refutation’s width.
Furthermore, the times of each of the protocol’s three phases are linear in the width, as well. We can also
see that the majority of the time is spent on validating deduction and fetching premises, two main parts that
our work optimized. In addition, compared to the protocol’s other phases, the time taken to input the proof
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Len. Width Comm. Len. Width Comm.
(MB) (MB)

2,000 150 75.68 3,000 100 72.91
2,000 300 142.40 3,000 200 136.20
2,000 450 200.87 3,000 300 209.95

Table 1: Communication cost vs. length and width. The amount of data communicated is nearly proportional to
the refutation’s area.

rises less significantly with width.

Refutation length A refutation contains a series of resolvents, where the deduction of each by resolution
must be verified. In principle, the refutation’s length l determines the number of groups of either bit-vectors
or polynomials that are verified as encodings of steps of resolution is linear in the refutation length l. We
evaluated our implementation’s actual performance versus refutation length, under different fixed refutation
widths. Figure 9 contains the results of our evaluation, which demonstrate that in practice, verification time
is indeed linear in refutation length. Moreover, the cost for inputting the proof only shows a limited increase
when the length l grows, while the increase of time cost for checking inference and fetching premises are
adequately visible.

Communication cost We evaluated the communication costs for verifying refutations of different length and
width; Table 1 contains the evaluation’s results. Similar to verification time, the amount of communicated
data grows proportionally to the refutation’s length and width; refutations with similar areas were verified
with similar communication costs.

Clause representations To evaluate the effect of representing refutation clauses as polynomials, we com-
pared protocols that use polynomials to a generic protocol that represents clauses as bit-vectors (see Sec-
tion 4.1.1). To do so, we increased the number of literals Lits from 28 to 215 and measured the time required
by the generic protocol with length l = 3, 000 and input formula of size |ϕ| = 1000.

Figure 10 contains the evaluation’s results. As expected from a complexity analysis of the generic
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Figure 11: Verification features vs. bound on loop unwindings for drivers. Plots of refutation length, width, and
verification time vs. bound on loop unwindings for a set of Windows NT and Linux drivers.

protocol, the time used by its implementation in practice increases linearly with |Lits|, while the polynomial-
based protocol’s verification time is unaffected. The polynomial-based protocols perform better when the set
of literals is suitably large: the polynomial-based protocol with w = 100 outperforms the generic methods
when |Lits| = 211. A proof with number of literals |Lits| = 215 and large width w = 400 is verified by the
generic protocol in over 80 seconds, but verified by the polynomial-based protocol in only 20 seconds.

5.3 Verifying safety-critical proofs in ZK

We evaluated ZKUNSAT on refutations generated from benchmarks in corpus of the Competition on Soft-
ware Verification (SV-COMP) [Bey17], and major competition for evaluating program verifiers on practical
and challenging programs. From the complete SV-COMP corpus, we selected benchmarks of two types:
(1) system drivers, selected to evaluate ZKUNSAT’s practicality and (2) programs that induce large refuta-
tions, to evaluate ZKUNSAT’s scalability. The system drivers benchmarks are real-world implementations
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of drivers, instrumented with code annotations that define the correct behavior. As an illustration, consider
the following example: if at some point in a program two system variables need to be equal, the program is
instrumented with the if statement that checks this equality. If they are not equal, then this should raise an
alert. These alerts are typically implemented as a call to a special “error-code” procedure. In this example,
to verify that two variables are equal at the given program point means to formally prove that the error pro-
cedure is never invoked in the instrumented code. In the jargon of the verification community, we need to
prove that the error code is never reached.

One prominent approach to program verification [BMMR01, BPR01], given program P , compiles it to a
Boolean formulaϕ such that each execution of P corresponds to an satisfying assignment ofϕ. Additionally,
the program property is compiled to a second Boolean predicate ψ that is satisfied by all program runs in
which the property is preserved. Thus, the program is safe if the formula ϕ → ψ is valid or, equivalently,
the formula ϕ ∧ ¬ψ is unsatisfiable. A refutation of F ∧ ¬P is this a formal argument that the program P
is correct.

The SV-COMP verification benchmarks are compiled to Boolean formulas using the C Bounded Model
Checker (CBMC) [KT14]. Compilation from C code to a Boolean formula is relatively straightforward, with
the exception of unbounded looping or iteration. To cope with such control structures, a Bounded Model
Checker (BMC) (BMC) [BCC+03] takes an additional non-negative integer unwind and unwinds all loops
at most unwind times, generating the program that safely halting if it to attempts to execute unwind + 1
iterations. The resulting program does not model all of the given program’s executions, but in practice there
is considerable practical value in verifying even bounded programs up to even just a few unwindings.

We evaluated ZKUNSAT’s performance on refutations corresponding to verification problems for prov-
ing unreachability of error locations, with unwindings of unwind in {6, 7, · · · , 26}. In practice, the small
unwinding is usually sufficient to test properties of the program [MQ07, ADKM03]. All of the verification
problems that we evaluated were obtained from the public SV-COMP repository:

• ldv-crypto-qat2: verification of safety for Intel(R) QuickAssist (QAT) crypto poll mode driver for
analysis of pointer aliases and function pointers.

• ldv-net-usb-cdc-subset3: safety verification for the Linux Simple USB Network Links (CDC
Ethernet subset) driver by analysis of pointer aliases and function pointers.

• ntdriver-floppy4: The code is instrumented with control labels that describe the correctness be-
havior of a Window NT floppy disk driver. The verification task boils down to reachability analysis and
proving that the error code is never reached..

• ntdriver-cdaudio5: The specification and verification problems are defined similarly to the case of
ntdriver-floppy.

Refutations of the generated formulas were generated using the PicoSAT SAT solver [Bie08]. Figure 11
reports the features of refutations and the performance of ZKUNSAT vs. the chosen unwinding bounds.
Refutation length and width either increased sharply with unwinding bounds or remained constant. We

2github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.
tar.xz-08_1a-drivers--crypto--qat--qat_common--intel_qat.ko-entry_point.cil.out.c

3github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.
tar.xz-32_7a-drivers--net--usb--cdc_subset.ko-entry_point.cil.out.c

4github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/floppy.i.cil-1.c
5github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/cdaudio.i.cil-1.c
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Program Len. (K) Width Time (s)
inv-square-int 194 414 172.5
rlim-invariant 481 198 1943.3
sin-interpolated-smallrange 375 308 2571.8
interpolation 135 790 3771.6
inv-sqrt-quake 182 749 5764.1
zonotope-loose 35 2887 9996.9
zonotope-tight 64 2887 11143.3
interpolation2 600 1047 OOM

Table 2: Length, width, and verification time in the large. The performance of ZKUNSAT on large proofs for
proving properties of benchmark programs with floating point computation. Column “Time (s)” contains the perfor-
mance of ZKUNSAT in seconds; column “Len. (K)” contains the refutation’s length, in multiples of 1, 000; column
“Width” contains the refutation’s width. The value “OOM” denotes that ZKUNSAT ran out of memory.

expect that the latter occurs due to optimizations within both CBMC and PicoSAT. Verification time is
determined by refutation area, as in the evaluations described above.

The results demonstrate that ZKUNSAT can be used to verify arguments of safety of practical programs
in ZK; ZKUNSAT can verify the safety and correctness of all the presented drivers in under five minutes. The
largest refutation corresponds to the verification of ldv-net-usb-cdc-subset with loops unwound
256 times; ZKUNSAT verifies this refutation in under 256 seconds.

To evaluate ZKUNSAT’s scalability, we evaluated its performance on large refutations of formulas corre-
sponding to the verification of programs that use floating-point operations.6. Out of a total of 58 benchmarks,
we selected benchmarks whose formulas could be extracted from the program and solved in under 30 min-
utes, and whose proofs have length at least l ≥ 10, 000 and a width of at least w ≥ 100. We omitted
benchmarks whose generated refutations were too large to be parsed within allocated memory.

The results, given in Table 2, demonstrate that ZKUNSAT can verify proofs of moderate length and of
width as large as 2.8K in an amount of time that would be useful in multiple cases: under three hours.
The results also give insight into ZKUNSAT’s current limitations: when attempting to verify a refutation
containing 600K resolvents and with width 1, 047, our implementation exhausted the allocated memory.

6 Related Work

The previous work closest to our goal addresses approaches to static program analysis in zero knowl-
edge [FDNZ21]. When the proven invariants of programs are used to establish that the secret program
satisfies a specification of correctness, such static analyses effectively prove that safety of a program in zero
knowledge. The contribution of this work is complementary to such approaches: definitions of static anal-
yses in ZK describe how to generate a ZK proof statement about a potentially unbounded program, given a
definition of an abstract domain of the facts, equipped with operations that describe how to merge multiple
facts soundly. Current implementations of such schemes have used encouraging but relatively lightweight
abstract domains, which typically are used to prove simple program properties. In contrast, our approach
for verifying resolution proofs in ZK can be used to instantiate such schemes with a comparatively powerful
abstract symbolic domain of facts as Boolean formulas. Within such a scheme, the symbolic domain could
be used to deep safety and correctness properties of unbounded programs.

6github.com/sosy-lab/sv-benchmarks/tree/master/c/float-benchs
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In [LJA+22], the authors present ppSAT, a privacy-preserving satisfiability solver, where two parties can
contribute two private, respectively to each party, formula and the tool employs Multi-Party Computation
(MPC) techniques to determine if the conjunction of these two formulas is satisfiable. The approach taken in
that work is finely tuned for proving the satisfiability of formulas. As such, although the tool could be used
for showing unsatisfiability of the conjunction of the input formulas, it would have to check all the possible
variable assignments that are exponential in number.

Resolution proofs are well-studied systems for formally proving the validity of, or refuting, statements
in formal logics. Classical results have established that they are a sound and complete system for refuting
propositional formulas [Rob65], that there are families of unsatisfiable formulas without short refutations
in resolution-based systems [Hak85], and that in general there may be a fundamental tradeoff between a
refutations dimensions, namely its length and its width [Tha16]. Practical implementations of many modern
SAT solvers can be configured so that, upon determining that a formula ϕ is unsatisfiable, they generate a
refutation of ϕ as a resolution proof [Bie08, dMB08, ES03, FMM04]. In this work, we have introduced
a slight variation of a standard resolution proof system for Boolean logic; the proposed system retains
the soundness and completeness of standard systems, but its refutations can be verified more efficiently
than proofs in systems that are equivalent in expressive power but that imposes stricter requirements on
the structure of its proofs. Our approach does not rely on novel, tight bounds on the resolution proofs’
dimensions: instead, we have defined a optimized ZK verifier that reveals only the refutation’s dimensions.
Proofs in standard systems directly correspond to proofs in our relaxed system: thus, our approach can be
used to verify proofs generated by all existing SAT solvers without modification to the underlying solver.

An extensive line of work has investigated reducing problems in verification to solving or refuting SAT
formulas [BPR01, BCC+03, KT14, XA07]. Such approaches, given a program P and property Q, generate
a propositional formula ϕ such that P (or a bounded approximation of P ) satisfies Q if and only if ϕ is
unsatisfiable. Our approach for validating a proof of unsatisfiability can be combined with any such model
checker and any process that generates resolution proofs as refutations to prove that a program satisfies a
desired property without revealing information about proof itself.

Zero-knowledge proofs in the RAM model has been studied extensively in recent years [BCG+13,
BFR+13, BCTV14b, WSR+15, HMR15, MRS17, BCG+18, BHR+20, HK20, BHR+21, HYD+21, FKL+21].
Most of these works focus on designing a general-purpose RAM machine or random access structure to be
used for any computation. To support efficient fetching of premise clauses, we optimize a prior RAM con-
struction [FKL+21] in our setting. Our construction is no longer general-purpose, but it provides improved
efficiency in our application.

While this paper studies cryptographic proofs composed with resolution proofs, a different notion of
”proofs about proofs” is recursively composing cryptographic proofs with cryptographic proofs, as in Incre-
mentally Verifiable Computation [Val08] and Proof-Carrying Data [BCCT13, BCTV14a].

7 Conclusion

We have presented a novel protocol for proving knowledge that a given propositional formula is unsatisfi-
able while revealing minimal information about the known supporting argument, structured as a resolution
refutation. The protocol’s key features are the use of (1) a sub-protocol for efficiently executing RAM pro-
grams in zero knowledge, used to hide which facts derived from the formula are used at which steps of
the argument and (2) an encoding of propositional clauses as arithmetic polynomials, which allows us to
aggressively minimize costs by revealing only the refutation’s length and width.

Our empirical evaluation of a prototype implementation indicates that the protocol can be used to prove
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the safety and correctness of safety-critical software (specifically, system device drivers) while keeping
secret the details of why the software is correct. Our approach immediately provides a mechanism for dis-
tributing non-transferable arguments of program correctness, provides a foundation for efficiently proving
the construction of safe and functional software while keeping the software itself secret, and could po-
tentially inspire further optimization by applying and extending the wealth of existing work in automated
theorem proving and symbolic reasoning driven by the software verification community.
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A Proofs of correctness

In this section, we prove the key theorems and lemmas concerning the correctness and security of our
protocol, stated in Section 4. The following properties of each literal encoding φ are used in the proofs
of key lemmas and theorems. For each clause C, γφ(C) is completely reducible and contains no repeated
roots, because each clause is a set of literals and φ is injective. For all clauses C0 and C1,

γφ(C0 ∨ C1) = γφ(C0 ∩ C1)
2 · γφ(C0 \ C1) · γφ(C1 \ C0)

Thus γφ(C0 ∨ C1) | γφ(C0) · γφ(C1) and

γφ(C0 ∨ C1) = γφ(C0) · γφ(C1)

when C0 and C1 are disjoint. Conversely, for completely reduced polynomials p0 and p1 that do not share
roots,

γ−1(p0 · p1) = γ−1(p0) ∨ γ−1(p1)
A proof of Lemma 1:

Proof. Suppose that C = `1 ∨ . . . ∨ `d. For the only if direction note that for all 0 ≤ i ≤ d, φ(`i) is
indeed a root of (X − φ(`0)) · · · (X − φ(`d)). For the if direction. Suppose ` is different from all literals in
{`0, . . . , `d}. The zeros of γ(C) are exactly the values {φ(`0), . . . , φ(`d)}. Since φ is injective, it follows
that φ(`) is different from all {φ(`0), . . . , φ(`d)}.

A proof of Corollary 1:

Proof. Clause C ′ satisfies the equality C ′ = (C ′ \ C) ] C by the assumption that C → C ′. Thus γ(C ′) =
γ(C ′ \C) · γ(C) because γ distributes over disjoint unions. Thus γ(C) | γ(C ′), with factor γ(C ′ \C).

The following lemma will be useful for proving the key lemma for protocol soundness:

Lemma 4. For completely reducible polynomials p and p′ with no repeating roots, if p | p′, then

γ−1(p)→ γ−1(p′)

is valid.

28



Proof. There is some completely reducible polynomial w with no repeating roots and no common roots
with p such that

w · p = p′

by the assumptions that p | p′ and that p′ is fully reducible with no repeating roots. The clause γ−1(w · p) is
well-defined, because w and p do not share roots. Thus

γ−1(w · p) = γ−1(p′)

γ−1(w) ∨ γ−1(p) = γ−1(p′)

by Lemma 4. Thus γ−1(p)→ γ−1(p′) is valid.

A proof of the completeness lemma, Lemma 2:

Proof. The clausal implications C0 → Cr ∨ x and C1 → Cr ∨ ¬x are valid by Definition 3. Thus

γ(C0) | γ(Cr ∨ x) | γ(Cr) · γ(x)
γ(C1) | γ(Cr ∨ ¬x) | γ(Cr) · γ(¬x)

by Corollary 1 and the definition of γ. Thus there are polynomials w0 and w1 such that

w0 · γ(C0) = γ(Cr) · γ(x)

w1 · γ(C1) = γ(Cr) · γ(¬x)

by the definition of polynomial division. Thus for polynomials ρ = γ(x) and ρ̄ = γ(¬x), q0, w0, ρ, q1, w1,
and ρ̄ satisfy the weak resolution test.

A proof of the soundness lemma, Lemma 3:

Proof. By the assumption that the given polynomials satisfy the weak resolution test,

q0 | qr · ρ
q1 | qr · ρ̄

Thus

q∗0 | (qr · ρ)∗

q∗1 | (qr · ρ̄)∗

by the definition of maximal completely reducible divisors.
ρ and ρ̄ have unique roots a and b such that such that for φ the literal encoding that defines γ, φ−1(b) =

¬φ−1(a), by the assumption that ρ and ¯rho satisfy the weak resolution test. Thus

γ−1(q∗0)→ γ−1(q∗r ) ∨ φ−1(a)

γ−1(q∗1)→ γ−1(q∗r ) ∨ ¬φ−1(a)

Thus γ−1(q∗r ) is a weak resolvent of γ−1(q∗0) and γ−1(q∗1) on the pivot variable that defines literals φ−1(a)
and φ−1(b), by Defn. 3.
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B ZK verification vs. generation

As mentioned in Section 5.2, we constructed Boolean formulas whose unsatisfiability is hard to prove in
plaintext, but with small enough refutation proofs so that their unsatisfiability can be demonstrated in ZK in
much shorter time. In particular we constructed a formula which the PicoSAT SAT solver [Bie08] can prove
unsatisfiable only after 180 seconds, but it takes ZKUNSAT roughly 5 seconds to establish its unsatisfiability,
once the prover possesses the proof.

We proceed by describing the construction. Let k and n be arbitrarily large integers. We can construct a
graph GW = (VW , EW ) with K > k nodes, such that it is not 3-colorable, but removing any small number
of edges between a few of those nodes, results in a 3-colorable graph. We call this graph the “witness cycle”.
Define Gi = (Vi,1 ∪ Vi,2 ∪ Vi,3, Ei), for i ≤ K, to be a complete 3-partite graph of size 3n, where each
partition Vi,j of the graph is of size n. For each node vp in the set of nodes VW of the witness graph, for
1 ≤ p ≤ K, let vp be connected to all the nodes in Vp,1 and Vp,2, but none of the nodes in Vp,3. We call each
of these complete 3-partite graphs a “noise graph”. Notice that connecting the nodes of a graph H to the
copies of the noise graphs in this way, does not affect the 3-colorability of the overall graph. In other words
the resulting graph is 3-colorable if and only if the original graph H is 3-colorable. As, such, given that the
witness cycle GW is not 3-colorable by construction, the resulting graph is also not 3-colorable.

Using standard reduction techniques we can convert each instance for any K, n, into a SAT formula
(whose size is polynomially bounded) that is satisfiable if and only if the constructed graph is 3-colorable.
The subformula that corresponds to the witness cycleGW , is also a witness to the unsatisfiability of the input
formula. The purpose of the noise graphs Gi is to distract the SAT solvers away from quickly producing a
refutation proof. A small K corresponds to a smaller proof size, and a larger n corresponds to longer times
for state-of-the-art SAT solvers in finding a refutation. As such, by keeping K small enough and increasing
n arbitrarily enough, we can construct a formula where a SAT solver takes longer to find the solution and
generate a proof than the time it takes to verify in ZK that the formula is unsatisfiable, when the prover
already knows the refutation proof.

C ZK proofs of secret programs

ZK validation of resolution refutations could enable multiple realistic protocols for ZK proofs of safety of
a secret program. One protocol that would directly extend known protocols for encoding programs as SAT
formulas [FAH20] would be to encode a program consisting of n instructions as (1) n copies of a public
formula that multiplexes over designated selector variables to execute some valid instruction and (2) secret
clauses that constrain the selector variables. Such an encoding reveals no information about the program
other than the number of instructions that it contains. A resolution refutation of the conjunction of the
formula and a formula satisfied only by erroneous executions proves that the secret program is safe. For
i the maximum size of a formula needed to model any of the m instructions, the refuted formula has size
O(i ·m · n).

However, the ability to validate resolution refutations enables protocols for proving safety of secret
programs that in some cases, would be even more efficient; instead of imposing a strong requirement on
the intensional structure on a relatively large formula, we can impose independent extensional requirements
on a smaller formula. In particular, we can designate particular propositional variables as modeling state
before and after each of the n instructions and ensure that each of the instructions is valid by validating a
logical implication, whose validity is witnessed by a resolution refutation. The resulting protocol involves
validating refutations of n formulas each of size O(i · n), which can be proved in parallel.
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