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Abstract

Leakage resilient secret sharing (LRSS) allows a dealer to share a secret amongst n parties
such that any authorized subset of the parties can recover the secret from their shares, while
an adversary that obtains shares of any unauthorized subset of parties along with bounded
leakage from the other shares learns no information about the secret. Non-malleable secret
sharing (NMSS) provides a guarantee that even shares that are tampered by an adversary will
reconstruct to either the original message or something independent of it.

The most important parameter of LRSS and NMSS schemes is the size of each share.
For LRSS, in the local leakage model (i.e., when the leakage functions on each share are
independent of each other and bounded), Srinivasan and Vasudevan (CRYPTO 2019), gave a
scheme for threshold access structures with share size of approximately (3 ·message length +µ),
where µ is the number of bits of leakage tolerated from every share. For the case of NMSS, the
best known result (again due to the above work) has share size of (11 ·message length).

In this work, we build LRSS and NMSS schemes with much improved share size. Addi-
tionally, our LRSS scheme obtains optimal share and leakage size. In particular, we get the
following results:

• We build an information-theoretic LRSS scheme for threshold access structures with a
share size of (message length + µ).

• As an application of the above result, we obtain an NMSS with a share size of
(4 · message length). Further, for the special case of sharing random messages, we ob-
tain a share size of (2 ·message length).
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1 Introduction

Secret sharing schemes [Sha79, Bla79] are fundamental cryptographic primitives that allow a dealer
to distribute its secret m amongst n parties in such a way that any authorized subset of parties can
recover m from their shares (correctness), and no unauthorized subset of parties get any information
about m (privacy). For instance, in a t-out-of-n (t ≤ n) threshold secret sharing scheme, any
subset of t parties or more is an authorized set and can reconstruct the secret, while any subset
of fewer than t parties is unauthorized. Secret sharing schemes have found several applications in
literature, such as in multi-party computation [GMW87, BGW88, CCD88], leakage-resilient circuit
compilers [ISW03, FRR+10, Rot12] and threshold cryptographic systems [DF89, Fra89, SDFY94].
An assumption that secret sharing schemes make is that the adversary, controlling an unauthorized
set of parties, gets no information about the shares of the honest parties. However, a rich study on
side-channel attacks called leakage attacks points to the fact that such an assumption is idealized
and may not hold in practice. This has led to much work on leakage resilient cryptography [Koc96,
BBR88, BBCM95, Riv97, DSS01, CDH+00, MR04, DP07, AGV09]. In the context of secret sharing,
leakage attacks allow the adversary to additionally obtain some bounded leakage from the honest
party shares, and such a leakage may help an adversary break privacy of the secret sharing1. To
secure against such attacks, Dziembowski and Pietrzak [DP07] introduced the notion of leakage
resilient secret sharing.

Leakage Resilient/Non-malleable Secret Sharing (LRSS/NMSS). Informally, an LRSS
gives a guarantee that the adversary gets no information about the secret, given its shares from
an unauthorized set, as well as leakage from the remaining honest shares. In particular, in the
local leakage model [BDIR18, GK18, SV19, ADN+19], the adversary is allowed to make a non-
adaptive query to obtain a complete unauthorized set of shares, along with independent (bounded)
leakage on the remaining shares. Privacy is then required to hold against such an adversary.
LRSS schemes tolerating local leakage have been shown to have applications to leakage-resilient
MPC [BGK11, GIM+16, BDIR18, SV19], leakage-resilient non-malleable secret sharing [GK18,
SV19, BS19], and more recently to zero knowledge PCPs [HVW21]. Non-malleable secret sharing
(NMSS) was introduced by Goyal and Kumar in [GK18] and provides a guarantee that under a
tampering attack by the adversary, the message recovered from the tampered shares will either be
the same as the original message or will be independent of it.

Share Size of LRSS/NMSS schemes. The most important aspect of secret sharing schemes
is their share size, which typically determines the efficiency of the application that relies on it.
For example, in an application to MPC, the size of each share affects the overall communication
complexity of the MPC protocol. For standard threshold secret sharing schemes, we know con-
structions [Sha79, LCG+19] with optimal share size (i.e., same as the message length). However,
the picture is quite different in the presence of leakage and/or tampering. For a very special case2,
Benhamouda, Degwekar, Ishai and Rabin [BDIR18] show that the Shamir secret sharing [Sha79] is
leakage resilient with share size of approximately (message length +4 ·µ), where µ is the number of

1In fact, Guruswami and Wooters [GW16] show that Shamir’s secret sharing scheme over a field of characteristic
2 is completely insecure when the adversary gets some t − 1 shares and just one-bit of leakage from other shares.
Further, Nielsen and Simkin [NS20] show that for larger characteristic fields and large n, Shamir’s secret sharing
scheme is not leakage resilient for threshold t ≤ cn/ logn, for constant 0 < c < 1.

2where the underlying field is a large characteristic field, the number of parties n is large, the threshold t is at
least n− o(logn), and the adversary can only obtain a constant number of full shares
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bits of leakage from each share3. The work of Aggarwal, Damgard, Nielsen, Obremski, Purwanto,
Ribeiro and Simkin [ADN+19] constructs – as a stepping stone towards constructing an NMSS –
an LRSS scheme; however, this scheme suffers a polynomial (in n) blowup in its share size and
additionally obtains optimal leakage (≈ ((1 − o(1))message length)) only for the restricted case of
constant number of parties. For the general case of arbitrary n and t, Srinivasan and Vasude-
van [SV19] constructed an LRSS against the local leakage model with a share size of approximately
(3 ·message length +µ), to tolerate µ bits of leakage from each share. Most constructions of NMSS
schemes implicitly require an LRSS and hence share size of LRSS schemes directly impact that of
NMSS. The best known share size for an NMSS is (11·message length), achieved by the construction
of [SV19] (through the [BS19] compiler).

We remark here that obtaining LRSS/NMSS with short share size while simultaneously toler-
ating high leakage rate is an important problem noted in several works (e.g.: In [ADN+19], the
authors state: “It would be interesting to give constructions of leakage-resilient schemes (even in
the non-adaptive setting) with an improved tradeoff between leakage rate and share length ”).

1.1 Our Results

In this work, we construct the first information-theoretic LRSS scheme for threshold access struc-
tures against the local leakage model, with a share size of (message length + µ), tolerating µ bits
of leakage from each share. This result is obtained as a corollary of the following more general
statement that we prove:

Result 1. Given any secret sharing scheme4 for general monotone access structure A with share
size `/R, where ` is the message length and R ≤ 1, one can construct an LRSS for the same access
structure A, against the local leakage model allowing µ bits of leakage per share, with a share size
of `/R+ µ+ o(`/R+ µ).

Using our LRSS scheme from Result 1, along with the recent 1/3-rate non-malleable code
of [AKO+22] in the [GK18] NMSS compiler, we obtain an NMSS with a share size of only
(4 · message length). Additionally, we also formalize a natural restriction of NMSS schemes to
uniformly random secrets, called non-malleable randomness sharing (NMRS), and show how to
construct this with a share size of (2 · message length). NMRS is useful in many practical appli-
cations of secret sharing that only require uniformly random secrets (e.g., when the secret to be
shared and protected against malleability is an encryption key or a digital signature signing key,
whose distribution is (typically) uniform). In particular, we show:

Result 2. There exists a non-malleable secret sharing scheme against the independent tampering
model for the threshold access structure, that achieves a share size of 4`, for messages of length `.
There exists a non-malleable randomness sharing scheme against the independent tampering model
for the threshold access structure that achieves a share size of 2`, for messages of length `.

3In [BDIR18], under the same restrictions (on n, the field and the number of full shares allowed), the authors
also consider the setting with threshold t ≤ αn, for α < 1 for the Shamir secret sharing scheme, but this only allows
constant bits of leakage per share. The work of Nielsen and Simkin [NS20] gives a lower bound for the share size of
an LRSS in the local leakage model, which proves that the amount of leakage allowed on the Shamir scheme shown
in [BDIR18] is the best possible. However, for the LRSS scheme of [SV19] or ours, their lower bound allows for
leakage almost as large as the size of a single share.

4we require the secret sharing to satisfy an additional property of “local uniformity”, which requires every share
to individually have (an almost) uniform distribution. We show later that such a property is already satisfied by
many natural secret sharing schemes (e.g.: Shamir secret sharing).
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1.2 Technical Overview

One of the initial ideas [ADN+19] to build an LRSS scheme against the local leakage model, was
using linear invertible extractors in the following way: a) First, threshold secret share the message
m into n shares m1, · · · ,mn; b) then invert each share mi under an invertible extractor to get
(wi, si); c) Finally, the i-th share contains wi and all sj ’s except for j = i. This scheme, even when
instantiated with the best known linear extractors, has a share size of ((n−1)·message length+|wi|),
which will not be optimal (even for a constant number of parties). This is because this construction
mandates the size of the seeds sj ’s to be as long as the message m in order to get a negligible
leakage error. Furthermore, this scheme allows a leakage of size ((1 − o(1)) · message length) only
for a constant number of parties.

In a subsequent work of [SV19], the authors once again rely on the use of randomness extractors,
but use a single seed s, across all the shares to get a rate improvement. In particular, they do the
following: a) First m is threshold secret shared into m1, · · · ,mn (referred to as “simple shares”)
using a threshold secret sharing scheme b) Next, each mi is masked using an extractor output
Ext(wi, s) where s and wi’s are uniformly chosen. Now, let sh1, · · · , shn denote these masked
shares c) r is uniformly chosen to additionally mask each shi d) Finally, r and s are together secret
shared using a 2-out-of-n secret sharing scheme into shares (a1, · · · , an) and the ith share of the
scheme is then set to be (wi, shi ⊕ r, ai). At a high level, mi was “doubly masked” in order to cast
the leakage on the ith share as leakage on the extractor source wi. In order to add leakage resilience
on top of the simple shares, they needed to be masked twice, and thus, information of both these
masks and the masked value (each roughly of size |mi|) is given as part of the final share, resulting
in its length being approximately 3|mi|, and hence, giving a rate of 1/3.

In our construction, we try to combine the best things from these two constructions, i.e., use of
the invertibility of linear extractors with great parameters, and the use of a single seed across all
shares to optimize the share size. Our techniques use linear extractors in such a way that we not
only remove the dependence of the share size on the number of parties (which in itself is important),
but also obtain an optimal rate of 1 while still allowing a leakage of size ((1−o(1)) ·message length).
We now proceed to describe our approach.

A simpler problem. Our goal is to compile simple shares mi into leakage resilient shares in a
share size-preserving manner (i.e., the size of the leakage resilient share needs to be about the same
as |mi|). As a first step, we relax the problem in two ways a) consider an LRSS only for the (n, n)
access structure (i.e., where the set of all n parties is the only authorized set); and b) require that
the sharing scheme only works for uniformly random messages.

We first construct an LRSS scheme with the desired share size of message length + µ, under
these two relaxations. For this, we choose extractor sources w1, · · · , wn and a seed s uniformly,
secret share s as (s1, · · · , sn) and define sharei to be (wi, si). Now, define reconstruction of sharei’s
as m = ⊕i∈[n]Ext(wi; s), where s is obtained by reconstructing si’s. Now, first observe that, by
extractor security, the reconstructed value m has (almost) uniform distribution. Also, each share
supports local leakage resilience as si (a share) is devoid of information about s and hence any
bounded leakage of the form f(wi, si) is only dependent on wi and is (almost) independent of the
extractor output and hence m too. This scheme infact has a share size of |m| + µ (for µ bits of
leakage per share) as there are explicit extractor constructions with good parameters such that
|s| � |wi| ≈ |Ext(wi, s)|.

Final construction overview. Unfortunately, the above construction does not extend to ei-
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ther support threshold access structures or for secret sharing a specific message m. In order to
reconstruct to a message m, the extractor outputs Ext(wi, s)’s (i ∈ [n]) would have to be corre-
lated. However, the fact that the extractor outputs Ext(wi, s) are uncorrelated is what gives leakage
resilience in the scheme above for sharing random messages. The main technical hurdle which we
overcome in this work is to ensure correlation in the shares while retaining enough independence
(via extractors) so that we can argue leakage resilience.

In our construction, we first generate simple shares of m, denoted (m1, · · · ,mn) using a standard
secret sharing scheme. Next, we aim to cast each of these simple shares mi as an extractor output.
This, however, has two challenges a) the distribution of mi could be arbitrary and need not have
any entropy; and b) it is not clear how to express mi’s as the output of an extractor. To address
(a), we observe that many natural secret sharing schemes (for example, the Shamir secret sharing
scheme) satisfy the property that each share individually has (an almost) uniform distribution.
We formalize this property as “local uniformity” of a secret sharing scheme and generate simple
shares of m using such a locally uniform secret sharing scheme. To solve the challenge (b), we
make use of seeded extractors that are linear functions - i.e., where the extractor function is
guaranteed to be a linear map (over the source) for any fixed value of the seed, called linear
seeded extractors [Tre99, Tre01, RRV02]. We show that such extractors provide an efficient way
to find an (entropic sample of an) extractor source such that the extractor output on this source
takes a given value under a given seed. With this useful property, each of our simple shares can
indeed be expressed as extractor outputs5.

To summarize our construction, we a) secret share m into simple shares m1, · · · ,mn using any
locally uniform secret sharing scheme for the given general access structure; b) choose a seed s
uniformly and generate its shares s1, · · · , sn such that s can be reconstructed from any two shares
si and sj ; c) for each mi, sample wi such that Ext(wi, s) = mi; d) Finally, each share is set to
be (wi, si) for all i ∈ [n]. Leakage resilience of this scheme follows from a careful argument using
extractor security and local uniformity. In this scheme, the length of each share (wi, si) is only
negligibly larger than the length of mi as there are explicit constructions of linear extractors that
extract out almost all the entropy from the source while only using very short seeds.

Non-malleable randomness sharing. We obtain a non-malleable secret sharing (NMSS)
scheme with a share size of 4(message length) by instantiating the NMSS compiler from [GK18]
with our rate-1 LRSS scheme, along with the recent rate-1/3 NMC from [AKO+22]. Hence, our
focus in the main section will be in formalizing and building the NMRS scheme with a share size
of 2(message length). Our NMRS construction follows the same blueprint as [GK18], but uses a
non-malleable randomness encoder (NMRE) (instead of using a non-malleable code) and our LRSS
scheme with rate 1. NMREs [KOS18], outputs a random message along with its encoding L,R,
with the guarantee that whenever an adversary tampers L,R (in a split-state manner, i.e., tamper
L and R independent of each other), the original message looks uniformly random, even given this
tampered message. Now, our NMRS construction outputs the random message m output by the
NMRE, and to generate its shares: first secret share L using our LRSS scheme for the 2-out-of-n
threshold setting and then share R using a t-out-of-n threshold secret sharing scheme.

5A similar technique of using linear and invertible extractors to get rate optimality has been used in two prior
settings before: information-theoretic privacy of communication data in the wiretap channel setting in [BT12, CDS12]
and binary secret sharing schemes in [LCG+19]
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1.3 Related Work

The problems of leakage resilient and non-malleable secret sharing has seen much research in recent
times [DDV10, LL12, BDIR18, GK18, BS19, SV19, ADN+19], [FV19, BFV19, KMS19, LCG+19,
CGG+20, BFO+20, CKOS21]. In the information -theoretic setting, majority of these works focus
on improving the leakage model, such as allowing the adversary to obtain adaptive (leakage queries
dependent on prior leakage responses) and joint (combined leakage from multiple shares) leakages,
and such strong leakage models come at the expense of poor and sub-optimal share size (typically
ω(message length)). For the case where the adversary is restricted to be computationally bounded,
the works of [BFO+20, FV19] show NMSS and LRSS schemes achieving optimal rate for strong
adaptive and joint leakage and tampering models.

1.4 Organization of the Paper

We give the preliminary definitions and lemmata in Section 2. Then, we build our leakage resilient
secret sharing scheme in Section 3. Finally, we define and build our non-malleable randomness
sharing scheme in Section 4.

2 Preliminaries
2.1 Notation

We begin by describing a few notations that we use. For any two sets S and S′, S\S′ denotes
the set of elements that are present in S, but not in S′. For any natural number n, [n] denotes
the set {1, 2, · · · , n}. x ← X denotes sampling from a probability distribution X. x||y represents
concatenation of two binary strings x and y. |x| denotes length of binary string x. Ul denotes
the uniform distribution on {0, 1}l. All logarithms are base 2. If S is a subset of [n] and x1, .., xn
are some variables or elements, then xS denotes the set {xi such that i ∈ S}. χ(a = b) indicates
equality of the strings a and b (i.e χ(a = b) = 1 is an only if a is equal to b ). In this paper we
assume natural one-to-one correspondence between the set {0, 1}n and the field GF (2n).

We give standard definitions of statistical distance and entropy along with some preliminary lem-
mata of the same in Appendix A.

2.2 Randomness Extractors

Extractors (introduced by Nissan and Zuckerman [NZ96]) output an almost uniform string from
a (η, τ)-entropic source, using a short uniform string, called seed, as a catalyst. Average-case
extractors are extractors whose output remains close to uniform, even given the seed and some
auxiliary information about the source (but independent of the seed), whenever the source has
enough average entropy given the auxiliary information. We formally define them as below.

Definition 1. [DORS08] Let Ext : {0, 1}η × {0, 1}d → {0, 1}l be a polynomial time computable
function. We say that Ext is an efficient average-case (η, τ, d, l, ε)-strong extractor if for all
pairs of random variables (W,Z) such that W is a random variable over η-bit strings satisfying
H̃∞(W |Z) ≥ τ , we have

Ext(W ;Ud), Ud, Z ≈ε Ul, Ud, Z
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Linear Extractors. Further, the average-case strong extractor Ext is said to be linear if for
every s ∈ {0, 1}d, Ext(·, s) is a linear function.

In this paper, we instantiate linear extractors with extractors due to Raz et.al [RRV02], which
extracts almost all the randomness and is an improvement of Trevisan’s extractor [Tre99]. Partic-
ularly, we use the following instantiation of the same given in [LCG+19].

Lemma 1. [LCG+19, Lemma 6] There is an explicit (η, τ, d, l, ε)-strong linear extractor with
d = O(log3(ηε )) and l = τ −O(d).

In our application of linear extractors we will often require to uniformly sample an extractor
source such that the extractor output on this source and a given seed s takes a given value y.
Basically, given a seed s and some y ∈ {0, 1}l, the inverting function needs to sample an element
uniformly from the set Ext(·, s)−1(y) (which is {w : Ext(w; s) = y}). We formalize this procedure6

as InvExt and show that linear extractors allow such sampling in the following lemma.

Lemma 2. For every efficient linear extractor Ext, there exists an efficient randomized function
InvExt : {0, 1}l × {0, 1}d → {0, 1}η ∪ {⊥} (termed inverter) such that

1. Uη, Ud,Ext(Uη;Ud) ≡ InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)

2. For each (s, y) ∈ {0, 1}d × {0, 1}l,

(a) Pr[InvExt(y, s) = ⊥] = 1, if and only if there exists no w ∈ {0, 1}η such that Ext(w; s) = y.

(b) Pr[Ext(InvExt(y, s); s) = y] = 1, if there exists some w ∈ {0, 1}η such that Ext(w; s) = y.

Proof. Recall that for a linear extractor, for any seed s ∈ {0, 1}d, Ext(·, s) is a linear map from the
vector space {0, 1}η to the vector space {0, 1}l. Let Is and Ks denote the image and kernel of this
linear map Ext(·, s). We now define InvExt as follows. Fix any arbitrary input y, s to InvExt.
InvExt(y, s):

• If y ∈ Is

– Let w be such that Ext(w; s) = y

– Sample z uniformly from Ks
– Output w + z

Else output ⊥

InvExt is efficient because the bases for the linear sub-spaces Ks, Is and the preimage space on the
value y (corresponding to the linear map Ext(·, s)) can be determined efficiently. By the definition,
it is easy to see that InvExt satisfies property (2) of the Lemma statement. We now proceed to
prove property (1) about statistical distance. Consider the set S = {(w, s, y) : Ext(w; s) = y}.
For any (w, s, y) ∈ S,

Pr[(InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)) = (w, s, y)]

=
∑

w′∈{0,1}η
Pr[Uη = w′, Ud = s] · Pr[InvExt(y, s) = w] · χ(Ext(w′; s) = y)

6In literature, invertible (seeded) extractors (see [CDS12] for an exposition on the same) are well-studied which
allow efficient sampling of a source w and a seed s such that the extractor output on w and s equals a given value y.
Note that our requirement to sample a source w given a seed s and a value y is stronger than the guarantee provided
by invertible extractors. Hence we explicitly show that certain extractors allow such sampling.
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Since Ext(w; s) = y by definition of S, we know that w lies in the set of |Ks| elements from
which InvExt(y, s) chooses its output uniformly. Therefore Pr[InvExt(y, s) = w] = 1

|Ks| . Further,

since Ext(·; s) is a linear map and y ∈ Is, we know that there are exactly |Ks| number of values
w′ ∈ {0, 1}η such that Ext(w′; s) = y. With these observations, we conclude that

Pr[(InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)) = (w, s, y)] =
1

2η+d

Also for any (w, s, y) ∈ S, Pr[(Uη, Ud,Ext(Uη;Ud)) = (w, s, y)] = 1
2η+d

.

For any (w, s, y) /∈ S, it holds that Ext(w; s) 6= y. With this we have

Pr[(Uη, Ud,Ext(Uη;Ud)) = (w, s, y)] = 0

and
Pr[(InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)) = (w, s, y)] = 0

The last equation is true because a) if y ∈ Is, then Pr[InvExt(y, s) = w] = 0 b) if y /∈ Is,
then Pr[(Ud,Ext(Uη;Ud)) = (s, y)] = 0. Further note that Pr[InvExt(Ext(Uη;Ud), Ud) = ⊥] =
0 as Ext(Uη;Ud) ∈ IUd with probability 1. Combining these observations, it follows that
the statistical distance between the distributions (InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)) and
(Uη, Ud,Ext(Uη;Ud)) is zero, which concludes the proof.

2.3 Secret Sharing Schemes

Secret sharing schemes provide a mechanism to distribute a secret into shares such that only an
authorized subset of shares can reconstruct the secret and any unauthorized subset of shares has
“almost” no information about the secret. We now define secret sharing schemes formally.

Definition 2. Let [n] be a set of identities (indices) of n parties. A sharing function Share :
{0, 1}l → ({0, 1}l′)n is an (n,A)- secret sharing scheme that is εs-private with respect to a
monotone access structure7 A if the following two properties hold:

1. Correctness: The secret can be reconstructed by any set of parties that are part of the access
structure A. That is, for any set T ∈ A, there exists a deterministic reconstruction function
Rec : ({0, 1}l′)|T | → {0, 1}l such that for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1

where the probability is over the randomness of the Share function and if (sh1, .., shn) ←
Share(m), then Share(m)T denotes {shi}i∈T . We will slightly abuse the notation and denote
Rec as the reconstruction procedure that takes in T ∈ A and Share(m)T as input and outputs
the secret.

2. Statistical Privacy: Any collusion of parties not part of the access structure should have
“almost” no information about the underlying secret. More formally, for any unauthorized
set U /∈ A, and for every pair of secrets m,m′ ∈ {0, 1}l,

∆((Share(m))U ; (Share(m′))U ) ≤ εs
7A is a monotone access structure if for all A,B such that A ⊂ B ⊆ [n] and A ∈ A, it holds that B ∈ A.

Throughout this paper whenever we consider a general access structure, we mean a monotone access structure.
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(Share,Rec) is said to be perfectly private if εs = 0. An access structure A is said to be (n, t)-
threshold if and only if A contains all subsets of [n] of size atleast t.

Rate of a secret sharing scheme is defined as message size
share size (which would be equal to l/l′).

Leakage Resilience. A secret sharing scheme (Share,Rec) is said to be εlr-leakage resilient
against a leakage function family F if for all messages m,m′ ∈ {0, 1}l and every function f ∈ F ,

f((Share(m))[n]) ≈εlr f((Share(m′))[n])

We use secret sharing schemes augmented with the following property as a building block to
our leakage resilient secret sharing scheme.

Local Uniformity. We say a secret sharing scheme (Share,Rec) satisfies local uniformity if the

distribution of each individual share given out by the Share function is εu-statistically close to the
uniform distribution in its share space. Formally, any sharing function Share : {0, 1}l → {{0, 1}l′}n
is εu-locally uniform if for each message m ∈ {0, 1}l it holds that

Share(m){i} ≈εu Ul′ , ∀ i ∈ [n]

Note that Shamir secret sharing scheme [Sha79, Bla79] and Benaloh-Leichter secret sharing
scheme [BL88] are instantiations of a locally uniform secret sharing schemes for threshold access
structures and general monotone access structures respectively8 .

Consistent Resampling. For any (n,A)-secret sharing scheme (Share,Rec) which is εs-private,

and for any message m and a subset L ⊆ [n], when we say “(sh1, .., shn)← Share(m|sh∗L)” we mean
the following procedure:

• Sample and output (sh1, .., shn) uniformly from the distribution Share(m) conditioned on the
event that shL = sh∗L

• If the above event is a zero probability event then output a string of all zeroes (of appropriate
length).

Note that for any L ⊆ [n], the distributions Share(m) and Share(m|sh∗L) are identical when
(sh∗1, · · · , sh∗n)← Share(m).

3 Leakage Resilient Secret Sharing Schemes

3.1 Local Leakage Family

The local leakage family allows bounded leakage queries {fi : {0, 1}l′ → {0, 1}µ}i∈K, on each
share corresponding to an arbitrary set of indices K(⊆ [n]), and further allows full share queries
corresponding to an unauthorised subset U . Formally, for any access structure A and leakage
amount µ > 0, we define this family as

FA,µ = {(U ,K, {fi}i∈K) : U /∈ A,K ⊆ [n] and ∀ i ∈ K, fi : {0, 1}l′ → {0, 1}µ}
8This is formally proven in [CKOS21, Claim 2].
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where for any secret sharing scheme (Share,Rec), the leakage response corresponding to
a leakage query (U ,K, {fi}i∈K) ∈ FA,µ on any secret m is (shU , {fi(shi)}i∈K) when
(sh1, · · · , shn)← Share(m).

Remark 1. Consider a leakage family which is the set of all functions (U ,K, {fi}i∈K) ∈ FA,µ such
that U ∩K = φ. Intuitively, this is the leakage query which doesn’t ask to reveal a full share and also
query bounded leakage on the same share. Though this may seem like a restriction on FA,µ, we would
like to emphasize that leakage resilience against this weaker family guarantees leakage resilience
against FA,µ itself. This is because leakage response to any function (U ,K, {fi}i∈K) ∈ FA,µ can be
simulated from leakage response to (U ,K\U , {fi}i∈K\U ) ∈ FA,µ, as {fi(shi)}i∈K∩U can be trivially
computed given shU(which is part of the leakage response to (U ,K\U , {fi}i∈K\U)).

3.2 Construction

3.2.1 Building Blocks

• (MShare,MRec) be any εp-private and εu-locally uniform secret sharing scheme for the message
space {0, 1}l and a monotone access structure (n,A). Let l′ denote the share size of MShare
(that is MShare : {0, 1}l → ({0, 1}l′)n).

• (SdShare,SdRec) be any ε′p-private secret sharing scheme for the message space {0, 1}d and
against the (2, n)-threshold access structure with share length d′.

• Ext be an (η, τ, d, l′, εext)-strong linear extractor. InvExt be the inverter function corresponding
to Ext given by Lemma 2.

3.2.2 Construction Overview

We now build our LRSS scheme. Informally, to share a message m, we first share it using MShare
to get m1, · · · ,mn, pick a random extractor seed s and then use InvExt to get the source wi
corresponding to the extractor output mi and seed s, for each i ∈ [n]. If any of the wi is ⊥, then
we output each of the i-th share to be (⊥,mi). Else, we share s using SdShare to get s1, · · · , sn,
and set the i-th share to be (wi, si). The reconstruction procedure either directly reconstructs
using mi’s (in case of ⊥), else reconstructs s, evaluates the extractor Ext on wi and s to get the
mi’s and recovers m.
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LRShare(m)

• (m1, · · · ,mn)← MShare(m).

• Sample s ∈R {0, 1}d.

• (s1, · · · , sn)← SdShare(s).

• For i ∈ [n], wi ← InvExt(mi, s).

• If wj = ⊥ for some j ∈ [n], set sharei =
(⊥,mi) for each i ∈ [n].

• Else, for each i ∈ [n], set sharei =
(wi, si).

• Output (share1, · · · , sharen).

LRRec(shareT ) (where T ∈ A)

• If for any i ∈ T , sharei is of the
form (⊥,mi), then parse each sharej as
(⊥,mj) for each j ∈ T

• Else, for i ∈ T , parse sharei as (wi, si)
and do:

– s ← SdRec(si1 , si2), where i1, i2 are
two indices from T .

– For i ∈ T , set mi = Ext(wi; s).

• Output m← MRec(mT ).

Theorem 1. Let (MShare,MRec), (SdShare, SdRec) and (Ext, InvExt) be the secret sharing schemes
and a strong linear extractor as given in Section 3.2.1. Then (LRShare, LRRec) is a leakage resilient
secret sharing scheme for messages in {0, 1}l against the access structure (n,A) which is εp-private
and (6n(εext + ε′p + εu) + εp) -leakage resilient against the local leakage family FA,µ.

Also, for every instantiation of (MShare,MRec) with rate R(l) 9 on secrets of size l, there exists
an instantiation of (LRShare, LRRec) with a share size of approximately (l/R(l) + µ), for µ bits of
leakage per share. In particular, for µ = o(l/R(l)), we get the same rate R(l) for our LRSS scheme.

Further, there exists an efficient instantiation of (LRShare, LRRec) for threshold access structures
on secrets of size l, which has a share size of approximately (l + µ), for µ bits of leakage (and in

particular gives rate 1, when µ = o(l)), that is perfectly private and 6n · 2−Ω( 3
√

(l/ log l))-leakage
resilient against FA,µ.

3.3 Security Proof

Correctness and Privacy

Correctness of the scheme follows from the correctness of (MShare,MRec) in case any InvExt outputs
⊥, else it follows from correctness of both (MShare,MRec), (SdShare,SdRec) and properties of InvExt
(property 2(b) of Lemma 2). It is easy to see that (LRShare, LRRec) is εp-private by εp-privacy of
(MShare,MRec).

Leakage resilience against the local leakage family

Choose an arbitrary leakage function (U ,K, {fi}i∈K) ∈ FA,µ. Note that by Remark 1, it suffices to
show leakage resilience against leakage functions such that U ∩ K = φ. For the sake of simplicity
assume K = {1, 2, · · · , |K|}.

Our goal is to show that the distributions of leakage response to the query (U ,K, {fi}i∈K) on
shares of two distinct messages m and m′ are statistically close. We denote the distribution of these
leakage responses on m and m′ by Leakm0 and Leakm

′
0 respectively.

In case either of the shares corresponding to m or m′ contain ⊥, then we do not get leakage
resilience, however in Claim 1, we show that the shares corresponding to any message m contain

9Here, we let R denote the function that computes the rate to secret share l-size secrets.
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⊥, only with probability (n(εext + εu)).

Claim 1. For any message m, LRShare(m) = ((⊥,m1), · · · , (⊥,mn)) with probability ≤ (n(εext +
εu)).

Proof. Let Mi,Wi, Si (for i ∈ [n]) and S denote the distributions of the samples mi, wi, si(for
i ∈ [n]) and s respectively in the sharing procedure LRShare(m). By definition of LRShare, for any
m, the probability that LRShare(m) = ((⊥,m1), · · · , (⊥,mn)) is = Pr[∃i ∈ [n] : Wi = ⊥]. We now
analyze this probability. Let Is denote the image of the linear map Ext(·, s) for s ∈ {0, 1}d. By
Lemma 2, note that InvExt(mi, s) outputs ⊥ if and only if mi /∈ Is. Therefore,

Pr[∃i ∈ [n] : Wi = ⊥] ≤
∑
i∈[n]

Pr[Mi /∈ IS ]

Since Ext is a strong linear extractor, we know

Ext(Uη, S), S ≈εext Ul′ , S.

By local uniformity of MShare, for each i ∈ [n] we have Mi ≈εu Ul′ . Since S is independent of Mi

and Ul′ it follows that,
∀i ∈ [n], Ext(Uη, S), S ≈εext+εu Mi, S.

By the definition of statistical distance, for each i ∈ [n]

Pr[Mi /∈ IS ] ≤ εext + εu + Pr[Ext(Uη, S) /∈ IS ] = εext + εu.

The last implication follows because Ext(Uη, S) ∈ IS with probability 1. Therefore,

Pr[∃i ∈ [n] : Wi = ⊥] ≤ n(εext + εu).

�

Thus, assuming this error of (2n(εext+εu)), we can consider all shares of m and m′ to not contain
⊥, and through a sequence of hybrids Leakm0 , Leak

m
1 , · · · , Leakm|K| we show that the responses to the

leakage functions fi’s are (almost) independent of the choice of m in Claim 2. A similar sequence
of hybrids is followed for the message m′. Then, we show that the distributions of the shares of the
messages m and m′ corresponding to the set U are statistically close in Claim 3. Together, these
claims prove leakage resilience. We formally describe these hybrids below (recall we assume the
non-⊥ case here).
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Leakm0

• (m1, · · · ,mn) ←
MShare(m).

• Sample s ∈R {0, 1}d.

• (s1, · · · , sn)← SdShare(s).

• For i ∈ [n], wi ←
InvExt(mi, s).

• For i ∈ [n], set sharei =
(wi, si).

• Output(
{fi(sharei)}i∈[|K|], shareU

)

Leakmj (j ∈ [|K|])

• (m1, · · · ,mn)← MShare(m).

• Sample s ∈R {0, 1}d.

• (s1, · · · , sn)← SdShare(s).

• For 1 ≤ i ≤ j, wi ∈R {0, 1}η.

• For j < i ≤ n, wi ←
InvExt(mi, s).

• For i ∈ [n], set sharei = (wi, si).

• Output(
{fi(sharei)}i∈[|K|], shareU

)
Leakm0 captures the response to the leakage query (U ,K, {fi}i∈K) on message m corresponding to
the sharing function LRShare. Particularly, in Leakm0 all responses fj(sharej) have dependence on
m via wj (as wj is correlated to mj , a share of m). Informally, hybrids Leakmj and Leakmj−1 differ only
in the computation of wj , where wj is chosen uniformly in Leakmj while it is sampled using InvExt in
Leakmj−1 (as in the actual leakage distribution Leakm0 ). We now use the security guarantees provided
by (Ext, InvExt) and local uniformity of MShare to prove that the successive hybrids Leakmj−1 and
Leakmj are statistically close, for each j ∈ [|K|].

Claim 2. By εu-local uniformity of MShare, ε′p-privacy of (SdShare, SdRec) and security of the
strong linear extractor Ext, for each j ∈ [|K|], Leakmj−1 ≈2(εext+ε′p+εu) Leak

m
j .

Proof. For any j ∈ [|K|], the distributions Leakmj−1 and Leakmj only differ in computation of wj
(which in turn influences computation of sharej and fj(sharej)). Let W and S denote uniform
distributions on {0, 1}η and {0, 1}d respectively. From Lemma 2 we have,

W,S,Ext(W ;S) ≡ InvExt(Ext(W ;S), S), S,Ext(W ;S)

Let S̃j ≡ SdShare(0d){j}. By Lemma 6 we have,

fj(W, S̃j), S̃j , S,Ext(W ;S) ≡ fj(InvExt(Ext(W ;S), S), S̃j), S̃j , S,Ext(W ;S)

Since H̃∞(W |(fj(W, S̃j), S̃j)) ≥ η − µ ≥ τ (by our setting of parameters), we invoke extractor
security of Ext to get,

fj(W, S̃j), S̃j , S, Ul′ ≈εext fj(W, S̃j), S̃j , S,Ext(W ;S)

By triangle inequality on the above two inequalities,

fj(W, S̃j), S̃j , S, Ul′ ≈εext fj(InvExt(Ext(W ;S), S), S̃j), S̃j , S,Ext(W ;S) (1)

Observe that RHS of the inequality 1 is a randomised function (with randomness being independent
of the input) of (S̃j , S,Ext(W ;S)). Let g1 denote this function. From Inequality 1 and Lemma 6
we have

g1(S̃j , S, Ul′) ≈εext g1(S̃j , S,Ext(W ;S))
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Then, by definition of g1 we have

fj(InvExt(Ul′ , S), S̃j), S̃j , S, Ul′ ≈εext fj(InvExt(Ext(W ;S), S), S̃j), S̃j , S,Ext(W ;S) (2)

Applying triangle inequality on inequalities 1 and 2 we have,

fj(W, S̃j), S̃j , S, Ul′ ≈2εext fj(InvExt(Ul′ , S), S̃j), S̃j , S, Ul′ (3)

By privacy of SdShare, it holds that Sj , S ≈ε′p S̃j , S. Further, by local uniformity of MShare, it
holds that Ul′ ≈εu Mj . Since (S, Sj), Ul′ and Mj are mutually independent we get

Sj , S,Mj ≈ε′p+εu S̃j , S, Ul′ (4)

Note that the LHS and RHS of Inequality 3 can each be expressed as randomised functions
of (S̃j , S, Ul′). Formally, there exists randomised functions (whose randomness is independent
of the input) g2 and g3 such that g2(S̃j , S, Ul′) ≡ (fj(W, S̃j), S̃j , S, Ul′) and g3(S̃j , S, Ul′) ≡
(fj(InvExt(Ul′ , S), S̃j), S̃j , S, Ul′). Now, by Lemma 6

g2(S̃j , S,Mj) ≈ε′p+εu g2(S̃j , S, Ul′) (5)

g3(S̃j , S,Mj) ≈ε′p+εu g3(S̃j , S, Ul′) (6)

From Inequality 3 we know,
g2(S̃j , S, Ul′) ≈2εext g3(S̃j , S, Ul′) (7)

Now, with applications of triangle inequality to inequalities 5, 7 and 6 and by definition of g2 and
g3 we have

fj(W,Sj), Sj , S,Mj ≈2(εext+ε′p+εu) fj(InvExt(Mj , S), Sj), Sj , S,Mj (8)

Note that the distributions (Sj , S,Mj) are identical in both the distributions Leakmj−1 and Leakmj .
The distribution W on the LHS of inequality 8 is identical to the distribution of wj in Leakmj .
The distribution InvExt(Mj , S) on the RHS of inequality 8 is identical to the distribution of wj in
Leakmj−1. To compute the output of the distributions Leakmj and Leakmj−1 we invoke the following
function on the above LHS and RHS respectively.
func(a, sj , s,mj)

• (m1, · · · ,mn)← MShare(m|m{j})

• Sample s ∈R {0, 1}d

• (s1, · · · , sn)← SdShare(s|s{j})

• For 1 ≤ i < j, wi ∈r {0, 1}η

• For j < i ≤ n, wi ← InvExt(mi, s)

• For i ∈ [n]\{j}, define (wi, si) as sharei and ai = fi(sharei).

• Set aj = a.

• Output ({ai}i∈[|K|], shareU )
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By application of Lemma 6 and by the definition of consistent resampling, we have

Leakmj ≡ func(fj(W,Sj), Sj , S,Mj)

≈2(εext+ε′p+εu) func(fj(InvExt(Mj , S), Sj), Sj , S,Mj) ≡ Leakmj−1

�

Claim 3. By εp-privacy of (MShare,MRec), for any two messages m 6= m′, Leakm|K| ≈εp Leak
m′

|K|.

Proof. Note that for any message m, the distribution Leakm|K| only depends on shares of the unau-

thorised set U . By privacy of MShare, for m,m′

MShare(m)U ≈εp MShare(m′)U

Note that given MShare(m)U , the output of Leakm|K| can be computed by choosing {wi}i∈K and s
uniformly, generating shares of s and performing the remaining computation using fi’s. Similar is
the case for Leakm

′

|K| given MShare(m′)U . Therefore, we have

Leakm|K| ≈εp Leak
m′

|K|

. �

Using Claims 1,2 and 3, with applications of triangle equality, we get

Leakm0 ≈2n(εext+εu)+4|K|(εext+ε′p+εu)+εp Leak
m′
0

This gives the leakage error of at most 6n(εext + ε′p + εu) + εp.

3.4 Parameters

Recall that {0, 1}l is the message space.

• For an (n, t)-threshold access structure

– We instantiate (MShare,MRec) with the (n, t)-Shamir secret sharing scheme for messages.
{0, 1}l, which is perfectly private and perfectly locally uniform (that is εp = εu = 0).
With this instantiation |mi| = l′ = l.

– We set εext = 2
−Ω( 3

√
l′

log l′ ) and instantiate the (η, τ, d, l′, εext)-strong linear extractor
Ext (as in Lemma 1) with η = l′ + µ + O(log3( l′

εext
)), τ = l′ + O(log3( η

εext
)) and d =

O(log3( η
εext

)).

– We instantiate (SdShare,SdRec) with the (n, 2)-Shamir secret sharing scheme for mes-
sages {0, 1}d, which is perfectly private (that is ε′p = 0). With this instantiation we have
|si| = d (for all i ∈ [n]).

– With the above instantiations, the size of each share output by LRShare to support µ bits
leakage (for the leakage family FA,µ) is η+d = l′+µ+O( l′

log l′+log3 µ) = l+µ+o(l, µ). The

scheme is perfectly private and 6n ·2−Ω( 3
√
l/log l)-leakage resilient against FA,µ. Therefore

rate of the scheme is asymptotically 1 when µ = o(l).

16



• For general access structures

– Suppose R is the function specifying the rate of the scheme (MShare,SdShare) on a given
message length l. Then l′ = l

R(l) . Instantiate Ext and (SdShare, SdRec) as done in the

above for threshold access structures with l′ = l
R(l) . With this, we get the share size of

LRShare = l′ + µ+ o(l′, µ) and hence results in rate R(l) whenever µ = o( l
R(l)).

4 Non-malleable Secret Sharing Schemes

As we mentioned in the introduction, we can get the NMSS scheme with the improved rate of 1/4,
by directly instantiating the NMSS scheme of [GK18] with our LRSS scheme10 and the rate-1/3 non-
malleable code [AKO+22]. Hence, our focus in this section will be on formalizing and building non-
malleable randomnesss sharing schemes with the further improved rate. We begin by defining non-
malleable randomness sharing, which specially gives secret sharing and non-malleability guarantees
for uniform random messages. The sharing procedure outputs a (uniform random) message m along
with its shares. The privacy guarantee is that, given any unautorized set of shares, the message
m still looks random. The non-malleability guarantee is that, when the shares are tampered with
respect to some tampering family F , the original message m looks random, even given the recovered
tampered message (using any authorized (adversarially mentioned) set for reconstruction).

Definition 3 (Non-malleable Randomness Sharing). Let RNMShare be a function such
that RNMShare : {0, 1}α → {0, 1}` × ({0, 1}`′)n is defined as RNMShare(r) :=
(RNMShare1(r),RNMShare2(r)) = (m, (Share1, · · · , Sharen)) We say that RNMShare is a (t, n)-
non-malleable randomness sharing with εs-privacy and εnm-non-malleability, message space {0, 1}`,
shares from {0, 1}`′, for the distribution R on {0, 1}α, and with respect to a tampering family F if
it satisfies the following properties.

1. Correctness. For any T ⊆ [n] with |T | ≥ t, there exists a deterministic reconstruction
function RNMRec : ({0, 1}`′)|T | → {0, 1}` such that

Pr
r←R

[RNMRec(RNMShare2(r)T ) = RNMShare1(r)] = 1

2. Statistical Privacy. For any unauthorized set U ⊆ [n] such that |U | < t,

(RNMShare1(R),RNMShare2(R)U ) ≈εs (U`,RNMShare2(R)U ))

3. Non-malleability. For each f ∈ F and every authorized set T ⊆ [n] containing t indices,
there exists a simulator Simf,T over {0, 1}` ∪ {same∗,⊥}, such that

Tamperf,T ≈εnm Copy(U`,Simf,T )

where Tamperf,T denotes the distribution (RNMShare1(R), RNMRec(f(RNMShare2(R))T ))
and Copy(U`,Simf,T ) is defined as:

Copy(U`,Simf,T ) :=


u← U`; m̃← Simf,T

Output: (u, u), if m̃ = same∗

Output: (u, m̃), otherwise


where Simf,T should be efficiently samplable given oracle access to f(.).

10Particularly we share the larger of the two states of the [AKO+22] encoding with our LRSS scheme.
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The rate of this random secret sharing scheme is defined as `/`′.

We specifically consider the independent tampering family, first defined in [GK18], as given
below.

Independent Tampering Family Find. Specifically, we build non-malleable randomness sharing

schemes for the independent tampering family, where each share is allowed to be tampered arbi-
trarily, but independent of each other. Let RNMShare2(r) = (Share1, · · · ,Sharen). Formally, Find
consists of functions (f1, · · · , fn), such that, for each i ∈ [n], fi : {0, 1}`′ → {0, 1}`′ is an arbitrary
tampering function that takes as input Sharei and outputs a tampered share.
Now we proceed to build such non-malleable randomness sharing schemes with respect to Find,
achieving rate 1/2.

4.1 Building Blocks

We begin by looking at the building blocks needed for the construction. Besides our leakage
resilient secret sharing scheme, and any threshold secret sharing scheme, we require non-malleable
randomness encoders, defined below.

4.1.1 Non-malleable Randomness Encoders

Non-malleable randomness encoders (NMRE) were introduced in [KOS18] and give non-malleability
guarantees for random messages, which we formally define below.

Definition 4 (Non-malleable Randomness Encoders [KOS18]). Let (NMREnc,NMRDec) be
s.t. NMREnc : {0, 1}α → {0, 1}` × ({0, 1}β1 × {0, 1}β2) is defined as NMREnc(r) =
(NMREnc1(r),NMREnc2(r)) = (m, (L,R)) and NMRDec : {0, 1}β1 × {0, 1}β2 → {0, 1}`. We say
that (NMREnc,NMRDec) is an ε-non-malleable randomness encoder with message space {0, 1}`,
codeword space {0, 1}β1 × {0, 1}β2, for the distribution R over {0, 1}α, and with respect to the 2-
split-state tampering family Fsplit (consisting of functions (f, g) such that f : {0, 1}β1 → {0, 1}β1
and g : {0, 1}β2 → {0, 1}β2 are arbitrary functions acting on L and R respectively), if it satisfies
the following properties.

1. Correctness. Prr←R[NMRDec(NMREnc2(r)) = NMREnc1(r)] = 1.

2. Non-malleability. For each (f, g) ∈ Fsplit, ∃ a distribution NMRSimf,g over {0, 1}` ∪
{same∗,⊥} such that

NMRTamperf,g ≈ε Copy(U`,NMRSimf,g)

where NMRTamperf,g denotes the distribution (NMREnc1(R),NMRDec((f, g)(NMREnc2(R)))
and Copy(U`,NMRSimf,g) is defined as:

Copy(U`,NMRSimf,g) :=


u← U`; m̃← NMRSimf,g

Output: (u, u), if m̃ = same∗

Output: (u, m̃), otherwise


where NMRSimf,g should be efficiently samplable given oracle access to (f, g)(.).
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We also require the following secret sharing property of the NMRE, which states that the
message of an NMRE looks random, even given one of the states.

Lemma 3. Let (NMREnc,NMRDec) and an ε-non-malleable randomness encoder over the
message space {0, 1}`, using the distribution R, and against the 2-split-state Fsplit. Then,
(NMREnc1(R), L) ≈3ε (U`, L), where (L,R)← NMREnc2(R).

The proof of this lemma is very similar to an analogous property satisfied of non-malleable codes,
shown in [ADKO15, Lemma 6.1]. For completion, we give a full proof of the above lemma in
Appendix B.

4.1.2 Instatiations of our Building Blocks

Specifically, we can now list the building blocks required for our construction.

• (NMREnc,NMRDec) be an εnmre-non-malleable randomness encoder, outputting messages
from {0, 1}` and codewords from {0, 1}β1×{0, 1}β2 , using randomness from some distribution
R, and against the split-state family Fsplit. Further, the NMRE satifies ε′p-secret sharing
property (Lemma 3) that (NMREnc1(R), L) ≈ε′p (U`, L), where (L,R)← NMREnc2(R).

• (LRShare2
n, LRRec

2
n) be a (n, 2)-leakage resilient secret sharing scheme with εlr-leakage re-

silience against F2,µ taking messages from {0, 1}β1 , specifically for 2-threshold setting, i.e.,
the adversary can query independent leakage on n − 1 shares, non-adaptively (upto µ bits
from each share) and get one full share.

• (Sharetn,Rec
t
n) be any (n, t)-secret sharing scheme with εp-privacy against the (n, t)-threshold

access structure, taking messages from {0, 1}β2 .

4.2 Our Construction

We now build a non-malleable randomness sharing scheme. Informally, we first use the non-
malleable randomness encoder to generate a message m along with its encoding (L,R). Then, we
secret share L and R using the leakage resilient and threshold secret sharing schemes respectively,
to get the shares (L1, · · · , Ln) and (R1, · · · , Rn). Finally, we set the i-th share Sharei to be (Li, Ri).
The reconstruction procedure first reconstructs L and R, and subsequently decodes it to recover
m.

RNMShare(r) :

1. (m, (L,R))← NMREnc(r).

2. We further secret share L and R as follows:

(L1, · · · , Ln)← LRShare2
n(L)

(R1, · · · , Rn)← Sharetn(R)

3. For each i ∈ [n], set Sharei = (Li, Ri).

4. Output (m, (Share1, · · · , Sharen)).
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RNMRec(ShareT ) : Parse T = {i1, · · · , it} and do the following:

1. For each j ∈ T , parse Sharej as (Lj , Rj).

2. Recover L and R as:

L← LRRec2
n(Li1 , Li2)

R← Rectn(Ri1 , · · · , Rit)

3. Output m = NMRDec(L,R).

Theorem 2. Let (NMREnc,NMRDec), (LRShare2
n, LRRec

2
n) and (Sharetn,Rec

t
n) be building blocks

as in Section 4.1.2. Then, the construction above gives an (n, t)-non-malleable randomness sharing
scheme with 2εp + ε′p-privacy and εnmre + εlr + εp-non-malleability against Find.
Further, we give an instantiation of the above construction in Section 4.3, which achieves an
asymptotic rate of 1/2, has a privacy error of 2−Ω(`/ logρ+1(`)), and a non-malleablity error of

6n · 2−Ω(`/ logρ+1(`)), for any ρ > 0, for messages of length `.

Proof. Correctness. The correctness of the scheme is straightforward from the correctness of the
underlying non-malleable randomness encoder, the threshold secret sharing scheme and the leakage
resilient secret sharing.

Privacy. We prove the statistical privacy using a hybrid argument. We wish to show that,

for any unauthorized set U ⊆ [n] with |U | < t, (RNMShare1(R),RNMShare2(R)U ) ≈2εp+ε′p
(U`,RNMShare2(R)U )). Let U be any arbitrary unauthorized set. Consider the following sequence
of hybrids.

• Hyb0: This hybrid corresponds to the case where the NMRE encoder is used to generate the
message m.
Generate (m, (L,R)) ← NMREnc(r), for r ← R. Further generate (L1, · · · , Ln) ←
LRShare2

n(L) and (R1, · · · , Rn) ← Sharetn(R). Set Sharei = (Li, Ri), for each i ∈ U and
output (m, {Sharei}i∈U ).

• Hyb1: Replace the shares of R in the set U with shares of an R′ corresponding to a message
m′ output by the NMRE encoder.
Generate (m, (L,R)) ← NMREnc(r) and (L′, R′) ← NMREnc2(r′), for r, r′ ← R. Further
generate (L1, · · · , Ln)← LRShare2

n(L) and (R′1, · · · , R′n)← Sharetn(R′). Set Sharei = (Li, R
′
i),

for each i ∈ U and output (m, {Sharei}i∈U ).

• Hyb2: Replace the m with a random message u, and use the L corresponding to m, as in
Hyb1.
Generate u← U`, (L,R)← NMREnc2(r) and (L′, R′)← NMREnc2(r′), for r, r′ ← R. Further
generate (L1, · · · , Ln)← LRShare2

n(L) and (R′1, · · · , R′n)← Sharetn(R′). Set Sharei = (Li, R
′
i),

for each i ∈ U and output (u, {Sharei}i∈U ).

• Hyb3: This final hybrid corresponds to the case where L and R are generated corresponding
to some message m, but an independent uniform message u is output.
Generate u ← U`, (L,R) ← NMREnc2(r), for r ← R. Further generate (L1, · · · , Ln) ←
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LRShare2
n(L) and (R1, · · · , Rn) ← Sharetn(R). Set Sharei = (Li, Ri), for each i ∈ U and

output (u, {Sharei}i∈U ).

Clearly, Hyb0 ≡ (RNMShare1(R),RNMShare2(R)U ) and Hyb3 ≡ (U`,RNMShare2(R)U )). By statis-
tical privacy of (Sharetn,Rec

t
n), it follows that Hyb0 ≈εp Hyb1 and Hyb2 ≈εp Hyb3. By the privacy

property of NMRE, it follows that Hyb1 ≈ε′p Hyb2. Hence, (RNMShare1(R),RNMShare2(R)U ) ≡
Hyb0 ≈2εp+ε′p Hyb3 ≡ (U`,RNMShare2(R)U )).

Non-malleability. We prove this using a hybrid argument. We begin by describing the sim-

ulator Simf1,··· ,fn,T , for arbitrary tampering functions f1, · · · , fn ∈ Find and reconstruction set
T = {i1, · · · , it}.

Simf1,··· ,fn,T :

1. Let (L∗, R∗)← NMREnc2(r), for r ← R.

2. (L∗1, · · · , L∗n)← LRShare2
n(L∗)

(R∗1, · · · , R∗n)← Sharetn(R∗)

3. Set h = (R∗i1 , · · · , R
∗
it−1

, R̃∗i1 , · · · , R̃
∗
it−1

, L∗it), where (L̃∗j , R̃
∗
j ) = fj(L

∗
j , R

∗
j ), for j =

i1, · · · , it−1. Define the tampering functions Fh and Gh, acting on inputs L and R
respectively as:
Fh(L) :

• Pick Li1 , · · · , Lit−1 such that the reconstruction using any two shares among L∗it and
Li1 , · · · , Lit−1 gives L.

• For each j ∈ {i1, · · · , it−1}, evaluate (L̃j , R̃j) = fj(Lj , R
∗
j ). Then the sampling

should be such that R̃j = R̃∗j for each j = i1, · · · , it−1.

• If such a sampling is not possible then output ⊥.
Else output L̃← LRRec2

n(L̃i1 , L̃i2).

Gh(R) :

• Pick Rit such that it is consistent with R∗i1 , · · · , R
∗
it−1

and R.

• If such a sampling is not possible, then output ⊥.

• Else evaluate (., R̃it) = fit(L
∗
it
, Rit).

• Output R̃← Rectn(R̃∗i1 , · · · , R̃
∗
tt−1

, R̃it).

4. Output m̃← NMRSimFh,Gh .

Now, we describe a sequence of hybrids to show that Copy(U`, Simf1,··· ,fn,T ) ≈εnmre+εlr+εp
Tamperf1,··· ,fn,T .

Hybf1,··· ,fn,T1 : This hybrid is the same as Copy(U`, Simf1,··· ,fn,T ), except that we change
step 4, using NMRSimFh,Gh , and use NMRTamperFh,Gh to output m, m̃ instead of using
Copy(U`,NMRSimFh,Gh).
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Claim 4. If (NMREnc,NMRDec) is an εnmre-NMRE against Fsplit, using the distribution R, then

Copy(U`,Simf1,··· ,fn,T ) ≈εnmre Hyb
f1,··· ,fn,T
1

Proof. The proof of this claim is straightforward. Clearly, (Fh, Gh) ∈ Fsplit and hence, by the
non-malleability of the NMRE, we know that NMRTamperFh,Gh ≈εnmre Copy(U`,NMRSimFh,Gh).
Thus, the reduction can generate h and forward the functions Fh, Gh to the NMRE challenger, and
the response directly gives either the distribution Copy(U`,Simf1,··· ,fn,T ) or Hybf1,··· ,fn,T1 . Hence,
the proof of the claim follows.

Hybf1,··· ,fn,T2 : In this hybrid, we generate (L,R)← NMREnc2(r) for r ← R and use the same R to
generate the shares R1, · · · , Rn, used in h and as an input to the function Gh in NMRTamperFh,Gh .

The remaining steps are exactly same as in Hybf1,··· ,fn,T1 .

Claim 5. If (Sharetn,Rec
t
n) is an εp-secure (t, n)-threshold secret sharing scheme, then

Hybf1,··· ,fn,T1 ≈εp Hyb
f1,··· ,fn,T
2 .

Proof. Suppose for contradiction that the statistical distance between Hybf1,··· ,fn,T1 and Hybf1,··· ,fn,T2

is greater than εp. Then we describe a reduction below, to break the privacy of (Sharetn,Rec
t
n):

1. The reduction generates (L∗, R∗)← NMREnc2(r) and (L,R)← NMREnc2(r′), for r, r′ ← R.

2. Further, generate (L∗1, · · · , L∗n)← LRShare2
n(L∗).

3. Now, the reduction sends R∗, R and receives t − 1 shares Rbi1 , · · · , R
b
it−1

, from the secret
sharing challenger, which correspond to either R or R∗.

4. Now, set h = (Rbi1 , · · · , R
b
it−1

, R̃bi1 , · · · , R̃
b
it−1

, L∗it), where (L̃∗j , R̃
b
j) = fj(L

∗
j , R

b
j), for j =

i1, · · · , it−1.

5. Now, the reduction evaluates Fh(L) = L̃ and Gh(R) = R̃ and outputs
(NMREnc1(r′),NMRDec(L̃, R̃)).

Clearly, if R∗ was used by the secret sharing challenger, then the reduction output is identical to
Hybf1,··· ,fn,T1 and if R was used, then it is identical to Hybf1,··· ,fn,T2 . Hence, this breaks the privacy
of (Sharetn,Rec

t
n).

Hybf1,··· ,fn,T3 : In this hybrid, all steps are exactly same as in Hybf1,··· ,fn,T2 , except that, instead of
Gh reverse sampling Rit , satisfying the consistency condition, we use the same share Rit generated
while setting h.

Claim 6. Hybf1,··· ,fn,T2 ≡ Hybf1,··· ,fn,T3 .

Proof. The reverse sampling of Rit in Hybf1,··· ,fn,T2 uses the same R as used in generating h. Hence,
Gh doesn’t output ⊥ and successfully samples Rit . This directly proves the claim.

Hybf1,··· ,fn,T4 : In this hybrid, we generate (L,R)← NMREnc2(r) for r ← R and use the same L
to generate the shares L1, · · · , Ln, used in h and as an input to the function Fh in NMRTamperFh,Gh .

The remaining steps are exactly same as in Hybf1,··· ,fn,T3 .

Claim 7. If (LRShare2
n, LRRec

2
n) is an εlr-LRSS against F2,µ, then Hybf1,··· ,fn,T3 ≈εlr Hyb

f1,··· ,fn,T
4 .
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Proof. Suppose for contradiction that the statistical distance between Hybf1,··· ,fn,T3 and Hybf1,··· ,fn,T4

is greater than εlr. Then we descirbe a reduction below, to break the leakage resilience of
(LRShare2

n, LRRec
2
n):

1. The reduction generates (L∗, R∗)← NMREnc2(r) and (L,R)← NMREnc2(r′), for r, r′ ← R.

2. Generate R1, · · · , Rn ← Sharetn(R).

3. Now, send L,L∗ as the two challenge messages to the leakage resilience challenger. Query the
it-th full share and the leakages gi1 , · · · , git−1 , each hardcoded with Ri1 , · · · , Rit−1 respectively,
defined as below. For each j = i1, · · · , it−1:
gj(L

b
j) : Evaluate (., R̃j) = fj(L

b
j , Rj) and output R̃j .

4. On receiving Lbit and R̃i1 , · · · , R̃it−1 from the leakage resilience challenger, the reduction eval-

uates (., R̃it) = fit(L
b
it
, Rit) and sets h = (Ri1 , · · · , Rit−1 , R̃i1 , · · · , R̃it−1 , L

b
it

).

5. Now, evaluate Fh(L) = L̃ and R̃ ← Rectn(R̃i1 , · · · , R̃it−1 , R̃it), and output

(NMREnc1(r′),NMRDec(L̃, R̃)).

Clearly, if the challenger picks L∗, the reduction output is identical to Hybf1,··· ,fn,T3 and if it picks

L, then it is identical to Hybf1,··· ,fn,T4 and further, the reduction makes queries from F2,µ, with
µ = |Rj |. Hence, this breaks the leakage resilience of (LRShare2

n, LRRec
2
n).

Hybf1,··· ,fn,T5 : In this hybrid, all steps are exactly same as in Hybf1,··· ,fn,T4 , except that, instead
of Fh reverse sampling Li1 , · · · , Lit−1 , satisfying the consistency condition, we use the same share
Lj ’s generated while setting h.

Claim 8. Hybf1,··· ,fn,T4 ≡ Hybf1,··· ,fn,T5 .

Proof. The reverse sampling of Li1 , · · · , Lit−1 in Hybf1,··· ,fn,T4 uses the same L as used in generating
h. Hence, Fh doesn’t output ⊥, which directly proves the claim.

Note that Hybf1,··· ,fn,T5 ≡ Tamperf1,··· ,fn,T . Hence, by Claims 4, 5, 6, 7 and 8, using trian-
gle inequality we get Copy(U`, Simf1,··· ,fn,T ) ≈εnmre+εp+εlr Tamperf1,··· ,fn,T , which proves the non-
malleability.

4.3 Instantiation of our Scheme

We instantiate our scheme with the following primitives, where the NMRE message space is {0, 1}`.

• We use the following rate-1/2 NMRE from [KOS18].

Lemma 4 (Theorem 1, [KOS18]). There exists an NMRE for uniform messages in the two-
split-state model Fsplit, achieving a constant rate 1/(2 + ζ), for any ζ > 0 and an error of

2−Ω(`/ logρ+1(`)), for any ρ > 0.

Specifically, the above construction has codeword with each block of lengths: |L| = β1 =
`(2 + ζ) and |R| = β2 = o(`).
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• We instantiate the threshold secret sharing scheme with a perfectly private t-out-of-n Shamir
secret sharing scheme for messages from {0, 1}β, which gives the shares of size |Ri| = |R| =
β2 = o(`), for each i ∈ [n].

• Further, we instantiate the LRSS (LRShare2
n, LRRec

2
n) against the leakage family F2,µ with

the scheme from Section 3, with µ = |Ri| = β2 = o(`). This gives |Li| = |L|+ µ+ o(|L|, µ) =
`(2 + ζ ′), for a small ζ ′ > 0 (ignoring the small order terms). This instantiation has a leakage

error εlr of 6n · 2−Ω( 3
√

(β1/ log β1)) = 6n · 2−Ω( 3
√

(`/ log `)).

Combining these instantiations, we get a rate of 1/(2+ζ ′), for any ζ ′ > 0, a privacy error of 2εp+ε
′
p =

2−Ω(`/ logρ+1(`)), for any ρ > 0 and non-malleability error of εnmre + εlr + εp = 6n · 2−Ω(`/ logρ+1(`)),
for any ρ > 0.
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A Statistical Distance and Entropy - Definitions and Lemmata

Statistical distance. Let X1, X2 be two probability distributions over some set S. Their statis-
tical distance is

SD (X1, X2)
def
= max

T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣
(they are said to be ε-close if SD (X1, X2) ≤ ε and denoted by X1 ≈ε X2).
For an event E, SDE(A;B) denotes SD (A|E;B|E).

Entropy. The min-entropy of a random variable W is H∞(W ) = − log(maxw Pr[W = w]).
For a joint distribution (W,Z), following [DORS08], we define the (average) conditional min-
entropy of W given Z as

H̃∞(W | Z) = − log( E
z←Z

(2− log(maxw Pr[W=w|Z=z])))

(here the expectation is taken over z for which Pr[Z = z] is nonzero).
For any two random variable W,Z, (W |Z) is said to be an (n, t′)-average source if W is over {0, 1}n
and H̃∞(W |Z) ≥ t′.
We require some basic properties of entropy and statistical distance, which are given by the following
lemmata and propositions.

Lemma 5. [DORS08] Let A,B,C be random variables. If B has at most 2λ possible values, then
H̃∞(A | B) ≥ H∞(A,B) − λ ≥ H∞(A) − λ. and, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B |
C)− λ ≥ H̃∞(A | C)− λ.

Proposition 1. For any three random variables A,B and C, H̃∞(A|B) ≥ H̃∞(A|B,C).

Proof. Let A,B,C be random variables over A,B, C. Then,

H̃∞(A|B) = − log( E
b←B

(2−H∞(A|B=b)))

= − log
∑
b∈B

max
a∈A

Pr[A = a,B = b]

= − log
∑
b∈B

max
a∈A

∑
c∈C

Pr[A = a,B = b, C = c]
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Similarly,

H̃∞(A|B,C) = − log
∑
b∈B

∑
c∈C

max
a∈A

Pr[A = a,B = b, C = c]

The proposition follows from the observation that for any b ∈ B,∑
c∈C

max
a∈A

Pr[A = a,B = b, C = c] ≥ max
a∈A

∑
c∈C

Pr[A = a,B = b, C = c]

Lemma 6. [Vad12] For any random variables A,B, if A ≈ε B, then for any function f, f(A) ≈ε
f(B).

B Proof of Lemma 3

We begin by observing that to prove the secret sharing property of (NMREnc,NMRDec), i.e.,
(NMREnc1(R), L) ≈3εnmre (U`, L), it is sufficient to prove that (M1, L1) ≈2εnmre (M1, L2), where
M1, (L1, R1) ← NMREnc(r1) and (L2, R2) ← NMREnc2(r2), for r1, r2 ← R11. Further, non-
malleability of (NMREnc,NMRDec) implies that there must exist codewords (X0, Y ) and (X1, Y )
such that NMRDec(X0, Y ) = m0 6= m1 = NMRDec(X1, Y ).
Now, suppose for contradiction that the statistical distance between (M1, L1) and (M1, L2) is
greater than 2εnmre, with M1, L1, L2 as described above. Then, there exists an adversary A (with
output from {0, 1}), such that

Pr[A(M1, L1) = 1]− Pr[A(M1, L2) = 1] > 2εnmre

Then, we build split-state functions (f, g), which break the εnmre-non-malleability of
(NMREnc,NMRDec).
Let g(r) = Y and f(l) = XA(m0,l). Then, NMRDec(f(X0), g(Y )) = m1 with probability
Pr[A(m0, X0) = 1] and NMRDec(f(X1), g(Y )) = m1 with probability Pr[A(m0, X1) = 1]. Thus, by
our assumption we get that Pr[NMRDec(f(X0), g(Y )) = m1]− Pr[NMRDec(f(X1), g(Y )) = m1] >
2εnmre. But, the non-malleability of the NMRE directly implies that NMRDec((f(X0), g(Y )) ≈εnmre
Simf,g ≈εnmre NMRDec(f(X1), g(Y )), which gives us the contradiction! Hence, the proof of the
lemma is complete.

11This is because if (M1, L1) ≈2εnmre (M1, L2), then since (M1, L2) ≈εnmre (U`, L2) ≡ (U`, L1), it follows that
(M1, L1) ≈3εnmre (U`, L1), which is exactly the secret sharing property.
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