
The Summation-Truncation Hybrid:
Reusing Discarded Bits for Free

Aldo Gunsing and Bart Mennink

Digital Security Group, Radboud University, Nijmegen, The Netherlands
aldo.gunsing@ru.nl, b.mennink@cs.ru.nl

Abstract. A well-established PRP-to-PRF conversion design is trun-
cation: one evaluates an n-bit pseudorandom permutation on a certain
input, and truncates the result to a bits. The construction is known to
achieve tight 2n−a/2 security. Truncation has gained popularity due to its
appearance in the GCM-SIV key derivation function (ACM CCS 2015).
This key derivation function makes four evaluations of AES, truncates
the outputs to n/2 bits, and concatenates these to get a 2n-bit subkey.
In this work, we demonstrate that truncation is wasteful. In more detail,
we present the Summation-Truncation Hybrid (STH). At a high level,
the construction consists of two parallel evaluations of truncation, where
the truncated (n − a)-bit chunks are not discarded but rather summed
together and appended to the output. We prove that STH achieves a
similar security level as truncation, and thus that the n− a bits of extra
output is rendered for free. In the application of GCM-SIV, the current
key derivation can be used to output 3n bits of random material, or it
can be reduced to three primitive evaluations. Both changes come with
no security loss.

Keywords: PRP-to-PRF, Truncation, Sum of permutations, Efficiency,
GCM-SIV

1 Introduction

The vast majority of symmetric cryptographic schemes is built upon a pseu-
dorandom permutation, such as AES [21]. Such a function gets as input a key
and bijectively transforms its input to an output such that the function is hard
to distinguish from random if an attacker has no knowledge about the key. The
approach is natural: the design as well as the analysis of pseudorandom permuta-
tions has faced ample research. Yet, in many encryption modes [3], message au-
thentication codes [4,10,18,65], authenticated encryption schemes [24,29,49] and
other applications of pseudorandom permutations [45], the underlying primitive
is only used in forward direction. Here, one does not make use of the invertibility
of the permutation, and even stronger: the fact that one uses a pseudorandom
permutation instead of a pseudorandom function comes at a security penalty.

A prominent example of this is the Wegman-Carter nonce-based message
authentication code from 1981 [18,65]:

WCF,H(ν,m) = F (ν)⊕H(m) ,

where F is a pseudorandom function transforming a nonce ν to an n-bit output
and H a universal hash function transforming an arbitrary length message m to
an n-bit output. Provided that F and H are sufficiently strong and the nonce
is never repeated, this construction is known to achieve 2n security [65]. How-
ever, given the thorough understanding in pseudorandom permutation design,
Shoup suggested to instantiate Wegman-Carter using a pseudorandom permu-
tation P , leading to a construction now known as the Wegman-Carter-Shoup
construction [61]:

WCSP,H(ν,m) = P (ν)⊕H(m) .

This construction, however, is known to only achieve approximately 2n/2 birth-
day bound security in the size of P [11, 47, 61]. This bound may be fine for
sufficiently large pseudorandom permutations like the AES, but with the use
of legacy ciphers and with the rise of lightweight pseudorandom permutations
[1,2,15,16,23,28,35,43,60,66] whose widths could get down to 64 or even 32 bits,
birthday attacks are a practical thread as recently demonstrated by McGrew [48]
and Bhargavan and Leurent [12].

This and comparable examples (e.g., counter mode encryption [3] and GCM
authenticated encryption [49]) showcase the value and need for pseudorandom
functions. Unfortunately, we have little understanding in how to design dedicated
pseudorandom functions, the only two notable exceptions to date being SURF [9]
and AES-PRF [52] (see also Section 1.1.3). With respect to generic constructions,
the well-established PRP-PRF switch dictates that a pseudorandom permutation
behaves like a pseudorandom function up to the birthday bound, 2n/2 where
n is the primitive width [6, 8, 19, 25, 34, 36]. This switch allows one to obtain a
pseudorandom function by simply taking a pseudorandom permutation, but yet,
it incurs a loss in the security bound that is comparable to the loss in moving
from Wegman-Carter to Wegman-Carter-Shoup.

1.1 Beyond Birthday Bound PRP-to-PRF Conversion

Various methods to transform a PRP into a PRF have been proposed that
achieve security beyond the birthday bound on the block size of the underlying
primitive. This work will mostly be concerned with two of them: the sum of
permutations and truncation.

1.1.1 Sum of Permutations. The sum of two independent n-bit permuta-
tions P1, P2,

SoPP1,P2(x) = P1(x)⊕ P2(x) , (1)

was first introduced by Bellare et al. [7]. Closely following this introduction,
Lucks [46] proved around 22n/3 security and Bellare and Impagliazzo [5] around
2n/n security. An intensive line of research of Patarin [56–58] yielded around
optimal 2n security, up to constant, following the mirror theory. Dai et al. [22]

2

proved around 2n security using their rather compact and elegant chi-squared
method.

The two independent permutations can be simulated using a single one
through domain separation [5, 46]:

SoSPP (x) = P (x∥0)⊕ P (x∥1) . (2)

The scheme achieves a similar level of security as SoP [22, 57].
A generalization worth describing is the CENC construction of Iwata [37].

CENC offers a tradeoff between counter mode and the sum of permutations. It
is determined by a parameter w ⩾ 1 and uses P (x∥0) to mask w subsequent
blocks P (x∥1), . . . , P (x∥w). Iwata proved 22n/3 security [37]. Iwata et al. [38]
argued that, in fact, optimal 2n security of CENC directly follows from Patarin’s
mirror theory. Bhattacharya and Nandi [14] re-confirmed this bound using the
chi-squared method.

1.1.2 Truncation. The idea of truncation consists of simply discarding part
of the output of an n-bit permutation P :

TruncPa (x) = lefta(P (x)) , (3)

where 0 ⩽ a ⩽ n. The idea dates back to Hall et al. [34], who proved 2n−a/2

security for a specific selection of parameters a. Bellare and Impagliazzo [5] and
Gilboa and Gueron [26] improved the scope of the proof to tight 2n−a/2 security
for all parameter choices. The first documented solution for the problem, how-
ever, dates back to 1978, when Stam [62], derived it in a non-cryptographic
context. (See also Gilboa et al. [27].) Bhattacharya and Nandi [13] recently
transformed Stam’s analysis to the chi-squared method and derived the iden-
tical 2n−a/2 bound. Mennink [50] considered a general treatment of truncation
with pre- and post-processing and related the generalized scheme with historical
results of Stam from 1986 [63].

1.1.3 Other Approaches. We briefly elaborate on two more recent ap-
proaches on beyond birthday bound secure PRP-to-PRF conversion. Cogliati
and Seurin [20] introduced Encrypted Davies-Meyer:

EDMP1,P2(x) = P2(P1(x)⊕ x) , (4)

where P1 and P2 are two n-bit permutations. They proved security up to around
22n/3. Dai et al. [22] proved security of the construction up to around 23n/4

using the chi-squared method and Mennink and Neves [51] proved security up
to around 2n/n using the mirror theory.

Mennink and Neves [51] proposed its dual version Encrypted Davies-Meyer
Dual:

EDMDP1,P2(x) = P2(P1(x))⊕ P1(x) . (5)

3

They proved that EDMDP1,P2 is at least as secure as SoPP1,P2 . In other words, the
construction is known to achieve around 2n security. Mennink and Neves [52]
subsequently used the construction to design a dedicated PRF based on the
AES [21]. Bernstein’s SURF [9], dating back to 1997, follows the same idea.

1.2 Truncation in GCM-SIV

GCM is a well-established authenticated encryption scheme [40, 49]. It follows
the nonce-based encrypt-then-MAC paradigm, where encryption is performed in
counter mode and the associated data and ciphertext are subsequently authen-
ticated using the GHASH universal hash function.

GCM is vulnerable to nonce misuse attacks. Gueron and Lindell introduced
GCM-SIV, a nonce misuse resistant authenticated encryption scheme. Several
variants of GCM-SIV exist [29, 32, 33, 39], and we will focus on the most recent
one. It follows the nonce misuse resistant SIV mode of Rogaway and Shrimp-
ton [59] and uses individual ingredients of GCM. In the context of this work,
we are particularly interested in the key derivation function of GCM-SIV [33].
This key derivation function is based on an (n = 128)-bit block cipher E and
it derives either 256 bits of key material (if E is instantiated with AES-128) or
384 bits of key material (if E is instantiated with AES-256) based on key k and
nonce ν as follows:{

leftn/2(Ek(ν∥0)) ∥ · · · ∥ leftn/2(Ek(ν∥3)) , for 256-bit subkey,

leftn/2(Ek(ν∥0)) ∥ · · · ∥ leftn/2(Ek(ν∥5)) , for 384-bit subkey.
(6)

This key derivation was in fact introduced in a follow-up version of GCM-SIV [33]
after weaknesses were discovered in the original mechanism [55]. The key deriva-
tion of (6) has actually been disputed over time. Iwata and Seurin [41] advocated
for the sum of permutations instead, and Bose et al. [17] noted that one can even
just leave block ciphers in, as bijectivity in the key derivation function do not
matter in the bigger picture of GCM-SIV. Despite this disputation, GCM-SIV
enjoys strong support from the practical community. GCM-SIV is considered for
standardization by the IETF-CFRG [30,31] and NIST [54]. Therefore, it is a le-
gitimate question to investigate the exact behavior of the key derivation function
within GCM-SIV.

1.3 Summation-Truncation Hybrid

Besides the difference in security guaranteed between truncation and the sum
of permutations, 2n−a/2 versus 2n, the former has another drawback: n − a
bits are truncated and simply discarded. We will demonstrate that this practice
is wasteful: one can make more economical use of the discarded randomness
without any sacrification of security !

Before heading to the main contribution, let us first consider what we can do
with the discarded part of truncation if we focused on a single truncation call.
In other words, we compute y = P (x), output lefta(y) and discard rightn−a(y).

4

P P

u v w

x∥0 x∥1

n

a n− a

n

a n− a

Fig. 1: Summation-Truncation Hybrid STHa of (7).

We wish to make more economical use of rightn−a(y). One way of doing so is
to simply add the value with lefta(y); another way of doing so might be to split
rightn−a(y) in two pieces, add the results, and append that value to the output of
the truncation. It appears that, regardless of the adopted approach, one arrives
at a generalized truncation function in the terminology of Mennink [50, 63].
His result describes that, whatever post-processing is applied to P , security of
the scheme is tightly determined at 2n−a′/2, where a′ is the output size of the
generalized truncation function. (In the former example, a′ = a, whereas in the
latter example, a′ = a+ (n− a)/2 = (n+ a)/2.) In other words, security of the
construction does not increase and it might even decrease if the truncated data
is attempted to be used more economically.

A next step is to look at two subsequent truncation calls, as appear, e.g., in
the GCM-SIV key derivation (6). We present the Summation-Truncation Hybrid
STH, that at a high level consists of two parallel evaluations of truncation, where
the truncated parts are not discarded but rather summed together and appended
to the output. In detail, if P is an n-bit permutation and a is a parameter
satisfying 0 ⩽ a ⩽ n, the Summation-Truncation Hybrid is a pseudorandom
function that maps n− 1 bits of input to n+ a bits of output as follows:

STHP
a (x) = lefta(P (x∥0)) ∥ lefta(P (x∥1)) ∥ rightn−a (P (x∥0)⊕ P (x∥1)) . (7)

The function is depicted in Figure 1.
Clearly, STHa is exactly as expensive as two evaluations of Trunca, but differs

in that it outputs n−a bits for free. This may give a significant efficiency gain for
repeated evaluations of truncation, for instance in the GCM-SIV key derivation
in (6). Concretely, considering the case of GCM-SIV with 128-bit keys, it suffices
to make three permutation calls instead of four, and for the case of 256-bit keys
it suffices to make four permutation calls instead of six. We go into more detail
for GCM-SIV in Section 7.

We also consider a variant of STH based on two permutations without domain
separation. In detail, if P1 and P2 are n-bit permutations and a is a parameter

5

1 2 3 4

n
2

2n
3

3n
4

n

Rate

S
ec
u
ri
ty

le
v
el

(i
n
b
it
s)

Summation

Truncation

STH

Construction Rate Security level (in bits)

Summation 2 n
Truncation n/a n− a/2

STH 2n/(n+ a) n− a/2

Fig. 2: Comparison between the efficiency and security of summation, truncation
and the Summation-Truncation Hybrid. The rate denotes the average number
of input bits needed for every output bit. Lower is more efficient.

satisfying 0 ⩽ a ⩽ n, the Summation-Truncation Hybrid 2 is a pseudorandom
function that maps n bits of input to n+ a bits of output as follows:

STH2P1,P2
a (x) = lefta(P1(x)) ∥ lefta(P2(x)) ∥ rightn−a (P1(x)⊕ P2(x)) . (8)

Its properties are very similar to the ones of the original STH.

1.4 Security of Summation-Truncation Hybrid

In Section 3 we formally prove that the security of STHa is determined by the
security of truncation, i.e., that q evaluations of STHa are approximately as
secure as 2q bits of truncation, despite the q(n − a) bits of free random output.
A comparison between the efficiency and security of truncation, summation and
STH is shown in Figure 2.

The core idea of the proof consists of separating the truncation and the
summation. This is not directly possible, as both parts share some secret infor-
mation: the random permutation. The separation, at a high level, is performed
by getting rid of this shared secret so that one only has to reason based on public
information.

In more detail, in the proof we first execute the truncation part of the con-
struction, based on the secret permutation. Then, we select a new secret permu-
tation for the summation. On the upside, this trick makes it possible to reason

6

about the truncation and summation parts independently. On the downside, re-
placing the secret permutation half-way gives rise to a different construction
than the original one, of course. To remedy this, the new permutations is not
selected from the set of all possible permutations, but rather from those that are
compatible with the output generated by the truncation. This set is solely based
on public information, i.e., information known by the adversary, as we do give
the output of the truncation.

As a bonus, as truncation gives information about the outputs of the permu-
tation directly, we see that this set of compatible permutations is easy to reason
about. We demonstrate that choosing such a random permutation is the same
as choosing a family of permutations with the indices equal to the outputs of
the truncation. As we can now replace the truncation with a random function,
relying on the extensive state of the art on truncation [5, 13, 26, 34, 62], these
indices even become uniformly distributed, which makes them nice to handle.

This transition then brings us to the final part of the proof, that generalizes
security of the sum of permutations with just a single permutation to the sum of
permutations based on an arbitrary family of permutations. The analysis relies
on the chi-squared method and generalizes the proof of Dai et al. [22], with the
catch that we not only consider a family of permutations, but rather that the
selection of permutations from this family is uniformly distributed as it depends
on the outputs of the random function (that replaced the truncation).

2 Preliminaries

Let n, a, b ∈ N with n ⩾ a, b. We denote by {0, 1}n the set of bit strings of length
n. If x ∈ {0, 1}n, lefta(x) returns the a leftmost bits and rightb(x) the b rightmost
bits of x, in such a way that

x = lefta(x) ∥ rightn−a(x) .

For n,m ∈ N, we denote by Perm[n] the set of all permutations on {0, 1}n with
In ∈ Perm[n] the identity permutation, and by Func[n,m] the set of all functions
from {0, 1}n to {0, 1}m.

If X is a finite set, x
$←− X denotes the event of uniformly randomly drawing

x from X . For two distributions µ, ν over a finite event space Ω, the statistical
distance between µ and ν is defined as

∥µ− ν∥ =
∑
x∈Ω

max(0, µ(x)− ν(x))

= max
A⊆Ω

|µ(A)− ν(A)| .

A randomized algorithm O introduces its variables as random variables, so
PO [x = a] denotes the probability that the variable x in algorithm O is equal
to a. As a shorthand we denote PO [a] and PO [A], with a a single value and A
a set of values, for the probabilities that algorithm O returns the value a or a

7

value in the set A, respectively. Just PO denotes the distribution of the return
value of algorithm O. For a random variable X with distribution µ, we denote
its expectation by Eµ [X]. If the distribution is clear from the context, we write
just E [X].

A distinguisher D is an algorithm that is given access to an oracle O to which
it can make a certain amount of queries, and afterwards it outputs b ∈ {0, 1}.

We briefly state an elementary property of conditional expectation.

Lemma 1. Suppose that E [Y | X] = E [Y]. Then E [X · Y] = E [X] · E [Y].

Proof. By the law of total expectation we have

E [X · Y] = E [E [X · Y | X]]

= E [X · E [Y | X]]

= E [X · E [Y]]

= E [X] · E [Y] . ⊓⊔

2.1 Block Ciphers

Let κ, n ∈ N. A block cipher E : {0, 1}κ×{0, 1}n → {0, 1}n is a permutation on
n-bit strings for every fixed key k ∈ {0, 1}κ. Denote by Perm[n] the set of all per-
mutations on {0, 1}n. The security of a block cipher is measured by the distance

between Ek for secret key from a random permutation P
$←− Perm[n]. The ad-

vantage of a distinguisher D in breaking the PRP (pseudorandom permutation)
security of E is defined as

Advprp
E (D) =

∥∥P [DEk = 1
]
− P

[
DP = 1

]∥∥ , (9)

where the probabilities are taken over the random drawing of k
$←− {0, 1}κ,

P
$←− Perm[n], and the randomness used by D. Distinguisher D is usually bound

by a query complexity q and a time complexity t. The maximum over all such
distinguishers is denoted by Advprp

E (q, t).

2.2 Pseudorandom Functions

Let n,m ∈ N. Let FP ∈ Func[n,m] be a function from {0, 1}n to {0, 1}m that is
instantiated with a permutation P ∈ Perm[n]. The security of F is measured by

the distance between FP for secret and uniformly randomly drawn P
$←− Perm[n]

from a random function R
$←− Func[n,m]. The advantage of a distinguisher D in

breaking the PRF (pseudorandom function) security of F is defined as

Advprf
F (D) =

∥∥∥P [DFP

= 1
]
− P

[
DR = 1

]∥∥∥ . (10)

For q ∈ N, we define by Advprf
F (q) the maximum advantage over all distinguish-

ers D making q queries to the oracle.

8

2.3 Truncation

Our security analysis will, in part, rely on the PRF security of truncation of (3).
We copy the result of Stam [62], translated to cryptographic terminology [13,50].

Lemma 2 (Truncation [13,50,62]). Let n, a, q ∈ N such that 0 ⩽ a ⩽ n. We
have:

Advprf
Trunca

(q) ⩽

((
q

2

)
/22n−a

)1/2

. (11)

3 Summation-Truncation Hybrid

Let n, a ∈ N such that 0 ⩽ a ⩽ n, and write b = n − a. Let P ∈ Perm[n] be
a permutation. We define the Summation-Truncation Hybrid STHP

a ∈ Func[n−
1, n+ a] as follows:

STHP
a (x) = lefta(P (x∥0)) ∥ lefta(P (x∥1)) ∥ rightb (P (x∥0)⊕ P (x∥1)) . (12)

The function is depicted in Figure 1. As expressed in this figure, we refer to the
first a bits as u, the second a bits as v, and the final b bits as w, and write
y = u∥v∥w.

Clearly, STHa is equivalent to SoP for a = 0. If a = n, STHa consists of
a concatenation of two block cipher evaluations. For general a, one evaluation
of STHa with the last b bits discarded is equivalent to a double evaluation of
Trunca. As we will show, however, there is no reason to discard these b bits.
Stated differently, q evaluations of STHa are roughly as secure as 2q evaluations
of Trunca, although the former outputs significantly more random data.

Theorem 1. Let n, a, q ∈ N such that 0 ⩽ a ⩽ n, and write b = n− a. Assume
that b ⩾ max(n/12, 10). We have:

Advprf
STHa

(q) ⩽ 3
(q

2n−a/3

)3/2
+

1√
2π

(q

2n−5

)2b−2

+
q

2n
+Advprf

Trunca
(2q) .

(13)

The dominating bound of Theorem 1 is, in fact, Advprf
Trunca

(2q), and therefore,
security of STHa is only marginally worse than that of Trunca, even though it is
much more efficient. We prove Theorem 1 in Section 4.

Remark 1. In Theorem 1, as well as in Lemma 2, we focus on PRF security in
the information-theoretic setting, where the underlying primitive is a secret ran-
dom permutation. One can easily transfer these results to a complexity-theoretic
setting where P is defined as a block cipher instance Ek for secret key. More de-
tailed, the bound of Trunca (Lemma 2) carries over with an additional loss of
Advprp

E (q, t), and the bound of STHa carries over with an additional loss of
Advprp

E (2q, t), where the time complexity is bounded by t.

9

We also consider a variant of STH based on two independent random per-
mutations without domain separation. Let n, a ∈ N such that 0 ⩽ a ⩽ n,
and write b = n − a. Let P1, P2 ∈ Perm[n] be two permutations. We define
STH2P1,P2

a ∈ Func[n, n+ a] as follows:

STH2P1,P2
a (x) = lefta(P1(x)) ∥ lefta(P2(x)) ∥ rightb (P1(x)⊕ P2(x)) . (14)

We get a similar bound as for the original STH.

Theorem 2. Let n, a, q ∈ N such that 0 ⩽ a ⩽ n, and write b = n− a. Assume
that b ⩾ max(n/12, 10). We have:

Advprf
STH2a

(q) ⩽ 3
(q

2n−a/3

)3/2
+

1√
2π

(q

2n−5

)2b−2

+ 2Advprf
Trunca

(q) . (15)

We prove Theorem 2 in Section 6.

One might also be interested in creating a larger instance of the hybrid.
One approach would be to consider applying other functions than summation
on the discarded parts. For example, one could apply the generalized CENC
construction [37] on top of them. This could lead to other interesting results and
might improve the efficiency as well, but this is left for potential future work.

4 Proof of Theorem 1

Let n, a, q ∈ N such that 0 ⩽ a ⩽ n, and write b = n−a. As of now, we will drop
subscript a to STH for brevity. Consider any distinguisher D making q queries
to its oracle. Without loss of generality, D is deterministic and does not make
pointless queries, i.e., xi ̸= xj for all i ̸= j. Our goal is to bound the distance

between STHP for a random permutation P
$←− Perm[n] on the one hand and a

random function R
$←− Func[n− 1, n+ a] on the other hand:

Advprf
STH(D) =

∥∥∥P [DSTHP

= 1
]
− P

[
DR = 1

]∥∥∥ . (16)

We will bound (16) in multiple steps. The first step (Section 4.1) will be to show
that, without loss of generality, we can move to a non-adaptive setting and argue
based on probabilities of transcripts to occur. Then, the second step (Section 4.2)
consists of transforming the real world STHP into a world that separates the
Trunc and SoP parts within STH. Then, the third step (Section 4.3) replaces

that Trunc part by a random function, at the cost of Advprf
Trunc(2q). Then, the

fourth step (Section 4.4) operates on the ideal world R: it transforms it into a
world that does not output strings of the form u∥u∥0b for u ∈ {0, 1}a, noting
that these never occur in the real world we were left with in the third step.
Finally, the fifth step (Section 4.5) bounds the remaining two worlds using the
chi-squared method.

10

4.1 Moving Towards Transcripts

As a first step, we note that the input adaptivity does not help and it suffices to
simply consider the probability of transcripts to occur in the real world and in
the ideal world. Let O1 be an oracle that generates transcripts as lists of random
strings, Algorithm 1, and O2 = NSTH (Non-adaptive STH) be an oracle that

generates transcripts as results of STHP with random P
$←− Perm[n] and fixed

inputs xi = i, Algorithm 2.
We will show that the advantage of attacker D in distinguishing the two

worlds of (16) is at most the statistical distance between world O1 and world
O2. Suppose we get a transcript τ from any of the two oracles O1 or O2, we will
use it to simulate D’s oracles as follows. If D makes query xi, we respond with
ui∥vi∥wi from the transcript. Denote by A the set of all transcripts τ for which
D returns 1. Note that we can cleanly define this, as D is deterministic and its
decision only depends on τ ; moreover, the fact that world O2 uses fixed inputs
for P does not matter as it is a random permutation. Then, the advantage of D
is at most

(16) ⩽ |PO1 [A]− PO2 [A]| ⩽ ∥PO1 − PO2∥ . (17)

Henceforth, it is sufficient to restrict our focus to the statistical distance between
O1 and O2.

Algorithm 1 O1 = R1

1: function R1

2: for i← 1 to q do

3: ui
$←− {0, 1}a

4: vi
$←− {0, 1}a

5: wi
$←− {0, 1}b

6: u = (u1, . . . , uq)
7: v = (v1, . . . , vq)
8: w = (w1, . . . , wq)
9: return τ = (u,v,w)

Algorithm 2 O2 = NSTH

1: function NSTH
2: P

$←− Perm[n]
3: for i← 1 to q do
4: ui ← lefta(P (i∥0))
5: vi ← lefta(P (i∥1))
6: Ui ← rightb(P (i∥0))
7: Vi ← rightb(P (i∥1))
8: wi = Ui ⊕ Vi

9: u = (u1, . . . , uq)
10: v = (v1, . . . , vq)
11: w = (w1, . . . , wq)
12: return τ = (u,v,w)

4.2 Permutation-Separated STH

We define a variant of O2, namely O3 = PSTH (Permutation-separated STH),
in Algorithm 3. This oracle “separates” the Trunc part and the SoP part within
NSTH. In more detail, it first calls internal procedure PTrunc that draws a ran-

dom permutation P
$←− Perm[n] and outputs the lists u and v. Then, it calls

internal procedure PSoP that takes the two lists (u,v) and returns a list w us-
ing a random permutation P ′. This permutation is randomly drawn from a set

11

Algorithm 3 O3 = PSTH

1: function PSTH
2: (u,v)← PTrunc
3: w ← PSoP(u,v)
4: return τ = (u,v,w)

1: function PTrunc
2: P

$←− Perm[n]
3: for i← 1 to q do
4: ui ← lefta(P (i∥0))
5: vi ← lefta(P (i∥1))
6: u = (u1, . . . , uq)
7: v = (v1, . . . , vq)
8: return (u,v)

1: function PSoP(u,v)
2: if Permcomp(u,v) ̸= ∅ then

3: P ′ $←− Permcomp(u,v)
4: else
5: P ′ ← In
6: for i← 1 to q do
7: Ui ← rightb(P

′(i∥0))
8: Vi ← rightb(P

′(i∥1))
9: wi = Ui ⊕ Vi

10: w = (w1, . . . , wq)
11: return w

Permcomp(u,v) ⊆ Perm[n] defined as the set of all permutations from Perm[n]
for which PTrunc would return (u,v). Note that in our analysis this set will
never be empty, so the ‘else’ branch will never be taken and is included solely to
complete the algorithm.

We will prove that any transcript τ is equally likely in O2 and O3. Consider
any valid transcript τ , and define by Permresult(τ) ⊆ Perm[n] the set of all
permutations that give result τ = (u,v,w) when used in O2 = NSTH. Then,

PO2 [τ] = PNSTH [τ] =
|Permresult(τ)|
|Perm[n]|

.

On the other hand, for O3 = PSTH, we first have to get the right (u,v):

PPTrunc [(u,v)] =
|Permcomp(u,v)|
|Perm[n]|

.

Next, we have to get the right w. As Permresult(τ) ⊆ Permcomp(u,v), this prob-
ability is equal to:

PPSoP(u,v) [w] =
|Permresult(τ)|
|Permcomp(u,v)|

.

12

The randomnesses in PTrunc and PSoP are independent, hence the two proba-
bilities are independent as well. This means that the probability of getting τ in
O3 = PSTH is equal to their product. In other words:

PO3 [τ] = PPSTH [τ] = PPSTH [τ | (u,v)← PTrunc] · PPTrunc [(u,v)]

+ PPSTH [τ | (u,v) ̸← PTrunc] · (1− PPTrunc [(u,v)])

= PPSoP(u,v) [w] · PPTrunc [(u,v)] + 0

=
|Permresult(τ)|
|Permcomp(u,v)|

· |Permcomp(u,v)|
|Perm[n]|

=
|Permresult(τ)|
|Perm[n]|

= PNSTH [τ] = PO2
[τ] .

We have henceforth obtained that

∥PO2
− PO3

∥ = 0 . (18)

4.3 Isolating Truncation Advantage

Next, we define O4 = RSTH (Random function-based STH) in Algorithm 4. The
algorithm is identical to O3 = PSTH, but with the function PTrunc replaced by
a random function S. Note that S is written as separate procedure; this is done
to suit further analysis in Section 4.5.

Algorithm 4 O4 = RSTH

1: function RSTH
2: (u,v)← S
3: w ← PSoP(u,v) ▷ See Algorithm 3
4: return τ = (u,v,w)

1: function S
2: for i← 1 to q do

3: ui
$←− {0, 1}a

4: vi
$←− {0, 1}a

5: u = (u1, . . . , uq)
6: v = (v1, . . . , vq)
7: return (u,v)

The only difference between O3 = PSTH and O4 = RSTH is in the generation
of (u,v): in the former, they are generated as a truncated permutation, whereas
in the latter they are generated as a random function. Therefore, we immediately
have:

∥PO3
− PO4

∥ ⩽ ∥PPTrunc − PS∥ = Advprf
Trunc(2q) . (19)

13

4.4 Discarding the Zero

We proceed on the other end of (17). We turn O1 = R1 into O0 = R0 that
operates identically except that it never returns wi = 0b when ui = vi. The
oracle is given in Algorithm 5. As before, we write T as a separate procedure to
suit further analysis in Section 4.5.

Algorithm 5 O0 = R0

1: function R0

2: (u,v)← S
3: w ← T (u,v)
4: return τ = (u,v,w)

1: function T (u,v)
2: for i← 1 to q do
3: if ui ̸= vi then

4: wi
$←− {0, 1}b

5: else
6: wi

$←− {0, 1}b \ {0b}
7: return w = (w1, . . . , wq)

We look at the statistical distance between PO1
and PO0

. Let bad1 be the
set of transcripts τ = (u,v,w) such that ui = vi and wi = 0b for some i. As
PO0

[τ] = 0 for τ ∈ bad1 and PO1
[τ] ⩽ PO0

[τ] for τ /∈ bad1 we see, where A
can be any set of transcripts, that

∥PO1
− PO0

∥ = max
A
|PO1

[A]− PO0
[A]|

= PO1
[bad1]

⩽
q∑

i=1

PO1

[
ui = vi, wi = 0b

]
=

q

2n
. (20)

4.5 Final Step

Looking back, equations (17), (18), (19), and (20) have transformed our original
goal (16) into

Advprf
STH(D) ⩽ ∥PO0

− PO4
∥+ q

2n
+Advprf

Trunc(2q) . (21)

We now look at the worlds O0 and O4. Noting that in both worlds u and v
are generated identically, we can parameterize these worlds. We define Ou,v

0 =

14

T (u,v) and Ou,v
4 = PSoP(u,v), so that in both cases u and v are generated by

S and w by Ou,v
b for b ∈ {0, 4}. This means that

∥PO0
− PO4

∥ =
∑
u,v

∑
w

max(0,PO0
[(u,v,w)]− PO4

[(u,v,w)])

=
∑
u,v

∑
w

max(0,POu,v
0

[w]− POu,v
4

[w]) · PS [(u,v)]

=
∑
u,v

∥∥∥POu,v
0
− POu,v

4

∥∥∥ · PS [(u,v)]

= Eu,v

[∥∥∥POu,v
0
− POu,v

4

∥∥∥] ,
with u and v drawn uniformly. The remaining task boils down to bounding the
distance between PSoP of Algorithm 3 and random function T of Algorithm 5.

For this, we first define Cu,v(i) and C ′
u,v(i) as the number of previous ele-

ments in u,v equal to ui and vi, respectively, as follows:

Cu,v(i) = |{ j | j < i, uj = ui }|+ |{ j | j < i, vj = ui }| ,
C ′

u,v(i) = |{ j | j < i, uj = vi }|+ |{ j | j < i, vj = vi }| .

In our derivation we want to assume that these values stay below 2b−2. We
define bad2 as the set of all (u,v) such that Cu,v(i) ⩾ 2b−2 or C ′

u,v(i) ⩾ 2b−2

for some i. We want to discard the bad cases while still reasoning about u and
v as uniformly random values. For this, we use the following lemma.

Lemma 3. Let f be a non-negative function such that
∥∥∥POu,v

0
− POu,v

4

∥∥∥ ⩽ f(u,v)

for (u,v) /∈ bad2. Then

Eu,v

[∥∥∥POu,v
0
− POu,v

4

∥∥∥] ⩽ Eu,v [f(u,v)] (22)

+ Pu,v [(u,v) ∈ bad2] . (23)

Note that in Eu,v [f(u,v)] the values u,v are still drawn uniformly.

Proof. For (u,v) /∈ bad2 we have that
∥∥∥POu,v

0
− POu,v

4

∥∥∥ ⩽ f(u,v). On the other

hand, for (u,v) ∈ bad2 we get
∥∥∥POu,v

0
− POu,v

4

∥∥∥ ⩽ 1 ⩽ f(u,v)+1. Together, this

means that
∥∥∥POu,v

0
− POu,v

4

∥∥∥ ⩽ f(u,v)+1bad2(u,v), where 1bad2 is the indicator

function of bad2, which is 1 for (u,v) ∈ bad2 and 0 otherwise. By taking the
expectation on both sides this results in

Eu,v

[∥∥∥POu,v
0
− POu,v

4

∥∥∥] ⩽ Eu,v [f(u,v) + 1bad2(u,v)]

= Eu,v [f(u,v)] + Pu,v [(u,v) ∈ bad2] . ⊓⊔

We derive bounds for (22) with suitable f and (23) separately.

15

4.5.1 Bounding (22). As a first step we have to find a non-negative function

f such that
∥∥∥POu,v

0
− POu,v

4

∥∥∥ ⩽ f(u,v) for (u,v) /∈ bad2. The following theorem

gives such function.

Theorem 3. Let a, b, q ∈ N and let u = (u1, . . . , uq) and v = (v1, . . . , vq) be
vectors of length q with elements in {0, 1}a such that Cu,v(i), C

′
u,v(i) < 2b−2 for

all i. Let O and R be as in Algorithm 6. Then

∥PO − PR∥ ⩽

√√√√ 4

23b

q∑
i=1

Cu,v(i) · C ′
u,v(i) .

Algorithm 6 O
1: function O
2: for k ∈ {0, 1}a do

3: Pk
$←− Perm[b]

4: for i← 1 to q do
5: Ui ← Pui(⟨Cu,v(i)⟩b−1∥0)
6: Vi ← Pvi(⟨C′

u,v(i)⟩b−1∥1)
7: wi ← Ui ⊕ Vi

8: return w = (w1, . . . , wq)

Algorithm 7 R
1: function R
2: for i← 1 to q do
3: if ui ̸= vi then

4: wi
$←− {0, 1}b

5: else
6: wi

$←− {0, 1}b \ {0b}
7: return w = (w1, . . . , wq)

Here ⟨x⟩n is the encoding of x as a n-bit string.

The proof of Theorem 3 will be given in Section 5.
It is obvious that R equals Ou,v

0 . We will next show that O generates the
same distribution as Ou,v

4 , by looking at the distribution of Ui given all previous
values (the analysis is symmetrical for the values Vi).

In world O, the value is generated by the permutation Pui with the input
⟨Cu,v(i)⟩b−1∥0. Note that we can encode Cu,v(i) as a b − 1-bit string, as we
assume that Cu,v(i) < 2b−2 < 2b−1. The output value of Pui

will be distributed
uniformly from {0, 1}b minus its previously generated values. These values, in
turn, are Uj and Vj such that uj = ui or vj = ui, respectively, for j < i. Note
that we do get a new value, as ⟨Cu,v(i)⟩b−1∥0 is different from ⟨Cu,v(j)⟩b−1∥0
or ⟨C ′

u,v(j)⟩b−1∥1 for such j.
In world Ou,v

4 , the value is generated by the single permutation P ′ selected
from the set Permcomp(u,v) with the new input i∥0. Note that Permcomp(u,v)
is never empty as we assume that Cu,v(i), C

′
u,v(i) < 2b−2 < 2b for all i, hence

there always exists a permutation that would generate u and v. We know that
the first a bits of the output of P ′ have to be equal to ui. This means that
previously generated values of P ′ do not matter as long as their first a bits are
different. Again, for the last b bits we know that they cannot be equal to Uj or
Vj with uj = ui or vj = ui, respectively, for j < i. Furthermore, the value is
uniformly chosen from the remaining elements in the set {0, 1}b, as P ′ is selected
uniformly from Permcomp(u,v).

16

This means that the distribution of all Ui’s is the same in both worlds. As
the analysis of all Vi’s is similar, both O and Ou,v

4 have the same distribution.

We will now use Theorem 3 to bound (22). As the property E [X]
2 ⩽ E

[
X2
]

implies that E
[√

X
]
⩽
√
E [X], we get

Eu,v [f(u,v)] ⩽

√√√√Eu,v

[
4

23b

q∑
i=1

Cu,v(i) · C ′
u,v(i)

]

=

√√√√ 4

23b

q∑
i=1

Eu,v

[
Cu,v(i) · C ′

u,v(i)
]
. (24)

Although Cu,v(i) and C ′
u,v(i) are not independent, we will show that their expec-

tations are independent, i.e. that Eu,v

[
C ′

u,v(i) | Cu,v(i)
]
= Eu,v

[
C ′

u,v(i)
]
. First

of all, as u and v are distributed uniform, every uj and vj has a probability of
1/2a of being equal to ui or vi for j < i, hence

Eu,v [Cu,v(i)] = Eu,v

[
C ′

u,v(i)
]
=

2(i− 1)

2a
.

Next, we have to compute Eu,v

[
C ′

u,v(i) | Cu,v(i)
]
. In this case we condition over

the event that ui = vi. If this is the case, we know the value of C ′
u,v(i) exactly,

as it is equal to Cu,v(i). On the other hand, if ui ̸= vi, we know that there are
Cu,v(i) less candidates, but also that every candidate has a higher probability
1/(2a − 1) of being equal to vi. This gives the following result:

Eu,v

[
C ′

u,v(i) | Cu,v(i)
]
= Pu,v [ui = vi] · Eu,v

[
C ′

u,v(i) | Cu,v(i), ui = vi
]

+ Pu,v [ui ̸= vi] · Eu,v

[
C ′

u,v(i) | Cu,v(i), ui ̸= vi
]

=
1

2a
· Cu,v(i) +

(
1− 1

2a

)
· 2(i− 1)− Cu,v(i)

2a − 1

=
1

2a
· Cu,v(i) +

2a − 1

2a
· 2(i− 1)− Cu,v(i)

2a − 1

=
1

2a
· Cu,v(i) +

1

2a
· (2(i− 1)− Cu,v(i))

=
2(i− 1)

2a

= Eu,v

[
C ′

u,v(i)
]
.

17

By Lemma 1 this means that we have Eu,v

[
Cu,v(i) · C ′

u,v(i)
]
= Eu,v [Cu,v(i)] ·

Eu,v

[
C ′

u,v(i)
]
, so

(24) =

√√√√ 4

23b

q∑
i=1

Eu,v [Cu,v(i)] · Eu,v

[
C ′

u,v(i)
]

=

√√√√ 4

23b

q∑
i=1

(
2(i− 1)

2a

)2

⩽

√
4

23b
4 · q3
3 · 22a

⩽

√
6 · q3

23n−a

⩽ 3
(q

2n−a/3

)3/2
.

This finishes the first part of the bound.

4.5.2 Bounding (23). We now look at (23). The event (u,v) ∈ bad2 occurs
when a 2b−2-collision occurs inside (u,v). As u and v are chosen uniformly, the
probability of getting a t-collision is bounded by

(2q)t

2a(t−1) · t!
,

where we later substitute t = 2b−2. By Stirling’s approximation, which says that

t! ⩾
√
2πt

(
t

e

)t

⩾
√
2π
(
2−3/2 · t

)t
,

we get that

(23) ⩽
1√
2π
· (2q)t

2a(t−1)
·
(

1

2−3/2 · t

)t

=
2a√
2π
·
(
2q

2a

)t

·
(

1

2−3/2 · t

)t

=
2a√
2π
·
(

2q

2a−3/2 · t

)t

. (25)

From the assumption that b ⩾ n/12 and b ⩾ 10 (hence b ⩽ 2b/96), we get that
a ⩽ n ⩽ 12b ⩽ 2b/8 = t/2, so

(25) ⩽
1√
2π

(
2q

2a−2 · t

)t

. (26)

18

Finally, by substituting t = 2b−2 we get

(26) =
1√
2π

(
2q

2a−2 · 2b−2

)2b−2

=
1√
2π

(q

2n−5

)2b−2

.

This finishes the second part of the bound.

5 Proof of Theorem 3

Let a, b, q ∈ N and let u = (u1, . . . , uq) and v = (v1, . . . , vq) be vectors of length
q with elements in {0, 1}a such that Cu,v(i), C

′
u,v(i) < 2b−2 for all i. Let O and

R be as in Algorithm 6. We denote their outputs by w = (w1, . . . , wq). Further,
for i ∈ {0, . . . , q} denote wi = (w1, . . . , wi).

We will rely on the chi-squared method by Dai et al. [22]. For each i = 1, . . . , q
and each wi−1, define

χ2(wi−1) =
∑
w

(
PO [wi = w | wi−1]− PR [wi = w | wi−1]

)2
PR [wi = w | wi−1]

. (27)

The chi-squared method gives the following bound [22]:

Lemma 4 (Chi-Squared Method). Consider two systems O,R. Suppose that
for any vector wi, PR [wi] > 0 whenever PO [wi] > 0. Then,

∥PO − PR∥ ⩽

(
1

2

q∑
i=1

EO
[
χ2(wi−1)

])1/2

.

Our proof of Theorem 3 is related to that of Dai et al. [22], where they look
at both the SoSP construction of (2) for a single permutation and the SoP
construction of (1) based on two different permutations. In our terminology,
these correspond to the case of u = v = (0a, . . . , 0a) and u = (0a, . . . , 0a), v =
(1a, . . . , 1a), respectively. Our analysis, thus, carefully combines and generalizes
these approaches. An additional difficulty arises from the fact that the different
cases depend on the values of u and v, that may be arbitrary.

In the chi-squared method we have to reason over PO [wi = w | wi−1]. How-
ever, in our case it is difficult to do this directly, as the conditional probability
does not give information about the intermediate values Uj and Vj for j < i,
but only about their sum wj = Uj ⊕Vj . The following lemma shows that we can
assume this extra information without increasing the bound. Intuitively, this is
similar to the fact that giving an adversary more information does not lower its
advantage.

19

Lemma 5. Let Zi−1 be a random variable in world O (but not necessarily in
world R). Then,

EO
[
χ2(wi−1)

]
⩽
∑
w

EO

[
(PO [wi = w | wi−1, Zi−1]− PR [wi = w | wi−1])

2

PR [wi = w | wi−1]

]
.

Proof. Recall that

χ2(wi−1) =
∑
w

(
PO [wi = w | wi−1]− PR [wi = w | wi−1]

)2
PR [wi = w | wi−1]

.

Let wi−1 and w be fixed and write p = PR [wi = w | wi−1]. Then

1

p
(PO [wi = w | wi−1]− p)

2

=
1

p

(∑
z

PO [Zi−1 = z | wi−1] · PO [wi = w | wi−1, Zi−1 = z]− p

)2

=
1

p

(
EO

[
PO [wi = w | wi−1, Zi−1]

∣∣∣∣ wi−1

]
− p

)2

=
1

p
EO

[
PO [wi = w | wi−1, Zi−1]− p

∣∣∣∣ wi−1

]2
⩽

1

p
EO

[
(PO [wi = w | wi−1, Zi−1]− p)

2

∣∣∣∣ wi−1

]
= EO

[
1

p
(PO [wi = w | wi−1, Zi−1]− p)

2

∣∣∣∣ wi−1

]
.

Furthermore, by taking the expectation on both sides we get

EO

[
(PO [wi = w | wi−1]− PR [wi = w | wi−1])

2

PR [wi = w | wi−1]

]

⩽ EO

[
EO

[
(PO [wi = w | wi−1, Zi−1]− PR [wi = w | wi−1])

2

PR [wi = w | wi−1]

∣∣∣∣∣ wi−1

]]

= EO

[
(PO [wi = w | wi−1, Zi−1]− PR [wi = w | wi−1])

2

PR [wi = w | wi−1]

]
.

The proof is completed by combining both equations. ⊓⊔

In our case we take Zi = (U i,V i) with U i = (U1, . . . , Ui) and V i = (V1, . . . , Vi).
Note that in this case we can ignore wi, as its value is fixed given Zi.

We now reformulate PO [wi = w | U i−1,V i−1]. Given U i−1 and V i−1, we
look at the probability that Ui ⊕ Vi = w for an arbitrary w. For this, we define:

Si = {Uj | j < i, uj = ui } ∪ {Vj | j < i, vj = ui } ,
S′
i = {Uj | j < i, uj = vi } ∪ {Vj | j < i, vj = vi } .

20

We write si = |Si|, s′i = |S′
i|, and Di,w = |Si ∩ (S′

i ⊕ w)|.
In order for Ui ⊕ Vi to be equal to w, the variable Ui must take a value from

{0, 1}b \ (Si ∪ (S′
i ⊕ w)). The number of choices for this is exactly

2b − |Si ∪ (S′
i ⊕ w)| = 2b − |Si| − |S′

i ⊕ w|+ |Si ∩ (S′
i ⊕ w)|

= 2b − si − s′i +Di,w . (28)

Moreover, the choice of Vi is fixed to Ui ⊕ w.
We claim that, regardless of whether ui and vi are equal or distinct,

EO

[
(PO [wi = w | U i−1,V i−1]− PR [wi = w | wi−1])

2

PR [wi = w | wi−1]

]
⩽

8sis
′
i

24b
. (29)

The proof of (29) will be given in Section 5.2 (for the case where ui = vi) and
in Section 5.3 (for the case where ui ̸= vi). The two proofs will rely on some
probabilistic analysis of Di,w, given in Section 5.1.

Before getting there, however, we first complete the proof under the hypoth-
esis that (29) holds. Note that si and s′i do not depend on the specific values of
Uj or Vj , they only depend on the value of u and v. In fact si = Cu,v(i) and
s′i = C ′

u,v(i), which means that

∥PO − PR∥2

⩽
1

2

q∑
i=1

EO
[
χ2(wi−1)

]
⩽

1

2

q∑
i=1

∑
w

EO

[
(PO [wi = w | U i−1,V i−1]− PR [wi = w | wi−1])

2

PR [wi = w | wi−1]

]

⩽
4

24b

q∑
i=1

∑
w

sis
′
i

⩽
4

23b

q∑
i=1

Cu,v(i) · C ′
u,v(i) .

5.1 Expectation and Variance of Di,w

The value Di,w counts the number of elements g ∈ {0, 1}b such that g ∈ Si and
g⊕w ∈ S′

i. Our goal is to derive two bounds, one on its expected value E [Di,w]
and one on its variance Var [Di,w], with the randomness chosen over the sets
Si and S′

i which are chosen uniform from {0, 1}b without replacement. Note
that this corresponds with world O. We will, again, do so for the two different
cases: equal permutations (for which Si and S′

i are identical) in Section 5.1.2 and
different permutations (for which Si and S′

i are independent) in Section 5.1.3.
The proofs share common analysis, which is first given in Section 5.1.1.

The proof is based on Lemma 4 of Bhattacharya and Nandi [13], that con-
siders a variant of SoP where a single output is summed with multiple other

21

outputs, but where all outputs are still from the same permutation. We look at
the special case where it is summed with just one value, but extend the analysis
to the case of different independent permutations.

5.1.1 General Analysis. Let Ig be the random variable that is 1 if g ∈ Si and
g⊕w ∈ S′

i, and 0 otherwise. Note that Di,w =
∑

g∈{0,1}b Ig. For the expectation
we have that

E [Ig] = P [g ∈ Si, g ⊕ w ∈ S′
i]

= P [g ∈ Si]P [g ⊕ w ∈ S′
i | g ∈ Si] ,

where we have to compute this value separately for equal and different permu-
tations. For the expectation of Di,w we simply find

E [Di,w] =
∑
g

E [Ig] .

We now look at the variance of Di,w. We use the following property:

Var [Di,w] = Var

[∑
g

Ig

]
=
∑
g

Var [Ig] +
∑
g ̸=g′

Cov (Ig, Ig′) , (30)

where

Cov (Ig, Ig′) = E [IgIg′]− E [Ig]E [Ig′]

= E [Ig]P [Ig′ = 1 | Ig = 1]− E [Ig]E [Ig′] .

First, we will argue that Cov (Ig, Ig′) ⩽ 0 whenever g′ ̸= g ⊕ w. Indeed, if this
condition is satisfied, we have that g′, g′⊕w, g and g⊕w are mutually distinct,
and thus that

P [Ig′ = 1 | Ig = 1] = P [g′ ∈ Si, g
′ ⊕ w ∈ S′

i | g ∈ Si, g ⊕ w ∈ S′
i]

⩽ P [g′ ∈ Si, g
′ ⊕ w ∈ S′

i]

= E [Ig′] .

For the derivation of the inequality, we have used the following observation. On
the one hand, for equal permutations, Si and S′

i are identical, so the inequality
is satisfied as the probability of having two specific elements in a set of fixed
size decreases when it is known that two other elements are already in it. On
the other hand, for different permutations, Si and S′

i are independent, so the
inequality boils down to two independent cases with one element instead of two.
Henceforth, we obtained that Cov (Ig, Ig′) ⩽ 0 whenever g′ ̸= g ⊕ w.

22

Having eliminated the case of Cov (Ig, Ig′) for g′ ̸= g ⊕ w, we can proceed
as follows for the second term of (30):∑

g ̸=g′

Cov (Ig, Ig′) ⩽
∑
g

Cov (Ig, Ig⊕w)

=
∑
g

E [Ig]P [Ig⊕w = 1 | Ig = 1]− E [Ig]E [Ig⊕w]

⩽
∑
g

E [Ig]− E [Ig]E [Ig⊕w]

=
∑
g

E
[
I2g
]
− E [Ig]

2

=
∑
g

Var [Ig] .

Concluding,

Var [Di,w] ⩽ 2
∑
g

Var [Ig]

= 2
∑
g

E [Ig] (1− E [Ig])

⩽ 2
∑
g

E [Ig]

= 2 · E [Di,w] .

5.1.2 Equal Permutations. In this case we have that Si and S′
i are identical.

This means that for w ̸= 0b

P [g ∈ Si]P [g ⊕ w ∈ S′
i | g ∈ Si] =

si(si − 1)

2b(2b − 1)
.

Hence, we have obtained:

EO [Di,w] =
si(si − 1)

2b − 1
, (31)

VarO [Di,w] ⩽
2si(si − 1)

2b − 1
⩽

2sis
′
i

2b
. (32)

5.1.3 Different Permutations. Now Si and S′
i are independent, and hence

P [g ∈ Si]P [g ⊕ w ∈ S′
i | g ∈ Si] =

sis
′
i

22b
.

Hence, we have obtained:

EO [Di,w] =
sis

′
i

2b
, (33)

VarO [Di,w] ⩽
2sis

′
i

2b
. (34)

23

5.2 (29) for Equal Permutations

From (28) the number of valid choices for Ui and Vi is equal to 2b − 2si +Di,w,
as si = s′i for equal permutations. Furthermore, the total number of possible
choices is 2b − si for Ui and 2b − si − 1 for Vi. This means that

PO [wi = w | U i−1,V i−1] =
2b − 2si +Di,w

(2b − si)(2b − si − 1)

=
(2b − 1)− si − (si − 1) +Di,w

((2b − 1)− (si − 1))((2b − 1)− si)
.

As 0b is not possible in our modified ideal world, we have that PR [wi = w | wi−1] =
1/(2b − 1), which results in

(PO [wi = w | U i−1,V i−1]− PR [wi = w | wi−1])
2

=

(
(2b − 1)− si − (si − 1) +Di,w

((2b − 1)− (si − 1))((2b − 1)− si)
− 1

2b − 1

)2

=

(
Di,w − si(si − 1)/(2b − 1)

(2b − si)(2b − si − 1)

)2

⩽
4(Di,w − si(si − 1)/(2b − 1))2

24b
,

using that si < 2b−2. We know from (31-32) that EO [Di,w] = si(si− 1)/(2b− 1)
and VarO [Di,w] ⩽ 2s2i /2

b for any w ∈ {0, 1}b \ {0b}, hence

EO

[
(PO [wi = w | U i−1,V i−1]− PR [wi = w | wi−1])

2

PR [wi = w | wi−1]

]

⩽
4

23b
· EO

[
Di,w −

si(si − 1)

2b − 1

]
=

4

23b
·VarO [Di,w]

⩽
8sis

′
i

24b
.

5.3 (29) for Different Permutations

From (28) the number of valid choices for Ui and Vi is equal to 2b−si−s′i+Di,w.
Furthermore, the total number of possible choices is 2b − si for Ui and 2b − s′i
for Vi. This means that

PO [wi = w | U i−1,V i−1] =
2b − si − s′i +Di,w

(2b − si)(2b − s′i)
.

24

As ui ̸= vi, all values in {0, 1}b are possible in the ideal world, hence PR [wi = w | wi−1] =
1/2b. This results in

(PO [wi = w | U i−1,V i−1]− PR [wi = w | wi−1])
2

=

(
2b − si − s′i +Di,w

(2b − si)(2b − s′i)
− 1

2b

)2

=

(
Di,w − sis

′
i

(2b − si)(2b − s′i)

)2

⩽
4(Di,w − sis

′
i/2

b)2

24b
,

using that si, s
′
i < 2b−2. We know from (33-34) that EO [Di,w] = sis

′
i/2

b and
VarO [Di,w] ⩽ 2sis

′
i/2

b for any w ∈ {0, 1}b, hence

EO

[
(PO [wi = w | U i−1,V i−1]− PR [wi = w | wi−1])

2

PR [wi = w | wi−1]

]

⩽
4

23b
· EO

[(
Di,w −

sis
′
i

2b

)2
]

=
4

23b
·VarO [Di,w]

⩽
8sis

′
i

24b
.

6 Proof of Theorem 2

The proof of Theorem 2 is very similar to the proof of Theorem 1, but with
a few minor differences. First of all, the steps 4.1 and 4.2 remain basically the
same and can be modified in a straightforward way. The step 4.3 is slightly
different, as truncation is applied to two different permutations. This leads to
the term 2Advprf

Trunc(q) instead of the old Advprf
Trunc(2q). Furthermore, the step

4.4 becomes obsolete as we do not have to limit the range in the case of two
independent permutations. This means that the term q/2n vanishes. Finally, the
final step 4.5 remains roughly the same. In fact, as there are two independent
permutations, u and v can be viewed separately. We might be able to use this
information to improve some constants, but the gain is limited to those. We do
not go into such detail and just reuse the old ones.

7 Application to GCM-SIV

GCM-SIV is a nonce misuse resistant authenticated encryption scheme of Gueron
and Lindell, for which various versions exist [29,32,33,39]. We consider the most
recent one, that is also specified in internet draft IETF RFC [44]. It is built on top

25

of a block cipher E : {0, 1}κ×{0, 1}n → {0, 1}n, and the internet draft considers
an instantiation with AES-128 (where κ = n = 128) or AES-256 (where κ = 256
and n = 128).

If E is instantiated with AES-128, the first step of an evaluation of GCM-SIV
is to derive two 128-bit subkeys k1 ∥ k2 ∈ {0, 1}256 based on key k and nonce ν
as in (6):

k1 = leftn/2(Ek(ν∥0)) ∥ leftn/2(Ek(ν∥1)) ,
k2 = leftn/2(Ek(ν∥2)) ∥ leftn/2(Ek(ν∥3)) .

(35)

Then, the associated data, message, and nonce are properly fed to the GHASH
universal hash function (keyed with k1), its outcome is encrypted using Ek2 , and
the resulting value is set as tag. This tag is, subsequently, set as input to counter
mode based on Ek2

to obtain a keystream that is added to the plaintext to
obtain the ciphertext. If E, on the other hand, is instantiated with AES-256, the
procedure is the same but with a 128-bit and a 256-bit subkey k1 ∥ k2 ∈ {0, 1}384
as derived in (6):

k1 = leftn/2(Ek(ν∥0)) ∥ leftn/2(Ek(ν∥1)) ,
k2 = leftn/2(Ek(ν∥2)) ∥ · · · ∥ leftn/2(Ek(ν∥5)) .

(36)

We refer to [52, Figure 3] for a clean picture of this algorithm.
The isolated character of the key derivation function in GCM-SIV is also

well-reflected in the security bound of GCM-SIV. The security bound of GCM-
SIV as outlined by Mennink and Neves [52, Theorem 3], which is in turn taken
from Iwata and Seurin [41], consists of two separated terms:

– A term upper bounding the PRF security of the key derivation function,
namely

Advprf
Truncn/2

(c · q) +Advprp
E (c · q, t) , (37)

where q is the number of invocations of the key derivation function, and
where c = 4 for the 128-bit keyed variant and c = 6 for the 256-bit keyed
variant;

– A term that describes the security of GCM-SIV as an authenticated encryp-
tion scheme once k1 and k2 are uniformly random. This term is irrelevant
for current discussion.

Now, if we would replace the truncation in the key derivation of GCM (equations
(35) and (36)) by STH, we would get

k1 = leftn/2(Ek(ν∥0)) ∥ leftn/2(Ek(ν∥1)) ,
k2 = rightn/2(Ek(ν∥0)⊕ Ek(ν∥1)) ∥ leftn/2(Ek(ν∥2))

for the 128-bit keyed variant, and

k1 = leftn/2(Ek(ν∥0)) ∥ leftn/2(Ek(ν∥1)) ,
k2 = rightn/2(Ek(ν∥0)⊕ Ek(ν∥1)) ∥

leftn/2(Ek(ν∥2)) ∥ leftn/2(Ek(ν∥3)) ∥ rightn/2(Ek(ν∥2)⊕ Ek(ν∥3))

26

for the 256-bit keyed variant. When we use STH, we see that for the derivation
of a 256-bit subkey the underlying block cipher E is called three times instead
of four times, and for the derivation of a 384-bit subkey it is called four times
instead of six times. As for security, the original bound of Iwata and Seurin [41]
(see also [52, Theorem 3]) carries over with (37) replaced by

Advprf
STHn/2

(2 · q) +Advprp
E (c · q, t) ,

where c = 3 for the 128-bit keyed variant and c = 4 for the 256-bit keyed variant.
As the PRF security of STHn/2 (Theorem 1) is similar to the PRF security of
truncation (Lemma 2), there is no significant loss in security. In particular, when
we allow for a maximum advantage of 2−32, we are able to derive approximately
264 different keys for both instantiations, even when t≫ 264. Hence the security
does not reduce when using the more efficient STH version.

We conclude by noting that this only discusses the key derivation in isolation.
As bijectivity in the key derivation is not an issue in the bigger picture of GCM-
SIV, one can get away by simply taking untruncated block ciphers [17]. However,
there are many more applications where replacing block cipher evaluations by
STH truly lead to security gains, most notably Wegman-Carter and counter
mode encryption, as also outlined in Section 1.

Acknowledgments. The authors would like to thank the anonymous reviewers
of CRYPTO 2020 for their valuable feedback. Aldo Gunsing is supported by
the Netherlands Organisation for Scientific Research (NWO) under TOP grant
TOP1.18.002 SCALAR.

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013)

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 123–153. Springer (2016)

3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: FOCS ’97. pp. 394–403. IEEE Computer Society (1997)

4. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions. In: Coppersmith, D. (ed.)
CRYPTO ’95. LNCS, vol. 963, pp. 15–28. Springer (1995)

5. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to PRP to PRF conver-
sion. Cryptology ePrint Archive, Report 1999/024 (1999)

6. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In:
Desmedt, Y. (ed.) CRYPTO ’94. LNCS, vol. 839, pp. 341–358. Springer (1994)

7. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff Backwards: Increasing Secu-
rity by Making Block Ciphers Non-invertible. In: Nyberg, K. (ed.) EUROCRYPT
’98. LNCS, vol. 1403, pp. 266–280. Springer (1998)

27

8. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for
Code-Based Game-Playing Proofs. In: Vaudenay [64], pp. 409–426

9. Bernstein, D.J.: SURF: Simple Unpredictable Random Function. https://cr.yp.
to/papers.html#surf (1997)

10. Bernstein, D.J.: How to Stretch Random Functions: The Security of Protected
Counter Sums. J. Cryptology 12(3), 185–192 (1999)

11. Bernstein, D.J.: Stronger Security Bounds for Wegman-Carter-Shoup Authenti-
cators. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180.
Springer (2005)

12. Bhargavan, K., Leurent, G.: On the Practical (In-)Security of 64-bit Block Ci-
phers: Collision Attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp.
456–467. ACM (2016)

13. Bhattacharya, S., Nandi, M.: A note on the chi-square method: A tool for proving
cryptographic security. Cryptography and Communications 10(5), 935–957 (2018)

14. Bhattacharya, S., Nandi, M.: Revisiting Variable Output Length XOR Pseudoran-
dom Function. IACR Trans. Symmetric Cryptol. 2018(1), 314–335 (2018)

15. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer (2007)

16. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 208–225. Springer (2012)

17. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: Multi-user Security,
Faster Key Derivation, and Better Bounds. In: Nielsen and Rijmen [53], pp. 468–
499

18. Brassard, G.: On Computationally Secure Authentication Tags Requiring Short
Secret Shared Keys. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO
’82. pp. 79–86. Plenum Press, New York (1982)

19. Chang, D., Nandi, M.: A Short Proof of the PRP/PRF Switching Lemma. Cryp-
tology ePrint Archive, Report 2008/078 (2008)

20. Cogliati, B., Seurin, Y.: EWCDM: An Efficient, Beyond-Birthday Secure, Nonce-
Misuse Resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I.
LNCS, vol. 9814, pp. 121–149. Springer (2016)

21. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

22. Dai, W., Hoang, V.T., Tessaro, S.: Information-Theoretic Indistinguishability via
the Chi-Squared Method. In: Katz and Shacham [42], pp. 497–523

23. De Cannière, C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer (2009)

24. Dworkin, M.: NIST SP 800-38A: Recommendation for Block Cipher Modes of
Operation: Methods and Techniques (2001)

25. Freedman, D.: A Remark on the Difference between Sampling with and without
Replacement. Journal of the American Statistical Association 72(359), 681–681
(1977)

26. Gilboa, S., Gueron, S.: The Advantage of Truncated Permutations. CoRR
abs/1610.02518 (2016)

28

https://cr.yp.to/papers.html#surf
https://cr.yp.to/papers.html#surf

27. Gilboa, S., Gueron, S., Morris, B.: How Many Queries are Needed to Distinguish a
Truncated Random Permutation from a Random Function? J. Cryptology 31(1),
162–171 (2018)

28. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18.
Springer (2011)

29. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Specification and Analysis.
Cryptology ePrint Archive, Report 2017/168 (2017)

30. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Nonce Misuse-Resistant
Authenticated Encryption. Internet-Draft draft-irtf-cfrg-gcmsiv-09, Internet En-
gineering Task Force (Nov 2018), work in Progress

31. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Nonce Misuse-Resistant Au-
thenticated Encryption. Request for Comments (RFC) 8452 (April 2019), http:
//tools.ietf.org/html/rfc8452

32. Gueron, S., Lindell, Y.: GCM-SIV: Full Nonce Misuse-Resistant Authenticated
Encryption at Under One Cycle per Byte. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015. pp. 109–119. ACM (2015)

33. Gueron, S., Lindell, Y.: Better Bounds for Block Cipher Modes of Operation via
Nonce-Based Key Derivation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017. pp. 1019–1036. ACM (2017)

34. Hall, C., Wagner, D.A., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO ’98. LNCS, vol. 1462, pp. 370–389. Springer (1998)

35. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable for
Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 46–59. Springer (2006)

36. Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of One-way
Permutations. In: Goldwasser, S. (ed.) CRYPTO ’88. LNCS, vol. 403, pp. 8–26.
Springer (1988)

37. Iwata, T.: New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327.
Springer (2006)

38. Iwata, T., Mennink, B., Vizár, D.: CENC is Optimally Secure. Cryptology ePrint
Archive, Report 2016/1087 (2016)

39. Iwata, T., Minematsu, K.: Stronger Security Variants of GCM-SIV. IACR Trans.
Symmetric Cryptol. 2016(1), 134–157 (2016)

40. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and Repairing GCM Security
Proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer (2012)

41. Iwata, T., Seurin, Y.: Reconsidering the Security Bound of AES-GCM-SIV. IACR
Trans. Symmetric Cryptol. 2017(4), 240–267 (2017)

42. Katz, J., Shacham, H. (eds.): CRYPTO 2017, Part III, LNCS, vol. 10403. Springer
(2017)

43. Lim, C.H., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security of
Low-Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer (2005)

44. Lindell, Y., Langley, A., Gueron, S.: AES-GCM-SIV: Nonce Misuse-Resistant
Authenticated Encryption. Internet-Draft draft-irtf-cfrg-gcmsiv-05, Internet En-
gineering Task Force (May 2017), work in Progress

45. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

29

http://tools.ietf.org/html/rfc8452
http://tools.ietf.org/html/rfc8452

46. Lucks, S.: The Sum of PRPs Is a Secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer (2000)

47. Luykx, A., Preneel, B.: Optimal Forgeries Against Polynomial-Based MACs and
GCM. In: Nielsen and Rijmen [53], pp. 445–467

48. McGrew, D.: Impossible plaintext cryptanalysis and probable-plaintext collision
attacks of 64-bit block cipher modes. Cryptology ePrint Archive, Report 2012/623
(2012)

49. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer (2004)

50. Mennink, B.: Linking Stam’s Bounds with Generalized Truncation. In: Matsui, M.
(ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 313–329. Springer (2019)

51. Mennink, B., Neves, S.: Encrypted Davies-Meyer and Its Dual: Towards Optimal
Security Using Mirror Theory. In: Katz and Shacham [42], pp. 556–583

52. Mennink, B., Neves, S.: Optimal PRFs from Blockcipher Designs. IACR Trans.
Symmetric Cryptol. 2017(3), 228–252 (2017)

53. Nielsen, J.B., Rijmen, V. (eds.): EUROCRYPT 2018, Part I, LNCS, vol. 10820.
Springer (2018)

54. NIST: Block Cipher Techniques – Modes Development. https://csrc.nist.gov/
projects/block-cipher-techniques/bcm/modes-develoment (2020)

55. NSA IA: Key Recovery Attacks on AES-GCM-SIV. https://mailarchive.ietf.
org/arch/msg/cfrg/k2mpWgod4mbdOxsvN6EtXHb0BAg (2017)

56. Patarin, J.: A Proof of Security in O(2n) for the Xor of Two Random Permutations.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer
(2008)

57. Patarin, J.: Introduction to Mirror Theory: Analysis of Systems of Linear Equalities
and Linear Non Equalities for Cryptography. Cryptology ePrint Archive, Report
2010/287 (2010)

58. Patarin, J.: Security in O(2n) for the Xor of Two Random Permutations
– Proof with the standard H technique–. Cryptology ePrint Archive, Report
2013/368 (2013)

59. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: Vaudenay [64], pp. 373–390

60. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer (2011)

61. Shoup, V.: On Fast and Provably Secure Message Authentication Based on Uni-
versal Hashing. In: Koblitz, N. (ed.) CRYPTO ’96. LNCS, vol. 1109, pp. 313–328.
Springer (1996)

62. Stam, A.J.: Distance between sampling with and without replacement. Statistica
Neerlandica 32(2), 81–91 (1978)

63. Stam, A.J.: A note on sampling with and without replacement. Statistica Neer-
landica 40(1), 35–38 (1986)

64. Vaudenay, S. (ed.): EUROCRYPT 2006, LNCS, vol. 4004. Springer (2006)
65. Wegman, M.N., Carter, L.: New Hash Functions and Their Use in Authentication

and Set Equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)
66. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik,

G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344 (2011)

30

https://csrc.nist.gov/projects/block-cipher-techniques/bcm/modes-develoment
https://csrc.nist.gov/projects/block-cipher-techniques/bcm/modes-develoment
https://mailarchive.ietf.org/arch/msg/cfrg/k2mpWgod4mbdOxsvN6EtXHb0BAg
https://mailarchive.ietf.org/arch/msg/cfrg/k2mpWgod4mbdOxsvN6EtXHb0BAg

	The Summation-Truncation Hybrid:Reusing Discarded Bits for Free
	Introduction
	Beyond Birthday Bound PRP-to-PRF Conversion
	Truncation in GCM-SIV
	Summation-Truncation Hybrid
	Security of Summation-Truncation Hybrid

	Preliminaries
	Block Ciphers
	Pseudorandom Functions
	Truncation

	Summation-Truncation Hybrid
	Proof of Theorem 1
	Moving Towards Transcripts
	Permutation-Separated STH
	Isolating Truncation Advantage
	Discarding the Zero
	Final Step

	Proof of Theorem 3
	Expectation and Variance of Di,w
	(29) for Equal Permutations
	(29) for Different Permutations

	Proof of Theorem 2
	Application to GCM-SIV

