
Achievable CCA2 Relaxation
for Homomorphic Encryption⋆

Adi Akavia1 ⋆⋆, Craig Gentry2, Shai Halevi2, and Margarita Vald3

1 University of Haifa, Israel
adi.akavia@gmail.com

2 Algorand Foundation, USA
craigbgentry@gmail.com,shaih@alum.mit.edu

3 Intuit Inc, Israel
margarita.vald@cs.tau.ac.il

Abstract. Homomorphic encryption (HE) protects data in-use, but can
be computationally expensive. To avoid the costly bootstrapping proce-
dure that refreshes ciphertexts, some works have explored client-aided
outsourcing protocols, where the client intermittently refreshes cipher-
texts for a server that is performing homomorphic computations. But is
this approach secure against malicious servers?
We present a CPA-secure encryption scheme that is completely insecure
in this setting. We define a new notion of security, called funcCPA, that
we prove is sufficient. Additionally, we show:
– Homomorphic encryption schemes that have a certain type of circuit

privacy – for example, schemes in which ciphertexts can be “sani-
tized” – are funcCPA-secure.

– In particular, assuming certain existing HE schemes are CPA-secure,
they are also funcCPA-secure.

– For certain encryption schemes, like Brakerski-Vaikuntanathan, that
have a property that we call oblivious secret key extraction, funcCPA-
security implies circular security – i.e., that it is secure to provide
an encryption of the secret key in a form usable for bootstrapping
(to construct fully homomorphic encryption).

In summary, funcCPA-security lies strictly between CPA-security and
CCA2-security (under reasonable assumptions), and has an interesting
relationship with circular security, though it is not known to be equiva-
lent.

1 Introduction

Background. Homomorphic encryption (HE) supports computing over en-
crypted data without access to the secret key. HE is a prominent approach

⋆ A preliminary version of this work appeared in IACR Cryptology ePrint Archive
Report 2021/803 [4].

⋆⋆ The first author was supported in part by the Israel Science Foundation grant
3380/19, and by the Israel National Cyber Directorate via the Haifa and BIU Cyber
Centers.

to safeguarding data and minimizing the impact of potential breaches,
especially useful for outsourcing of computations over sensitive data, as
required by the industry cloud-based architecture.

The security notion achievable for HE schemes is security against
chosen-plaintext attack (CPA-security), whereas it is well known that se-
curity against chosen-ciphertext attack (CCA2-security) is not achievable
due to the inherent malleability of HE schemes. However, CPA-security
is not always sufficient for securing protocols, as it considers only hon-
estly generated ciphertexts and has no guarantees in settings where an
adversary is allowed to inject its own maliciously crafted ciphertexts into
an honest system (see e.g. [36], Chapter 10). Therefore, relying on CPA-
security typically secures protocols only against semi-honest adversaries
e.g. in [38,5,1,22,3,26,2] (unless further cryptographic tools are employed
to enhance security).

In practice however security against malicious adversaries is desired
to combat real-life attacks. A natural question therefore is the following:

Is there a relaxation of CCA2-security that is achievable for HE
schemes and secures protocols against malicious attackers?

1.1 Our contribution

In this work we answer affirmatively the above question by providing a
new security notion, showing it is achievable for HE schemes and that it
guarantees privacy against malicious adversaries for a wide and natural
family of protocols.

The new security notion, named function-chosen-plaintext-attack
(funcCPA-security), is a relaxation of CCA2 security for public key encryp-
tion schemes. Concretely, while CCA2 security captures resiliency against
adversaries that receive decryptions of ciphertexts of their choice, funcCPA
guarantees resiliency only against adversaries that receive re-encryptions
of the underlying cleartext values of ciphertexts of their choice (or, more
generally, encryptions of the result of a computation on those values); See
Definition 6. That is, in funcCPA the adversary sees only ciphertexts, no
cleartext values; nonetheless, the adversary has full control on the compu-
tation performed on the underlying values, even without knowing them,
and can inject maliciously crafted ciphertexts.

We note that funcCPA-security is clearly implied by CCA2, moreover,
we show it is a strict weakening of CCA2 by showing it is achievable for
HE schemes (where CCA2-security is not). Furthermore, funcCPA-security

2

implies CPA-security, but not vice-versa (assuming one-way functions ex-
ist). To prove the latter, we provide: (1) a security proof showing, for
a wide and natural family of outsourcing protocols (named, client-aided
outsourcing protocols), that they preserve privacy when instantiated with
any funcCPA-secure encryption scheme; and (2) an attack that breaks pri-
vacy in these protocols when instantiated with a (carefully crafted) CPA-
secure encryption scheme. This shows that funcCPA-security lies strictly
between CPA and CCA2 security.

To prove that funcCPA is achievable for HE schemes we show how to
construct funcCPA-secure HE schemes from any CPA-secure HE scheme
equipped with a sanitization algorithm, including the HE schemes of Gen-
try [20], Brakerski [8] and Ducas and Micciancio [16] (where sanitization
is as defined in [17], see Definition 3).

Theorem 1 (funcCPA-secure HE scheme achievability, informal).
Every CPA-secure HE scheme with a sanitization algorithm can be trans-
formed into a funcCPA-secure HE scheme.

To further motivate the definition of funcCPA-security we note that
many secure outsourcing protocols in the literature provide the server
with the capability of seeing re-encryptions of ciphertexts of its choice,
and even encrypted results of computations performed on the underly-
ing values of such ciphertexts. For example, in [38] the client provides
the server with re-encryptions for ciphertexts of the server’s choice, with
the goal of avoiding costly bootstrapping at the server’s side. Likewise,
in [5,1,2,22,3,26] the server obtains, via interaction with the client, the
encrypted results of applying various computations on the underlying
cleartext values of ciphertexts of its choice, including computing com-
parisons [5], minima [1,2], linear equations solutions [22,3], ReLU and
Max-Pooling [26].

To capture and generalize secure outsourcing protocols such as dis-
cussed above [5,1,2,22,3,26], we define a natural family of protocols named:
client-aided outsourcing protocols. This family consists of all protocols
where a client generates keys and uploads encrypted data to a server;
the server executes computations over the encrypted data and sends
encrypted results to the client; moreover, to lessen some of the com-
putational burden, the server may send the client (typically few and
lightweight) queries of the form (e, G), for e a vector of ciphertexts and
G a function, so that the client computes G on the underlying cleartext
values and sends the server the encrypted result e′ ← Encpk(G(Decsk(e))).

3

We prove that client-aided outsourcing protocols instantiated with
funcCPA-secure schemes preserve privacy against malicious servers. Namely,
funcCPA suffices in these settings for ensuring privacy, even against mali-
cious attackers.

Theorem 2 (privacy against malicious servers, informal). Client-
aided outsourcing protocols instantiated with any funcCPA-secure scheme
preserve privacy against malicious servers.

Conversely, the attack we exhibit exemplifies that CPA-security does not
provide privacy against malicious servers for this class of protocols.

Theorem 3 (attack, informal). There exist CPA-secure HE schemes so
that for client-aided outsourcing protocols instantiated with these schemes,
there is an attack by the server that recovers the client’s input.

Achievability by existing schemes of funcCPA-security. To avoid the per-
formance overhead incurred due to using sanitization we examine the
achievability of funcCPA-security for popular HE schemes. We prove that
the leveled HE schemes of BV [9], BGV [8] and B/FV[7,18] are leveled-
funcCPA-secure (based on their CPA-security). That is, they satisfy a nat-
ural adaptation of funcCPA to leveled settings, where the funcCPA oracle
answers queries with ciphertexts for the next level.4 Our security proof
requires essentially no modifications to the schemes (other than a slight
change in their evaluation keys generation that has little influence on
performance) and without any extra security assumptions.

Theorem 4 (leveled HE are leveled-funcCPA-secure, informal). The
leveled HE schemes of BV, BGV, B/FV are leveled-funcCPA-secure.

More generally, the above holds for every leveled HE scheme with keys
generated independently for each level (as specified in Definition 12).

In contrast, for the homomorphic schemes of BV and BGV we show
that funcCPA-security implies (weak) circular security. Concretely, we
show that the funcCPA oracle enables generating from the public key
an encryption of the secret key (in the encoding required for bootstrap-
ping), and thus funcCPA-security eliminates the need for the weak circu-
lar security assumption. This can be interpreted as a barrier on proving
funcCPA-security for these schemes, as it would resolve the long standing

4 This leveled-funcCPA oracle is useful, for example, in applications where the oracle
is employed to replace deep homomorphic computations that will consume many
levels of the scheme by a query to the oracle that consumes only a single level.

4

open problem on the necessity of circular security assumption (see e.g.
Question 11 in Peikert’s survey [33]).

Theorem 5 (funcCPA vs. circular security, informal). If the homo-
morphic encryption scheme of BV or BGV is funcCPA-secure, then it is
weakly circular secure.

On the necessity of funcCPA against semi-honest adversaries. To further
study the funcCPA-security notion, we examine its necessity for security
against semi-honest adversaries. We prove that for client-aided outsourc-
ing protocols satisfying a natural property, CPA-security suffices against
semi-honest adversaries. The property we require is that the protocol is
cleartext computable in the sense that the client’s input determines the
underlying cleartext values of the ciphertexts transmitted throughout the
protocol. This captures the fact that the encryption in the protocol is
an external wrapping of the cleartext values, used merely for achieving
privacy against the server, and does not affect the underlying cleartext
computation. This property is natural in outsourcing protocols, where the
server does not contribute any input to the computation but rather it is
only a vessel for storing and processing encrypted data on behalf of the
client.

Theorem 6 (privacy against semi-honest servers, informal).
Cleartext-computable client-aided outsourcing protocols instantiated with
a CPA-secure encryption scheme preserve privacy against semi-honest
servers.

In summary, in this work we introduce the notion of funcCPA that lies
strictly between CPA and CCA2 (under standard assumptions), and show
that funcCPA-security is achievable for HE schemes (unlike CCA2) and
sufficient for ensuring privacy against malicious servers for the wide and
natural family of client-aided outsourcing protocols (unlike CPA). To the
best of our knowledge funcCPA-security is the first relaxation of CCA2
that is both achievable for HE schemes and ensures privacy (for client-
aided outsourcing protocols) against malicious adversaries.

1.2 Our Techniques

Our definition of funcCPA (Definition 6) extends CPA by granting the
adversary in the CPA experiment access to an Encpk(G(Decsk(·))) oracle
for a family of functions G. Namely, the adversary can submit (possibly,

5

adaptive) queries (e, G), for ciphertexts e and a function G ∈ G of its
choice, and receive an encrypted result e′ ← Encpk(G(Decsk(e))).

To prove achievability of funcCPA for sanitized HE schemes (Theo-
rem 1), we first define the notion of circuit-privacy+ that lies between the
semi-honest and malicious definitions of circuit privacy in allowing ma-
liciously formed ciphertexts but requiring honestly generated keys. We
then show how to transform CPA-secure schemes with a sanitization al-
gorithm into CPA-secure circuit-private+ schemes. Finally, we prove that
CPA-secure circuit-private+ schemes are funcCPA-secure.

For our attack proving the insufficiency of CPA-security (Theorem 3)
we first show that every CPA-secure scheme can be slightly modified to
yield a punctured CPA-secure scheme with which our attack is applica-
ble. The attack uses a single query e′ ← Encpk(G(Decsk(e))), where e is
a concatenation of the client’s encrypted input with a special “trapdoor”
ciphertexts planted in the public-key. The query e hits the puncturing of
the scheme so that the result e′ reveals the client’s input. The encryption
scheme remains CPA secure, despite the puncturing, because the trap-
door ciphertext is infeasible to generate honestly i.e. by encrypting an
efficiently samplable message.

1.3 Related Work

CCA2 relaxations. Several relaxations of CCA2-security have been pre-
viously considered [37,10,34,30,28], albeit relaxing other aspects of CCA2
than addressed by our funcCPA notion.

Concretely, Shoup [37], Canetti et al [10] and Prabhakaran and Ro-
sulek [34] proposed a relaxation of CCA2 where forbidden decryption or-
acle queries include, not only the challenge ciphertext, but any ciphertext
that decrypts to the same message as the challenge ciphertext (or exten-
sions of this notion). This captures encryption schemes where ciphertexts
are malleable but only in ways that preserve their underlying plaintext
(or its coset). These relaxations are motivated by capturing encryption
schemes (some of which come up naturally in practice) that are not CCA2
secure but seem sufficiently secure “for most practical purposes”; the in-
tuition is that the ability to generate different ciphertexts that decrypt to
the same value as a given ciphertext should not help the attacker. In the
context of HE however their relaxation is unachievable, because if homo-
morphism is supported, then an adversary receiving a challenge ciphertext
encrypting a message x can homomorphically produce a ciphertext for a
related message (e.g. x+1 or 2x) and by calling the decrypting oracle on
this ciphertext the adversary can recover x.

6

Another line of work, including e.g. [30,28] shows that CCA1 is achiev-
able for HE (unlike CCA2). This seems insufficient for privacy against ma-
licious servers in client-aided outsourcing protocols, because CCA1 does
not guarantee security if non-trivial queries are submitted after the chal-
lenge. Moreover, CCA1 is unachievable for fully homomorphic schemes
(because fully homomorphic schemes provide an encryption of the secret
key as part of the public key, for the purpose of bootstrapping, and query-
ing the CCA1 oracle on this ciphertext would recover the secret key and
break security). In contrast, our results show that funcCPA-security is
achievable for fully homomorphic schemes (e.g., see Theorem 1).

Insufficiency of CPA-security. The insufficiency of CPA-security for pro-
tocols utilizing homomorphic encryption was considered by Li and Mic-
ciancio [29]. They show that protocols instantiated with the CPA-secure
approximate HE schemes of CKKS [12] are insecure when the protocol
exposes decryptions to the attacker, even for semi-honest adversaries. In
contrast, our attack applies both to exact and approximate schemes and
even when no decryptions are provided (albeit with a malicious adver-
sary). Moreover, we show that CPA-security does suffice to guarantee
privacy against semi-honest adversaries for cleartext computable client-
aided outsourcing protocols.

Paper organization. Preliminary definitions are given in Section 2; our re-
sults for malicious adversaries –including the funcCPA definition, achiev-
ability from sanitization and sufficiency, as well as the insufficiency of
CPA– appear in Section 3; our results on the achievability of funcCPA-
security by existing HE scheme are given in Section 4; and our result for
semi-honest adversaries in Section 5; we conclude in Section 6.

2 Preliminaries

In this section we briefly specify standard terminology, notations and defi-
nitions used throughout this paper, including CPA-security, homomorphic
encryption, sanitization algorithm and privacy-preserving protocols. See
further details on standard definitions in Appendix A.

Terminology and notations. For n ∈ N, we denote by [n] the set {1, . . . , n}.
We use standard definitions (see e.g. Goldreich [23]) for negligible and
polynomial functions with respect to the security parameter λ, denoted
neg(λ) and poly(λ); probabilistic polynomial time algorithms, denoted ppt;

7

random variables; probability ensembles; computationally indistinguisha-
bility ; statistical distance denoted by ∆(·, ·); and (strong) one-way func-
tion. See the details in Appendix A.1.

CPA-secure public key encryption. We use the standard definition for pub-
lic key encryption (PKE) scheme E = (Gen,Enc,Dec) and its properties of
correctness, CPA-indistinguishability experiment against an adversary A
denoted EXPcpa

A,E(λ), and CPA-security for single and multiple messages.
See the details in Appendix A.2.

Homomorphic encryption. A homomorphic public-key encryption scheme
(HE) is a public-key encryption scheme equipped with an additional ppt
algorithm called Eval that supports “homomorphic evaluations” on ci-
phertexts. The correctness requirement is extended to hold with respect
to any sequence of homomorphic evaluations performed on ciphertexts.
A fully homomorphic encryption scheme must satisfy an additional prop-
erty called compactness requiring that the size of the ciphertext does not
grow with the complexity of the sequence of homomorphic operations.
The formal definition follows (adapted from [8]).

Definition 1 (Homomorphic encryption (HE)). A homomorphic public-
key encryption (HE) scheme E = (Gen,Enc,Dec,Eval) with message space
M is a quadruple of ppt algorithms as follows:

– (Gen,Enc,Dec) is a correct PKE.
– Eval (homomorphic evaluation) takes as input the public key pk, a cir-

cuit C :Mℓ →M, and ciphertexts c1, . . . , cℓ, and outputs a ciphertext
ĉ; denoted: ĉ← Evalpk(C, c1, . . . , cℓ).

The scheme E is called secure if it is a CPA-secure PKE; compact if
its decryption circuit is of polynomial size; C-homomorphic for a cir-
cuit family C if for all C ∈ C and for all inputs x1, . . . , xℓ to C, letting
(pk, sk)← Gen(1λ) and ci ← Enc(pk, xi) it holds that:

Pr[Decsk(Evalpk(C, c1, . . . , cℓ)) ̸= C(x1, . . . , xℓ)] ≤ neg(λ)

where the probability is taken over all the randomness in the experiment;
and fully homomorphic if it is compact and C-homomorphic for C the
class of all polynomially computable circuits.

A C-homomorphic encryption scheme is bootstrappable if it supports
homomorphic evaluation of all circuits composed from copies of its de-
cryption circuit connected by a single gate from the set of gates; See
Definitions 4.1.2-4.1.3 in [19].

8

Definition 2 (leveled HE [20]). A family of homomorphic encryption
schemes {E(L) : L ∈ Z+} is leveled fully homomorphic (leveled HE) if, for
all L ∈ Z+, they all use the same decryption circuit, E(L) compactly eval-
uates all circuits of depth at most L (that use some specified set of gates),
and the computational complexity of E(L)’s algorithms is polynomial in λ,
L, and (in the case of Eval) the size of the circuit C. In this case L can
be given as an extra parameter to Gen, denoted (pk, sk)← Gen(1λ, 1L).

Remark 1. In Definition 1 the syntax denotes by pk the key used both
in Enc and Eval. When it is desired to explicitly specify what infor-
mation is needed by each of these two procedures, it is customary to
slightly change this syntax so that key generation outputs three keys:
(pk, evk, sk) ← Gen(1λ, 1L), where Enc takes the public key pk and Eval
takes the evaluation key evk (Dec takes the secret key sk).

Sanitization. A ciphertext sanitization algorithm for a homomorphic en-
cryption re-randomizes ciphertexts to make them statistically close to
other (sanitized) ciphertexts decrypting to the same plaintext. Sanitiza-
tion algorithms exists, as shown by Ducas and Stehlé [17], essentially
for all the major schemes known at the time their paper was published,
including Gentry’s original scheme [20], BGV [8], and FHEW [16].5

Definition 3 (Sanitization algorithm [17]). A Sanitize algorithm for
a homomorphic public-key encryption scheme E = (Gen,Enc,Dec,Eval) is
a ppt algorithm that takes a public key pk and a ciphertext c and returns
a ciphertext, so that with probability ≥ 1 − neg(λ) over the choice of
(pk, sk)← Gen(1λ) the following holds:

– (Message-preservation) ∀c in the ciphertext space:

Decsk(Sanitizepk(c)) = Decsk(c).

– (Sanitization) ∀c, c′ in the ciphertext space s.t. Decsk(c) = Decsk(c
′):

∆
(
(Sanitizepk(c), (pk, sk)) ,

(
Sanitizepk(c

′), (pk, sk)
))
≤ neg(λ).

Interactive client-server protocols. The protocols considered in this work
involve two-parties, client and server, denoted by Clnt and Srv respec-
tively, where the client has input and output, the server has no input
and no output, and both receive the security parameter λ. The client

5 We conjecture that [17] can be extended to newer schemes, published following their
paper, including TFHE [14] and CKKS [13]; this is beyond the scope of this work.

9

and server interact in an interactive protocol denoted by π = ⟨Clnt, Srv⟩.
The server’s view in an execution of π, on client’s input x, no server’s
input (denoted by ⊥), and security parameter λ, is a random variable
viewπ

Srv(x,⊥, λ) capturing what the server has learned, and defined by

viewπ
Srv(x,⊥, λ) = (r,m1, . . . ,mt)

where r is the random coins of Srv, and m1, . . . ,mt are the messages
Srv received during the protocol’s execution. The client’s output in the
execution is denoted by outπClnt(x,⊥, λ). The protocol preserves privacy
if the views of any server on (same length) inputs are computationally
indistinguishable (see [24] Definition 2.6.2 Part 2):6

Definition 4 (Correctness and privacy). An interactive client-server
protocol π = ⟨Clnt,Srv⟩ for computing F : A → B, where the server has
no input or output is said to be:

Correct: if Srv and Clnt are ppt and for all x ∈ A,

Pr[outπClnt(x,⊥, λ) = F (x)] > 1− neg(λ).

Private: if for every ppt server Srv∗ and every ppt distinguisher D that
chooses x0, x1 ∈ A s.t. |x0| = |x1|, there exists a negligible function
neg(·) such that for every λ ∈ N, it holds that:

|Pr[D(viewπ
Srv∗(x0,⊥, λ)) = 1]− Pr[D(viewπ

Srv∗(x1,⊥, λ)) = 1]| ≤ neg(λ)

where the probability is taken over the random coins of Clnt and Srv∗.

Definition 4 captures malicious adversaries, but can be relaxed to semi-
honest ones by quantifying only over the prescribed Srv rather than every
ppt Srv∗. We call the former privacy against malicious servers and the
latter privacy against semi-honest servers.

Client-aided outsourcing protocols. We formally define the family of client-
aided outsourcing protocols, or (E ,G)-aided outsourcing protocols, param-
eterized by a PKE scheme E with message spaceM and a family of func-
tions G = {Gn :M →M}n∈N. We note that E can be any PKE scheme
(i.e., not necessarily an HE scheme).

6 We note that the server has no input and no output, and hence we do not require
security against the client.

10

Definition 5 ((E ,G)-aided outsourcing protocol). Let E = (Gen,
Enc,Dec) be a public-key encryption scheme with message space M, and
G = {Gn : M → M}n∈N a family of functions. An interactive client-
server protocol π = ⟨Clnt,Srv⟩ for computing a function F : A → B is
called an (E ,G)-aided outsourcing protocol if it has the following three
stage structure:

1. Client’s input outsourcing phase (on input x ∈ A): Clnt runs
(pk, sk)← Gen(1λ), encrypts its input c← Encpk(x), and sends c and
pk to Srv.

2. Server’s computation phase: Srv performs some computation and
in addition may interact (multiple times) with Clnt by sending it pairs
(e, n), for e a ciphertexts and n ∈ N, and receiving in response
Encpk(Gn(Decsk(e))).

3. Client’s output phase: Srv sends to Clnt the last message of the
protocol; upon receiving this message, Clnt produces an output.

Remark 2 (multiple inputs and outputs). The family G may include func-
tions with multiple inputs and outputs. In this case the query e and
response e′ are vectors of ciphertexts, and the decryption and encryption
in Encpk(Gn(Decsk(e))) are computed entry-by-entry. Throughout the pa-
per we slightly abuse notations and denote byM, Dec, Enc, e and e′ also
their extension to vectors.

3 A Sufficient and Achievable Relaxation of CCA2

In this section we formally define funcCPA-security (Section 3.1, Defini-
tion 6), show that funcCPA-secure HE is achievable from any HE equipped
with a sanitization algorithm (Section 3.2, Theorem 7) and prove that
every client-aided protocols (see Definition 5 in Section 2) instantiated
with a funcCPA-secure scheme preserves privacy against malicious adver-
saries (Section 3.3, Theorem 8). Furthermore, we prove that CPA-security
does not suffice to guarantee privacy in client-aided outsourcing protocols
by presenting an input-recovery attack on such protocols when instanti-
ated with a (carefully crafted) CPA-secure scheme (Section 3.4, Theo-
rem 10). The results presented in this section together with the defini-
tion of the funcCPA-experiment imply that funcCPA-security is strictly
between CCA2 and CPA (under standard assumptions).

11

3.1 funcCPA-Security: A Relaxation of CCA2

We define the function-chosen-plaintext attack (funcCPA-security) secu-
rity notion of public-key encryption. The definition captures a weaker ad-
versary than the standard CCA2 adversary in the sense that the adversary
has access to a “decrypt-function-encrypt” oracle, specified with respect
to a family of functions, where the adversary may submit a ciphertext
together with a function identifier and receive in response a ciphertext
that is produced as follows. The submitted ciphertext is first decrypted,
then the requested function is calculated on the plaintext and the result
is encrypted and returned to the adversary.

More formally, we define funcCPA-security via a funcCPA-experiment
specified for a public-key encryption scheme E = (Gen,Enc,Dec) with
message spaceM, a family of functions G = {Gn :M→M}n∈N, and an
adversary A, as follows:

The funcCPA indistinguishability experiment EXPFcpa
A,E,G(λ):

1. Gen(1λ) is run to obtain a key-pair (pk, sk)

2. The adversary A is given pk and access to a decrypt-function-encrypt
oracle, denoted Encpk(G(Decsk(·))), defined as follows: the queries to
Encpk(G(Decsk(·))) are pairs consisting of a ciphertext e and a function
index n, and the response is e′ ← Encpk(Gn(Decsk(e))).

3. A outputs a pair of messages x0, x1 ∈M with |x0| = |x1|.
4. A random bit b ∈ {0, 1} is chosen, and the ciphertext c ← Encpk(xb)

is computed and given to A. We call c the challenge ciphertext. A
continues to have access to the Encpk(G(Decsk(·))) oracle.

5. The adversary A outputs a bit b′. The experiment’s output is defined
to be 1 if b′ = b, and 0 otherwise.

Definition 6 (funcCPA). A PKE scheme E = (Gen,Enc,Dec) with mes-
sage space M is funcCPA-secure with respect to a family of functions
G = {Gn :M → M}n∈N (funcCPA-secure w.r.t. G) if for all ppt adver-
saries A, there exists a negligible function neg(·) such that for all suffi-
ciently large λ,

Pr[EXPFcpa
A,E,G(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins used by A, as well
as the random coins used to generate (pk, sk), choose b, and encrypt.

12

We observe that for “fully decryptable” C-homomorphic schemes it
suffices to prove funcCPA-security w.r.t the identity function I to obtain
funcCPA-security w.r.t C. A scheme is fully decryptable if applying the
decryption algorithm on any ciphertext in the ciphertext space returns
an element from the message space (and requiring, in addition, that the
ciphertext space is efficiently recognizable). We note that full decryption
holds for well-known schemes including [35,8,7,21,16,14].

Definition 7 (fully decryptable). A PKE scheme E = (Gen,Enc,Dec)
with message space M and ciphertext space T is fully decryptable if T
is efficiently recognizable and for all λ ∈ N, c ∈ T , and any (pk, sk) in
the range of Gen(1λ) it holds that Decsk(c) ∈M.

Lemma 1. Let E = (Gen,Enc,Dec,Eval) be a fully decryptable C-homomorphic
PKE scheme. If E is funcCPA-secure w.r.t the identity function I then it
is funcCPA-secure w.r.t C.

Proof. Let E = (Gen,Enc,Dec,Eval) be fully decryptable C-homomorphic
encryption scheme with message spaceM and ciphertext T that is func-
CPA-secure w.r.t the identity function I : M → M. For any ppt ad-
versary A that participates in EXPFcpa

A,E,C we construct an adversary B for

EXPFcpa
B,E,I that behaves as follows: The adversary B runs A internally while

relaying messages between the challenger and A, with the exception that
Encpk(C(Decsk(·))) queries are first evaluated using Eval and then for-
warded to the challenger that computes Encpk(I(Decsk(·))). That is, B
does the following:

– Upon receiving pk from challenger, forward it to A.
– Answer queries (e, n) to Encpk(C(Decsk(·))) by computing e′ ← Evalpk (Cn, e)

and sending (e′, I) to the challenger. The response is given to A.
– Once A generates x0, x1 forward them to the challenger and return

the response c← Encpk(xb) to A.
– Output the b′ that A outputs.

The adversary B is ppt (due to A and Eval being ppt), and all the
interaction of A is perfectly simulated by B due to the full decryption
property of E together with the C-homomorphism. More formally, letting
(pk, sk)← Gen(1λ), for all C ∈ C and c1, . . . cℓ ∈ T it holds that:

Pr[Decsk(Evalpk(C, c1, . . . , cℓ)) ̸= C(Decsk(c1), . . . ,Decsk(cℓ))] ≤ neg(λ)

and since the number of queries of A is polynomial in λ the indistin-
guishability of EXPFcpa

A,E,C(λ) and EXPFcpa
B,E,I(λ) follows. Finally, from the

13

funcCPA-security of E w.r.t I we conclude that

Pr[EXPFcpa
A,E,C(λ) = 1] ≤ 1

2
+ neg(λ)

as required. ⊓⊔

3.2 Sanitized HE Schemes are funcCPA-Secure

We show how to transform any CPA-secure HE scheme E that has a san-
itization algorithm (e.g. [20,8,16]) into a sanitized HE scheme E santz that
is funcCPA-secure. See the construction of E santz in Definition 8, and the
proof it is funcCPA-secure in Theorem 7.

Definition 8 (Sanitized scheme Esantz). Let E = (Gen,Enc,Dec,Eval)
be a C-homomorphic PKE scheme with message spaceM and a sanitiza-
tion algorithm Sanitize. We define the sanitized scheme, denoted E santz =
(Gen,Encsantz,Dec,Evalsantz), as follows:

– Gen and Dec are as in E;
– Encsantz takes a public key pk and a message m ∈M and outputs:

Encsantzpk (m) = Sanitizepk (Encpk(m)) ;

– Evalsantz takes a public key pk, a circuit C ∈ C, and ciphertexts c1, . . . , cℓ
and outputs:

Evalsantzpk (C, c1, . . . , cℓ) = Sanitizepk (Evalpk(C,Sanitizepk(c1), . . . ,Sanitizepk(cℓ))) .

We note that E santz inherits all the properties of E : C-homomorphism,
compactness, security, and correctness. In particular, correctness holds
due to correctness of E and the message-preservation property of Sanitize.
We show that if E is CPA-secure, then E santz in funcCPA-secure.

Theorem 7 (Esantz is funcCPA-secure). If E is a C-homomorphic CPA-
secure PKE scheme with a sanitization algorithm, then the sanitized scheme
E santz is funcCPA-secure w.r.t. C.7

Proof. To prove the theorem we first enhance the definition of circuit
privacy to circuit-privacy+ (cf. Definition 9 below); then show that if
E is C-homomorphic and has a sanitization algorithm then the sanitized
scheme E santz is circuit-privacy+ for C (cf. Lemma 2 below); and show that
if a C-homomorphic CPA-secure encryption scheme is circuit-privacy+ for
C, then it is funcCPA-secure w.r.t. C (cf. Lemma 3 below). We conclude
that E santz is funcCPA-secure w.r.t. C. ⊓⊔
7 We slightly abuse notations and allow funcCPA with respect to a circuit family.

14

Circuit-privacy+. Our definition of circuit-privacy+ addresses maliciously
generated ciphertexts by quantifying over all ciphertexts in the ciphertext
space, rather than only over ciphertexts that were properly formed by ap-
plying the encryption algorithm on a message. Prior definitions of circuit
privacy either considered the semi-honest settings where both the keys
and the ciphertext are properly formed [25,20,6], or considered settings
where both keys and ciphertexts may be maliciously formed [25,32,15,31].
In contrast, in our settings the keys are properly formed whereas the ci-
phertexts may be maliciously formed.

Definition 9 (Circuit-privacy+). A C-homomorphic PKE scheme E =
(Gen,Enc,Dec,Eval) is circuit-private+ for C if the following holds with
probability ≥ 1− neg(λ) over the choice of (pk, sk)← Gen(1λ): For every
circuit C ∈ C over ℓ inputs and ciphertexts c1, . . . , cℓ in the ciphertext
space of E the following distributions are statistically close:

∆ (Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))) ,Evalpk (C, c1, . . . , cℓ)) ≤ neg(λ)

where the distributions are over the random coins of Enc and Eval.

We prove that the sanitized scheme E santz is circuit-private+.

Lemma 2 (Esantz is circuit-private+). Let E be a C-homomorphic PKE
with a sanitization algorithm, then E santz is circuit-private+ for C.

Proof. Informally, the proof follows from the definition of E santz and the
properties of C-homomorphism and Sanitize; See Appendix B.1. ⊓⊔

circuit-privacy+ implies funcCPA. We prove that a sufficient condition for
a HE scheme to be funcCPA-secure is that it is CPA-secure and circuit-
private+. We remark that Lemma 3 holds even if the schemes satisfies only
a weaker notion of circuit-privacy+ where we require only computational
indistinguishability rather than statistical.

Lemma 3 (circuit-privacy+ implies funcCPA). Let E be a CPA-secure
PKE. If E is C-homomorphic and circuit-private+ for C, then E is funcCPA-
secure w.r.t. C.

Proof. The main proof idea is to carefully replace Encpk(G(Decsk(·))) or-
acle calls with Eval operations. See the formal proof in Appendix B.2. ⊓⊔

15

3.3 funcCPA Implies Privacy against Malicious Adversaries

We show that (E ,G)-aided outsourcing protocols preserve privacy against
malicious servers, if E is funcCPA-secure. This implication holds for any
funcCPA-secure PKE, not only HE schemes.

Theorem 8 (funcCPA implies privacy). Let E be a PKE with mes-
sage space M and G = {Gn :M → M}n∈N a family of functions. If E
is funcCPA-secure w.r.t. G, then every (E ,G)-aided outsourcing protocol
preserves privacy against malicious servers.

Proof. The proof relies on the fact that any communication with the
client, specified by the protocol, can be replaced by communication with
the Encpk(G(Decsk(·))) oracle. See the formal proof in Appendix B.3. ⊓⊔

3.4 CPA does not Imply Privacy against Malicious
Adversaries

We show that CPA-security is insufficient for guaranteeing privacy in
client-aided outsourcing protocols. For this purpose we construct a CPA-
secure PKE scheme and exhibit an input-recovery attack that completely
breaks privacy in client-aided outsourcing protocols instantiated with our
scheme. In fact, we can transform any CPA-secure encryption scheme E
with message spaceM of super polynomial size, using a one-way function
f and any function G, into a CPA-secure encryption scheme Ef for which
our attack works on any (Ef ,G)-aided outsourcing protocol for any G con-
taining G . Moreover, if E was an HE scheme then so is Ef . For simplicity
of the presentation we concentrate on G being the identity function I
for the construction of Ef . The scheme Ef is similar to E , except for the
key difference that its encryption and decryption are “punctured” on a
random point m∗ ∈ M, where its public key implicitly specifies m∗ by
augmenting it with f(m∗) and Encpk(m

∗).8 See our construction in Fig-
ure 1 and Theorem 9. Our attack breaks security in the strong sense that
the server is able to completely recover the client’s input; See Theorem 10.

Theorem 9 (properties of Ef). For every PKE scheme E and one-way
function f over the message-space of E, the scheme Ef (cf. Figure 1) is a

8 In case our G of interest does not contain the identity function, we slightly modify Ef
by replacing each occurrence of Encpk(m

∗) and f(m∗) in Figure 1 with Encpk(G(m∗))
and f(G(m∗)) respectively for an efficiently computable G ∈ G, and slightly modify
the proof by replacing each occurrence of I by G.

16

Genf (1λ): Given 1λ, output (pkf , skf) computed as follows. Let (pk, sk) ← Gen(1λ)
and sample a uniformly random m∗ ∈M. Set

pkf := (pk,Encpk(m
∗), f(m∗)) and skf := (sk, f(m∗)).

Encf
pkf (m): Given m = (m1,m2) ∈ M×M, if f(m2) = f(m∗) then output (m1,m2),

else output
(Encpk(m1),Encpk(m2)).

Decf
skf (c): Given c = (c1, c2), if f(c2) = f(m∗) then output (c1, c2), else output

(Decsk(c1),Decsk(c2)).

Evalf
pkf (C, c1, ..., cℓ): Given a circuit C = C1 × C2 over ℓ inputs, and ℓ ciphertexts

ci = (ci,1, ci,2) for i ∈ [ℓ], do the following. For each i ∈ [ℓ], if f(ci,2) = f(m∗) then set
c′i = (Encpk(ci,1),Encpk(ci,2)), else set c′i = ci. Output

(Evalpk(C1, c
′
1,1, ..., c

′
ℓ,1),Evalpk(C2, c

′
1,2, ..., c

′
ℓ,2)).

Fig. 1. The construction of the scheme Ef = (Genf ,Encf ,Decf ,Evalf) from a PKE
scheme E = (Gen,Enc,Dec,Eval) with message spaceM and ciphertext space T and a
one-way function f overM. The message-space and ciphertext-space of Ef areM×M
and (T × T) ∪ (M×M) respectively.

PKE scheme satisfying the following. If E is CPA-secure, compact, and C-
homomorphic, then Ef is CPA-secure, compact, and C×C-homomorphic.9

Proof. Correctness, compactness and homomorphism of Ef follow directly
from the properties of E . The CPA-security of Ef essentially follows from
the fact that the encryption in Ef is identical to encrypting pairs (m1,m2)
of messages under E , except if m2 is a pre-image of f(m∗). The latter
however occurs with no more than a negligible probability due to f being
a one-way function and m∗ being a random message. See formal details
in Lemma 5-6, Appendix B.4. ⊓⊔

We present our attack in which the server recovers the client’s input
in any (Ef ,G)-aided outsourcing protocol for G containing the identity
function I. We remark that our attack is applicable from every PKE E ,
regardless of whether it is a HE scheme.

Theorem 10 (CPA-security does not imply privacy). For every
PKE scheme E with message-spaceM and every one-way function f over

9 We note that a C × C-homomorphic encryption scheme is also C-homomorphic, as
we can embed C in C × C, e.g., by mapping every C ∈ C into (C,C) ∈ C × C.

17

M, there exists a CPA-secure PKE scheme Ef so that for every family of
functions G = {Gn :M→M}n∈N containing the identity function I and
every (Ef ,G)-aided outsourcing protocol there is a server’s strategy that
recovers the client’s input.

Proof. Denote E = (Gen,Enc,Dec). Set Ef = (Genf ,Encf ,Decf) to be the
encryption scheme constructed from E and f in Figure 1.

Our active input-recovery attack is applicable on any (Ef ,G)-aided
outsourcing protocol π = ⟨Clnt, Srv⟩ as follows.

1. Clnt executes phase 1 of π. That is, it runs (pkf , skf)← Genf (1λ) to
obtain a public key pkf = (pk,Encpk(m

∗), f(m∗)), encrypts its input

x by computing cx ← Encf
pkf

(x, x) and sends cx and pkf to Srv.

2. Upon receiving cx = (c1, c2) and pkf , Srv generates a new ciphertext
e = (c1,Encpk(m

∗)), where Encpk(m
∗) is taken from pkf , and sends

(e, I) to Clnt.

3. Clnt sends (c′1, c
′
2)← Encf

pkf
(I(Decf

skf
(e))) to Srv.

4. Upon receiving the client’s response (c′1, c
′
2), Srv outputs c′1.

The attack recovers the client’s input x because c′1 = x as explained

next. Observe that I(Decf
skf

(e)) = (x,m∗) is a message where the en-

cryption algorithms Encf
pkf

is punctured, implying that

Encf
pkf

(I(Decf
skf

(e))) = (x,m∗).

Namely, (c′1, c
′
2) = (x,m∗) in Step 3, and so c′1 = x. ⊓⊔

4 On the Achievability of funcCPA for Existing Schemes

In this section we present our results on the achievability of funcCPA-
security for existing HE schemes. On the positive side, we prove that func-
CPA-security is satisfied by all leveled schemes with independent level keys
(see Definition 12), e.g., the leveled HE schemes of BV [9], BGV [8] and
B/FV [7,18]; See Section 4.1. Conversely, we show that funcCPA-security
for homomorphic schemes supporting oblivious secret key extraction (see
Definition 14), e.g., the schemes of BV [9] and BGV [8], implies weak
circular security; See Section 4.2.

4.1 funcCPA Security of leveled HE Schemes

In this section we prove that funcCPA-security holds for natural leveled HE
schemes (leveled HE) such as BV [9], BGV [8] and B/FV [7,18] (provided

18

they are CPA-secure). To prove this, we first reformulate the definitions
of CPA and funcCPA to capture security for leveled HE schemes (leveled-
funcCPA). Next, we show that CPA implies funcCPA for leveled HE schemes
satisfying a natural property we call independent level keys, and conclude
that BV, BGV and B/FV (with a slight modification of their evaluation
key generation) are leveled-funcCPA-secure.

Security Definitions for leveled HE. We address leveled HE schemes
with the common structure of having each level associated with a set of
keys (usually, public, secret and evaluation keys), and each ciphertext as-
sociated with a (efficiently recognizable) level corresponding to the keys
used for this ciphertext. In these schemes, it is suffices to use the appropri-
ate level keys to encrypt, decrypt, and evaluate. This holds, for example,
in BV [9], BGV [8], B/FV [7,18] and CKKS [13].

The definition of CPA-security for leveled HE is similar to the standard
CPA definition and the only difference between the two is the capability
of the adversary to choose the level to which the challenge ciphertext is
encrypted, see Definition 10. This guarantees security of the scheme for
all the levels and not only for a specific one. More formally,

The CPA indistinguishability experiment EXPcpa
A,E(λ, L) for leveled HE is

parameterized by the security parameter λ and number of levels L, and
executed between a challenger Chal and an adversary A as follows:

1. Gen(1λ, 1L) is run by Chal to obtain keys (pkℓ, skℓ)ℓ∈{0,...,L} (we con-
sider the public key pkℓ to include the evaluation key evkℓ if exists).

2. Chal provides the adversary A with (pkℓ)ℓ∈{0,...,L}. A sends to Chal
two messages x0, x1 ∈M s.t. |x0| = |x1| and ℓ ∈ {0, . . . , L}.

3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c ←
Encpkℓ(xb) and sends c to A. We call c the challenge ciphertext.

4. A outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

Definition 10 (CPA security for leveled HE). A leveled HE scheme
E = (Gen,Enc,Dec,Eval) is CPA-secure if for every ppt adversary A, there
exists a negligible function neg such that for all sufficiently large λ and
every L polynomial in λ,

Pr[EXPcpa
A,E(λ, L) = 1] <

1

2
+ neg(λ)

where the probability is over all randomness in the experiment.

19

Now we define funcCPA for leveled HE denoted leveled-funcCPA. Here,
in addition to the level of challenge ciphertext, the “decrypt-function-
encrypt” oracle is modified to return a ciphertext for the next level. That
is, to answer a query on a ciphertext of level ℓ, the ciphertext is first de-
crypted using skℓ, then the requested function is calculated on the plain-
text and the result is encrypted under the public-key for the next level
pkℓ−1 and returned to the adversary, see Definition 11. More formally,

The leveled-funcCPA indistinguishability experiment EXPFcpa
A,E,G(λ, L) for

leveled HE is parameterized by the security parameter λ and number of
levels L, and executed between a challenger Chal and an adversary A as
follows:

1. Gen(1λ, 1L) is run to obtain keys (pkℓ, skℓ)ℓ∈{0,...,L} (we consider the
public key pkℓ to include the evaluation key evkℓ if exists).

2. The adversary A is given (pkℓ)ℓ∈{0,...,L} and access to a decrypt-
function-encrypt oracle, denoted {Encpkℓ−1

(G(Decskℓ(·)))}ℓ∈[L], defined
as follows: the queries to this oracle are pairs (eℓ, n) consisting of a
ciphertext eℓ of some level ℓ ∈ [L] (where the level is efficiently identi-
fiable given the ciphertext) and a function index n, and the response
is e′ ← Encpkℓ−1

(Gn(Decskℓ(eℓ))).
10

3. A outputs a pair of messages x0, x1 ∈ M s.t. |x0| = |x1| and ℓ ∈
{0, . . . , L}.

4. A random bit b ∈ {0, 1} is chosen, and the ciphertext c← Encpkℓ(xb)
is computed and given to A. We call c the challenge ciphertext. A
continues to have access to the oracle.

5. The adversary A outputs a bit b′. The experiment’s output is defined
to be 1 if b′ = b (0 otherwise).

Definition 11 (funcCPA for leveled HE). A leveled HE scheme E =
(Gen,Enc,Dec,Eval) with message spaceM is leveled-funcCPA-secure with
respect to a family of functions G = {Gn :M→M}n∈N (leveled-funcCPA-
secure w.r.t. G) if for all ppt adversaries A, there exists a negligible func-
tion neg(·) such that for all sufficiently large λ and every L polynomial
in λ,

Pr[EXPFcpa
A,E,G(λ, L) = 1] <

1

2
+ neg(λ)

where the probability is taken over all random coins of the experiment.

10 In case of an error, compute e′ ← Encpkℓ−1(Gn(m)) for an arbitrary m ∈M.

20

CPA implies funcCPA for leveled HE. In this section we define a natu-
ral property of leveled HE scheme we call independent level keys and show
that funcCPA-security holds for schemes satisfying this property (provided
they are CPA-secure). Informally, we say that a leveled HE scheme has in-
dependent level keys if the public and secret key pair can be sampled
independently for each level, and the evaluation key for each level can
be efficiently generated from the secret key for the current level and the
public key for the next level. See Definition 12.

Definition 12 (independent level keys). We say that a leveled HE
scheme E = (Gen,Enc,Dec,Eval) has independent level keys if Gen (level
key generation) takes as input the security parameter 1λ and a number
of levels 1L, uses ppt algorithms GenKey and GenEvKey, and outputs for
each a public key, secret key, and an evaluation key as follows:

(pkℓ, skℓ)← GenKey(1λ) for all ℓ ∈ {0, . . . , L}

and

evkℓ ← GenEvKey(skℓ, pkℓ−1) for all ℓ ∈ {1, . . . , L}

denoted: (pkℓ, evkℓ, skℓ,)ℓ∈[L] ← Gen(1λ, 1L)

In BV, BGV and B/FV, for example, indeed each ciphertext is as-
sociated with a level and there are independent encryption and decryp-
tion keys (pkℓ, skℓ) for each level ℓ. Moreover, the evaluation key evkℓ
(called key switching in BV, BGV and B and re-linearization keys in
FV) is essentially the encryption of an efficiently computable function
of the secret key skℓ of the current level (concretely, the encryption of
sk′ℓ = Powersof2(skℓ⊗ skℓ)) under the public key pkℓ−1 for the next level.

More accurately, to generate evkℓ they use a fresh public key pk′ℓ−1
with which they mask sk′ℓ. This is important when instantiating their
scheme as a fully homomorphic encryption, i.e., when there’s a single
key tuple (pk, evk, sk) used for all levels, in which case using pk (rather
than pk′) to encryt a function of sk would require a circular security
assumption. In contrast, when using these schemes as a leveled HE, as
we do, then anyhow the keys (pkℓ, skℓ) are sampled independently from
(pkℓ−1, skℓ−1), and so encrypting sk′ℓ under pkℓ−1 requires no circular
security assumption. Therefore, their generation of the evaluation keys
can be modified to output the encryption of sk′ℓ under pkℓ−1, without

21

harming correctness or security.11 With this slight modification indeed
these scheme satisfy Definition 12.

Proposition 1. The leveled HE schemes of BV, BGV and B/FV [9,8,7,18]
(with the aforementioned evaluation key) have independent level keys.

We now prove that CPA-secure leveled HE schemes with independent
level keys are funcCPA-secure w.r.t any admissible family G. The family
G should be admissible in the sense that all Gn ∈ G are polynomial-time
computable (in the security parameter) and have fixed output length, i.e.,
|Gn(x0)| = |Gn(x1)| for all x0, x1 ∈ M. We note that the latter trivially
holds when G is specified as a family of circuits.

Theorem 11 (leveled HE is funcCPA). Let E be a leveled HE scheme
with independent level keys. If E is CPA-secure (cf. Definition 10), then E
is leveled-funcCPA-secure w.r.t. any admissible family G(cf. Definition 11).

Proof. Let E = (Gen,Enc,Dec,Eval) be a CPA-secure public-key leveled
HE scheme with message space M. Assume by contradiction that there
exists an admissible family of functions G = {Gn : M → M}n∈N over
M such that E is not funcCPA-secure w.r.t G. That is, there exists a ppt
adversary A and a polynomial p(·) such that for infinity many λ and L
it holds that:

Pr[EXPFcpa
A,E,G(λ, L) = 1] >

1

2
+

1

p(λ)
(1)

We show below that given A we can construct an adversary B that wins
in EXPcpa

B,E(λ, L) with non-negligible advantage, violating the CPA security
of E .

The adversary B executes A, relaying messages between the challenger
and A, while responding to any query (eℓ, n) from A with an encryption
using pkℓ−1 of Gn on an arbitrary message m ∈ M. That is B does the
following,

– Upon receiving (pkℓ)ℓ∈{0,...,L} from challenger, forward it to A.
– Answer queries (eℓ, n) for a ciphertext eℓ of level ℓ by e′ ← Encpkℓ−1

(Gn(m))
for an arbitrary m ∈M.

– Once A generates x0, x1 and ℓ forward them to the challenger and
return the response c← Encpkℓ(xb) to A.

11 We remark that the noise in the modified evaluation keys is slightly larger: the noise
of a fresh ciphertext, rather than a sample from the error distribution; nonetheless,
this makes essentially no difference when using the scheme.

22

– Output the b′ that A outputs.

The adversary B is ppt due to adversary A being ppt and admissibility
of G. Moreover all the interaction of A is perfectly simulated by B except
for the responses to queries to {Encpkℓ−1

(G(Decskℓ(·)))}ℓ∈[L] that are sim-
ulated using encryption of the image of Gn on an arbitrary message.

Let EXPFcpa# experiment denote this variant of EXPFcpa that is sim-
ulated by A, namely EXPFcpa# is an experiment identical to EXPFcpa

except that each query (eℓ, n) to Chal is answered by the encryption of
Gn(m) under pkℓ−1 for arbitrary m ∈M.

By definition of EXPFcpa# it holds that,

Pr[EXPFcpa#

A,E,G (λ, L) = 1] = Pr[EXPcpa
B,E(λ, L) = 1] (2)

Furthermore, the CPA security and independent level keys of E guarantees
(as shown in Lemma 4 below) that A’s winning probability in EXPFcpa#

and EXPFcpa is computationally indistinguishable. In particular,

|Pr[EXPFcpa#

A,E,G (λ, L) = 1]

−Pr[EXPFcpa
A,E,G(λ, L) = 1]| ≤ neg(λ) .

(3)

Putting Equation 3 together with Equations 1-2 it follows that

Pr[EXPcpa
B,E(λ, L) = 1] ≥ 1

2
+

1

p(λ)
− neg(λ). (4)

Combining this with A being ppt we derive a contradiction to E being
CPA secure. This concludes the proof. ⊓⊔

Let EXPFcpa# be as defined in the proof of Theorem 11, i.e., it is
identical to EXPFcpa except that Chal, upon receiving queries (eℓ, n), in-
stead of responding as in step 2 in Definition 11, responds by sending
the encryption under pkℓ−1 of Gn(m) for an arbitrary message m ∈ M
(rather then m = Decskℓ(eℓ)). We show that the adversary is indifferent
to the correctness of answers it receives from the Chal in the sense that
its output distribution in EXPFcpa and EXPFcpa# is indistinguishable.

Lemma 4. Let E = (Gen,Enc,Dec,Eval) be a CPA-secure leveled HE
scheme with a message space M. Let G = {Gn : M → M}n∈N be a
family of admissible functions. If E has independent level keys then for
any ppt adversary A, there exists a negligible function neg(·) such that for
all sufficiently large λ and every L polynomial in λ the following holds:

|Pr[EXPFcpa#

A,E,G (λ, L) = 1]− Pr[EXPFcpa
A,E,G(λ, L) = 1]| ≤ neg(λ)

23

Proof. The proof is given in Appendix C.

Corollary 1. The leveled HE schemes of BV, BGV and B/FV [9,8,7,18]
(with the aforementioned evaluation key) are leveled-funcCPA-secure.

4.2 Barriers on Proving funcCPA for Existing HE Schemes

In this section we prove that if the homomorphic encryption scheme of
BV [9] or BGV [8] is funcCPA-secure, then it is (weakly) circular secure.
More generally, we show the above holds for all schemes satisfying a prop-
erty we call oblivious secret key extraction (ObvSK). In the following we
first formally define weak circular security and ObvSK; then prove that
for schemes supporting ObvSK, funcCPA-security w.r.t a proper family F
implies weak circular security; and conclude by showing that the schemes
of BV and BGV support ObvSK.

Circular security extends CPA-security to capture security of public key
encryption schemes against adversaries seeing an encryption of the secret
key (see [11], Definition 2.5). This is required by all currently known fully
homomorphic encryption schemes, as they publish an encryption of the
secret key to be used during bootstrapping (where bootstrapping [19]
is the process of homomorphically evaluating the scheme’s decryption
circuit with a hardwired ciphertext on an encrypted secret key as input).
Specifically, they require security to hold against adversaries seeing an
encryption of the secret key in the encoding by which it is specified as
input to the decryption circuit (see Definition 3.8 in [9]).

This is formally stated, for a public key encryption scheme E =
(Gen,Enc,Dec), using the following experiment between a challenger Chal
and an adversary A (where sk denotes the secret key when specified in
the encoding as required for the decryption circuit):

The weak circular indistinguishability experiment EXPwc
A,E(λ):

1. Chal computes (pk, sk) ← Gen(1λ) and csk ← Encpk(sk), and sends
(pk, csk) to A.

2. A sends to Chal two messages x0, x1 s.t. |x0| = |x1|.
3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c ←

Encpk(xb) and sends c to A. We call c the challenge ciphertext.

4. A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

24

Definition 13 (weak circular security). A PKE scheme E = (Gen,Enc,Dec)
is weakly circular secure if for every ppt adversary A, there exists a neg-
ligible function neg(·) such that for all sufficiently large λ,

Pr[EXPwc
A,E(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins of A and Chal.

Oblivious secret key extraction captures the ability to generate, from the
public key, ciphertexts encrypting data related to the secret key, so that
from their decryption one can efficiently compute the secret key in the
encoding as required for the decryption circuit.

Definition 14 (oblivious secret key extraction (ObvSK)). Let E =
(Gen,Enc,Dec) be a PKE scheme with message spaceM, and F = {Fn :M→
M}n∈N be a family of functions. We say that E supports oblivious secret
key extraction (ObvSK) w.r.t F if there exists a ppt algorithm Alg that
takes a public key pk and outputs n = n(λ) ciphertexts under pk, so that
the following holds. There exists a negligible function neg(·) such that for
all λ ∈ N and (pk, sk) in the range of Gen(1λ),

Pr
[

(c1,...,cn)←Alg(pk)
Fn(Decsk(c1),...,Decsk(cn))=sk

]
≥ 1− neg(λ) (5)

where the secret key sk outputted by Fn is in the encoding required for the
decryption circuit, and where the probability is taken over the randomness
in Gen and Alg.

funcCPA-security for schemes supporting ObvSK implies weak circular se-
curity. Next we show that if a public key encryption scheme E support
ObvSK w.r.t F and is funcCPA-secure w.r.t G that contains F , then E is
weakly circular secure.

Theorem 12. Let E = (Gen,Enc,Dec) be a PKE scheme that is funcCPA-
secure w.r.t a family of functions G. If E is ObvSK w.r.t F and F ⊆ G
then E is weakly circular-secure.

Proof. The proof idea is, given pk, to first use Alg (from the ObvSK prop-
erty) to get encrypted data related to sk; then use Encpk(G(Decsk(·)))
(from the funcCPA property) to transform them to ciphertexts csk en-
crypting sk (in the encoding for the decryption circuit); finally show that
–if the scheme is not circular secure– then using csk we can break func-
CPA-security. The formal details appear in Appendix C.2.

25

As a corollary from Theorem 12 we conclude that for bootstrappable
ObvSK schemes, funcCPA-security implies full homomorphism without re-
lying on any circular security assumption.

Corollary 2. Let E = (Gen,Enc,Dec,Eval) be a bootstrappable HE scheme
that supports ObvSK w.r.t F . If E is funcCPA-secure w.r.t G and F ⊆ G
then E is fully homomorphic.

Proof. The proof is derived by combining the following two facts. First,
by Theorem 4.3.2 in [19], bootstrappable HE schemes that are weakly cir-
cular secure are fully homomorphic. Second, by Theorem 12, if E support
ObvSK w.r.t F and it is funcCPA-secure w.r.t G that contains F , then
E is weakly circular secure. Combining the above, we conclude that E is
fully homomorphic. ⊓⊔

Schemes supporting ObvSK. BV and BGV are examples of schemes
supporting ObvSK. More generally, we show that ObvSK is supported
by all public key encryption schemes E = (Gen,Enc,Dec) satisfying the
following:

1. The secret key sk = (1, s) and ciphertext c are from the ring:
– LWE-based schemes: Zn+1

q

– RLWE-based schemes: R2
q for Rq = Zq[x]/F [X]

where q, n, d are positive integers, d a power of 2, F [X] = Xd+1, and
s has small coefficients in the sense that decryption correctness holds
on ciphertexts encrypting each coefficient of s.

2. Decryption is via inner-product (with messages encoded in the least

significant bits): Decsk(c) =
[
[⟨c, sk⟩]q

]
p
where [z]x is the remainder

of z in division by x and p a positive integer.

In the following let FLWE = {FLWE
n : Zn

q → {0, 1}n·⌈log q⌉}q,n denote
a family of functions that given (s1, . . . , sn) ∈ Zn

q outputs sk = (1, s) ∈
Zn+1
q in the encoding as required by the decryption circuit in LWE-

based schemes satisfying the above properties. Similarly, let FRLWE =
{FRLWE

d : Rq → R2
q}q,d denote a family of functions that given (s′d−1, . . . , s

′
0) ∈

Rq outputs sk = (1, (−s′0, s′d−1, . . . , s′1)) ∈ R2
q in the encoding as required

by the decryption circuit in the RLWE-based schemes satisfying the above
properties. (Here (s′d−1, . . . , s

′
0) is a vector of coefficients specifying a poly-

nomial s′(X) ∈ Rq, and 1 denotes the unit element in Rq.) Moreover, for
a scheme E satisfying the above properties, either in the LWE-based or
RLWE-based form, we use the short hand notation of denoting by FGLWE

the family FLWE in case E is LWE-based, and FRLWE otherwise.

26

Proposition 2. Suppose E = (Gen,Enc,Dec) satisfies (1)-(2) above. Then
E supports ObvSK w.r.t to FGLWE.

Proof. The proof appear in Appendix C.3.

As an immediate corollary from Proposition 2 we obtain that the
addressed schemes support ObvSK.

Corollary 3 (BV and BGV support ObvSK). The HE schemes from
BV [9] and BGV [8] support ObvSK w.r.t to FGLWE.

Since these schemes are known to be bootstrappable, then combining
Corollary 3 with Corollary 2 we derive that if they are funcCPA-secure
then they are fully homomorphic.

Corollary 4. If BV [9] or BGV [8] is funcCPA-secure w.r.t to G con-
taining FGLWE, then it is fully homomorphic.

5 CPA Implies Privacy against Semi-Honest Adversaries

We define a natural property for (E ,G)-aided outsourcing protocols (called
cleartext computable), and show that for protocols satisfying this prop-
erty, CPA-security guarantees privacy against semi-honest servers; See
Theorem 13.

Cleartext computable protocols. A protocols is cleartext computable if
the messages whose encryption constitutes the client’s responses to the
server’s queries are efficiently computable given only the client’s input.
To formalize this we first define the client’s cleartext response. Let π =
⟨Clnt,Srv⟩ be an (E ,G)-aided outsourcing protocol (cf. Definition 5). The
client’s cleartext response in an execution of π on client’s input x and
randomness rClnt, server’s randomness rSrv, and security parameter λ ∈ N,
is defined by:

clear-resπ((x, rClnt), rSrv, λ) = (Gn1(Decsk(e1)), . . . , Gnq(Decsk(eq)))

where (sk, pk)← Gen(1λ) is the key pair generated by the client in Phase
1 of π; q is the number of queries sent from server to client in Phase 2
of π; and for each j ∈ [q], (ej, nj) and Encpk(Gnj (Decsk(ej))) are the jth
server’s query and the corresponding client’s response respectively with
Gnj (Decsk(ej)) being the underlying cleartext response message.

27

Definition 15 (cleartext computable). An (E ,G)-aided outsourcing
protocol π = ⟨Clnt, Srv⟩ for computing a function F : A → B is cleartext
computable if Srv is ppt and there exists a ppt function h such that for all
inputs x ∈ A, all client and server randomness rClnt and rSrv, respectively,
and all λ ∈ N

clear-resπ((x, rClnt), rSrv, λ) = h(x)

CPA-security implies privacy for cleartext computable protocols. We show
that for cleartext computable (E ,G)-aided outsourcing protocols, CPA-
security of E implies that the protocol preserves privacy against semi-
honest servers.

Similarly to Theorem 11, the family G should be admissible in the
sense that all Gn ∈ G are polynomial-time computable (in the security
parameter) and have fixed output length, i.e., |Gn(x0)| = |Gn(x1)| for all
x0, x1 ∈M.

Theorem 13 (privacy of cleartext computable protocols). Every
cleartext computable (E ,G)-aided outsourcing protocol preserves privacy
against semi-honest servers, provided that E is CPA-secure and G is ad-
missible.

Proof. We show that for cleartext computable protocols, when instanti-
ated with a CPA-secure encryption scheme, a semi-honest server cannot
distinguish encrypted response of correct or random values, and hence
privacy follows. The formal proof appears in Appendix D.

6 Conclusions

In this work we introduce the notion of funcCPA, which is a strict re-
laxation of CCA2-security, show it is achievable for HE schemes (unlike
CCA2) and sufficient for ensuring privacy against malicious servers for
the wide an natural family of client-aided outsourcing protocols (unlike
CPA, as we prove). In contrast, against semi-honest adversaries, we prove
that CPA-security suffices for ensuring privacy in all cleartext computable
client-aided outsourcing protocols.

References

1. A. Akavia, D. Feldman, and H. Shaul. Secure search on encrypted data via multi-
ring sketch. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 985–1001. ACM,
2018.

28

2. A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and M. Vald. Privacy-
preserving decision trees training and prediction. In Machine Learning and Knowl-
edge Discovery in Databases, pages 145–161. Springer International Publishing,
2021.

3. A. Akavia, H. Shaul, M. Weiss, and Z. Yakhini. Linear-regression on packed en-
crypted data in the two-server model. In M. Brenner, T. Lepoint, and K. Rohloff,
editors, Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, WAHC@CCS 2019, London, UK, November 11-15,
2019, pages 21–32. ACM, 2019.

4. A. Akavia and M. Vald. On the privacy of protocols based on cpa-secure
homomorphic encryption. Cryptology ePrint Archive, Report 2021/803, 2021.
https://ia.cr/2021/803.

5. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification
over encrypted data. In NDSS, volume 4324, page 4325, 2015.

6. F. Bourse, R. Del Pino, M. Minelli, and H. Wee. FHE circuit privacy almost for
free. In Advances in Cryptology – CRYPTO 2016, pages 62–89. Springer Berlin
Heidelberg, 2016.

7. Z. Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapSVP. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages
868–886, 2012.

8. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012, pages 309–325, 2012.

9. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on computing, 43(2):831–871, 2014.

10. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security.
In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 565–582,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

11. D. Cash, M. Green, and S. Hohenberger. New definitions and separations for
circular security. In International Workshop on Public Key Cryptography, pages
540–557. Springer, 2012.

12. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arith-
metic of approximate numbers. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 409–437. Springer, 2017.

13. J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for
arithmetic of approximate numbers. In Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, pages 409–437, 2017.

14. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology, 33:34–91, 2019.

15. W. Chongchitmate and R. Ostrovsky. Circuit-private multi-key FHE. In 20th
IACR International Conference on Public-Key Cryptography – PKC 2017, pages
24–270. Springer Berlin Heidelberg, 2017.

16. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in
less than a second. In Advances in Cryptology – EUROCRYPT 2015, pages 617–
640. Springer Berlin Heidelberg, 2015.

17. L. Ducas and D. Stehlé. Sanitization of FHE ciphertexts. In Advances in Cryptology
– EUROCRYPT 2016, pages 294–310. Springer Berlin Heidelberg, 2016.

29

https://ia.cr/2021/803

18. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

19. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity, 2009. crypto.stanford.edu/craig.

20. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178. Association for Computing Machinery, 2009.

21. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Annual
Cryptology Conference, pages 75–92. Springer, 2013.

22. I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon. Privacy-preserving ridge
regression with only linearly-homomorphic encryption. In Applied Cryptography
and Network Security - 16th International Conference, ACNS 2018, pages 243–261.
Springer, 2018.

23. O. Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001.

24. C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and
Constructions. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

25. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In
Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, pages
575–594. Springer, 2007.

26. C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. Gazelle: A low latency
framework for secure neural network inference. In Proceedings of the 27th USENIX
Conference on Security Symposium, SEC’18, page 1651–1668. USENIX Associa-
tion, 2018.

27. J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman &
Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC,
2007.

28. J. Lai, R. H. Deng, C. Ma, K. Sakurai, and J. Weng. Cca-secure keyed-fully homo-
morphic encryption. In C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y. Yang,
editors, Public-Key Cryptography – PKC 2016, pages 70–98, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

29. B. Li and D. Micciancio. On the security of homomorphic encryption on approxi-
mate numbers. IACR Cryptology ePrint Archive, 2020:1533, 2020.

30. J. Loftus, A. May, N. P. Smart, and F. Vercauteren. On cca-secure somewhat
homomorphic encryption. In A. Miri and S. Vaudenay, editors, Selected Areas in
Cryptography, pages 55–72, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

31. G. Malavolta. Circuit privacy for quantum fully homomorphic encryption. IACR
Cryptology ePrint Archive, 2020:1454, 2020.

32. R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky. Maliciously
circuit-private FHE. In Advances in Cryptology – CRYPTO 2014, pages 536–553,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

33. C. Peikert. A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.,
10(4):283–424, mar 2016.

34. M. Prabhakaran and M. Rosulek. Homomorphic encryption with cca security. In
L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz, editors, Automata, Languages and Programming, pages 667–678,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

35. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), Sept. 2009.

30

crypto.stanford.edu/craig

36. M. Rosulek. The joy of cryptography. https://joyofcryptography.com.
37. V. Shoup. A proposal for an ISO standard for public key encryption. IACR

Cryptol. ePrint Arch., page 112, 2001.
38. W. Wang, Y. Jiang, Q. Shen, W. Huang, H. Chen, S. Wang, X. Wang, H. Tang,

K. Chen, K. E. Lauter, and D. Lin. Toward scalable fully homomorphic encryption
through light trusted computing assistance. CoRR, abs/1905.07766, 2019.

31

https://joyofcryptography.com

A Preliminaries (details omitted from Section 2)

In this section we specify in depth standard terminology and notations
and definitions used throughout this paper, including public key encryp-
tion and CPA-security.

A.1 Terminology and Notations

We use the following standard notations and terminology. For n ∈ N, let
[n] denote the set {1, . . . , n}.

A function µ : N → R+ is negligible in n if for every positive polyno-
mial p(·) and all sufficiently large n it holds that µ(n) < 1/p(n). We use
neg(·) to denote a negligible function if we do not need to specify its name.
Unless otherwise indicated, “polynomial” and “negligible” are measured
with respect to a system parameter λ called the security parameter. We
use the shorthand notation ppt for probabilistic polynomial time in λ.

A probability ensemble X = {X(a, n)}a∈{0,1}∗,n∈N is an infinite se-
quence of random variables indexed by a ∈ {0, 1}∗ and n ∈ N. Let
X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be two proba-
bility ensembles. X and Y are said to be computationally indistinguish-
able, denoted by X ≈c Y , if for every non-uniform polynomial-time
algorithm D there exists a negligible function neg such that for every
a ∈ {0, 1}∗ and every n ∈ N,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ neg(n).

A (strong) one-way function is a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ so that any ppt algorithm can invert f with at most
negligible probability; See a formal Definition in Goldreich [23], Definition
2.2.1.

A.2 CPA-Secure Public Key Encryption

Public key encryption. A public key encryption scheme has the fol-
lowing syntax and correctness requirement.

Definition 16 (Public-Key Encryption (PKE)). A public-key en-
cryption (PKE) scheme with message spaceM is a triple (Gen,Enc,Dec)
of ppt algorithms satisfying the following conditions:

– Gen (key generation) takes as input the security parameter 1λ, and
outputs a pair (pk, sk) consisting of a public key pk and a secret key
sk; denoted: (pk, sk)← Gen(1λ).

32

– Enc (encryption) takes as input a public key pk and a message m ∈M,
and outputs a ciphertext c; denoted: c← Encpk(m).

– Dec (decryption) takes as input a secret key sk and a ciphertext c,
and outputs a decrypted message m′; denoted: m′ ← Decsk(c).

Correctness. The scheme is correct if for every (pk, sk) in the range of
Gen(1λ) and every message m ∈M,

Pr[Decsk(Encpk(m)) = m] > 1− neg(λ)

where the probability is taken over the random coins of the encryption
algorithm.

Security against chosen plaintext attack. A PKE E = (Gen,Enc,Dec)
is CPA-secure if no ppt adversary A can distinguish between the encryp-
tion of two equal length messages x0, x1 of his choice. This is formally
stated using the following experiment between a challenger Chal and the
adversary A.

The CPA indistinguishability experiment EXPcpa
A,E(λ):

1. Gen(1λ) is run by Chal to obtain keys (pk, sk).
2. Chal provides the adversary A with pk. A sends to Chal two messages

x0, x1 ∈M s.t. |x0| = |x1|.
3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c ←

Encpk(xb) and sends c to A. We call c the challenge ciphertext.
4. A outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

Definition 17 (CPA-security). A public key encryption scheme E =
(Gen,Enc,Dec) has indistinguishable encryptions under chosen-plaintext
attacks (or is CPA-secure) if for all ppt adversaries A there exists a neg-
ligible function neg such that:

Pr[EXPcpa
A,E(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins of A and Chal.

Security for multiple messages. A PKE E = (Gen,Enc,Dec) with
message space M has indistinguishable multiple encryptions if no ppt ad-
versary A can distinguish between the encryption of two vectors of equal
length messages X0 = (x10, . . . , x

t
0) and X1 = (x11, . . . , x

t
1) of his choice.

See formal definition in [27].

33

Theorem 14 (from [27], thm. 10.10). If a public-key encryption
scheme is CPA-secure, then it has indistinguishable multiple encryptions
security.

B Omitted Proofs from Section 3

We bring here formal proof details omitted from Section 3.

B.1 Proof of Lemma 2.

We prove Lemma 2 showing that for every C-homomorphic public-key en-
cryption scheme E that has a sanitization algorithm Sanitize, its sanitized
version E santz specified in Definition 8 is circuit-private+ for C.

Proof (of Lemma 2). Let E = (Gen,Enc,Dec,Eval) be a C-homomorphic
public-key encryption scheme with a sanitization algorithm Sanitize. De-
note by E santz = (Gen,Encsantz,Dec,Evalsantz) its sanitized version as spec-
ified in Definition 8. We show that E santz is circuit-private+ for C.

Fix a circuit C ∈ C over ℓ inputs, ciphertexts c1, . . . , cℓ, a security
parameter λ and (pk, sk) ← Gen(λ). To prove circuit-privacy+ holds we
need to show the two ciphertexts Encsantzpk (C (Decsk(c1), · · · ,Decsk(cℓ)))
and Evalsantzpk (C, c1, . . . , cℓ) are statistically close, with overwhelming prob-
ability.

By definition of E santz,

Encsantzpk (C (Decsk(c1), · · · ,Decsk(cℓ)))

= Sanitizepk (Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))))

(6)

and

Evalsantzpk (C, c1, . . . , cℓ)

= Sanitizepk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(cℓ)))

(7)

By definition of the sanitization algorithm, if two ciphertexts decrypt
to the same plaintext then their sanitized version is statistically close.
Therefore it is sufficient to show that the corresponding ciphertexts in the
above two equations (specifically, Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))) and
Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(cℓ))) decrypt to the same plain-
text.

34

The correctness property of E ensures that for every (pk, sk)← Gen(1λ):

∀i ∈ [ℓ] : Pr[Decsk(Encpk(Decsk(ci))) = Decsk(ci)] ≥ 1− neg(λ) (8)

and

Pr
[
Decsk(Encpk(C(Decsk(c1),...,Decsk(cℓ))))

=C(Decsk(c1),...,Decsk(cℓ))

]
≥ 1− neg(λ) (9)

where the probabilities are taken over the random coins of the encryption
algorithm.

From Equation 8 we obtain that for every (pk, sk)← Gen(1λ) it holds
that with probability ≥ 1 − neg(λ) over the random coins of the experi-
ment,

Decsk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(cℓ)))

=Decsk (Evalpk (C,Sanitizepk(Encpk(Decsk(c1))), . . . ,Sanitizepk(Encpk(Decsk(cℓ)))))

(10)

The C-homomorphism of E guarantees that also E∗ = (Gen,Encsantz,Dec,Eval)
is C-homomorphic, and hence for every (pk, sk) ← Gen(1λ) it holds that
with probability ≥ 1− neg(λ) over the random coins of the experiment,

Decsk (Evalpk (C,Sanitizepk(Encpk(Decsk(c1))), . . . ,Sanitizepk(Encpk(Decsk(cℓ)))))

=Decsk
(
Evalpk

(
C, (Encsantzpk (Decsk(c1))), . . . , (Enc

santz
pk (Decsk(cℓ)))

))
=C (Decsk(c1), . . . ,Decsk(cℓ))

(11)

Combining Equations 9, 10, and 11 we obtain that for every (pk, sk)←
Gen(1λ) it holds that with probability ≥ 1−neg(λ) over the random coins
of the experiment,

Decsk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(cℓ)))

=Decsk (Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))))
(12)

Therefore, we can apply the the statistical sanitization property of E ,
and obtain that with probability≥ 1−neg(λ) over the choice of (pk, sk)←
Gen(1λ) and the random coins in Enc and Eval the following distributions
are statistically close,

Sanitizepk (Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))))

35

and

Sanitizepk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(cℓ)))

Combining the latter with Equations 6-7, we obtain that E santz is
circuit-private+. ⊓⊔

B.2 Proof of Lemma 3.

We prove Lemma 3 showing that if E is a CPA-secure C-homomorphic
public-key encryption scheme that is circuit-private+ for C, then it is
funcCPA-secure with respect to C.

Proof (of Lemma 3). Let E = (Gen,Enc,Dec,Eval) be a CPA-secure C-
homomorphic encryption scheme with message space M that is circuit-
private+ for C. For any ppt adversary A that participates in EXPFcpa

A,E,C we

construct an adversary B for EXPcpa
B,E that behaves as follows: The adver-

sary B runs A internally while relaying messages between the challenger
and A, with the exception that Encpk(C(Decsk(·))) queries are answered
using Eval. That is, B does the following:

– Upon receiving pk from challenger, forward it to A.
– Answer queries (e, n) to Encpk(C(Decsk(·))) by e′ ← Evalpk (Cn, e).

– Once A generates x0, x1 forward them to the challenger and return
the response c← Encpk(xb) to A.

– Output the b′ that A outputs.

The adversary B is ppt (due to A and Eval being ppt), and all the
interaction of A is perfectly simulated by B except for the responses
to queries to Encpk(C(Decsk(·))) that are simulated using Eval. Circuit
privacy+ of E guarantees that these responses are indistinguishable from
decrypting, applying Cn and encrypting the result.

More formally, we define a series of hybrid executions that gradually
move between EXPFcpa

A,E,C experiment (where Encpk(C(Decsk(·))) oracle is

used) to EXPcpa
B,E experiment (where Eval is used). Let q denote an upper

bound on the number of queries done by A, we define q + 1 hybrids as
follows:

Hybrid H0 is defined as the execution of EXPFcpa
A,E,C .

Hybrid Hi is defined for i ∈ [q]. The hybrid Hi is defined as EXPFcpa
Ai,E,C ,

where Ai’s last i queries are answered using Eval instead of oracle
Encpk(C(Decsk(·))).

36

Note that Hq is equivalent to the CPA-experiment EXPcpa
B,E , and hence,

Pr[EXPcpa
B,E(λ) = 1] = Pr[EXPFcpa

Aq ,E,C(λ) = 1] (13)

In each pair of adjacent hybrids Hi−1 and Hi the difference is that in
Hi the (q − i+ 1)’th query is done using Eval instead Encpk(C(Decsk(·)))
oracle. In this case the indistinguishability follows from E being circuit
private+ for C. Namely,

|Pr[EXPFcpa
Ai,E,C(λ) = 1]− Pr[EXPFcpa

Ai−1,E,C(λ) = 1]| ≤ neg(λ).

Since q is polynomial in λ, by the hybrid argument the indistinguishability
of EXPFcpa

A,E,C and EXPcpa
B,E follows. Finally, from the CPA-security of E and

Equation 13 we conclude that

Pr[EXPFcpa
A,E,C(λ) = 1] ≤ 1

2
+ neg(λ)

As required. ⊓⊔

B.3 Proof of Theorem 8.

We prove that funcCPA-security of the underlying encryption scheme E
implies privacy for (E ,G)-aided outsourcing protocols.

Proof (Proof of Theorem 8). Let π be a (E ,G)-aided outsourcing protocol
for a function F : A → B. Assume by contradiction that privacy does
not hold for π. That is, there exists a ppt distinguisher D that chooses
x0, x1 ∈ A with |x0| = |x1|, a malicious ppt server Srv∗, and a polynomial
p(·) such that for infinitely many λ ∈ N:

Pr[D(viewπ
Srv∗(x1,⊥, λ)) = 1]− Pr[D(viewπ

Srv∗(x0,⊥, λ)) = 1] ≥ 1

p(λ)
(14)

We show that given D and Srv∗ we can construct an adversary A that
violates the funcCPA security of E with respect to the family G.

The adversary A participates in EXPFcpa
A,E,G as follows:

1. Upon receiving pk, A outputs x0, x1 (as computed by D).
2. Upon receiving cx ← Encpk(xb) from the challenger, A internally exe-

cutes Srv∗ and behaves as the Clnt in the execution of the protocol π:
in the client’s input outsourcing phase of π, A sends (cx, pk) to Srv∗;
in the server’s computation phase of π, every incoming message (e, n)
to Clnt is redirected to the oracle Encpk(G(Decsk(·))) and the response
is sent to Srv∗ as if it were coming from Clnt.

37

3. A runs the distinguisher D on viewSrv∗ (Srv
∗’s view in A during Step 2)

and outputs whatever D outputs.

The adversary A is ppt due to Srv∗ and D being ppt. Note that π is
perfectly simulated.

We denote by viewEXPFcpa

Srv∗ (xb,⊥, λ) the view of Srv∗, simulated by A,
in the execution of EXPFcpa

A,E,G with bit b being selected by the challenger.
Since A behaves exactly as Srv∗ in π, it holds that for every b ∈ {0, 1},

Pr[D(viewπ
Srv∗(xb,⊥, λ)) = 1] = Pr[D(viewEXPFcpa

Srv∗ (xb,⊥, λ)) = 1] (15)

From Equations 14 and 15 it follows that:

Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1]− Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 1] ≥ 1

p(λ)
(16)

Therefore, we obtain that:

Pr[EXPFcpa
A,E,G(λ) = 1]

=
1

2
·
(
Pr[EXPFcpa

A,E,G(λ) = 1|b = 1] + Pr[EXPFcpa
A,E,G(λ) = 1|b = 0]

)
=

1

2
·
(
Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1] + Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 0]
)

=
1

2
+

1

2
·
(
Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1]− Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 1]
)

≥ 1

2
+

1

2
· 1

p(λ)

where the last inequality follows from Equation 16. Combining this with
A being ppt we derive a contradiction to E being funcCPA secure. This
concludes the proof. ⊓⊔

B.4 Proof of Theorem 9

In this section we given the proof of Theorem 9, showing that (a) if E is
a compact and C-homomorphic encryption scheme, then Ef is a compact
and C × C-homomorphic encryption scheme, see in Lemma 5; (b) if E is
CPA-secure then Ef is CPA-secure, see Lemma 6.

38

Lemma 5 (correctness, homomorphism and compactness of Ef).
For every public-key encryption scheme E with message-space M, and
every one-way function f over M, the public-key encryption scheme Ef
specified in Figure 1 is compact, and C ×C-homomorphic if E is compact,
and C-homomorphic.

Proof. Let E = (Gen,Enc,Dec,Eval) be a compact, C-homomorphic public-
key encryption scheme with message-space M, and let f be a one-way
function over M. Let Ef = (Genf ,Encf ,Decf ,Evalf) be the encryption
scheme specified in Figure 1. We show that the algorithms of Ef are ppt,
and the scheme is correct, C ×C-homomorphic, and compact. We assume
without loss of generality that the message-space and ciphertext-space
of E are distinct; otherwise, change Enc to pad each ciphertext with an
additional character that make it syntactically distinct from values inM.
Consequently, the condition f(c2) ̸= f(m∗) tested in Ef trivially holds for

all ciphertexts (c1, c2)← Encf
pkf

(m1,m2) s.t. f(m2) ̸= f(m∗).

Efficiency of Ef . The algorithms of Ef involve only a constant number
of calls to the algorithms of E and to computing the forward direction of
the one-way function f . All these operations are in ppt, and therefore Ef
is ppt.

Correctness of Ef . Fix some key-pair (pkf , skf)← Genf (1λ), where pkf =
(pk,Encpk(m

∗), f(m∗)) and skf = (sk, f(m∗)) for (pk, sk) in the range of
Gen(1λ) and m∗ ∈ M. Fix some message m = (m1,m2) in the message

spaceM×M and let c = (c1, c2)← Encf
pkf

(m). We show that Decf
skf

(c) =
m as follows:

– if f(m2) ̸= f(m∗), then (c1, c2) = (Encpk(m1),Encpk(m2)) and

Decf
skf

(c) = (Decsk(c1),Decsk(c2)) = (m1,m2) = m

where the first equality holds since c2 ̸= m∗ by the premise that M
and C do not intersect, and the second equality holds by the correct-
ness of E .

– if f(m2) = f(m∗), then c = m (by definition of Encf
pkf

), implying

that c2 = m∗ and therefore Decf
skf

(c) = c (by definition of Decf
skf

).

So again Decf
skf

(c) = m.

We conclude that in both cases, Decf
skf

(Encf
pkf

(m)) = m.

39

Compactness of Ef . We show that there exists polynomial p(·) such that
the decryption algorithm Decf of Ef can be expressed as a circuit of
size p(λ). The decryption of Ef involves the following computations: (a)
executing twice the decryption algorithm of E , (b) evaluating the one-
way function f(c2), and (c) testing equality between f(c2) and the value
f(m∗) provided as part of the secret key. All these computations are
computable by poly-size circuits: (a) – due to the compactness of E ; (b)
– since the forward direction of one-way functions is computable in time
polynomial in the input size and the input c2 is of size polynomial in λ
due to the decryption algorithm Dec in E being a ppt algorithm; and (c)
– as checking equality of two values of size poly(λ) is computable in time
polynomial in λ.

Homomorphism of Ef . Fix some key-pair (pkf , skf) ← Genf (1λ), where
pkf = (pk,Encpk(m

∗), f(m∗)) and skf = (sk, f(m∗)) for (pk, sk) in the
range of Gen(1λ) and m∗ ∈ M. Fix a circuit C = (C1, C2) ∈ C × C and a
set of inputs (x1, . . . , xℓ) ∈ (M×M)ℓ to C where xi = (xi,1, xi,2) consists
of the i-th input to C1 and the i-th input to C2, respectively, and let
ci = (ci,1, ci,2)← Encf

pkf
(xi).

We show that Decf
skf

(Evalf
pkf

(C; c1, . . . , cℓ)) = C(x1, . . . , xℓ) with over-

whelming probability. First we observe that by definition of Evalf ,

Evalf
pkf

(C; c1, ..., cℓ) = (Evalpk(C1;Encpk(x1,1), ...,Encpk(xℓ,1))),

Evalpk(C2;Encpk(x1,2), ...,Encpk(xℓ,2)))

Next, by definition of Decf ,

Decf
skf

(Evalf
pkf

(C; c1, ..., cℓ)) = (Decsk(Evalpk(C1;Encpk(x1,1), ...,Encpk(xℓ,1))),

Decsk(Evalpk(C2;Encpk(x1,2), ...,Encpk(xℓ,2))))

Finally by the C-homomorphism of E , for every, the latter is equal to:

= (C1(x1,1, . . . , xℓ,1), C2(x1,2, . . . , xℓ,2))

= C(x1, . . . , xℓ)

with overwhelming probability over the random coins of the experiment.
We conclude that

Pr[Decf
skf

(Evalf
pkf

(C; c1, ..., cℓ)) ̸= C(x1, . . . , xℓ)] < neg(λ)

which concludes the proof. ⊓⊔

40

Lemma 6 (CPA-security of Ef). Suppose E is a CPA-secure public-key
encryption scheme with message space M, and f is a one-way function
over M. Then Ef is a CPA-secure public-key encryption scheme with
message spaceM×M.

Proof. Let E = (Gen,Enc,Dec,Eval) be CPA-secure public-key encryption
scheme with message-spaceM, and let f be a one-way function overM.
Let Ef = (Genf ,Encf ,Decf ,Evalf) be the encryption scheme specified
in Figure 1. To prove Ef is CPA-secure we gradually change E into Ef
while showing that CPA-security is preserved under all the modifications
we introduce. Namely, we first define a sequence of encryption schemes
starting from E , going through Ẽ , Ẽf and into Ef (see definitions for Ẽ , Ẽf
below), and show that each one is CPA-secure based on the CPA-security
of the previous encryption schemes.

The encryption scheme Ẽ and its CPA-security. is similar to E except for
encrypting pairs of messages rather than a single message. That is,

– G̃en takes as input the security parameter 1λ, and outputs (pk, sk)←
Gen(1λ)

– ˜Enc takes as input a public key pk and a message m = (m1,m2) ∈
M×M, and outputs a ciphertext (Encpk(m1),Encpk(m2))

– D̃ec takes as input a sk and a ciphertext c = (c1, c2), and outputs
(Decsk(c1),Decsk(c2))

– ˜Eval takes as input a public key pk, a function C = (C1, C2) ∈ C × C
and ℓ ciphertexts c1 = (c1,1, c1,2), . . . , cℓ = (cℓ,1, cℓ,2), and outputs
(Evalpk(C1; c1,1, . . . , cℓ,1),Evalpk(C2; c1,2, . . . , cℓ,2))

By Theorem 14 the CPA-security of E implies that it has indistinguishable
multiple encryptions security, implying that Ẽ is CPA-secure scheme.

The key augmented encryption scheme Ẽf and its CPA-security. The
scheme Ẽf is similar to Ẽ except for augmenting the public pk with

Encpk(m
∗) and f(m∗) for a random messages m∗ ∈ M. That is, G̃en

f

on input the security parameter 1λ samples (pk, sk) ← G̃en(1λ) and a
uniformly random message m∗ ∈M, and outputs (pkf , skf) for

skf = (sk, f(m∗))

pkf = (pk,Encpk(m
∗), f(m∗))

and the rest of the algorithms remain the same, i.e., ˜Enc
f
pkf (m) outputs

˜Encpk(m), D̃ec
f
skf (c) outputs D̃ecsk(c), and

˜Eval
f
pkf (C; c1, , ..., cℓ) outputs

˜Evalpk(C; c1, , ..., cℓ).

41

We now show that Ẽf is CPA-secure based on the CPA-security of Ẽ .
Suppose towards contradiction that Ẽf is not CPA-secure, namely, there
exists a ppt adversary Ãf and a polynomial p() such that:

Pr[EXPcpa

Ãf ,Ẽf (λ) = 1] ≥ 1

2
+

1

p(λ)
. (17)

We construct a ppt adversary Ã participating in the CPA experiment
EXPcpa

Ã,Ẽ(λ) for Ẽ .
The adversary Ã internally runs Ãf while augmenting the public key

with Encpk(m
∗) and f(m∗) for a randomly chosen m∗ ∈ M. It forwards

Chal the two messages x0, x1 ∈ M×M chosen by Ãf , and feeds back
the challenge ciphertext received. Finally, it outputs the bit Ãf outputs.

The view of Ãf when it is run internally by Ã is identical to the view
of Ãf in the CPA experiment EXPcpa

Ãf ,Ẽf (λ). Together with Equation 17

we obtain that

Pr[EXPcpa

Ã,Ẽ(λ) = 1] = Pr[EXPcpa

Ãf ,Ẽf (λ)] ≥
1

2
+

1

p(λ)

in contradiction to Ẽ being CPA-secure, and hence we conclude that Ẽf
is CPA-secure.

Proof of CPA-security of Ef based on the CPA-security of Ẽf . Informally,
the CPA-security follows from the CPA-security of Ẽf together with the
fact that the punctured code in Enc, Dec, and Eval algorithms is executed
only only with negligible probability due to m∗ being randomly sampled.

Suppose towards contradiction that Ef is not CPA-secure, namely,
there exists a ppt adversary Af and a polynomial p() such that:

Pr[EXPcpa
Af ,Ef (λ) = 1] ≥ 1

2
+

1

p(λ)
. (18)

We construct a ppt adversary Ãf participating in the CPA experiment
EXPcpa

Ãf ,Ẽf (λ) for Ẽ
f . The adversary Ãf behaves as follows:

1. upon receiving from Chal a public key pkf = (pk,Encpk(m
∗), f(m∗))

generated by (pkf , skf)← G̃en
f
(1λ), it forwards pkf to Af .

2. Upon receiving fromAf two messages x0 = (x0,1, x0,2), x1 = (x1,1, x1,2) ∈
M×M, it forwards to Chal the message x0, x1 if f(xi,2) ̸= f(m∗) for
both i ∈ {0, 1}, and aborts otherwise.

42

3. Upon receiving the challenge ciphertext c ← ˜Enc
f
pkf (xb) for a uni-

formly random bit b ∈ {0, 1}, it forwards c to Af .
4. Ãf outputs whatever Af outputs.

The adversary Ãf is ppt since Af is ppt and the condition in 2 is
efficiently testable.

Denote by E the event that Ãf aborts in EXPcpa

Ãf ,Ẽf (λ), i.e., the event

that Af in EXPcpa
Af ,Ef (λ) sends a message m = (m1,m2) s.t. f(m2) =

f(m∗) to the challenger Chal in the chosen pair of message. Observe that,

Pr[EXPcpa

Ãf ,Ẽf (λ) = 1] = Pr[EXPcpa
Af ,Ef (λ) = 1 and ¬E]. (19)

Moreover,

Pr[EXPcpa
Af ,Ef (λ) = 1 and ¬E]

= Pr[EXPcpa
Af ,Ef (λ) = 1]− Pr[EXPcpa

Af ,Ef (λ) = 1 and E]

≥ Pr[EXPcpa
Af ,Ef (λ) = 1 and E]− Pr[E]

≥ 1

2
+

1

p(λ)
− Pr[E]

where the last inequality follows from Equation 18.
To conclude the proof it is left to show that E occurs with at most

a negligible probability, by the premise that f is one-way and E is CPA-
secure. Toward this, we first show that the probability that Ãf aborts
is the same (up to a negligible difference) regardless of whether it is
given a valid public key pkf = (pk, c, f(m∗)) where c← Encpk(m

∗) or an
invalid key where c ← Encpk(r) for a uniformly random message r ∈ M
independent of m∗. Denote by Ẽf−inv the scheme Ẽf but with pkf =
(pk,Encpk(r), f(m

∗)) for a uniformly random message r ∈ M. Similarly,
we denote by E′ the event that Ãf aborts in EXPcpa

Ãf ,Ẽf−inv
(λ).

We prove (1) a negligible probability gap between abort events: |Pr[E]−
Pr[E′]| < neg(λ) relying on the CPA-security of E , and (2) a negligible
probability of abort: Pr[E′] < neg(λ) relying on the one-wayness of f .

Proof of a negligible probability gap between abort events. Assume towards
contradiction that there exists a polynomial p(), such that

|Pr[E′]− Pr[E]| ≥ 1

p(λ)
(20)

43

We construct an adversary Bcpa that breaks the CPA-security of E .
That is, Bcpa participates in EXPcpa

Bcpa,E(λ) and behaves as follows:

1. Given a public key pk generated by (pk, sk)← Gen(1λ), Bcpa sends to
Chal two independent uniformly random messages m0,m1 ∈M.

2. Upon receiving the challenge ciphertext c = Encpk(mb) from Chal (on
a randomly sampled bit b by Chal), Bcpa internally executes Ãf on
pkf = (pk, c, f(m0)) while playing the role of the challenger (i.e, it
receives two messages x0, x1 from Ãf , picks a random bit t, and feeds

Ãf with ˜Enc
f
pkf (xt)).

3. Bcpa outputs b′ = 1 if Ãf aborts, and b′ = 0 otherwise.

Clearly Bcpa is ppt, since Ãf is ppt.
Observe that in EXPcpa

Bcpa,E(λ), the event E corresponds to the case of

an abort on c = Encpk(m0), i.e. when b = 0; whereas E′ corresponds to
the case of an abort on c = Encpk(m1), i.e. when b = 1. That is,

Pr[b′ = 1|b = 0] = Pr[E]

Pr[b′ = 1|b = 1] = Pr[E′].

Therefore,

Pr[EXPcpa
Bcpa,E(λ) = 1]

= Pr[EXPcpa
Bcpa,E(λ) = 1|b = 0] · Pr[b = 0] + Pr[EXPcpa

Bcpa,E(λ) = 1|b = 1] · Pr[b = 1]

= Pr[b′ = 0|b = 0] · Pr[b = 0] + Pr[b′ = 1|b = 1] · Pr[b = 1]

=
1

2
·
(
(1− Pr[b′ = 1|b = 0]) + Pr[b′ = 1|b = 1]

)
=

1

2
·
(
(1− Pr[E]) + Pr[E′]

)
=

1

2
+

1

2
·
(
Pr[E′]− Pr[E]

)
≥ 1

2
+

1

2 · p(λ)
where the last inequality follows from Equation 20, and w.l.o.g assump-
tion that Pr[E′] ≥ Pr[E] (otherwise Bcpa returns b′ = 0 in case of
an abort). This contradicts the CPA-security of E , and hence implies
|Pr[E′]− Pr[E]| < neg(λ).

44

Proof of a negligible abort probability. Suppose for contradiction that
there exists a polynomial p(·) such that

Pr[E′] ≥ 1

p(λ)
(21)

We construct a ppt adversary Bowf that inverts f , and behaves as
follows:

1. Given f(m∗) for a uniformly random m∗ ∈ M, Bowf first generates
keys (pk, sk) ← Gen(1λ), chooses a uniformly random r ∈ M, com-
putes Encpk(r) and sets pkf = (pk,Encpk(r), f(m

∗)).

2. Next, Bowf executes EXPcpa

Ãf ,Ãf−inv
with the public key pkf , and plays

the role of the challenger Chal.
3. If Ẽf aborts, i.e., it received two messages m0 = (m0,1,m0,2),m1 =

(m1,1,m1,2) ∈M×M, such that f(mi,2) = f(m∗) for either i ∈ {0, 1},
then Bowf outputs mi,2 for the relevant i as a pre-image for its input
f(m∗). Otherwise, Bowf fails to invert f .

It follows from the construction of Bowf together with Equation 21
that

Pr[Bowf invers f] = Pr[E′] ≥ 1

p(λ)
(22)

which is a contradiction to f being a one-way function.

We have proven that CPA-security E together with one-wayness of f
implies CPA-security Ef which concludes the proof. ⊓⊔

C Omitted Proofs from Section 4

We bring here formal proof details omitted from Section 4.

C.1 Proof of Lemma 4

Proof (Proof of Lemma 4). Assume by contradiction that Lemma 4 does
not hold. That is, there exists a ppt adversary A and a polynomial p(·)
such that for infinitely many λ and L,

Pr[EXPFcpa
A,E,G(λ, L) = 1]

−Pr[EXPFcpa#

A,E,G (λ, L) = 1] ≥ 1

p(λ)
.

(23)

45

We define a series of hybrid executions that gradually move between
EXPFcpa

A,E,G(λ, L) execution (where Chal responds with Encpkℓ−1
(Gn(Decskℓ(eℓ))))

to EXPFcpa#

A,E,G (λ, L) execution (where Chal responds with an encryption of
the image of Gn on an arbitrary message). Let L denote the number of
levels. We define L+ 1 hybrids as follows:

Hybrid H0 is defined as the execution of EXPFcpa
A,E,G(λ, L).

Hybrid Hj (j = 1, . . . , L) is similar to H0 except that the queries to
{Encpkℓ−1

(G(Decskℓ(·)))}ℓ∈[L] oracle for ℓ ≤ j, each query (eℓ, n) is
answered by Encpkℓ−1

(Gn(m)) for an arbitrary m ∈ M (instead of
sending Encpkℓ−1

(Gn(Decskℓ(eℓ))) as in Definition 11, Step 2).

Note that in each pair of adjacent hybrids Hj−1 and Hj for j ∈ [L] the
difference is that in Hj all the queries of level j ciphertexts are answered
using Gn(m) for an arbitrary m instead of Decskj (ej).

Denote by EXP
Hj

A,E,G(λ, L) the output of the experiment in hybrid Hj .

By the hybrid argument it follows from Equation 23 that there exists
j ∈ [L] such that:

Pr[EXP
Hj−1

A,E,G(λ, L) = 1]

−Pr[EXP
Hj

A,E,G(λ, L) = 1] ≥ 1

L
· 1

p(λ)

(24)

We show that Equation 24 contradicts E being CPA secure. That is,
we construct an adversary B that communicates with the challenger Chal
in the CPA indistinguishability experiment EXPcpa

B,E and wins with a non-

negligible advantage over half. Concretely, B participates in EXPcpa
B,E by

internally running A as follows:

1. Upon receiving {pk}ℓ∈{0,...,L} from Chal, B computes new keys (pk′ℓ, sk
′
ℓ)

for every j ≤ ℓ ≤ L , and forwards {pkℓ}ℓ<j ∪ {pk′ℓ}j≤ℓ≤L while an-
swering each query of A as follows:

(a) For queries to oracle with (eℓ, n) for ciphertexts of level ℓ < j
respond with Encpkℓ−1

(Gn(m)) for an arbitrary m ∈M.

(b) For queries to oracle with (eℓ, n) for ciphertexts of level ℓ > j
respond with Encpk′ℓ−1

(Gn(Decsk′ℓ(eℓ))).

(c) For queries to oracle with (eℓ, n) for ciphertexts of level ℓ = j
proceeds as follows:

i. B sets m0 = Gn(Decsk′j (ej)), samples uniformly random m ∈
M, and sends m0 and m1 = Gn(m) and j − 1 to Chal.

46

ii. Upon receiving from Chal the challenge ciphertext c∗ ← Encpkj−1
(mb∗)

for uniformly random b∗ ← {0, 1}, forward ciphertext c∗ to A.
(d) Once A generates x0, x1 and ℓ choose a random b ∈ {0, 1} and

respond with c← Encpkℓ(xb) to A.
2. Let b′ be the output of A. B outputs 0 if b′ = b and 1 otherwise.

We note that if b∗ = 0, then the challenge ciphertext c∗ is an encryp-
tion under pkj−1 of Gn(Decskj (ej)) and of a random element in the range
of Gn otherwise; moreover, since E has independent level keys then the
“fake” and real keys are identically distributed, i.e., {skℓ, pkℓ}ℓ∈{0,...,L} ≡
{skℓ, pkℓ}ℓ<j ∪ {sk′ℓ, pk′ℓ}j≤ℓ≤L Therefore, if b∗ = 0 then the view of A is
exactly as in Hj−1 and otherwise as in Hj . We obtain that

Pr[EXPcpa
B,E(λ) = 1]

=
1

2
·
(
Pr[EXPcpa

B,E(λ) = 1|b∗ = 0] + Pr[EXPcpa
B,E(λ) = 1|b∗ = 1]

)
=
1

2
·
(
Pr[b′ = b|b∗ = 0] + Pr[b′ ̸= b|b∗ = 1]

)
=
1

2
·
(
Pr[b′ = b|b∗ = 0] + (1− Pr[b′ = b|b∗ = 1])

)
=
1

2
+

1

2

(
Pr[EXP

Hj−1

A,E,G(λ, L) = 1]− Pr[EXP
Hj

A,E,G(λ, L) = 1]
)

≥1

2
+

1

2
· 1
L
· 1

p(λ)

(25)

and since L is polynomial in λ we obtain

Pr[EXPcpa
B,E(λ) = 1] ≥ 1

2
+

1

2
· 1

q(λ)

for some polynomial q(·), in contradiction to the CPA-security of E ; this
concludes the proof. ⊓⊔

C.2 Proof of Theorem 12

Proof (of Theorem 12). Suppose by contradiction that E is not circular-
secure, i.e., there exists a ppt adversary A that wins EXPwc

A,E with non-
negligible advantage over a random guess. We construct an adversary B
that runs A internally and breaks funcCPA-security of the scheme.

47

The adversary B participates in the funcCPA-security experiment as
follows. First, given pk from Chal, B computes (c1, . . . , cn)← Alg(pk) (for
Alg as guaranteed by the ObvSK property), sends a query ((c1, . . . , cn), n)
to the Encpk(G(Decsk(·))) oracle (provided as part of the funcCPA exper-
iment), and receives in response (the vector of ciphertexts)

csk = Encpk(Fn(Decsk(c1), . . . ,Decsk(cn))),

which is an encryption of the secret key sk in the encoding as needed for
bootstrapping with 1−neg(λ) probability (by the ObvSK property). Next
B, internally runs A, while providing to it csk together with pk, relaying
messages between A and Chal, and outputting the guess b′ outputted by
A.

The view of A in EXPFcpa
B,E is identical to its view in EXPwc

A,E (except
with a neg(λ) probability, for the case of failure in the ObvSK). Implying
(by the contradiction assumption)

Pr[EXPFcpa
B,E (λ) = 1] >

1

2
+

1

p(λ)

for some polynomial p(·), in contradiction to the funcCPA-security of E .
⊓⊔

C.3 Proof of Proposition 2

This section presents the proof of Proposition 2.

Proof (of Proposition 2). The proof is case-by-case, presenting in each
case an algorithm Alg producing ciphertexts so that from their decryption
the secret key is efficiently computable (with probability 1−neg(λ) when
accounting for possible decryption errors). The secret key can then be
transformed to the encoding required by the decryption circuit.

Case I: E is LWE-based with least significant bit encoding. Let δi ∈ {0, 1}n
denote the indicator vector δi(j) = 1 if-and-only-if j = i. Let Alg1(pk)
be the algorithm that given pk computes c ← Encpk(0), computes ci =
c + (0, δi) mod q for i ∈ [n] and outputs (c1, . . . , cn). Observe that, for
all i ∈ [n], Decsk(ci) returns the ith coordinate of the secret key sk =

48

(1, s1, . . . , sn) ∈ Zn+1
q as follows:

Decsk(ci) =
[
[⟨ci, sk⟩]q

]
p
(by definition of Dec)

=
[
[⟨c, sk⟩+ ⟨(0, δi), sk⟩]q

]
p
(by definition of ci and linearity of inner-product)

=
[
[(aq + bp+ 0) + si]q

]
p
for a, b ∈ Z s.t. |bp| < q

(by correctness of Decsk(c) and definition of δi)

= si (since s has small coefficients)

Namely, given (Decsk(c1), . . . ,Decsk(cn)) = (s1, . . . , sn) we can efficiently
recover the secret key sk.

Case II: E is RLWE-based with least significant bit encoding. Let δ(X) ∈
Rq be the polynomial δ(X) = X. Let Alg2(pk) be the algorithm that given
pk computes c ← Encpk(0), computes c′ = c + (0, δ) in R2

q and outputs

c′. Recall that sk = (1, s) ∈ R2
q for s(X) =

∑d−1
i=0 siX

i a polynomial,
and denote the coefficients of s by (sd−1, . . . , s0). We show that Decsk(c

′)
returns the polynomial s′ = δ · s in Rq, from which sk can be efficiently
computed.

Decsk(c
′) =

[[
⟨c′, sk⟩

]
q

]
p
(by definition of Dec)

=
[
[⟨c, sk⟩+ ⟨(0, δ), sk⟩]q

]
p
(by definition of c′ and linearity of inner-product)

=
[[
(aq + bp+ 0) + s′

]
q

]
p
for a, b ∈ Z s.t. |bp| < q and s′ = δ · s

(by correctness of Decsk(c) and definition of sk = (1, s))

= s′ (since s′ has small coefficients)

We show that s′ has coefficients (sd−2, . . . , s0,−sd−1):

δ(X) · s(X) =
d−1∑
i=0

siX
i+1 = −sd−1 +

d−1∑
i=1

si−1X
i

where the last equality follows from Xd = −1 mod F [X]. We conclude
that, from the coefficients (s′d−1, . . . , s

′
0) of s′ ← Decsk(c

′), we can effi-
ciently compute the coefficients of s by setting sd−1 := −s′0 and si := s′i+1

for all i ∈ {0, . . . , d− 2}, and outputting sk = (1, sd−1, . . . , s0). ⊓⊔

D Omitted Proofs from Section 5

We bring here formal proof details omitted from Section 5.

49

D.1 Proof of Theorem 13

We prove that cleartext computable (E ,G)-aided outsourcing protocols
preserve privacy against semi-honest servers, if E is CPA-secure and G is
admissible.

Proof (of Theorem 13). Let E = (Gen,Enc,Dec) be a CPA-secure public-
key encryption scheme with message spaceM, G = {Gn :M→M}n∈N a
family of admissible functions overM, and π a (E ,G)-aided outsourcing
protocol for a function F : A→ B. Assume by contradiction that privacy
does not hold for π. That is, there exists a ppt distinguisher D that chooses
x0, x1 ∈ A with |x0| = |x1|, and a polynomial p(·) such that for infinitely
many λ ∈ N:

Pr[D(viewπ
Srv(x1,⊥, λ)) = 1]

−Pr[D(viewπ
Srv(x0,⊥, λ)) = 1] ≥ 1

p(λ)

(26)

We show below that given D we can construct an adversary A that violate
the CPA security of E .

The adversary A participates in EXPcpa
A,E as follows:

1. Upon receiving pk output x0, x1 (as computed by D).
2. Upon receiving Encpk(xb) behave exactly as Srv behaves while execut-

ing π upon receiving cx and pk from Clnt, except that every message
(e, n) (where e is an encryption and n ∈ N) sent from Srv to Clnt is
answered by A as follows: A samples uniformly at random m from
the domain of Gn, computes e′ ← Encpk(Gn(m)), and behaves as Srv
upon receiving e′ as the response from Clnt.

3. Run the distinguisher D on viewSrv (Srv’s view in A during step 2)
and output whatever D outputs.

The adversary A is ppt due to the admissibility of G and Srv and D be-
ing ppt. Note that π is almost perfectly simulated except that the queries
to Clnt are simulated using encryption of the image of Gn on a randomly
sampled elements in its domain. Let π′ denote this variant of π that is sim-
ulated by A, namely π′ is a protocol identical to π except that each query
(e, n) to Clnt is answered by the encryption of Gn(m) for a randomly
sampled m from the domain of Gn. We denote by viewEXPcpa

Srv (xb,⊥, λ)
the view of Srv, simulated by A, in the execution of EXPcpa

A,E with bit b
being selected by the challenger. By definition of π′ it holds that for every

50

b ∈ {0, 1},

Pr[D(viewπ′
Srv(xb,⊥, λ)) = 1]

= Pr[D(viewEXPcpa

Srv (xb,⊥, λ)) = 1]
(27)

Furthermore, the CPA security of E and cleartext computability of π
guarantees (as shown in Lemma 7 below) that the server’s view in π and
π′ is computationally indistinguishable. In particular, for every x ∈ A

Pr[D(viewπ′
Srv(x,⊥, λ)) = 1]

−Pr[D(viewπ
Srv(x,⊥, λ)) = 1] ≤ neg(λ) .

(28)

Putting Equation 28 together Lemma 7 and Equations 26-27 it follows
that

Pr[D(viewEXPcpa

Srv (x1,⊥, λ)) = 1]

−Pr[D(viewEXPcpa

Srv (x0,⊥, λ)) = 1] ≥ 1

p(λ)
− neg(λ).

(29)

Therefore, we obtain that:

Pr[EXPcpa
A,E(λ) = 1]

=
1

2
·
(
Pr[EXPcpa

A,E(λ) = 1|b = 1] + Pr[EXPcpa
A,E(λ) = 1|b = 0]

)
=

1

2
· Pr[D(viewEXPcpa

Srv (x1,⊥, λ)) = 1]

+
1

2
· Pr[D(viewEXPcpa

Srv (x0,⊥, λ)) = 0]

=
1

2
+

1

2

(
Pr[D(viewEXPcpa

Srv (x1,⊥, λ)) = 1]− Pr[D(viewEXPcpa

Srv (x0,⊥, λ)) = 1]
)

≥ 1

2
+

1

2
· 1

p(λ)
− neg(λ)

where the last inequality follows from Equation 29. Combining this withA
being ppt we derive a contradiction to E being CPA secure. This concludes
the proof. ⊓⊔

Let π′ = ⟨Clnt′,Srv⟩ be as defined in the proof of Theorem 13, i.e., it
is identical to π = ⟨Clnt,Srv⟩ except that Clnt′, upon receiving server’s

51

queries (e, n), instead of responding as in step 2 in Definition 5, responds
by sending the encryption of Gn(m) for a uniformly random message m
from the domain of Gn. We show that the server is indifferent to the
correctness of answers it receives from the client in the sense that its view
in π and π′ is indistinguishable.

Lemma 7. Let E = (Gen,Enc,Dec) be a CPA-secure public-key encryp-
tion scheme with a message space M. Let G = {Gn :M→M}n∈N be a
family of admissible functions. If π is a cleartext computable (E ,G)-aided
outsourcing protocol for F : A → B, then for every efficiently samplable
x ∈ A, and all λ ∈ N the following holds:

viewπ′
Srv(x,⊥, λ) ≈c view

π
Srv(x,⊥, λ)

Proof. Assume by contradiction that Lemma 7 does not hold. That is,
there exists a ppt distinguisher D that chooses x ∈ A and a polynomial
p(·) such that for infinitely many λ ∈ N:

Pr[D(viewπ′
Srv(x,⊥, λ)) = 1]

−Pr[D(viewπ
Srv(x,⊥, λ)) = 1] ≥ 1

p(λ)
.

(30)

We define a series of hybrid executions that gradually move between
π = ⟨Clnt,Srv⟩ execution (where Clnt responds with Encpk(Gn(Decsk(e))))
to π′ = ⟨Clnt′,Srv⟩ execution (where Clnt′ responds with an encryption
of the image of Gn on a random message). Let q denote the number of
queries made to Clnt in π. We define q + 1 hybrids as follows:

Hybrid H0 is defined as the execution of ⟨Clnt, Srv⟩.
Hybrid Hj (j = 1, . . . , q) is similar to H0 except that the last j queries

to Clnt, each query (e, n) is answered by sampling a uniformly random
m in the domain of Gn and responding with Encpk(Gn(m)) (instead
of sending Encpk(Gn(Decsk(e))) as in Definition 5, Step 2).

Note that in each pair of adjacent hybrids Hj−1 and Hj for j ∈ [q] the
difference is that in Hj the (q + 1− j)’th query is answered using Gn(m)
for a random m instead of Decsk(e).

Denote by view
Hj

Srv(x,⊥, λ) the view of Srv in the hybrid Hj .
By the hybrid argument it follows from Equation 30 that there exists

j ∈ [q] such that:

Pr[D(viewHj

Srv(x,⊥, λ)) = 1]

−Pr[D(viewHj−1

Srv (x,⊥, λ)) = 1] ≥ 1

q
· 1

p(λ)

(31)

52

We show that Equation 31 contradicts E being CPA secure. That is,
we construct an adversary A that communicates with the challenger Chal
in the CPA indistinguishability experiment EXPcpa

A,E and wins with a non-

negligible advantage over half. Concretely, A participates in EXPcpa
A,E as

follows:

1. A computes the client’s cleartext response clear-resSrv(x, r, λ) = (y1, . . . , yq)
(using the efficiently computable function h from Definition 15).

2. Upon receiving pk from Chal, A computes cx ← Encpk(x), samples a
random tape r for Srv, and executes Srv with randomness r on (cx, pk)
while answering each query of Srv as follows:
(a) For the first q−j queries of Srv, A encrypts under pk the responses

y1, . . . , yq−j associated with these queries, and sends the resulting
ciphertexts to Srv.

(b) For the (q − j + 1)’th query of Srv, denoted (e, n), A proceeds as
follows:
i. A sets m0 = yq−j+1, samples uniformly random m1 from the

domain of Gn, and sends m0 and Gn(m1) to Chal.
ii. Upon receiving from Chal the challenge ciphertext c← Encpk(mb)

for uniformly random b← {0, 1}, A forwards this ciphertext c
to Srv.

(c) For the rest of the queries (e′, n′), A samples uniformly random
m in the domain of Gn′ , and sends Encpk(Gn′(m)) to Srv.

3. A executes the distinguisher D on the view of Srv during the execution
of Step 2 above, denoted viewSrv, and outputs whatever D outputs.

We note that if b = 0, then the challenge ciphertext c is the encryption
of yq−j+1 and since π is cleartext computable we get that viewSrv is exactly
as in Hj−1 and otherwise as in Hj . Therefore, we obtain that

Pr[EXPcpa
A,E(λ) = 1]

=
1

2
·
(
Pr[EXPcpa

A,E(λ) = 1|b = 1] + Pr[EXPcpa
A,E(λ) = 1|b = 0]

)
=
1

2
+

1

2

(
Pr[D(viewHj

Srv(x,⊥, λ)) = 1]− Pr[D(viewHj−1

Srv (x,⊥, λ)) = 1]
)

≥1

2
+

1

2
· 1
q
· 1

p(λ)
(32)

– a contradiction to the CPA-security of E ; this concludes the proof. ⊓⊔

53

	 Achievable CCA2 Relaxation for Homomorphic Encryption

