
Surveying definitions of election verifiability

Ben Smyth1,2 and Michael R. Clarkson3

1University of Birmingham, UK
2University of Luxembourg, Luxembourg

3Cornell University, Ithaca, NY, US

March 5, 2022

Abstract

We explore definitions of verifiability by Juels et al. (2010), Cortier
et al. (2014), and Kiayias et al. (2015). We discover that voting systems
vulnerable to attacks can be proven to satisfy each of those definitions
and conclude they are unsuitable for the analysis of voting systems. Our
results will fuel the exploration for a new definition.

1 Introduction

Electronic voting systems for large-scale public elections place extensive trust in
software and hardware. Unfortunately, instead of being trustworthy, many are
vulnerable to attacks that could unduly influence election outcomes [KSRW04,
WWH+10, JS12]: Trusting voting systems is unwise; proving that systems can
detect undue influence is essential.

Election verifiability enables determination of whether a voting system is vul-
nerable to undue influence, regardless of whether system software and hardware
are trustworthy [CRS05, Adi06, Dag07, Adi08, JCJ10]. Kremer et al. [KRS10]
decompose election verifiability into aspects including:

• Individual verifiability: voters can check that their own ballots are recorded.

• Universal verifiability: anyone can check that the tally of recorded ballots
is computed properly.

Definitions of universal verifiability seem to originate with Benaloh and Tuin-
stra [BT94], who define a correctness property asserting that every participant

This manuscript has been accepted for publication in Information Processing Letters, a
preliminary version appeared in a technical report [SFC15].

1

is convinced that the tally is accurate with respect to votes cast, and with Cohen
and Fischer [CF85], who define verifiability to mean that there exists a function
that accepts the announced tally if and only if the announced tally corresponds
to cast votes.

Juels et al. [JCJ10, §3] define properties they name correctness and ver-
ifiability to formalize election verifiability (we rename those properties JCJ-
correctness and JCJ-verifiability to avoid ambiguity), Cortier et al. [CGGI14]
directly formulate definitions of individual and universal verifiability, and Ki-
ayias et al. [KZZ15] define a property they name E2E verifiability (E2E ab-
breviates “end-to-end”) to formalize individual and universal verifiability. We
explore those definitions.

Contribution. We prove that definitions by Juels et al. and Cortier et al. do
not detect new classes of collusion, biasing and malicious-key attacks. We also
identify the definition by Kiayias et al. as not detecting some biasing attacks.

• Collusion attacks. A voting system’s tallying and verification algorithms
might be designed such that they collude to accept illegitimate tallies.
Examples of collusion attacks include vote stuffing, and announcing tallies
that are independent of the election.

• Biasing attacks. A voting system’s verification algorithm might be de-
signed to reject some legitimate tallies. Examples of biasing attacks in-
clude rejecting tallies in which a particular candidate does not win, and
rejecting all tallies, even correct ones.

• Malicious key attacks. A voting system’s verification algorithm might be
designed to accept some illegitimate tallies or reject some legitimate ones,
in the presence of a maliciously generated key. Examples of malicious
key attacks include accepting or rejecting all tallies, regardless of their
legitimacy.

In complimentary work, Smyth [Smy20] shows insecure voting systems can be
proven to satisfy global verifiability, an alternative, holistic notion of verifiability.
Together, these works demonstrate the need for a new verifiability definition.

Our results are presented in the context of centralised, public-key based
voting systems comprising of (at least) the following four steps: First, a tallier
generates a key pair PK T , SK T . Secondly, each voter constructs and casts a
ballot b for their vote β. These ballots are recorded on a bulletin board BB .
Thirdly, the tallier tallies the ballots recorded on the bulletin board, to derive
tally X and proof P of correct tallying. Finally, voters and other interested
parties verify the election to determine whether that tally corresponds to votes
expressed by recorded ballots. Algorithms Setup, Vote, Tally, and Verify may be
used in those steps.

2

2 Collusion attacks

Two examples of collusion attacks as follows:

• Vote stuffing. Tally behaves normally, but adds κ votes for candidate β.
Verify subtracts κ votes from β, then proceeds with verification as normal.
Elections thus verify as normal, except that candidate β receives extra
votes.

• Backdoor tally replacement. Tally and Verify behave normally, unless a
backdoor value is posted on the bulletin board. For example, if (SK T , X

∗)
appears on the board, then Tally and Verify both ignore the correct tally
and instead replace it with tally X∗. The tallier’s private key SK T is
the backdoor here, it cannot appear on the bulletin board (except with
negligible probability) unless the tallier is malicious.

Intuitively, vote stuffing and backdoor tally replacement attacks should be de-
tected by universal verifiability, because that notion should require Verify to
accept only those tallies that correspond to a correct tally of the bulletin board.
(Voting stuffing attacks should also be detected by correctness, because it should
require the tally produced by Tally to correspond to the votes encapsulated in
ballots on the bulletin board.)

Elections are big business; history teaches us that malice is rife. Talliers can
be incentivized to act in their own selfish interests, rather than serve democracy.
They should never be trusted—that’s why verifiability emerged as an essential
property of voting systems. Accordingly, we should anticipate talliers launching
backdoor tally replacement attacks, even though a honest tallier would never
relinquish their private key.

Design guideline (Soundness). Verification must only accept tallies
that correspond to votes expressed in collected ballots.

We formalize a vote stuffing attack by modifying an election scheme Π to
derive a vote-stuffing election scheme Stuff(Π, β, κ), which adds κ votes for can-
didate β, wherein the modified scheme:

• Tallies ballots using Π’s tallying algorithm to compute tally X and a proof,
and announces tally Add(X,β, κ) along with that proof.

• Verifies elections using Π’s verification algorithm with respect to tally Add(
X,β,−κ).

where Add(X,β, κ) = (X[1], . . . , X[β − 1], X[β] + κ,X[β + 1], . . . , X[|X|]) and
|X| denotes the length of vector X. (Note that Juels et al. define tally X as
a vector such that X[j] is the number of votes for the jth candidate.) The
definition of election verifiability by Juels et al. does not detect vote stuffing
attacks:

3

Proposition 1. Given an election scheme Π satisfying JCJ-correctness and
JCJ-verifiability, and integers β and κ, it holds that Stuff(Π, β, κ) satisfies JCJ-
correctness and JCJ-verifiability.

We state definitions by Juels et al. for an election scheme, JCJ-correctness, and
JCJ-verifiability, along with a proof of Proposition 1 in Section 5.

We formalize a backdoor tally replacement attack by modifying an election
scheme Π to derive an election scheme Backdoor(Π), where the modified scheme:

• Tallies ballots as follows: If there exists a uniqueX∗ such that (SK T , X
∗) ∈

BB , then announce tally X∗ and some arbitrary proof ⊥, otherwise, an-
nounce a tally and proof computed using Π’s tallying algorithm.

• Verification proceeds as follows: If there exists a unique X∗ such that
(SK T , X

∗) ∈ BB ,1 then accept, otherwise, verify the election using Π’s
verification algorithm.

The definition of election verifiability by Juels et al. does not detect backdoor
tally replacement attacks:

Proposition 2. Given an election scheme Π satisfying JCJ-correctness and
JCJ-verifiability, it holds that Backdoor(Π) satisfies JCJ-correctness and JCJ-
verifiability, assuming the scheme does not leak the tallier’s private key.

A proof appears in Section 5, where we also define key leakage.
Cortier et al. propose a definition similar to JCJ-verifiability and insist

that election schemes must satisfy their notions of correctness and partial tal-
lying. Vote stuffing attacks are detected by their notion of correctness, and
Backdoor(Π) does not satisfy their notion of partial tallying. Nonetheless, we
formalize a further backdoor tally replacement attack by modifying Backdoor
to derive Backdoor′, which additionally checks whether the most significant bit
of private key SK T is zero. The definition of election verifiability by Cortier et
al. does not detect that backdoor tally replacement attack:

Proposition 3. Given an election scheme V, R, ρ, Π satisfying Cortier et al.
verifiability, it holds that V, R, ρ, Backdoor′(Π) satisfies Cortier et al. verifia-
bility, assuming the scheme does not leak the tallier’s private key and the most
significant bit of an honestly generated private key is one.

We state definitions by Cortier et al. for an election scheme and verifiability,
along with a proof of Proposition 3 in Section 6, where we also define key leakage
for such schemes.

1The pre-condition must also check that SKT is the private key corresponding to public
key PKT . We omit formalizing this detail, noting it is straightforward for encryption schemes
such as El Gamal and RSA.

4

3 Biasing attacks

We derive the following three examples of biasing attacks from an election
scheme Π, by modifying verification:

• Reject all. Election scheme Reject(Π) always rejects; no election will ever
be considered valid.

• Selective reject. Let ε be a distinguished value that would not be posted
on the bulletin board by honest voters. Election scheme Selective(Π, ε)
defines verification as follows: If Π’s verification algorithm accepts and
ε 6∈ BB , then accept, otherwise, reject. Since elections are invalidated
when ε appears on the bulletin board, some elections can be nullified.

• Biased reject. Let Z be a set of tallies. Election scheme Bias(Π, Z)
defines verification as follows: If Π’s verification algorithm accepts a tally
in Z, then accept, otherwise, reject. Elections are biased toward tallies in
Z, because verification only accepts such tallies.

Intuitively, these formalizations should not satisfy universal verifiability, because
that notion should require Verify to always accept tallies that correspond to a
correct tally of the bulletin board.

Design guideline (Completeness). Verification must always accept tal-
lies that correspond to votes expressed in collected ballots.

The definition of verifiability by Juels et al. does not detect any of the
above three attacks, because that definition has no notion of completeness. For
example, it is vulnerable to biased reject attacks:

Proposition 4. Given an election scheme Π satisfying JCJ-correctness and
JCJ-verifiability, and given a set Z, it holds that Bias(Π, Z) satisfies JCJ-
correctness and JCJ-verifiability.

A proof sketch appears in Section 5.
The definition of verifiability by Cortier et al. detects biased reject and reject

all attacks, but does not detect selective reject attacks, because that definition’s
notion of completeness does not quantify over all bulletin boards:

Proposition 5. Given an election scheme V, R, ρ, Π satisfying Cortier et al.
verifiability and symbol ε that does not appear in the co-domain of Vote, it holds
that V, R, ρ, Selective(Π, ε) satisfies Cortier et al. verifiability.

A proof sketch appears in Section 6.
The definition of verifiability by Kiayias et al. does not detect selective re-

ject attacks either, because (like Juels et al.) the definition has no notion of
completeness. Their notion of correctness rules out reject all and biased reject
attacks. The ideas remain the same, so we omit formalized results.

5

4 Malicious key attacks

We derive the following two examples of malicious key attacks from an election
scheme Π, for which the most significant bit of honestly generated public keys
is one:

• Malicious key accept. Let Accept(Π) be Π except, firstly, verification
is defined as follows: If the most significant bit of the tallier’s public key
is zero, then accept, otherwise, verify using Π’s verification algorithm.
Secondly, other algorithms are the same except they remove the most
significant bit of public keys when that bit is zero. Thus, elections verify
as normal, except when a tallier announces a public key with a maliciously
prepended zero.

• Malicious key reject. Let Reject be Accept, except verification rejects
when the most significant bit is zero.

Intuitively, these formalizations should not satisfy universal verifiability, because
soundness and completeness should, respectively, preclude the former and latter
class of attacks. Yet, the definitions of verifiability by Juels et al. and Cortier
et al. do not detect the above attacks, because their definitions do not consider
maliciously generated keys:

Proposition 6. Given an election scheme Π satisfying JCJ-correctness and
JCJ-verifiability, it holds that both Accept(Π) and Reject(Π) satisfy JCJ-
correctness and JCJ-verifiability, assuming the most significant bit of honestly
generated public keys is one.

Proposition 7. Given an election scheme V, R, ρ, Π satisfying Cortier et
al. verifiability, it holds that both V, R, ρ, Accept(Π) and V, R, ρ, Reject(Π)
satisfy Cortier et al. verifiability, assuming the most significant bit of honestly
generated public keys is one.

Proofs follow immediately from the definitions of verifiability by Juels et al.
and Cortier et al., because those definitions consider only honestly generated
keys: The former explicitly assumes keys pairs are generated by “a trusted third
party [or] on an interactive computationally secure key-generation protocol.”
The latter generates key pairs using algorithm Setup (cf. the opening lines of
games in Definition 4). Maliciously generated keys are not considered.

5 Juels et al. definitions and related proofs

We state formal definitions of election schemes and verifiability by Juels et al.,
and prove that their security definition does not detect collusion nor biasing
attacks.

6

5.1 Syntax

In addition to a tallier and voters, a registrar in possession of key pair PKR,SKR
is considered. That registrar generates voter-credential pairs pk , sk , before bal-
lots are cast. Election schemes are defined as tuples (Register,Vote,Tally,Verify)
of probabilistic polynomial-time algorithms:2

• Register, denoted (pk , sk) ← Register(SKR, i, k1), is executed by the
registrar. Register takes as input the private key SKR of the registrar, a
voter’s identity i, and security parameter k1. It outputs a credential pair
(pk , sk).

• Vote, denoted b ← Vote(sk ,PK T , nC , β, k2), is executed by voters. Vote
takes as input a voter’s private credential sk , the public key PK T of the
tallier, the number of candidates nC , the voter’s vote β, and security
parameter k2. It outputs a ballot b.

• Tally, denoted (X, P) ← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3), is executed

by the tallier. Tally takes as input the private key SK T of the tallier,
the bulletin board BB , the number of candidates nC , the set containing
voters’ public credentials, and security parameter k3. It outputs the tally
X and a proof P that the tally is correct, where X is a vector of length
nC such that X[j] indicates the number of votes for the jth candidate.

• Verify, denoted v ← Verify(PKR,PK T ,BB , nC ,X, P), can be executed
by anyone to verify the election. Verify takes as input the public key PKR
of the registrar, the public key PK T of the tallier, the bulletin board BB ,
the number of candidates nC , and a candidate proof P of correct tallying.
It outputs a bit v, which is 1 if the tally successfully verifies and 0 on
failure.

The above syntax fixes an apparent oversight in the original presentation: we
supply the registrar’s public key as input to the verification algorithm, because
that key would be required by Verify to check the signature on the electoral roll.

5.2 Security definitions

Juels et al. formalize correctness and verifiability to capture their notion of
election verifiability. We rename those to JCJ-correctness and JCJ-verifiability
to avoid ambiguity. For readability, the definitions we give below contain subtle
differences from the original presentation. For example, we sometimes use for
loops instead of pattern matching.

JCJ-correctness asserts that an adversary cannot modify or eliminate votes
of honest voters, and stipulates that at most one ballot is tallied per voter.
Intuitively, the security definition challenges the adversary to ensure that veri-
fication succeeds and the tally does not include some honest votes or contains

2Juels et al. do not explicitly name key generation algorithms. For consistency, readers
may like to consider Setup generating tallier key pairs.

7

too many votes. Our presentation of JCJ-correctness fixes apparent errors in
the original: the adversary is given the credentials for corrupt voters and dis-
tinct security parameters are supplied to the Register and Vote algorithms. An
implicit assumption is also omitted: {βi}i∈V\V′ is a multiset of valid votes, that
is, for all β ∈ {βi}i∈V\V′ we have 1 ≤ β ≤ nC . Without this assumption the
security definition cannot be satisfied by many election schemes, including the
election scheme by Juels et al.

Definition 1 (JCJ-correctness). An election scheme Π = (Register,Vote,Tally,
Verify) satisfies JCJ-correctness if for all probabilistic polynomial-time adversary
A, there exists a negligible function µ, such that for all positive integers nC and
nV , and security parameters k1, k2, and k3, we have Succ(Exp-JCJ-Cor(Π,A,
nC , nV , k1, k2, k3)) ≤ µ(k1, k2, k3),3 where:

Exp-JCJ-Cor(Π,A, nC , nV , k1, k2, k3) =

V ← {1, . . . , nV };1

for i ∈ V do (pk i, sk i)← Register(SKR, i, k1);2

V ′ ← A({pk i}
nV
i=1);3

for i ∈ V \ V ′ do βi ← A();4

BB ← {Vote(sk i,PK T , nC , βi, k2)}i∈V\V′ ;5

(X, P)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3);6

BB ← BB ∪ A(BB , {(pk i, sk i)}i∈V∩V′);7

(X′, P ′)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3);8

if Verify(PKR,PK T ,BB , nC ,X
′, P ′) = 19

∧
(
{βi}i∈V\V′ 6⊆ 〈X′〉 ∨ |〈X′〉| − |〈X〉| > |V ′|

)
then

return 1;10

else11

return 0;12

and 〈X〉 denotes the translation of tally X to multiset
⋃

1≤j≤|X|{ j, . . . , j︸ ︷︷ ︸
X[j] times

}.

The JCJ-correctness definition implicitly assumes that the tally and associ-
ated proof are honestly computed using algorithm Tally. By comparison, the def-
inition of JCJ-verifiability does not use this assumption, hence, JCJ-verifiability
is intended to assert that voters and auditors can check whether votes have been
recorded and tallied correctly. Intuitively, the adversary is assumed to control
the tallier and voters, and the security definition challenges the adversary to
concoct an election (that is, the adversary generates a bulletin board BB , a
tally X, and a proof of tallying P) such that verification succeeds and tally X
differs tally X′ derived from honestly tallying the bulletin board BB . It follows
that there is at most one verifiable tally that can be derived.

Definition 2 (JCJ-verifiability). An election scheme Π = (Register,Vote,Tally,
Verify) satisfies JCJ-verifiability if for all probabilistic polynomial-time adver-
sary A, there exists a negligible function µ, such that for all positive integers nC

3We write µ(k1, k2, k3) for the smallest value in {µ(k1), µ(k2), µ(k3)} (cf. [JCJ10, pp45]).

8

and nV , and security parameters k1 and k3, we have Succ(Exp-JCJ-Ver(Π,A,
nC , nV , k1, k2, k3)) ≤ µ(k1, k2, k3), where:

Exp-JCJ-Ver(Π,A, nC , nV , k1, k2, k3) =

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(SKR, i, k1);1

(BB ,X, P)← A(SK T , {(pk i, sk i)}nV
i=1);2

(X′, P ′)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3);3

if Verify(PKR,PK T ,BB , nC ,X, P) = 1 ∧ X 6= X′ then4

return 1;5

else6

return 0;7

5.3 Proof of Proposition 1

Suppose Π = (Register,Vote,Tally,Verify) is an election scheme satisfying JCJ-
correctness and JCJ-verifiability. Further suppose Stuff(Π, β, κ) = (Register,
Vote,TallyS ,VerifyS), for some integers β, κ ∈ N. We prove that Stuff(Π, β, κ)
satisfies JCJ-correctness and JCJ-verifiability.

We show that Stuff(Π, β, κ) satisfies JCJ-correctness by contradiction. Sup-
pose Succ(Exp-JCJ-Cor(Stuff(Π, β, κ),A, nC , nV , k1, k2, k3)) is non-negligible for
some k1, k2, k3, nC , nV , and A. Hence, there exists an execution of the exper-
iment Exp-JCJ-Cor(Stuff(Π, β, κ),A, nC , nV , k1, k2, k3) that satisfies

VerifyS(PKR,PK T ,BB , nC ,X
′, P ′) = 1

∧
(
{βi}i∈V\V′ 6⊂ 〈X′〉 ∨ |〈X′〉| − |〈X〉| > |V ′|

)
with non-negligible probability, where {βi}i∈V\V′ is the set of honest votes,
(X, P) is the tally of honest votes, (X′, P ′) is the tally of all votes, V ′ is a set of
corrupt voter identities, and BB is the bulletin board. Further suppose BB0 is
the bulletin board BB before adding adversarial ballots. By definition of TallyS ,
there exist computations

(Y, Q)← Tally(SK T ,BB0, nC , {pk i}
nV
i=1, k3)

and
(Y′, Q′)← Tally(SK T ,BB , nC , {pk i}

nV
i=1, k3)

such that X = Add(Y, β, κ), X′ = Add(Y′, β, κ), and P ′ = Q′. Since κ ∈ N, we
have 〈Y′〉 ⊆ 〈X′〉. Moreover, |〈X〉| = |〈Y〉|+ κ and |〈X′〉| = |〈Y′〉|+ κ, hence,

|〈Y′〉| − |〈Y〉| = |〈X′〉| − |〈X〉|.

By definition of VerifyS and since Y′ = Add(X′, β,−κ), there exists a computa-
tion

v ← Verify0(PKR,PK T ,BB , nC ,Y
′, Q′)

9

such that v = 1. It follows that

Verify(PKR,PK T ,BB , nC ,Y
′, Q′) = 1

∧
(
{βi}i∈V\V′ 6⊂ 〈Y′〉 ∨ |〈Y′〉| − |〈Y〉| > |V ′|

)
with non-negligible probability and, furthermore, we have Succ(Exp-JCJ-Cor(
Π,A, nC , nV , k1, k2, k3)) is non-negligible, thereby deriving a contradiction.

We show that Stuff(Π, β, κ) satisfies JCJ-verifiability by contradiction. Sup-
pose Succ(Exp-JCJ-Ver(Stuff(Π, β, κ),A, nC , nV , k1, k2, k3)) is non-negligible for
some k1, k3, nC , nV , and A. Hence, there exists an execution of the experiment
Exp-JCJ-Ver(Stuff(Π, β, κ),A, nC , nV , k1, k2, k3) which satisfies

Verify(PKR,PK T ,BB , nC ,X, P) = 1 ∧X 6= X′

with non-negligible probability, where (BB ,X, P) is an election concocted by
the adversary and (X′, P ′) is produced by tallying BB . By definition of TallyS ,
there exists a computation

(Y′, Q′)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3)

such that X′ = Add(Y′, β, κ) and P ′ = Q′. By definition of VerifyS , there exists
a computation

v ← Verify(PKR,PK T ,BB , nC , Add(X, β,−κ), P)

such that v = 1. Let the adversary B be defined as follows: given input K and
S, the adversary B computes

(BB ,X, P)← A(K,S)

and outputs (BB , Add(X, β,−κ), P). We have an execution of the experiment
Exp-JCJ-Ver(Stuff(Π, β, κ),B, nC , nV , k1, k2, k3) that concocts the election (BB ,
Add(X, β,−κ), P) and tallying BB produces (Y′, Q′) such that

Verify(PKR,PK T ,BB , nC , Add(X, β,−κ), P) = 1

with non-negligible probability. Moreover, since X 6= X′ and Y′ = Add(X′, β,
−κ), we have Add(X, β,−κ) 6= Y′ with non-negligible probability. It follows
immediately that Succ(Exp-JCJ-Cor(Π,B, nC , nV , k1, k2, k3)) is non-negligible,
thus deriving a contradiction and concluding our proof.

5.4 Proof of Proposition 2

We define key leakage before proving Proposition 2.

Definition 3 (Key leakage). An election scheme Π = (Register,Vote,Tally,
Verify) does not leak the tallier’s private key if for all positive integers nC and
nV , security parameters k1 and k3, and probabilistic polynomial-time adversary
A, we have Succ(Exp-leak(Π,A, k1, k3, nC , nV)) is negligible, where:

10

Exp-leak(Π,A, k1, k3, nC , nV) =

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(SKR, i, k1);1

BB ← A(sk1, . . . , sknV
);2

(X, P)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3);3

if A(X, P) = SK T then4

return 1;5

else6

return 0;7

Proof of Proposition 2. Suppose Π = (Register,Vote,Tally,Verify) is an election
scheme satisfying JCJ-correctness and JCJ-verifiability that does not leak the
tallier’s private key, andBackdoor(Π) = (Register,Vote,TallyB ,VerifyB). Since
Π does not leak the tallier’s private key, the experiment Exp-JCJ-Cor(Π,A, nC ,
nV , k1, k2, k3) produces a bulletin board BB such that SK T ∈ BB with negli-
gible probability, for all k1, k2, k3, nC , nV and A. It follows that an execution
of the experiment Exp-JCJ-Cor(Backdoor(Π),A, nC , nV , k1, k2, k3) is an execu-
tion of the experiment Exp-JCJ-Cor(Π,A, nC , nV , k1, k2, k3) with non-negligible
probability and, hence, Backdoor(Π) satisfies JCJ-correctness.

We show that Backdoor(Π) satisfies JCJ-verifiability by contradiction. Sup-
pose Succ(Exp-JCJ-Ver(Backdoor(Π),A, nC , nV , k1, k2, k3)) is non-negligible for
some k1, k3, nC , nV , and A. Hence, there exists an execution of the experiment
Exp-JCJ-Ver(Backdoor(Π),A, nC , nV , k1, k2, k3) which satisfies

Verify(PKR,PK T ,BB , nC ,X, P) = 1 ∧X 6= X′

with non-negligible probability, where (BB ,X, P) is an election concocted by
the adversary and (X′, P ′) is produced by tallying BB . If there is one and only
one Y such that (SK T ,Y) ∈ BB , then X′ = Y by definition of Tally and X = Y
by definition of Verify, otherwise, the execution of the experiment Exp-JCJ-Cor(
Backdoor(Π),A, nC , nV , k1, k2, k3) is an execution of the experiment Exp-JCJ-
Cor(Π,A, nC , nV , k1, k2, k3) and, hence,

Succ(Exp-JCJ-Ver(Backdoor(Π),A, nC , nV , k1, k2, k3))

= Succ(Exp-JCJ-Ver(Π,A, nC , nV , k1, k2, k3)).

In both cases we derive a contradiction, thereby concluding our proof.

5.5 Proof sketch of Proposition 4

Suppose Π = (Register,Vote,Tally,Verify) is an election scheme satisfying JCJ-
correctness and JCJ-verifiability. Further suppose Bias(Π, Z) = (Register,Vote,
Tally,VerifyR), for some set of vectors Z. By definition of VerifyR, we have

VerifyR(PKR,PK T ,BB , nC ,X, P) = 1

implies the existence of a computation

v ← Verify(PKR,PK T ,BB , nC ,X, P)

11

such that v = 1 with non-negligible probability, for all PK T , BB , nC , X, and
P . It follows that

Succ(Exp-JCJ-Cor(Bias(Π),A, nC , nV , k1, k2, k3))

≤ Succ(Exp-JCJ-Cor(Π,A, nC , nV , k1, k2, k3))

and

Succ(Exp-JCJ-Ver(Bias(Π),A, nC , nV , k1, k2, k3))

≤ Succ(Exp-JCJ-Ver(Π,A, nC , nV , k1, k2, k3))

for all k1, k2, k3, nC , nV , and A. Hence, Bias(Π, Z) satisfies JCJ-correctness
and JCJ-verifiability.

6 Cortier et al. definitions and related proofs

We state definitions of election schemes and verifiability by Cortier et al., and
prove their security definition does not detect selective reject nor backdoor tally
replacement attacks.

6.1 Syntax

Election schemes are defined over a vote space V, a result space R, a result
function ρ : V × · · · × V → R, and a tuple (Setup,Register,Vote,Validate,Box,
VerifyVote,Tally,Verify) of probabilistic polynomial-time algorithms:

• Setup, denoted (PK T ,SK T)← Setup(k), is executed by the tallier. Setup
takes a security parameter k as input and outputs a key pair (PK T , SK T).

• Register, denoted (pk , sk)← Register(PK T , i, k), is executed by the reg-
istrar. Register takes as input the tallier’s public key PK T , a voter’s
identity i, and security parameter k. It outputs a credential pair (pk , sk).

• Vote, denoted b ← Vote(i, pk , sk ,PK T , β), is executed by voters. Vote
takes as input a voter’s identity i and credential pair (pk , sk), tallier’s
public key PK T , and vote β ∈ V. It outputs a ballot b.

• Validate, denoted v ← Validate(PK T , b), is executed by the bulletin
board. Validate takes as input the tallier’s public key PK T and ballot
b. It outputs a bit v, which is 1 for a well-formed ballot and 0 otherwise.

• Box, denoted BB ′ ← Box(PK T ,BB , b), is executed by the bulletin board.
Box takes as input the tallier’s public key PK T , bulletin board BB , and
ballot b. It outputs an updated bulletin board BB ′.

12

• VerifyVote, denoted v ← VerifyVote(i, pk , sk ,PK T ,BB , b), is executed
by voters. VerifyVote takes as input a voter’s identity i and credential pair
(pk , sk), tallier’s public key PK T , bulletin board BB , and ballot b. It
outputs a bit v, which is 1 if ballot b has been recorded by bulletin board
BB and 0 otherwise.

• Tally, denoted (X,P)← Tally(PK T ,SK T ,BB), is executed by the tallier.
Tally takes as input the tallier’s key pair (PK T ,SK T) and the bulletin
board BB . It outputs the tally X and a proof P that the tally is correct.

• Verify, denoted v ← Verify(PK T ,BB , X, P), can be executed by anyone
to verify the election. Verify takes as input the tallier’s public key PK T ,
the bulletin board BB , a tally X, and a proof P of correct tallying. It
outputs a bit v, which is 1 if the tally successfully verifies and 0 on failure.

Election schemes must satisfy the following properties:

Cortier et al. correctness. For all security parameters k, integers nV and votes
β1, . . . , βnV

∈ V, we have:

Pr

[
(PK T ,SK T)← Setup(k);

for 1 ≤ i ≤ nV do
(pk i, sk i)← Register(PK T , i, k);
bi ← Vote(i, pk i, sk i,PK T , βi);

BB ← {b1, . . . , bnV
};

(X,P)← Tally(PK T ,SK T ,BB) :
X = ρ(β1, . . . , βnV

) ∧ Verify(PK T ,BB , X, P) = 1 ∧(∧
1≤i≤nV

Validate(PK T , bi) = 1 ∧ VerifyVote(i, pk i, sk i,PK T , {bi}, bi) =

1 ∧ Box(PK T , ∅, bi) = {bi}
)]

= 1.

Cortier et al. partial tallying. There exists a commutative binary operator ? :
R×R→ R such that for all integers j and k, and votes α1, . . . , αj , β1, . . . , βk ∈ V,
we have ρ(α1, . . . , αj , β1, . . . , βk) = ρ(α1, . . . , αj) ? ρ(β1, . . . , βk). Moreover, for
all security parameters k and disjoint bulletin boards BB1 and BB2, there exists
a negligible function µ such that

Pr[(PK T ,SK T)← Setup(k);

(X1, P1)← Tally(PK T ,SK T ,BB1);

(X2, P2)← Tally(PK T ,SK T ,BB2);

(X,P)← Tally(PK T ,SK T ,BB1 ∪ BB2) :

X 6= ⊥ ⇒ X = X1 ? X2] > 1− µ(k).

For consistency and readability, our presentation of the above syntax and prop-
erties contain some minor differences from the original presentation. In addi-

13

tion, we fix an apparent oversight: we define the tallier’s public key and voter
credentials.

6.2 Security definition

The definition of verifiability by Cortier et al. is captured by experiments similar
to Exp-JCJ-Ver (Section 5.2).

Definition 4 (Cortier et al. verifiability). An election scheme V, R, ρ,
Π satisfies Cortier et al. verifiability if for all security parameters k and
probabilistic polynomial-time adversaries A, there exists a negligible func-
tion µ such that Succ(Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k)) + Succ(Exp-CGGI-Ver-
g(V, ρ,Π, ?,A, k)) ≤ µ(k), where ? is a commutative binary operator satisfying
the partial tallying property and the aforementioned experiments are defined as
follows:4

Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k) =

(PK T ,SK T)← Setup(k);1

Crpt ← ∅; Reg ← ∅; Rvld ← ∅;2

(BB , X, P)← AC,E,R(PK T);3

if Verify(PK T ,BB , X, P) = 0 then return 0;4

if X = ⊥ then return 0;5

if ∃(iA1 , βA
1 , b

A
1), . . . , (iAnA

, βA
nA
, bAnA

) ∈ Rvld \ Chck6

∧ ∃βB
1 , . . . , β

B
nB

. 0 ≤ nB ≤ |Crpt |
∧ X = ρ({β | (i, β, b) ∈ Chck}) ? ρ({βA

i }
nA
i=1) ? ρ({βB

i }
nB
i=1) then

return 0;7

else8

return 1;9

4Unfortunately, set Chck is undefined in both experiments and set Reg is undefined in the
latter. Set Chck should contain triples of voter identities, their votes, and ballots, for voters
that “checked that their ballots will be counted [using mechanisms defined for individual
verifiability],” but there is no notion of voters performing individual verifiability checks in
either experiment. (Universal verifiability checks are performed.) Set Reg is maintained by
oracle E, yet “the adversary is not given...access to [this] oracle [in the latter experiment], since
it controls the registrar and thus can register users arbitrarily, even with malicious credentials.”
No alternative definition of set Reg is given, hence, the set is undefined for oracles C and R.
Since our results are not reliant on set Chck nor Reg, we will not second-guess the authors’
intention, and we leave undefined sets in experiments to signal that something is missing.

14

Exp-CGGI-Ver-g(V, ρ,Π, ?,A, k) =

(PK T ,SK T)← Setup(k);1

BB ← ∅; Crpt ← ∅; Rvld ← ∅;2

(X,P)← AB,C,R(PK T);3

if Verify(PK T ,BB , X, P) = 0 then return 0;4

if X = ⊥ then return 0;5

if ∃(iA1 , βA
1 , b

A
1), . . . , (iAnA

, βA
nA
, bAnA

) ∈ Rvld \ Chck6

∧ ∃βB
1 , . . . , β

B
nB

. 0 ≤ nB ≤ |Crpt |
∧ X = ρ({β | (i, β, b) ∈ Chck}) ? ρ({βA

i }
nA
i=1) ? ρ({βB

i }
nB
i=1) then

return 0;7

else8

return 1;9

Oracle E is used to model A enrolling voters. On invocation E(i), oracle E
does the following: Computes (pk , sk)← Register(PK T , i, k), records i as being
enrolled by updating Reg to be Reg ∪ {(i, pk , sk)}, and outputs pk.

Oracle C is used to model A corrupting voters and learning their private
credentials. On invocation C(`), if (`, pk , sk) ∈ Reg, then the oracle records that
voter ` is corrupted by updating Crpt to be Crpt ∪ {(`, pk)} and outputs sk.

Oracle R reveals ballots. On invocation R(i, β), if β ∈ V and there exists
pk and sk such that (i, pk , sk) ∈ Reg ∧ (i, pk) 6∈ Crpt, then oracle R does the
following: Computes b ← Vote(i, pk , sk ,PK T , β), records b as being revealed
by updating Rvld to be (Rvld \ {(i, β′, b′) | (i, β′, b′) ∈ Rvld}) ∪ {(i, β, b)}, and
outputs b.

Oracle B controls the bulletin board. On invocation B(b), oracle B computes
BB ← Box(PK T ,BB , b).

6.3 Proof of Proposition 3

We define key leakage for Cortier et al. election schemes before proving Propo-
sition 3.

Definition 5. An election scheme V, R, ρ, Π = (Setup, . . .) does not leak the
tallier’s private key if for security parameters k and probabilistic polynomial-time
adversary A, we have Succ(Exp-leak(Π,A, k)) is negligible, where:

Exp-leak(Π,A, k) =

(PK T ,SK T)← Setup(k);1

SK ′T ← A(PK T);2

if SK ′T = SK T then3

return 1;4

else5

return 0;6

Proof of Proposition 3. We first show that V, R, ρ, Backdoor′(Π) is an election
scheme—i.e., it satisfies Cortier et al. correctness and partial tallying. Since Π

15

does not leak the tallier’s private key, it follows that schemes Π and Backdoor′(Π)
are equivalent in the context of correctness (in particular, the tallier’s private
key cannot appear on the bulletin board), hence, Backdoor′(Π) satisfies correct-
ness because Π does. Moreover, since the most significant bit of an honestly
generated private key is one, it follows that schemes Π and Backdoor′(Π) are
equivalent in the context of partial tallying, hence, Backdoor′(Π) satisfies partial
tallying because Π does. Next, we show that Cortier et al. verifiability is satis-
fied. Since Π does not leak the tallier’s private key, experiments Exp-CGGI-Ver-b(
V, ρ,Backdoor′(Π), ?,A, k) and Exp-CGGI-Ver-g(V, ρ,Backdoor′(Π), ?,A, k) pro-
duce bulletin boards that exclude the tallier’s private key with overwhelm-
ing probability, for all k and probabilistic polynomial-time adversary A. It
follows that an execution of experiment Exp-CGGI-Ver-b(V, ρ,Backdoor′(Π), ?,
A, k) is an execution of experiment Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k) with non-
negligible probability. Similarly, an execution of experiment Exp-CGGI-Ver-g(V,
ρ,Backdoor′(Π), ?,A, k) is an execution of the experiment Exp-CGGI-Ver-g(V, ρ,
Π, ?,A, k). Thus, Backdoor′(Π) satisfies Cortier et al. verifiability.

6.4 Proof sketch of Proposition 5

Suppose Π = (Setup, . . . ,Vote, . . . ,Tally,Verify) and Selective(Π, ε) = (Setup,
. . . ,Vote, . . . ,Tally,VerifyR). We first show that V, R, ρ, Selective(Π, ε) is an
election scheme—i.e., it satisfies Cortier et al. correctness and partial tallying.
Satisfaction of the latter is trivial, since we only modify Verify, and we proceed
with a proof of the former: Since V, R, ρ, Π satisfies Cortier et al. correctness
and ε is not in Vote’s co-domain, we have for all key pairs (PK T ,SK T) output
by Setup, subsets BB of Vote’s co-domain and tallies (X,P) output by Tally that
Verify(PK T ,BB , X, P) = 1 implies VerifyR(PK T ,BB , X, P) = 1. It follows that
V, R, ρ, Selective(Π, ε) satisfies Cortier et al. correctness. Next, we show that
Cortier et al. verifiability is satisfied.

Let E hold in an execution of Exp-CGGI-Ver-b if ε ∈ BB , where BB is output
by the adversary. By definition of Selective(Π, ε), we have Pr[Exp-CGGI-Ver-b(
V, ρ,Selective(Π, ε), ?,A,
k) = 1 | E] = 0 and

Pr[Exp-CGGI-Ver-b(V, ρ,Selective(Π, ε), ?,A, k) = 1 | ¬E]

= Pr[Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k) = 1 | ¬E].

It follows that

Succ(Exp-CGGI-Ver-b(V, ρ,Selective(Π, ε), ?,A, k))

= Pr[Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k) = 1 | ¬E].

Since

Succ(Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k)) =

Pr[Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k) = 1 | E]

+ Pr[Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k) = 1 | ¬E],

16

we have

Succ(Exp-CGGI-Ver-b(V, ρ,Selective(Π, ε), ?,A, k))

≤ Succ(Exp-CGGI-Ver-b(V, ρ,Π, ?,A, k)).

Similarly, we derive

Succ(Exp-CGGI-Ver-g(V, ρ,Selective(Π, ε), ?,A, k))

≤ Succ(Exp-CGGI-Ver-g(V, ρ,Π, ?,A, k)).

Since V, R, ρ, Π satisfies Cortier et al. verifiability, we have V, R, ρ, Selective(
Π, ε) satisfies Cortier et al. verifiability too.

7 Conclusion

We have seen that definitions of verifiability by Juels et al., Cortier et al. and
Kiayias et al. do not detect some collusion, biasing and malicious-key attacks.
Although a well-designed voting system would hopefully not exhibit vulnera-
bilities to these attacks, it is the job of security definitions to detect malicious
systems, regardless of whether vulnerabilities are due to malice or error. So
definitions of election verifiability should preclude them. Yet, the aforemen-
tioned definitions do not. Revisiting the security of previously-analysed voting
systems in light of the attacks identified here is a possible direction for future
work. Our findings have been reported to original authors Dario Catalano,
Véronique Cortier, Markus Jakobsson, and David Galindo, and will fuel the
exploration for a new definition of verifiability. In collaboration with Frink, we
have developed one such definition.

Acknowledgements We thank Dario Catalano, Jeremy Clark, Véronique
Cortier, Aleksander Essex, Steven Frink, David Galindo, Stéphane Glondu,
Markus Jakobsson, Steve Kremer, and Mark Ryan for insightful discussions
that have influenced this manuscript. We also thank our IPL reviewers and
editors, whose commentary led to significant improvements. This work is partly
supported by AFOSR grants FA9550-12-1-0334 and FA9550-14-1-0334, by NSF
grant 1421373, by the National Security Agency, and the Luxembourg National
Research Fund (FNR) under the FNR-INTER-VoteVerif project (10415467).

References

[Adi06] Ben Adida. Advances in Cryptographic Voting Systems. PhD the-
sis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2006.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX
Security’08: 17th USENIX Security Symposium, pages 335–348.
USENIX Association, 2008.

17

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elec-
tions (extended abstract). In STOC ’94: Twenty-sixth Annual
ACM Symposium on Theory of Computing, pages 544–553, New
York, NY, USA, 1994. ACM Press.

[CF85] Josh Daniel Cohen and Michael J. Fischer. A Robust and Verifi-
able Cryptographically Secure Election Scheme. In FOCS’85: 26th
IEEE Symposium on Foundations of Computer Science, pages 372–
382. IEEE Computer Society, 1985.

[CGGI14] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika
Izabachène. Election Verifiability for Helios under Weaker Trust
Assumptions. In ESORICS’14: 19th European Symposium on Re-
search in Computer Security, volume 8713 of LNCS, pages 327–344.
Springer, 2014. Accompanied by INRIA technical report RR-8555.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A Practical
Voter-Verifiable Election Scheme. In ESORICS’05: 10th European
Symposium On Research In Computer Security, volume 3679 of
LNCS, pages 118–139. Springer, 2005.

[Dag07] Participants of the Dagstuhl Conference on Frontiers of E-Voting.
Dagstuhl Accord, 2007. http://dagstuhlaccord.org/.

[JCJ10] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. In Towards Trustworthy Elections:
New Directions in Electronic Voting, volume 6000 of LNCS, pages
37–63. Springer, 2010.

[JS12] Douglas W. Jones and Barbara Simons. Broken Ballots: Will Your
Vote Count?, volume 204 of CSLI Lecture Notes. Center for the
Study of Language and Information, Stanford University, 2012.

[KRS10] Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifia-
bility in electronic voting protocols. In ESORICS’10: 15th Euro-
pean Symposium on Research in Computer Security, volume 6345
of LNCS, pages 389–404. Springer, 2010.

[KSRW04] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S.
Wallach. Analysis of an Electronic Voting System. In S&P’04: 25th
Security and Privacy Symposium, pages 27–40. IEEE Computer
Society, 2004.

[KZZ15] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-
to-end verifiable elections in the standard model. In EURO-
CRYPT’15: 34th International Conference on the Theory and
Applications of Cryptographic Techniques, volume 9057 of LNCS,
pages 468–498. Springer, 2015.

18

[SFC15] Ben Smyth, Steven Frink, and Michael R. Clarkson. Election Ver-
ifiability: Cryptographic Definitions and an Analysis of Helios and
JCJ. IACR ePrint 2015/233, 2015.

[Smy20] Ben Smyth. Surveying global verifiability. Information Processing
Letters, 163, 2020.

[WWH+10] Scott Wolchok, Eric Wustrow, J. Alex Halderman, Hari K. Prasad,
Arun Kankipati, Sai Krishna Sakhamuri, Vasavya Yagati, and Rop
Gonggrijp. Security Analysis of India’s Electronic Voting Machines.
In CCS’10: 17th ACM Conference on Computer and Communica-
tions Security, pages 1–14. ACM Press, 2010.

19

