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Abstract
We present Colordag, a blockchain protocol where following the prescribed strategy is, with high
probability, a best response as long as all miners have less than 1/2 of the mining power. We prove
the correctness of Colordag even if there is an extremely powerful adversary who knows future
actions of the scheduler: specifically, when agents will generate blocks and when messages will
arrive. The state-of-the-art protocol, Fruitchain, is an ε-Nash equilibrium as long as all miners
have less than 1/2 of the mining power. However, there is a simple deviation that guarantees that
deviators are never worse off than they would be by following Fruitchain, and can sometimes do
better. Thus, agents are motivated to deviate. Colordag implements a solution concept that we
call ε-sure Nash equilibrium and does not suffer from this problem. Because it is an ε-sure Nash
equilibrium, Colordag is an ε-Nash equilibrium and with probability 1 − ε is a best response.
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1 Introduction

At the heart of Bitcoin [15] is the Nakamoto consensus protocol, which is based on proof-of-
work [7, 12, 1]. The system participants, called miners, maintain a ledger that records all
transactions—payments or so-called smart-contract operations. The transactions are batched
into blocks; a miner can publish a block only by expending computational power, at a rate
proportional to her computational power in the system. This rate is called mining power.

The Nakamoto consensus protocol achieves desirable ledger properties even against an
adversary that controls α < 1/2 of the mining power [10, 17, 13]. That is, as long as
miners that control a majority of the cmoputing power follow the Nakamoto consensus
protocol, security is guaranteed. But Nakamoto’s protocol relies on incentives: The blocks
form a tree, and each miner is rewarded for each block it generated that is included in the
longest path (blockchain) in the tree. Unfortunately, following the Nakamoto consensus
protocol is not a best response for miners that control a large fraction (but less than 1/2)
of the total computational power [8, 16, 19]. For example, under some minimal modeling
assumptions, even a coalition that controls 1/4 of the computational power can increase
its reward by deviating from the Nakamoto Consensus protocol.1 Stated differently, the
Nakamoto consensus protocol is not a coalition-resistant equilibrium if there are coalitions
that control more than 1/4 of the mining power.

Pass and Shi [18] make major progress with their Fruitchain protocol. In Fruitchain, the
blocks form a dag (rather than a tree) with the longest chain determining rewards. However,
miners are rewarded for a special type of block, called fruit. Each fruit block c is the child of
a regular block b1, and its miner is rewarded if a subsequent block b2 points to the fruit, both
blocks b1 and b2 are on the longest chain, and the path between them is shorter than some
constant. If the longest chain is sufficiently long that the fruit c does not provide a reward,
then c is called stale. Fruitchain is an ε-Nash Equilibrium (NE), that is, a miner, even with
mining power arbitrarily close to 1/2, can improve her revenue by only a negligible amount
by deviating from the protocol. Like Bitcoin [17], Fruitchains is provably correct except with
negligible probability in executions of length polynomial in the system’s security parameter.

However, Fruitchain allows for a simple deviation by which any coalition can increase
its utility without taking any risk: Specifically, a miner points only to its own fruit when
generating blocks, ignoring fruit generated by others. This simple deviation dominates the
prescribed protocol, as it creates a small probability that the ignored fruit will become stale,
increasing the miner’s relative revenue. While the probability increase is negligible in the
staleness parameter, there is no risk to the miner. Moreover, if all agents are small and
play this simple deviation, then the probability that any of them can point to its own fruit
before it becomes stale is small; this results in a violation of the ledger properties, as progress
becomes arbitrarily slow. Our conclusion is that ε-NE is an inappropriate solution concept
in our setting; agents might still be incentivized to deviate from a ε-NE, although the benefit
is small.

We present a more robust solution concept that we call ε-sure NE. A protocol is an ε-sure
NE if, for any player, playing the prescribed protocol is a best response except for some set
of runs (executions) that has probability at most ε. If utilities are bounded (as they are in
our case), a ε-sure NE is an ε-NE, but the converse is not the case in general.

Our main contribution is the Colordag protocol, a PoW-based protocol that is an ε-sure
NE, provided that each player controls less than half the total computational power. Like

1 Under the most optimistic assumptions about the underlying network, this bound increases to only 1/3.
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various solutions, starting from Lewenberg et al. [14, 22], Colordag constructs a directed
acyclic graph rather than a tree. This graph is used for reward calculation; the ledger consists
of a subset of blocks on the graph.

To achieve the required properties, Colordag makes use of three key ideas.

1. Due to the distributed nature of the system, two miners might generate a block before
hearing of each others’ blocks. The result is a fork where two blocks point to the same
parent. This gives an advantage to the attacker, as the two blocks only extend the longest
chain by one. To deal with forks that occur naturally, Colordag colors blocks randomly,
and calculates the reward by looking at the graphs generated by the nodes of each color
(technically, the graph minors of each color) separately. Adding more colors allows us to
keep the original rate of block production, while mitigating the effects of forking: the fact
that there are fewer blocks of a given color reduces the probability of forks in the minors.
Previous work [10, 2, 24] randomly attributed properties to blocks for performance or
resilience. In contrast, here coloring is used only for calculating the reward.

2. Colordag guarantees that, with high probability, malicious behavior (indeed, any deviation
from the strategy) will not result in a higher reward for the deviating agent. The basic
idea is that honest blocks of a given color will almost always be acceptable: they are on a
chain that is almost the longest in its minor. Unacceptable blocks get no reward and do
not affect the rewards of others. The approach is similar to Sliwinski and Wattenhofer’s
block staling; it is guaranteed to work as long as there is no agent has a majority of mining
power, even if players know in advance the order in which they are scheduled.

3. To disincentivize deviation, Colordag penalizes forking: Considering the graph minors of
each color separately, if there is more than one acceptable block of a given depth T in
a minor, then all blocks of depth T get reward 0. Since each miner i aims to maximize
its relative revenue (i.e., the ratio between i’s revenue and the total reward received by
miners while i is active, just as is the case in, e.g., [8, 19, 17, 11]), and (by assumption)
deviators have less power than honest agents (i.e., agents that follow the prescribed
protocol), a symmetric penalty to a deviator and an honest agent results in the deviator
suffering more than the honest agents. Sliwinski and Wattenhofer [21] also use symmetric
penalties in a blockdag for all blocks that are not connected by a directed path; each
block in a set X of such blocks is penalized by |X|c (for some constant c). However, with
their approach, an adversary can harm honest agents. For example, if c = 3 and there
is a benign honest fork, the attacker can add a third forked block, resulting in a total
penalty of 6c for honest agents (3c per block) while suffering only 3c itself, so deviation
is worthwhile for a sufficiently large minority miner. In fact, their threshold is smaller
than 1/2, and their protocol is only an ε-NE, like Fruitchain.

The rest of the paper is organized as follows. In Section 2, we describe an abstract model
of a PoW system, similar to models used in previous work, and discuss the bitcoin desiderata.
In Section 3, we formalize mining as a game, so that we can make notions like incentive
compatibility and best response precise. In Section 4, we formally describe the Colordag
mechanism: the Colordag protocol and the revenue scheme that we use. We then prove in
Section 5 that Colordag satisfies the ledger desiderata and is an ε-sure equilibrium in the face
of coalitions with less than 1/2 of the computational power, and even if the coalition knows
what the scheduler does in advance. Specifically, we show that, for the appropriate choice of
parameters, in all but a negligible fraction of histories, miners do not gain if they deviate
from the Colordag protocol. Finally, in Section 6, we discuss the values of the Colordag
parameters when dealing with a weaker adversary than we assume here and the path to a
practical implementation.

CVIT 2016
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2 Model and Desiderata

Blockchain protocols operate by propagating data structures called blocks over a reliable
peer-to-peer network. We abstract this layer away and describe our model (see Section 2.1),
which is similar to previous work. The goal of the protocol is to implement a distributed
ledger (see Section 2.2), roughly speaking, a commonly-agreed upon record of transactions.

2.1 Model
The system proceeds in rounds in a synchronous fashion, as is common in many other
analyses (e.g., [8, 10, 17, 18]). A history h is a complete description of what happens to
the system over time. Formally, h is a function from rounds to a description of what has
happened in the system up to round t (which blocks were generated, which were made public,
which agents are in the system, and so on). We denote by h(t) the prefix of h up to time t.
There is a possibly unbounded number of agents, called miners, named 1, 2, . . .. We take the
miners to represent coalitions of agents, so we do not talk about coalitions of miners (and
will later assume that each miner controls less than 1/2 of the computational power). For
each history h and miner i, there exist rounds T h,i

1 and T h,i
2 such that i is active between

T h,i
1 and T h,i

2 .
Some previous analyses (e.g., [15, 8, 19, 5, 9]) focused on average rewards, and did not

consider adversarial attacks that could lead to a violation of the ledger properties, although
in an infinite execution such attacks may succeed with probability one. We aim to prove,
with high probability, both that Colordag is incentive compatible (i.e., no agent can increase
its utility by deviating from the protocol) and that, if all but at most one agent follow the
protocol, then the ledger properties hold. So, like previous work (e.g., [17, 18, 13]), we assume
that the system runs for a bounded time, up to some large Tmax. Without this assumption,
even events with arbitrarily small frequency happen with probability one.

Let Ag(h, t) be the set of active miners in the system at round t of history h, that is, all
miners i such that T h,i

1 ≤ t ≤ T h,i
2 . For any given history and time, the set Ag(h, t) is finite.

Each miner i has so-called mining power, a positive value representing her computational
power. The power of a miner i at time t, denoted Powh

t (i), is her fraction of the mining
power at time t in history h. Let Powh(i) = supt Powh

t (i), and let Pow(i) = suph Powh(i).
We will be interested in the case that, for all miners i, there exists some α < 1/2 such that
Pow(i) ≤ α.

We assume that a scheduler determines which miners are active, which miners move in
each round, and how long it takes a message to arrive. To simplify the discussion of the
scheduler, we assume (as is the case for Colordag and all other blockchain algorithms) that
each miner builds a local version of a directed acyclic graph called a blockdag. We refer to
each node and its incoming edges in the graph as a block. Our hope is that miners have an
“almost-common” view of the blockdag. Following the standard convention, we assume that
the blockdag has a commonly-agreed-upon root that we refer to as the genesis block. The
depth of a blockdag G, d(G), is the length of a longest path in G. The depth of a block b in
G, denoted d(G, b), is the length of a longest path in G from the genesis to b.2

In every round, the scheduler chooses one miner at random among the miners that are
active in that round (a miner i being chosen represents it having solved a computational

2 We follow standard graph-theoretic terminology here. In the blockchain literature, what we are calling
the depth of a node is sometimes called its height.
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puzzle), with probability proportional to its power (as in, e.g., [8, 19, 17]); that is, miner i is
chosen in round t with probability proportional to Powt(i). If the scheduler chooses a miner i

in round t, then i either selects some set P of the nodes currently in its blockdag, with the
constraint that no node in P can be the ancestor of another node in P , and adds a new
vertex v to the blockdag with P as its parents or does nothing. If i adds (P, v), then i can
either broadcast this fact or save it for possible later broadcast. Note that a miner cannot
send (P, v) to a strict subset of miners; it is either broadcast to all miners or sent to none of
them (as in, e.g., [8, 10, 2] and deployed systems [15, 23]). Miners can also broadcast pairs
that they saved earlier. If P violates the constraint that no node in P can be the ancestor of
another node in P , the message (P, v) is ignored. We assume in the rest of the paper that
this does not occur, as the outcome is indistinguishable from simply not generating a block.

Denote by Gh(t) the blockdag including all blocks published at or before round t in
execution h. Let G

h(t)
i denote i’s view of Gh(t); this is the blockdag at round t of history h

according to i. For example, i may not be aware at round t that j created block b, so block
b will be in Gh(t) but not in G

h(t)
i . Note that blocks that node i has generated but not

published are not included in G
h(t)
i (although, of course, i is aware of them); however, if a

block b ∈ G
h(t)
i refers to a block b′ (i.e., b is a child of b′, since we assume that the message

broadcast by the miner that created block b has a hash of all the parents of b), then we take
b′ to have been published, and include it in G

h(t)
i . We omit the h if it is clear from context

or if we are making a probabilistic statement; that is, if we say that a certain property of the
graph holds at time t with probability p, then we mean that the set of histories h for which
the property of Gh(t) holds has probability p.

We assume that there is an upper bound ∆ ≥ 1 on the number of rounds that it takes for
a message to arrive. The arrival time of each message may be different for different miners;
that is, if miner i broadcasts (P, v) at round t, miners j and j′ might receive (P, v) in different
rounds. Messages may also be reordered (subject to the bound on message delivery time).

Note that although there is a bound on message delivery time, miners do not know the
publication time of a block. Thus, there is no way that a miner can tell if a block was
withheld for a long period of time. Interestingly, in Colordag, agents can tell to some extent
from the blockdag topology if a block was withheld for a long period of time; such blocks do
not get any reward.

In summary, this is how the scheduler works: (1) it chooses, for each agent i, in which
interval i is active and its power; (2) it chooses which agent generates a block in each round
(randomly, in proportional to their power); and, finally, (3) it chooses a message-delivery
function (i.e., a function that, given a history up to round m, decides how long it will take
each round m message to be delivered, subject to the synchrony bound). We assume that
the adversary knows the scheduler’s choices.

The scheduler’s protocol, including the choice of when agents are active and the random
choice of which agents generate a block in each round, and the strategies used by the miners
together determine a probability on the set of histories of the system. While we have specified
that all messages must be delivered within ∆ rounds, we have not specified a probability
over message delivery times, block-generation times, or when agents are active. Our results
hold whatever the probability is over message-delivery times (subject to it being at most ∆)
and on when agents are active (subject to no agent having power greater than α). Thus,
when we talk about a probability on histories, it is a probability determined by the strategies
of the miners and a scheduler that satisfies the constraints above.

CVIT 2016
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2.2 Desiderata
A ledger function L takes a blockdag G and returns a sequence L(G) of blocks in G; the kth
element in the sequence is denoted Lk(G). The length of the ledger is denoted |L(G)|.
We want the ledgers that arise from the blockdags created by Colordag to satisfy certain
properties [10, 17, 13].

The first property requires that once a block allocation is set, its position in the ledger
remains the same in the view of all miners.

▶ Definition 1 (Ledger Consistency). There exists a constant K such that, for all miners i

and j, if k ≤ |L(Gh(t)
i )| − K and t ≤ t′, then Lk(Gh(t)

i ) = Lk(Gh(t′)
j ).

The next desideratum is that the length of the ledger should increase at a linear rate.
Let |L(G)| denote the number of elements in the sequence L(G).

▶ Definition 2 (Ledger Growth). There exists a constant g such that, for all rounds t < t′

and all miners i, if t′ − t > g, then |L(Gh(t′)
i )| ≥ |L(Gh(t)

i )| + 1.

The final ledger desideratum says that the fraction of the total number of blocks in the
ledger that are generated by honest miners should be larger than a positive constant.

▶ Definition 3 (Ledger quality). There exist constants D > 0 and µ ∈ (0, 1) such that for all
rounds t and t′ such that t′ − t ≥ D, the fraction of blocks mined by honest miners placed on
the ledger between round t and t′ is at least µ.

Note that this common requirement is fairly weak. As we will see, Colordag miners will
be rewarded, on average, proportionally to their efforts. Indeed, to motivate miners to mine,
the system rewards miners for essentially all the blocks they generate (not just the ones on
the ledger). The revenue from each block is determined by the revenue scheme. Formally, a
revenue scheme r is a function that associates with each block b and labeled blockdag G a
nonnegative real number r(G, b), which we think of as the revenue associated with block b in
the blockdag G. Our final desideratum requires that revenue stabilizes.

▶ Definition 4 (Revenue Consistency). There exists a constant K such that, for all miners i

and j and times t, t′, and t′′ such that t′, t′′ > t + K, if b is published at time t in history h,
then r(Gh(t′)

i , b) = r(Gh(t′′)
j , b).

Most previous work (e.g., [15, 23, 18]) did not state this requirement explicitly. There,
it follows from ledger consistency, since all and only blocks in the ledger get revenue.3 In
contrast, with Colordag, a miner might get revenue for a block even if it is not on the ledger,
and may not get revenue for some blocks that are on the ledger. We thus need to separately
require that the revenue that a miner gets from a block eventually stabilizes.

3 Revenue Scheme and ε-Sure NE

It is not hard to design protocols that satisfy the blockdag desiderata. However, there is
no guarantee that the miners will actually use those protocols. We assume that miners are
rational, so our goal is to have a protocol that is incentive-compatible: it is in the miners’ best
interests (appropriately understood) to follow the protocol. Before describing our protocol,
we need to explain how the miners get utility in our setting.

3 Ethereum’s uncle blocks [23] are off-chain but rewarded; however, their rewards are explicitly placed
in the ledger after a small number of blocks, therefore revenue consistency for Ethereum also follows
almost trivially from ledger consistency.
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3.1 Revenue Scheme
A miner’s utility in a blockdag is determined by the miner’s revenue. We denote by B

h(t)
i

the blocks generated by miner i in history h(t). Given a revenue scheme r, for each miner i,
history h, and round t, we can calculate the revenue r(Gh(t)

i , b) for every block b ∈ B
h(t)
i .

Given a revenue scheme r, miner i’s total revenue at round t according to r in history h of
a protocol is the sum

∑
b∈B

h(t)
i

r(Gh(t)
i , b) of the revenue obtained for each block b generated

by i while it is active in history h. For example, in Bitcoin [15], the revenue of a miner is
the number of blocks it generated that are on the so-called main chain. Finally, i’s utility
according to revenue scheme r at round t in history h is i’s normalized share of the total
revenue while it is active. Taking time(b) to be the time that block b was published, for
t ≥ T h,i

1 , we define:

ur
i (h, t) =

∑
b∈B

h(t)
i

r(Gh(t)
i , b)∑

{b:T h,i
1 ≤time(b)≤min(t,T h,i

2 )} r(Gh(t)
i , b)

. (1)

This way of determining a miner’s utility from a revenue function is common (see,
e.g., [8, 19, 18, 11, 5, 4]). Intuitively, the utility is normalized because the value to a miner of
holding a unit of currency depends on the total amount of currency that has been generated.
A miner is interested in its utility during the time that it is active. Although miner i’s
utility may change over time, for a protocol that has the revenue consistency property (as
Colordag does), in every history, i’s utility eventually stabilizes (since the set of blocks that
are published between T h,i

1 and T h,i
2 for which each miner gets revenue and the revenue

that the miners get for these blocks eventually stabilize). When we talk about i’s utility in
history h, we mean the utility after all the revenue up to T h,i

2 has stabilized.

3.2 ε-sure NE
As we said in the introduction, we are interested in strategy profiles that form a ε-sure Nash
Equilibrium (NE), a strengthening of ε-NE as long as utility is bounded. We now define
these notions carefully.

In the definition of ε-sure NE, we are interested in the probability that a history in a
set H of histories occurs, denoted Pr(H). (Note that a history corresponds to a path in
the game tree.) In general, the probability of a history depends on the strategies used by
the miners. We are interested in sets of histories that have probability at least (1 − ε),
independent of the strategies used by the miners. To ensure that this is the case, we take H to
be a set of histories determined by the scheduler’s behavior. The scheduler is a probabilistic
algorithm. It chooses miners for block generation with probability Powi(t), and chooses
network propagation time arbitrarily, bounded by a constant ∆. The probabilities of the
different histories are then defined by the probabilities of the scheduler’s random coins. For
example, suppose that there are 10 agents, all with the same computational power, and we
consider histories where agent 1 is scheduled first, followed by agent 2. This set of histories
has probability 1/100, independent of the agents’ strategies.

We denote the strategy of each miner i by σi, a strategy profile by σ = (σ1, . . . , σn), and
the profile excluding the strategy of i by σ−i. The profile with miner i’s strategy replaced by
σ′

i is (σ′
i, σ−i).

▶ Definition 5 (ε-sure NE). A strategy profile σ = (σ1, . . . , σn) is an ε-sure NE if, for each
agent i, there exists a set Hi of histories with probability at least 1 − ε such that, conditional

CVIT 2016
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on Hi, σi is a best response to σ−i; that is, for all strategies σ′
i ̸= σi of agent i:

ui(σ | Hi) ≥ ui((σ′
i, σ−i) | Hi).

Of course, if, for each agent i, we take Hi to consist of all histories; then we just get back
NE, so all Nash equilibria are ε-sure NE for all ε. As the next result shows, if all utilities are
in the interval [m, M ] then every ε-sure NE strategy profile is an (M − m)ε-NE. Since in our
setting, the utility of a miner i is the fraction of total revenue that i obtains while i is active,
the utility is in [0, 1], so is clearly bounded.

▶ Lemma 6. If a strategy profile σ is an ε-sure NE and all players’ utilities are bounded in
the range [m, M ], then σ is an (M − m)ε-Nash Equilibrium.

Proof. For a player i, there is a set of histories Hi with probability Pr(Hi) > 1 − ε where σi

is a best response. In histories not in Hi, denoted Hi, player i might improve her utility by
up to (M − m). The probability of Hi is bounded by ε. Therefore, the utility increase of a
player by switching her strategy is at most 0(1 − ε) + (M − m)ε = (M − m)ε. Thus, σ is an
(M − m)ε-NE. ◀

However, there are ε-NE that are not ε′-sure NE for any ε′ < 1. For example, consider
a game where a player chooses 0 or 1. She gets utility 0 for choosing 0 and utility ε for
choosing 1. Choosing 0 is ε-NE but is not ε′-sure NE for any ε′ as choosing 1 strictly increases
her utility in all histories. Thus, ε-sure NE is a solution that lies strictly between ε-Nash
and Nash equilibrium when utility is bounded, as it is in our case.

We will show that, for all ε, we can choose parameter settings to make Colordag an ε-sure
NE. In addition, it satisfies the ledger desiderata.

4 Colordag

The Colordag mechanism consists of a recommended strategy that we want participants to
follow and a revenue scheme. The strategy, denoted σcd (cd stands for Colordag) is extremely
simple: If chosen at round t in history h, miner i takes P to consist of the leaves of G

h(t)
i . It

thus generates a block labeled b with parents P and broadcasts (P, b), adding it to its local
view G

h(t)
i .

The reward function is more involved. Before describing it formally, we give some intuition
for it. Suppose that we give all blocks reward 1. It is easy to see that σcd is a Nash equilibrium.
But, with this reward function, so is every strategy profile where miners always publish the
blocks they generate at some point. For example, miners can hang blocks off the genesis;
this is also a best response. But if all miners choose to do this, it would be impossible to
define a ledger that preserves consistency.

There is a simple fix to the second problem: if there is more than one block of the same
depth, all blocks of that depth get reward 0. This stops hanging blocks off the genesis from
being a best response. But now we have a new problem – we lose reward consistency. At any
point, an adversary can penalize an arbitrary block b by adding a new block with the same
depth as b. To obtain reward consistency, we would want to call the adversary’s block in
such cases unacceptable, and completely ignore it. Intuitively, we want blocks that hang off
a block of depth T to be viewed as unacceptable if they are added after the blockdag has
height sufficiently greater than T . This motivates our notion of unacceptability.

Roughly speaking, our reward function gives a reward of 1 to all blocks except those that
are unacceptable or those that are forked; these get reward 0. The mechanism thus relies
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Figure 1 Coloring a dag.
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Figure 2 An unacceptable
block.

on a rational miner not being able to form a longer chain privately than the honest miners
can form. (If a dishonest miner could form a longer chain privately than the honest miners
can form, it could then publish that chain and make all the blocks that the honest miners
formed during that time unacceptable.) However, forks can happen naturally, due to network
latency, meaning honest miners’ chain-extension rate is less than their block-generation rate,
whereas the rational miner’s rate is unimpaired. To mitigate the effect of forking, we color
the nodes, effectively partitioning the blockdag into disjoint graph minors [6] (one minor for
each color); we determine forking (and acceptability) in these graph minors. We can make
the amount of forking as small as we want by using enough colors. We now present the key
components needed for the reward function, and then give the actual function.

Coloring nodes

Because messages may take up to ∆ rounds to arrive, two honest miners can both extend
a given block b, because neither has heard of the other’s extension at the point when
it is doing its own extension. To make our results as strong as possible, following the
literature [10, 13, 21], we assume that a deviating miner is able to avoid forking with its own
blocks. Thus, a deviator can extend paths in the blockdag faster than would be indicated by
her relative power. In particular, a deviator with power less than (but close to) 1/2 may be
able to (with high probability) build paths longer than the honest miners can build, due to
forking.

To deal with this problem, Colordag assigns each block a color chosen at random from
a sufficiently large set of NC colors; that is, it assigns each block a number in {1, . . . , NC}
(which we view as a color). In practice, this would be done by taking the color to be
the hash of the contents of the block mod NC . This ensures that, except with negligible
probability (1) all colors are equally likely, (2) the color of a block b is learned by the miner
that generates b only after b is generated, and (3) colors are commonly known (every miner
can compute the color of every block, just knowing its content). In our model, this is like
having the scheduler allocate a random color when it chooses a miner in a round. Figure 1a
shows a blockdag where the nodes are colored either blue (B), red (R), or yellow (Y).

After coloring each node in the graph G, we consider the graph minor Gc corresponding
to color c: The nodes in this graph minor are just the nodes of color c in G; node b′ is a
child of b in Gc iff b′ is a descendant of b in G and there is no path in G from b to b′ with an
intermediate node (i.e., one strictly between b and b′) of color c. Figure 1b shows the minors
resulting from our example.

The key point is that, by taking NC sufficiently large, we make the probability of a fork
among the blocks generated by honest miners in Gc arbitrarily small. The reasoning is
simple: Suppose that b and b′ are generated by honest miners at times tb and tb′ , respectively,
where tb′ > tb. If b and b′ have the same color and there are enough colors, then with high
probability, tb′ > tb + ∆, so b′ is a descendant of b in G, and hence also in Gc. In other
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words, if two honest blocks are neither an ancestor nor a descendant of one another in G,
they are unlikely to have the same color.

Acceptable blocks

We now define what it means for a block to be acceptable. We want it to be the case that
a block is unacceptable if it has depth T but was added after the depth of the blockdag is
considerably greater than T . The way we capture this is by requiring acceptable blocks to
be on paths that are almost the same as a particular longest path in the graph.

Given a dag Gc, we “close off” Gc so that it has a unique initial node and a unique final
node (whether or not it already had them), by adding special vertices b0 and b∗, where b0 is
the parent of all the roots of Gc (essentially we consider b0 to be the genesis, belonging to
all minors) and b∗ is the child of all leaves in Gc. We refer to this graph as G+

c . We denote
by |Q| the length of a path Q, which is the number of edges in Q, and hence one less than
the number of vertices in Q.

Given a graph G, for each color c, we choose one particular longest path in G+
c from b0

to b∗. If there is more than one longest path, we use a canonical tie-breaking rule, which we
now define, as it will be useful later. Intuitively, if there are several paths of maximal length,
we order the paths by considering the point where they first differ, and choose using some
fixed tie-breaking rule that depends only on the contents of the blocks where they first differ.

▶ Definition 7 (Canonical path). Given a blockdag, the canonical path starts at the genesis
and continues as all longest paths do up to the first point where some longest paths diverge
(this could already happen at the genesis). At this point, we choose some tie-breaking rule to
decide which longest paths to follow.4 The canonical path continues as all these longest paths
until the next point of divergence. Again, at this point we use the tie-breaking rule to decide
which longest paths to follow. We apply this procedure each time longest paths diverge.

The key point is that all these tie-breaking rules are local. The decisions made are the
same (if all the prefixes of these paths exist) in all the graphs we consider.

▶ Definition 8 (Acceptable Block). A path P in G+
c from block b0 to block b∗ is Nℓ-almost-

optimal if the symmetric difference between P and the canonical longest path P ∗ (i.e., the
set of blocks in exactly one of the paths P and P ∗) has fewer than Nℓ blocks. A block b of
color c is Nℓ-acceptable iff it is on an Nℓ-almost-optimal path P of color c. The path P is
said to be a witness to the acceptability of b.

We need one more definition before we can define the revenue scheme.

▶ Definition 9 (Forked Block). An Nℓ-acceptable block b in blockdag G is Nℓ-forked if there is
another Nℓ-acceptable block b′ with the same color as b, say c, such that d(Gc, b) = d(Gc, b′).

We can now make Colordag’s revenue scheme precise. As we said, a block of color c gets
reward 1 unless it is unacceptable or it is forked in Gc. The revenue scheme takes Nℓ as a
parameter, so we denote it rcd

Nℓ
.

▶ Definition 10 (Colordag Revenue Scheme). A node b is Nℓ-compensated if b is Nℓ-acceptable
in Gc and is not Nℓ-forked; rcd

Nℓ
(G, b) = 1 if b is Nℓ-compensated; otherwise, rcd

Nℓ
(G, b) = 0.

4 For example, in practice this could be the smallest hash of the block contents.
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Colordag Ledger Function

We present here a ledger function that makes the analysis easier, and satisfies all the ledger
properties. This function is somewhat inefficient, since not all blocks are a part of the ledger.
In Section 6, we show how a small modification of this approach lets us include in the ledger
the transactions that appear in all acceptable blocks in the blockdag.

The ledger function of Colordag chooses a fixed color ĉ, and given graph G, chooses the
canonical path in the subgraph of G of color ĉ. The ledger is defined by the blocks on this
path. For example, given the blockdag in Figure 1a, and assuming ĉ is yellow, the ledger is
the sequence of blocks (Y1, Y2, Y3).

▶ Definition 11 (Colordag Ledger Function). Given a blockdag G and a fixed color ĉ, Colordag’s
ledger function Lcd returns a sequence consisting of the blocks on the canonical path in Gĉ.

Reward Calculation

Since following the protocol is the miners’ best response, in practice they will generate a
single chain of each color and get rewarded per block. As we now show, the reward calculation
can be done in polynomial time, even if miners deviate. Given Nℓ, a graph G, and a block b

of color c, we want to calculate rcd
Nℓ

(G, b). The first task is to construct the graph minor Gc

of color c; this clearly can be done in time polynomial in |G|. The next step is to determine
the canonical longest path P ∗ in Gc. We can do this quickly, since it is well known that
longest paths in dags can be calculated in linear time [20]. (Indeed, it is straightforward
to keep a table of lengths of longest paths and update it as Gc grows over time.) Finally,
using depth-first search, we can quickly compute the block b2 of least depth on P ∗ that is a
descendant of b (which is b itself if b is on P ∗) and the block of greatest depth b1 on P ∗ that
is an ancestor of b. By construction there is a path from b1 to b2 that includes b. It is easy
to see that b is acceptable iff the number of nodes on the path fromn b1 to b2 that includes
b (not including b1 and b2) and the number of nodes on the canonical path from b1 to b2
(again, not including b1 and b2) is less than Nℓ. If b is forked, then similar arguments allow
us to check whether a block forking b is acceptable. If b is acceptable and no block forking b

is acceptable, then rcd
Nℓ

(G, b) = 1; otherwise, rcd
Nℓ

(G, b) = 0.

5 Analysis

In this section, we show that Colordag satisfies all the blockdag desiderata and is an ε-sure NE
(and thus also an ε-NE). Note that it follows directly from the utility definition (Equation 1)
that if all agents follow the Colordag protocol, the expected utility of each miner is its relative
power. We do the analysis under the assumption that we have a very strong adversary, one
who knows the scheduler’s protocol. This means that the adversary knows when agents
will join and leave the system, when agents will generate blocks, and when messages will
arrive. To get this strong guarantee, we may need the parameters NC and Nℓ to be large
(in general, the choice of NC and Nℓ depend on Tmax). We believe that in practice much
smaller parameters will suffice. We return briefly to this issue in the conclusion.

The first step in doing this is to identify a set of “reasonable” histories that has probability
at least 1 − ε. One of the things that makes a history reasonable is that there is little forking.
The whole point of coloring is that we can make the probability of forking arbitrarily small
in the graphs of color c, by choosing enough colors.
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▶ Definition 12. A pair (b1, b2) of blocks is a natural c-fork in a history h if b1 and b2 both
have color c, they are both generated within a window of ∆ rounds, and neither is an ancestor
of the other in Gh. An interval [t1, t2] suffers at most δ-c-forking loss if, the set of blocks b1
generated in [t1, t2| for which there exists a block b2 such that (b1, b2) is a natural c-fork is a
fraction less than δ of the total number of blocks of color c generated in [t1, t2].

We now consider histories that satisfy three properties that will turn out to be key to our
arguments.

▶ Definition 13 (Safe history). A history is (NC , Nℓ, δ, δC , Tmax)-safe if, for all miners i,
and all colors c,

SH1. for every subinterval [t′
1, t′

2] of [0, Tmax], such that at least Nℓ blocks of color c are generated
in the interval [t′

1, t′
2], miner i generates less than 1/2 − δ of them;

SH2. every subinterval [t′
1, t′

2] of [0, Tmax] such that t′
2 − t′

1 ≥ Nℓ suffers at most δ-c-forking
loss; and

SH3. for every subinterval [t′
1, t′

2] of [0, Tmax] such that t′
2 −t′

1 ≥ Nℓ, there are at least δC(t′
2 −t′

1)
blocks of color c generated in [t′

1, t′
2].

Let HNC ,Nℓ,δ,δC ,Tmax denote the set of histories that are (NC , Nℓ, δ, δC , Tmax)-safe.

▶ Proposition 14. Suppose that for all miners i, Pow(i) ≤ α < 1/2. Then for all ε > 0,
there exists a positive integer T ∗

max such that for all Tmax ≥ T ∗
max, there exist NC , Nℓ < Tmax,

δ ∈ (0, 1/2), and δC ∈ (0, 1) such that Pr(HNC ,Nℓ,δ,δC ,Tmax) ≥ 1 − ε.

To prove the proposition, we use Hoeffding’s inequality to find conditions on the parameters
on NC , Nℓ, δ, and δC for the conditions SH1-SH3 to hold given α and Tmax with probability 1−
ε/3. If all conditions are satisfied, then SH1-SH3 hold with probability at least 1 − ε. Finally,
we show that such conditions can be found for all sufficiently large Tmax values. The proof is
deferred to Appendix A.

We say that (NC , Nℓ, δ, δC , Tmax) is suitable for ε and α if Pr(HNC ,Nℓ,δ,δC ,Tmax) ≥
1 − ε. We show that (NC , Nℓ, δ, δC , Tmax)-safe histories are “good” (in systems where
(NC , Nℓ, δ, δC , Tmax) is suitable for the desired ε, and α < 1/2). The following propositions
show that good things happen in HNC ,Nℓ,δ,δC ,Tmax . The first one shows that all of blocks
generated by honest miners are acceptable.

▶ Proposition 15. For all histories h ∈ HNC ,Nℓ,δ,δC ,Tmax and all colors c, there exists a path
P from b0 to b∗ in G

h(t)
c that contains all blocks of honest miners of color c that are not

naturally c-forked. Moreover, every block on P is acceptable.

Proof. Fix a color c. If b and b′ are blocks of honest miners in G
h(t)
c that are not naturally

forked, then either b is an ancestor of b′ or b′ is an ancestor of b in G
h(t)
c . Thus, there is a

path P from b0 to b∗ that contains all the blocks of honest miners that are not naturally
c-forked (see Figure 3).

Now consider any block b on P . If b is on the canonical longest path P ∗, then it is
acceptable by definition. Suppose that b is not on P ∗. Let b1 be the last node on P preceding
b that is on P ∗, and let b2 be the first node on P following b that is on P ∗. Let Q (resp.,
Q∗) be the subpath of P (resp., P ∗) from b1 to b2. If the total number of nodes on Q and
Q∗, not counting b1 and b2, is less that Nℓ, then the path P ′ that is identical to P ∗ up to b1,
continues from b1 to b2 along P , and then continues along P ∗ again, is an Nℓ-almost optimal
path that contains b, showing that b is acceptable.
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Q∗

Q
b0

b1

b

b2
P

P ′
P ∗

Figure 3 Honest (and hence acceptable) blocks on the path containing all non-forked honest.

b b′
P ∗

t′

P †

t

2Nℓ/δC

Figure 4 The situation if b′ is the only honest block generated after b.

It thus suffices to show that there cannot be more than Nℓ nodes on Q and Q∗, not
counting b1 and b2. Suppose, by way of contradiction, that there are. Further suppose that
b1 is generated at time t1 and b2 in generated at time t2. That means that all the blocks
on Q and Q∗ other than b1 and b2 are generated in the interval [t1 + 1, t2 − 1]. Thus, at
least Nℓ blocks are generated in this interval. Since P ∗ is a longest path, Q∗ must be at
least as long as Q (otherwise going from b1 to b2 along Q would give a longer path). But
by Proposition 14, at least a fraction 1/2 + δ in the interval [t1 + 1, t2 − 1] are generated
by honest miners. Since there is at most δ-c forking loss, it follows that the majority of the
c-colored blocks in this interval are generated by honest miners and are not naturally forked.
These blocks must all be on Q. Thus, Q must have a majority of the blocks in this interval,
giving us the desired contradiction. ◀

We are now ready to prove that Lcd satisfies the ledger desiderata (in safe histories) with
the Colordag protocol. Note that since we view a miner as representing a coalition of agents,
the fact that all but at most one miner is honest means that we allow a coalition with power
up to α < 1/2 to deviate. The proofs are deferred to Appendix B.

▶ Proposition 16 (Colordag ledger consistency). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2 then for all miners i, j and all histories h ∈ HNC ,Nℓ,δ,δC ,Tmax , if all but at most one
miner is honest in h, t ≤ t′, and k ≤ |L(Gh(t)

i )| − Nℓ, then Lk(Gh(t)
i ) = Lk(Gh(t′)

j ).

▶ Proposition 17 (Colordag ledger growth). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2, then for all rounds t and t′ such that t′ − t ≥ Nℓ/δC , if all but at most one miner
is honest in h ∈ HNC ,Nℓ,δ,δC ,Tmax

i , then |Lcd(Gh(t′)
i )| ≥ |Lcd(Gh(t)

i )| + 1.

▶ Proposition 18 (Colordag ledger quality). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2 then for all rounds t and t′ such that t′ − t ≥ 2Nℓ/δC , and all h ∈ HNC ,Nℓ,δ,δC ,Tmax

i ,
at least two of the blocks of color ĉ added to L(Gh(t′)

i ) in the interval [t, t′] are generated by
honest miners.

▶ Note 19. In Propositions 17 and 18, we explicitly assume that we are given an acceptable
tuple. Of course, if Nℓ and δC in the tuple are such that Nℓ/δC > Tmax, then the propositions
are essentially vacuous, since there are no times t, t′ < Tmax such that t′ − t > Nℓ/δC . Put
another way, although it is true that if the system runs for at least Nℓ/δC steps then the ledger
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is guaranteed to increase in length by 1, given that the system runs for only Tmax steps, this
is not terribly interesting if Nℓ/δC > Tmax. Similar comments apply to Proposition 18. The
good news is that even for stringent choices of ε and α, there exist suitable tuples that make
Propositions 17 and 18 non-vacuous. For example, if α = .49 and ε = 10−7, and we assume
that ∆ = 5, then we can take Tmax = 1011, Nℓ = 104, NC = 10, δ = .005, and δC = 0.04,
to get a suitable tuple, even with the crude analysis in the proof of Proposition 14. In this
case, Nℓ/δ = 2 × 106, which is much less than Tmax = 1011. A more careful analysis should
give better numbers, but these suffice to make the point. (As we hinted earlier, with a more
realistic adversary, who does not have perfect knowledge of the future, we would also expect
far better numbers.) We also note that although Fruitchain does not seem to have an explicit
bound Tmax on how long the system runs, that bound does arise from the polynomial bound
of the p.p.t. environment Z ([18] Section 2.1, Constraints on (A, Z)).

The next proposition essentially shows that Colordag is an ε-sure NE.

▶ Proposition 20. If (NC , Nℓ, δ, δC , Tmax) is suitable for ε, α < 1/2, h ∈ HNC ,Nℓ,δ,δC ,Tmax ,
and ti

2 − ti
1 > Nℓ, then i does not benefit by deviating if all other miners are honest, given

revenue scheme rNℓ

cd .

Proof. By Proposition 15, all honest blocks are acceptable in h, no matter what i does.
Obviously i can make her own blocks unacceptable, but this would only affect her own
revenue and decrease her utility.

It remains to show that i decreases her utility by creating forks. Suppose that M blocks
generated in h in the interval [ti

1, ti
2] by miners other than i and M ′ blocks are generated by i.

We must have M > M ′ (SH1). If i does not deviate, then all these blocks are compensated,
so i’s utility is M ′

M+M ′ . If i deviates, i can decrease the utility of the other miners only by
forking blocks (since there is nothing that i can do to make a block unacceptable, as we
mentioned above). It is easy to see that every block of the other miners that is forked by i

comes at a cost of i forking one of his own blocks. Thus, if i deviates so as to fork M ′′

blocks, then i’s utility is M ′−M ′′

M+M ′−2M ′′ . Since M ′′ ≤ M ′ < M , simple algebra shows that
M ′

M+M ′ > M ′−M ′′

M+M ′−2M ′′ , so this deviation results in the deviator losing utility.
Note that since we assume the deviator knows the history, it can deterministically deviate

without affecting the blockdag structure. Hence the equilibrium is not strict. ◀

▶ Corollary 21. If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and α < 1/2, then Colordag with
this choice of parameters is an ε-sure NE.

Proof. This is immediate from Proposition 20, since if (NC , Nℓ, δ, δC , Tmax) is suitable for ε

and α < 1/2, then Pr(HNC ,Nℓ,δ,δC ,Tmax) ≥ 1 − ε. ◀

Finally, we prove that the Colordag revenue scheme satisfies revenue consistency. We
begin by showing that once a block is deep enough, its revenue is set and does not change.

▶ Lemma 22. If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and α < 1/2, then for all miners i, j,
all histories h ∈ HNC ,Nℓ,δ,δC ,Tmax

i , all blocks b, and all colors c, if d(Gh(t)
i,c , b) ≤ d(Gh(t)

i,c )−2Nℓ

and t ≤ t′, then rcd
Nℓ

(Gh(t)
i , b) = rcd

Nℓ
(Gh(t′)

j , b).

Proof. As in the proof of Proposition 16, let P ∗
t′ be the canonical longest path in G

h(t′)
j,c , let

Pt be its prefix in G
h(t)
i,c , let P ∗

t be the canonical longest path in G
h(t)
i,c , and let b′ be the last

common block on P ∗
t and Pt. As in the proof of Proposition 16, P ∗

t and Pt are identical up
to b′, and we can derive a contradiction if d(Gh(t)

i,c , b′) ≤ d(Gh(t)
i,c ) − Nℓ, so

d(Gh(t)
i,c , b′) > d(Gh(t)

i,c ) − Nℓ. (2)
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Suppose that b is acceptable in G
h(t)
i . That means that it is on some Nℓ-almost optimal

path P in G
h(t)
i,c . Let b1 be the first block on P ∗

t that is an ancestor of b, and let b2 be the
first block on P ∗

t that is a descendant of b. Perhaps b1 = b′ and perhaps b2 = b∗ (the final
block added at the end of the graph). Let Q be the subpath of P from b1 to b2, and let Q′

be the subpath of P ∗
t from b1 to b2. Since P is Nℓ-almost optimal in G

h(t)
i , it must be the

case that |Q| + |Q′| − 2 < Nℓ. Since the depth of b is at least Nℓ less than that of b′ (from
the proposition statement and from Equation 2), it follows that b2 must precede b′. Since
P ∗

t and Pt agree up to b′, this argument also shows that P ∗
t′ with Q instead of Q′ between b1

and b2 is Nℓ-almost optimal in G
h(t′)
j,k , hence that b is acceptable in G

h(t′)
j,k . Just changing the

roles of G
h(t)
i and G

h(t′)
j , this argument shows that if b is acceptable in G

h(t′)
j , then it is also

acceptable in G
h(t)
i .

It is now almost immediate that b is not forked by an acceptable block in G
h(t)
i iff it is

not forked by an acceptable block in G
h(t′)
j .

In conclusion, block b is acceptable and not forked by an acceptable block in G
h(t)
i iff

it is acceptable and not forked by an acceptable block in G
h(t′)
j . That is, by the definition

of rcd
Nℓ

, it is compensated in G
h(t)
i iff it is compensated in G

h(t′)
j . ◀

The next proposition shows that Colordag satisfies revenue consistency.

▶ Proposition 23 (Colordag Revenue Consistency). If (NC , Nℓ, δ, δC , Tmax) is suitable for
ε and α < 1/2, then for all miners i and j and times t, t′, and t′′ such that t′, t′′ >

t + 4NℓNC/(δC(1 − δ)), if b is published at time t in history h ∈ HNC ,Nℓ,δ,δC ,Tmax
i , then

r(Gh(t′)
i , b) = r(Gh(t′′)

j , b).

Proof. Suppose that block b is published at time t and has color c. By SH3, within
2NℓNC/(δC(1 − δ)) rounds, at least 2NℓNC/(1 − δ) blocks of color c are generated. By SH1,
at least NℓNC/(1 − δ) are honest. By SH2, a fraction (1 − δ) of these are not forked. This
means at least NℓNC blocks are not forked, so the depth of Gc has increased by at least
NℓNC after 2NℓNC/(δC(1 − δ)) rounds. Now, for any pair of times t′, t′′ > t + 4NℓNC/(δCδ),
the depth of the graph is larger by at least 2Nℓ than b’s depth, therefore, by Lemma 22, the
reward for b is the same in both G

h(t′)
i and G

h(t′′)
j . ◀

6 Conclusion

We present Colordag, a protocol that incentivizes correct behavior of PoW blockchain miners
up to 50%, and is an ε-sure equilibrium. That is, unlike previous solutions, the desired
behavior is a best response in all but a set of histories of negligible probability. As long
as a majority of the participants follow the behavior prescribed by Colordag, the ledger
desiderata, as well as reward consistency, all hold.

We prove the properties of Colordag when playing against an extremely strong adversary,
one that knows before deviating when agents will generate blocks and when messages will
arrive. Intuitively, to benefit from a deviation, a deviator must produce an acceptable path
longer than Nℓ and longer than the honest path. Knowing in advance what order messages
can arrive in and whether there is forking means that a deviator knows in advance whether
the deviation can succeed. Our analysis shows that, even with this knowledge, a deviation
can succeed with only low probability. Unfortunately, to get such a strong guarantee, we may
need the parameters NC and Nℓ to be quite large Moreover, our ledger is quite inefficient, in
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that it does not include transactions in blocks that are not on the canonical path in Gĉ. In
practice, we believe that both problems can be dealt with.

We start with the second problem. To improve throughput, we can use ideas that have
also appeared in previous work (e.g., [14, 2]): Suppose that b and b′ are consecutive blocks on
the ledger (which thus both have color ĉ). When we add b′ to the ledger, we also add to the
ledger not just the transactions in b′, but all the transactions of the acceptable predecessors
of b′ (of all colors) that were not already included in the ledger. These additional transactions
are ordered by the depth of the block they appear in, using color as a tiebreaker, and hash
as a second tiebreaker. For example, given the blockdag of Figure 1b, if ĉ is blue, then the
ledger function includes the transactions in the blocks B1, Y1, B2, R1, B3 (in that order); if ĉ

is red, the ledger includes the transactions in the blocks B1, R1, Y1, R2, B2, Y2, R3 (in that
order). It is not hard to check that, with this approach, all transactions in honest blocks of
honest agents will be included in the ledger, so our throughput is quite high.

We next consider the fact that we require NC and Nℓ to be quite large. This is due
to our assumption that a deviator knows what order messages can arrive in and whether
there is forking. In practice, a potential deviator will not have this information. For such
a weaker adversary, the parameters can be significantly smaller than those required to
obtain the bounds presented here. Without this a priori knowledge, the probability that
a deviation succeeds drops quickly with Nℓ. Therefore, the cost of failed attempts grows
with Nℓ, while their overall benefit drops. An analysis of this kind can be done using deep
reinforcement learning, which is helpful when the state and action spaces are too rich for an
exact solution [11, 3, 4]. This is beyond the scope of this paper, but preliminary experiments
suggest that under practical assumptions, with this more limited adversary, Colordag can
perform well with reasonable parameter choices. We hope to report on this work in the
future.

A The Probability of a Safe History

We prove that a safe history has overwhelming probability.

▶ Proposition 14. Suppose that for all miners i, Pow(i) ≤ α < 1/2. Then for all ε > 0,
there exists a positive integer T ∗

max such that for all Tmax ≥ T ∗
max, there exist NC , Nℓ < Tmax,

δ ∈ (0, 1/2), and δC ∈ (0, 1) such that Pr(HNC ,Nℓ,δ,δC ,Tmax) ≥ 1 − ε.

Proof. We show that there exist constraints on Tmax, NC , Nℓ, and δC such that, if the
constraints are satisfied, then the probability for the set of histories that have property SH1
(resp., SH2; SH3) is at least 1 − ε/3. We then show that these constraints are satisfiable.
The result then follows from the union bound.

We start with SH2. Fix a color c, and suppose that there are NC colors. The probability
that a block b has color c is 1/NC . To simplify notation in the rest of this proof, we take
γ = 1/NC . For b to be the earlier of two blocks that are naturally c-forked, there must
be another block of color c that is generated within an interval of less than ∆ after b is
generated. Suppose that b is generated in round r. The probability that a block b generated
in round r has color c is γ. The probability that none of the blocks generated in rounds
r + 1, . . . , r + ∆ − 1 has color c is (1 − γ)∆−1, so the probability b is not naturally c-forked is
at least (1 − γ)∆−1.

Fix an interval [t′
1, t′

2]. The probability that that [t′
1, t′

2] suffers greater than δ-c-forking
loss is exactly the probability that there are fewer than (1 − δ)(t′

2 − t′
1) blocks of some color

c that are naturally forked by a later block. For a fixed color c, by Hoeffding’s inequality,
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this probability is at most e−2(t′
2−t′

1)[(t′
2−t′

1)((1−γ)∆−1−δ)]2 . Since we are interested only in the
case that t′

2 − t′
1 ≥ Nℓ, there are NC colors, γ = 1/NC and there are at most

(
Tmax

2
)

≤ T 2
max

possible choices of t′
1 and t′

2, SH2 holds with probaiblity at least 1 − ε/3 if

NCT 2
maxe

−2N3
ℓ (( NC −1

NC
)∆−1−δ)2

< ε/3. (3)

Equation (3) is thus the constraint that needs to be satisfied for SH2.
For SH3, again, fix a color c, and suppose that there are NC colors. Then the expected

number of blocks of color c in an interval [t′
1, t′

2] is γ(t′
2 − t′

1), so by Hoeffding’s inequality,
the probability of there being fewer than δC(t′

2 − t′
1) blocks of color c in the interval [t′

1, t′
2]

is at most e−2(t′
2−t′

1)[(t′
2−t′

1)(γ−δC)]2 . Much as in the argument for SH2, it follows that SH3
holds with probability at least 1 − ε/3 if

NCT 2
maxe

−2N3
ℓ ( 1

NC
−δC )2

< ε/3. (4)

Equation (4) is thus the constraint that needs needs to be satisfied for SH3.
Finally, for SH1, fix M ≥ Nℓ, K such that Nℓ ≤ K ≤ M , a round t, an miner i, and a

color c, and let NC be the number of colors and αi,t,M be i’s average power in the interval
[t, t + M ]. Take

δ = (1/2 − α)/2. (5)

Let Ht,M,K,i consist of all histories where, in the subinterval [t, t + M ] of [0, Tmax], there
are exactly K ≥ Nℓ blocks of color c, at least a fraction 1/2 − δ of them are generated
by miner i. The probability of there being exactly K blocks of color c in the interval
is

(
M
K

)
γK(1 − γ)M−K . Applying Hoeffding’s inequality, the probability of being at least

δ + α away from the mean αi,t,M is e−2(δ+α−αi,t,M )2K . It follows that Pr(Ht,M,K,i) ≤(
M
K

)
γK(1 − γ)t′

2−Ke−2(δ+α−αi,t,M )2K .

Let Ht,M,K consist of all histories where, in the interval [t, t + M ], there are exactly
K ≥ Nℓ blocks of color c, and of these, greater than 1/2 − δ were generated by some miner i.
Thus, Ht,M,K = ∪iHt,M,K,i, so

Pr(Ht,M,K) ≤
∑

i

Pr(Ht,M,K,i) ≤
∑

i

(
M

K

)
γK(1 − γ)M−Ke−2(δ+α−αi,t,M )2K .

Suppose that

Nℓ ≥ 4/δ2. (6)

Then we show that∑
i

e−2(δ+α−αi,t,M ))2K ≤ ⌈1/α⌉e−2δ2K . (7)

To see this, recall that, by assumption, αi,t,M ≤ α, and
∑

i αi,t,M = 1. Straightforward
calculus (details given below) shows that if α ≥ x + z, z ≤ y ≤ x, and N > 1/4δ2, then

e−2(δ+α−x−z)2K + e−2(δ+α−y+z)2K ≥ e−2(δ+α−x)2K + e−2(δ+α−y)2K . (8)

That is, if x ≥ y, shifting a little of the weight from y to x increases the sum. It easily follows
from this that the sum is maximized if we have as many miners as possible with weight α,
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and one miner with whatever weight remains. Given that the sum of the weights is 1, we
will have roughly 1/α miners with weight α. The desired inequality (7) easily follows. Thus,

Pr(Ht,M,k) ≤
(

M

K

)
γK(1 − γ)M−K⌈1/α⌉e−2δ2K .

Here are the details of the calculation for (8): It’s clear that the two sides of the inequality
are equal if z = 0, So we want to show that the left-hand side increases as z increases. Taking
the derivative, it suffices to show that 4(δ + α − x − z)Ke−2(δ+α−x−z)2K − 4(δ + α − y +
z)Ke−2(δ+α−y+z)2K ≥ 0 if z ≥ 0, or equivalently, that f(z) = (δ+α−x−z)e−2(δ+(α−x−z)2K −
(δ + α − y + z)e−2(δ+α−y+z)2K ≥ 0 if z ≥ 0. We first consider what happens if z = 0. We
must show that (δ + α − x)e−2(δ+α−x)2K ≥ (δ + α − y)Ke−2(δ+α−y)2K if x ≥ y. The two
sides are equal if x = y. Taking the derivative with respect to x, it suffices to show that
−e−2(δ+α−x)2K +4(δ+α−x)2Ke−2(δ+α−x)2K ≥ 0, or equivalently, that 4(δ+α−x)2K−1 ≥ 0.
Since K ≥ Nℓ > 1/4δ2 by (5) and δ < 1/4, we have that f(0) > 0. Next note that
f ′(z) = −e−2(δ+α−x−z)2K +4(δ +α−x−z)2Ke−2(δ+α−x−z)2K +e−2(δ+α−y+z)2K −4(δ +α−
y+z)2Ke−2(δ+α−y+z)2K . If K > 1/4δ2, then f ′(z) = η1e−2(δ+α−x−z)2K −η2e−2((δ+α−y+z)2K ,
where η1 > 0 and η2 < 0. Thus, f ′(z) > 0, as desired.

Note that ∪{t,M,K: Nℓ≤K≤M≤Tmax, t≤Tmax−M}Ht,M,K consists of all histories where there
are at least Nℓ blocks of color c and, of these, at least 1/2 − δ are generated by some miner i.

Pr(∪{t,M,K: Nℓ≤K≤M≤Tmax, t≤Tmax−M}Ht,M,K)
≤

∑
{M : Nℓ≤M≤Tmax}(Tmax − M)⌈1/α⌉

∑
{K: Nℓ≤K≤M}

(
M
K

)
γK(1 − γ)M−Ke−2(δ/2)2K

≤
∑

{M : Nℓ≤M≤Tmax} Tmax⌈1/α⌉e−2(δ/2)2Nℓ
∑

K

(
M
K

)
γK(1 − γ)M−K

≤ T 2
max⌈1/α⌉e−2(δ/2)2Nℓ .

Since SH1 must holds for all colors c, SH1 holds with probability greater than 1 − ε/3 if

NCT 2
max⌈1/α⌉e−2(δ/2)2Nℓ < ε/3. (9)

To get all of SH1, SH2, and SH3 to hold with probability at least 1 − ε, we must choose
Nℓ, NC , Tmax, δ, and δC so that constraints (3), (4), (5), (6), and (9) all hold. Given α, (5)
determines δ. We take it to have this value. Recall that δ < 1/4. Given ∆, we next choose
NC sufficiently large such that (NC−1

NC
)∆−1 > 1

2 . We then choose δC < 1
2NC

. Finally, for
reasons that will become clear shortly, we replace Tmax in the equations by N2

ℓ . (We could
equally well have used Nk

ℓ for k > 2.) With this replacement and the choices above, we can
simplify (3), (4), and (9) to

NCN4
ℓ e−2N3

ℓ /16 < ε/3
NCN4

ℓ e−2N3
ℓ (δC /2)2

< ε/ and
NCN4

ℓ ⌈1/α⌉e−2(δ/2)2Nℓ < ε/3.

(10)

Given NC , δ, δC as determined above, we can clearly choose N∗
ℓ sufficiently large to ensure

that these inequalities, together with (6), hold for all Nℓ > N∗
ℓ . Take T ∗

max = (N∗
ℓ )2. It

follows that for all Tmax ≥ T ∗
max, for

√
Tmax < Nℓ < Tmax, all the constraints hold. This

completes the proof. ◀

B Verifying the Colordag Ledger Properties

We prove the three ledger properties.
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Figure 5 Paths Pt (and P ∗
t′ ) that are identical to P ∗

t up to b′.
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Figure 6 Ledgers in G
h(t)
i,ĉ and G

h(t′)
j,ĉ that are identical except for their suffixes.

▶ Proposition 16 (Colordag ledger consistency). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2 then for all miners i, j and all histories h ∈ HNC ,Nℓ,δ,δC ,Tmax , if all but at most one
miner is honest in h, t ≤ t′, and k ≤ |L(Gh(t)

i )| − Nℓ, then Lk(Gh(t)
i ) = Lk(Gh(t′)

j ).

Proof. Suppose that Lk(Gh(t′)
j ) = b and k ≤ |L(Gh(t)

i )| − Nℓ. Let P ∗
t′ be the canonical

longest path in G
h(t′)
j,ĉ . Let Pt be its prefix in G

h(t)
i,ĉ and let P ∗

t be the canonical longest path
in G

h(t)
i,ĉ (see Figure 5).

Let b′ be the last common block on P ∗
t and Pt. We claim that P ∗

t and Pt must be
identical up to b′. For if they diverge before b′, there must be subpaths Q∗ and Q of P ∗

t and
Pt, respectively, that are disjoint except for their first and last nodes. Since P ∗

t and P ∗
t′ are

longest paths, we must have |Q∗| = |Q| (if, for example, |Q∗| > |Q|, then we can find a path
longer that P ∗

t′ by replacing the Q segment by Q∗). The canonical choice will be the same
for P ∗

t and P ∗
t′ , providing the desired contradiction, so the prefixes are the same up to b′.

Let D = |L(Gh(t)
i )| (see Figure 6). Since P ∗

t is a longest path in G
h(t)
i,ĉ , its length is D.

Suppose, by way of contradiction, that b is not on P ∗
t . Both blocks b and b′ are on P ∗

t′ , and
block b cannot precede b′ on its prefix Pt, otherwise it would be on P ∗

t . Thus, b′ precedes b,
and we must have b′ = Lk′(Gh(t)

i ), where k′ < D − Nℓ. Since |L(Gh(t)
i )| = d(Gh(t)

i,ĉ ), it follows
that d(Gh(t)

i,ĉ , b′) < D − Nℓ. (We note for future reference, since it is used in the proof of
Proposition 23, that the contradiction comes from this fact.) It follows that the segment R∗

of P ∗
t from b′ to the end must have length greater than Nℓ. Moreover, if R is the segment

of Pt from b′ to the end, then R and R∗ must be disjoint except for their initial block b′.
We now get a contradiction by considering a path P † that includes all the honest blocks

in G
h(t′)
i,ĉ that are not naturally forked. Let b′′ be the last block at or preceding b′ that is

honest and not naturally forked. (If b′ is honest and not naturally forked, then b′′ = b′.)
Consider the subpath going from b′′ to b′ followed by R∗. Call this path Q (highlighted in
Figure 6). P † must intersect Q. For if not, there must be at least as many blocks on Q

as there are on P † generated at or before time t (since P ∗
t is the canonical longest path),

but none of the blocks on Q other than b′′ is an honest block that is not naturally forked.
Suppose that b′′ is generated at time t′′. It follows that in the interval [t′′ + 1, t], fewer honest
blocks that are not naturally forked are generated than dishonest blocks, contradicting the
assumption that h ∈ HNC ,Nℓ,δ,δC ,Tmax .
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Without loss of generality, suppose that, starting at b′′, P † intersects with R∗ after it
intersects with R. (If P † does not intersect with R at all, we take R to be the path it
intersects with later. The argument is the same if P † intersects with R after it intersects
with R∗.) Let b1, b2, . . . , bk be the blocks on P † that are also on R∗, in the order that they
appear. For convenience, we take bk = b∗ (the virtual final block). For each pair e, e′ of
consecutive blocks in b1, . . . , bk, the path from e to e′ on Q must be at least as long as the
path from e to e′ on P † (if e′ = b∗, we take the path from e to e′ on P † to be the subpath
of P † starting from e and including all the blocks generated at or before time t). It follows
that there are at least as many blocks on Q that are not on P † as there are blocks on P †

that are generated after b′′ and at or before time t and are not on Q. We can repeat this
process with R to show, roughly speaking, that there are at least as many blocks on R that
are not on P † as there are on P † that are generated after b′′ and at or before time t that
are not on R. Suppose that b′′ is generated at time t′′. It follows that there are at least as
many blocks that are either not honest or naturally forked generated between time t′′ and t

as there are honest blocks that are not naturally forked. This contradicts the assumption
that h ∈ HNC ,Nℓ,δ,δC ,Tmax .

The reason that we said “roughly speaking” above is that this argument does not work in
one special case. Suppose that the final block on R that is also on P † is e∗. Further suppose
that there are blocks on P † that are generated at or before time t but after e∗. We cannot
conclude that the path from e∗ to b∗ on R is at least as long as the subpath of P † consisting
of blocks generated after e∗ and at or before time t, since R is not necessarily a longest path
up to time t.

We deal with this as follows. Let Q′ (highlighted in Figure 6) be the segment of P ∗
t′

starting at b′ and ending with the first honest block that is not naturally forked that is
generated after time t. Call this block b+. Note that R is a prefix of Q′. Moreover, the
subpath of Q′ from c to b+ is indeed at least as long as the subpath of P †

t′ from c to b+. The
upshot of this argument is that there are more blocks on Q and R (or Q′) that are not on P †

than there are blocks on P † after b′′ that are generated at or before time t (or up to b+, if
we consider Q′). As before, this gives a contradiction to the fact that h ∈ HNC ,Nℓ,δ,δC ,Tmax .

Therefore, our initial assumption was wrong and we conclude that b is on P ∗
t . Therefore,

it precedes the last common block b′ on both P ∗
t and P ∗

t′ . Since we have shown the two paths
coincide until b′, it follows that Lk(Gh(t)

i ) = Lk(Gh(t′)
j ). ◀

▶ Proposition 17 (Colordag ledger growth). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2, then for all rounds t and t′ such that t′ − t ≥ Nℓ/δC , if all but at most one miner
is honest in h ∈ HNC ,Nℓ,δ,δC ,Tmax

i , then |Lcd(Gh(t′)
i )| ≥ |Lcd(Gh(t)

i )| + 1.

Proof. Suppose that h ∈ HNC ,Nℓ,δ,δC ,Tmax . Consider rounds t and t′ such that t′−t ≥ 2Nℓ/δC .
Since t′ −t ≥ 2Nℓ/δC and h ∈ HNC ,Nℓ,δ,δC ,Tmax

i there are K ≥ 2Nℓ blocks of color ĉ generated
in this interval. Because h is safe, more than K/2 ≥ Nℓ of these blocks are honest and not
naturally forked. Let P † be a path that includes all of these blocks. Let P ∗

t denote the
canonical longest path of color ĉ up to time t. Let b be the last block on P ∗

t that is on P †.
Let M0 be the length of P ∗

t up to and including b. Suppose that there are M blocks on P ∗
t

following b, and M ′ blocks on P † following b that are generated before time t. Thus, the
length of P ∗

t is M0 + M . Note that M ≥ M ′ (since P ∗
t is a longest path) and

M + M ′ < Nℓ =⇒ M < Nℓ (11)

(otherwise, fewer than half the blocks generated between the time that b was generated
and t are honest and not naturally forked, despite the fact that at least Nℓ blocks are



I. Abraham, D. Dolev, I. Eyal, J. Y. Halpern 23:21

generated in that interval). Now the subpath of P † up to time t′ has length greater than
M0 + M ′ + K/2 ≥ M0 + M ′ + Nℓ, so the canonical path up to time t′ must have at least
this length. Thus, for the canonical path up to time t′ we have

|Lcd(Gh(t′)
i )| ≥ M0 + M ′ + Nℓ ≥ M0 + Nℓ

Eq. 11
> M0 + M = |Lcd(Gh(t)

i )| ◀

▶ Proposition 18 (Colordag ledger quality). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2 then for all rounds t and t′ such that t′ − t ≥ 2Nℓ/δC , and all h ∈ HNC ,Nℓ,δ,δC ,Tmax

i ,
at least two of the blocks of color ĉ added to L(Gh(t′)

i ) in the interval [t, t′] are generated by
honest miners.

Proof. As we argued in the proof of Proposition 17, since t′ − t ≥ 2Nℓ/δC , there are at least
2Nℓ blocks of color ĉ in the interval (by SH3), so we must have at least Nℓ blocks that are
honest and not naturally forked (by SH1 and SH2). Let P ∗

t′ be the canonical longest path up
to time t′ and let P † be a path that includes all the honest blocks of color ĉ that are not
naturally forked up to time t′. Let b be the last honest block that is not naturally forked on
P ∗

t′ that is generated prior to time t (b is the genesis block if no other honest blocks on P ∗
t′

are generated prior to time t). We claim that there must be at least two honest blocks that
are not naturally forked on P ∗

t′ that come after b. First suppose that there are none. Then
there are at least as many blocks on P ∗

t′ that are generated after b as there are on P † that are
generated after b, so, as before, we get a contradiction to the fact that h ∈ HNC ,Nℓ,δ,δC ,Tmax

i .
Next suppose that there is only one block, say b′, on P ∗

t′ that is generated after b that is
honest and not naturally forked (see Figure 4). Note that there are more than Nℓ blocks
on P † after b and hence more than Nℓ on P ∗

t′ after b (since P ∗
t′ is a longest path). Consider

the subpath of P ∗
t′ strictly between b and b′ and the subpath of P † strictly between b and b′.

If the total number of blocks on these subpaths is at least Nℓ, then property SH1 does not
hold and we have a contradiction to h ∈ HNC ,Nℓ,δ,δC ,Tmax

i . If not, then the total number of
blocks on the subpath of P † strictly after b and the subpath of P ∗

t′ strictly after b must be at
least Nℓ, so again we get a contradiction to h ∈ HNC ,Nℓ,δ,δC ,Tmax

i . ◀
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