
Recovering the tight security proof of SPHINCS+

Andreas Hülsing and Mikhail Kudinov

Eindhoven University of Technology, Eindhoven, Netherlands
wotstw@huelsing.net

Abstract. In 2020, Kudinov, Kiktenko, and Fedorov pointed out a flaw in the tight secu-
rity proof of the SPHINCS+ construction. This work gives a new tight security proof for
SPHINCS+. The flaw can be traced back to the security proof for the Winternitz one-time
signature scheme (WOTS) used within SPHINCS+. In this work, we give a stand-alone de-
scription of the WOTS variant used in SPHINCS+ that we call WOTS-TW. We provide a
security proof for WOTS-TW and multi-instance WOTS-TW against non-adaptive chosen
message attacks where the adversary only learns the public key after it made its signature
query. Afterwards, we show that this is sufficient to give a tight security proof for SPHINCS+.
We recover almost the same bound for the security of SPHINCS+, with only a factor w loss
compared to the previously claimed bound, where w is the Winternitz parameter that is com-
monly set to 16. On a more technical level, we introduce new lower bounds on the quantum
query complexity for generic attacks against properties of cryptographic hash functions and
analyse the constructions of tweakable hash functions used in SPHINCS+ with regard to fur-
ther security properties.

Keywords: Post-quantum cryptography, hash-based signatures, W-OTS, SPHINCS+, WOTS-TW,
hash functions, undetectability, PRF.

1 Introduction

Recently, hash-based signatures have received a lot of attention as they are widely considered the
most conservative choice for post-quantum signature schemes. At the time of writing, the stateless
hash-based signature scheme SPHINCS+ is a third round alternate candidate in the NIST PQC
competition. However, NIST has repeatedly stated the following.

“NIST sees SPHINCS+ as an extremely conservative choice for standardization. If NIST’s
confidence in better performing signature algorithms is shaken by new analysis, SPHINCS+
could provide an immediately available algorithm for standardization at the end of the third
round.”
(Dustin Moody on the pqc-forum mailing list after new attacks on Rainbow and GeMSS were
published, January 21, 2021)

One more supporting argument for the security of SPHINCS+ would be a tight security reduction
that allows one to derive attack complexities for a given set of parameters. However, the tight proof
for SPHINCS+ that was given in [BHK+19] turned out to be flawed [KKF20]. The flaw, pointed out
by Kudinov, Kiktenko, and Fedorov is related to the proof of security of the used WOTS scheme.
Although the flaw could not be translated into an attack, this resulted in an unsatisfactory situation.
While there still exists a non-tight reduction for the security of SPHINCS+, this reduction can not
support the claimed security of the used SPHINCS+ parameters.

This work was funded by an NWO VIDI grant (Project No. VI.Vidi.193.066). Part of this work was done
while M.K. was still affiliated with the Russian Quantum Center, QApp. Date: August 19, 2022

2 A. Hülsing, M. Kudinov

In this work, we give a new tight security proof for SPHINCS+.

Security of hash-based signatures. Analyzing the security of modern hash-based signature
schemes is a multi-stage process. First, the security of the signature scheme is related to the complex-
ity of breaking properties of the used (hash) function families. To support the security of specific
parameter sets with proofs, we need an expected complexity for attacks that break the assumed
properties. In general, a cryptographic hash function is considered secure if there are no attacks that
perform significantly better than generic attacks. Hence, the complexity of generic attacks against
these properties is analyzed. In [BHK+19], the abstraction of tweakable hash functions (THFs) was
introduced to unify the description of schemes that only differ in the inputs that internal hash func-
tions take but follow the same general construction. These THFs are constructed from keyed hash
functions (KHFs). When using this abstraction, security of the signature scheme is related to the
complexity of breaking the properties of THFs (and possibly further functions, like PRFs, or further
KHFs). Security of a THF is then related to the security of the used KHF. Finally, the latter is assessed
with regard to generic attacks. In all of these steps, quantum adversaries have to be considered to
ensure post-quantum security.

Our contributions. With this work, we contribute to all three levels in the security analysis of
SPHINCS+. First, we give a new tight proof for the security of SPHINCS+, assuming the used THFs
provide a form of target-collision resistance (TCR), decisional second-preimage resistance (DSPR),
preimage resistance (PRE), and undetectability (UD)1. As with all previous proofs for SPHINCS+,
we require that the KHF used for message compression provides interleaved target-subset resilience
(ITSR) and that a secure PRF is available. Note that our new proof closes the gap again without
modifying SPHINCS+.

The difference to the previous security proof for SPHINCS+ is in the proof of the used WOTS
variant. To make the proof more easily accessible, we first extract this WOTS variant and formally
define it, naming it WOTS-TW. WOTS-TW is different from other WOTS variants in that it uses
THFs to construct the function chains. We then prove the security of WOTS-TW under non-adaptive
chosen message attacks (EU-naCMA) where the adversary receives the public key after it made its
signature query. This weaker model allows for a tight security proof for WOTS-TW while also being
sufficient for security proofs of schemes like SPHINCS+. A tight proof is possible because a reduction
can now generate the WOTS-TW public key based on the signature query instead of guessing the
query. This eliminates the loss factor introduced by guessing. At the same time, the notion is suffi-
cient because for SPHINCS+, WOTS-TW is used to sign the roots of hash trees which are generated
by the reduction. In short, our new proof combines the work of Dods, Smart, and Stam [DSS05]
that uses undetectability to plant preimage challenges, with the second-preimage resistance ver-
sion of Hülsing [Hül13], and the approach of multi-target mitigation by Hülsing, Rijneveld, and
Song [HRS16] and lifts it to the setting of tweakable hash functions. We start with a proof in the
single-instance setting for better exposition and move to a proof in a multi-instance setting as used
in SPHINCS+ afterwards.

As a second contribution, we analyze the security of THFs with respect to undetectability and
preimage resistance. The remaining properties were used in the previous SPHINCS+ proof and were
hence already analyzed. We obtain results for the two THF-constructions (simple and robust) used
in SPHINCS+ that were considered in [BHK+19]. The simple construction simply concatenates all
inputs and feeds them into the underlying hash function. This construction was previously analyzed
in the quantum-accessible random oracle model (QROM). We give tight bounds for PRE and UD
in the QROM (the former is based on a conjecture from [BHK+19]). For the robust construction,
we show that PRE and UD can be based on PRE and UD of the used KHF, respectively.
1 To be precise, we are considering multi-target versions of these notions which we omit in the introduction
for the sake of clarity.

Recovering the tight security proof of SPHINCS+ 3

As a third contribution, we complete the picture for the hardness of breaking the properties of
(hash) function families via generic attacks (see Table 1 for an overview). We obtain a new result
for UD, and improve the result for TCR. Our analysis generally follows the framework of [HRS16],
which reduces the problem of distinguishing two distributions over boolean functions to the re-
spective security property. In [HRS16], a distribution over variable weight functions, introduced by
Zhandry [Zha12], is used where every input is mapped to 1 with a fixed probability. In this work,
we also use distributions over fixed-weight functions where the number of 1’s per function is fixed.
During this process, we find a useful self-reducibility result for the distinguishing problem with this
kind of functions. Moreover, we establish a new bound for PRE, overcoming a previous limitation of
the analysis in [HRS16] which only applied to sufficiently compressing functions. Our new approach
is a reduction from SPR and DSPR as previously implicitly done in [BH19a]. This gives a tight
unconditional bound for the single target case. For the multi-target case, we obtain a non-tight un-
conditional bound and a tight bound based on a previous conjecture made in [BHK+19] regarding
the complexity of breaking DSPR in the multi-target case.

Acknowledgments. We want to thank Sydney Antonov for pointing out wrong bounds at the
Table 1.

Organization.We introduce necessary definitions and notations as well as describe the EU-naCMA
security model in Section 2. Section 3 is devoted to the description of the WOTS-TW scheme. In
Section 5 we provide a security reduction for WOTS-TW in the single instance setting and in
Section 6 we lift the result to the multi-instance setting with possibly dependent messages. The
security proof for SPHINCS+ that uses WOTS-TW as a building block is then given in Section 7.
The summary of the state of the art for generic security bounds and analysis of quantum generic
security of UD and TCR properties is given in Section 8. In Section 9 we analyze the constructions
of a tweakable hash function from a keyed hash function.

2 Preliminaries

In this section we introduce the definitions of building blocks, and security notions for hash functions
that we use. We begin with the notion of a tweakable hash function, introduced in the construction of
SPHINCS+ [BHK+19], and its security. Beyond the presented notions, we make use of the standard
definition for PRFs which for reference can be found in Appendix A. For signatures we consider the
common existential unforgeability notion but under non-adaptive message attacks. In this setting
the adversary has to select a set of q messages that it will get signed before it receives the public
key. For one-time signatures we have q = 1. A detailed formal definition can be found in Section 4.

2.1 Tweakable hash functions.

In this section we recall the definition of tweakable hash functions and related security notions
from [BHK+19]. These properties will later be used to prove the security of our WOTS-TW scheme.

Function definition. A tweakable hash function takes public parameters P and context information
in form of a tweak T in addition to the message input. The public parameters might be thought of
as a function key or index. The tweak might be interpreted as a nonce.

Definition 1 (Tweakable hash function). Let n,m ∈ N, P the public parameters space and T
the tweak space. A tweakable hash function is an efficient function

Th : P × T × {0, 1}m → {0, 1}n, MD← Th(P, T,M)

mapping an m-bit messageM to an n-bit hash value MD using a function key called public parameter
P ∈ P and a tweak T ∈ T .

4 A. Hülsing, M. Kudinov

We will sometimes denote Th(P, T,M) as ThP,T (M). In SPHINCS+, a public value Seed is used
as public parameter which is part of the SPHINCS+ public key (the name comes from a specific
construction of a tweakable hash function that uses the public parameters as seed for a PRG). For
the tweak, SPHINCS+ uses a so-called hash function address (ADRS) that identifies the position of
the hash function call within the virtual structure defined by a SPHINCS+ key pair. We use the same
approach for WOTS-TW, i.e., the public parameter is a seed value that becomes part of the public
key if WOTS-TW is used stand-alone. If it is encompassed in a larger structure like SPHINCS+, the
public parameter will typically be that used in the encompassing structure and is therefore only part
of that structure’s public key. In this case, the hash addresses have to be unique within the entire
structure. Therefore, the address usually contains a prefix determined by the calling structure.

Security notions. To provide a security proof for WOTS-TW we require that the used tweakable
hash functions have certain security properties. Specifically, we require the following properties or
some variations of them which will be discussed below:

– post-quantum single-function, multi-target collision resistance for distinct tweaks (PQ-SM-DT-
TCR);

– post-quantum single-function, multi-target preimage resistance for distinct tweaks (PQ-SM-DT-
PRE);

– post-quantum single-function, multi-target undetectability for distinct tweaks (PQ-SM-DT-UD).

These properties were already considered in previous work. We slightly adapt them. Moreover,
in the context of multi-instance constructions like SPHINCS+, we need another generic extension to
collections of tweakable hash functions, discussed at the end of the subsection.

We generally consider post-quantum security in this work. Therefore, we will omit the PQ prefix
from now on and consider it understood that we always consider quantum adversaries. Since we are
working in the post-quantum setting, we assume that adversaries have access to a quantum computer
but honest parties do not. Hence, any oracles that implement secretly-keyed functions only allow
for classical queries. Moreover, in all of the properties an adversary can influence the challenges by
specifying the tweaks used in challenges. We generally restrict this control in so far as we do not
allow more than one challenge for the same tweak (indicated by the DT label). As we have this
restriction for all of our properties we omit the DT label in all of the security notions.

Below we will define success probabilities and advantages of the adversaries against different
properties of hash functions. Here we define the insecurity of a property Prop for parameter p (which
usually denotes the number of targets) of (tweakable) hash function F against time-ξ adversaries as
the maximum success probability for finding games or maximum advantage for distinguishing games
of any such adversary:

InSecProp(F ; ξ, p) = max
A
{Succ/AdvPropF,p (A)}.

Now we will discuss above properties and their variations. We provide additional intuition for
those notions in Appendix A.

Definition 2 (SM-TCR). In the following let Th be a tweakable hash function as defined above.
We define the success probability of any adversary A = (A1,A2) against the SM-TCR security of
Th. The definition is parameterized by the number of targets p for which it must hold that p ≤ |T |.
In the definition, A1 is allowed to make p classical queries to an oracle Th(P, ·, ·). We denote the set
of A1’s queries by Q = {(Ti,Mi)}pi=1 and define the predicate DIST({Ti}pi=1) = (∀i, k ∈ [1, p], i 6=
k) : Ti 6= Tk, i.e., DIST({Ti}pi=1) outputs 1 iff all tweaks are distinct.

Recovering the tight security proof of SPHINCS+ 5

Succsm-tcr
Th,p (A) = Pr[P ←$ P;S ← A

Th(P,·,·)
1 ();

(j,M)← A2(Q,S, P) : Th(P, Tj ,Mj) = Th(P, Tj ,M)

∧M 6=Mj ∧DIST({Ti}pi=1)]

Definition 3 (SM-PRE). In the following let Th be a tweakable hash function as defined above.
We define the success probability of any adversary A = (A1,A2) against the SM-PRE security of
Th. The definition is parameterized by the number of targets p for which it must hold that p ≤ |T |.
In the definition, A1 is allowed to make p classical queries to an oracle Th(P, ·, xi), where xi is
chosen uniformly at random for the query i (the value of xi stays hidden from A). We denote the set
of A1’s queries by Q = {Ti}pi=1 and define the predicate DIST({Ti}pi=1) as we did in the definition
above.

Succsm-pre
Th,p (A) = Pr[P ←$ P;S ← A

Th(P,·,xi)
1 ();

(j,M)← A2(Q,S, P) : Th(P, Tj ,M) = Th(P, Tj , xj) ∧DIST({Ti}pi=1)]

Definition 4 (SM-UD). In the following let Th be a tweakable hash function as defined above.
We define the advantage of any adversary A = (A1,A2) against the SM-UD security of Th. The
definition is parameterized by the number of targets p for which it must hold that p ≤ |T |. First
the challenger flips a fair coin b and chooses a public parameter P ←$ P. Next consider an oracle
OP (T , {0, 1}), which works the following way: OP (T, 0) returns Th(P, T, xi), where xi is chosen
uniformly at random for the query i; OP (T, 1) returns yi, where yi is chosen uniformly at random
for the query i. In the definition, A1 is allowed to make p classical queries to an oracle OP (·, b). The
goal of A is to distinguish whether the oracle is OP (T , 0) or OP (T , 1). We denote the set of A1’s
queries by Q = {Ti}pi=1 and define the predicate DIST({Ti}pi=1) as we did above.

Advsm-ud
Th,p (A) =

|Pr[P ←$ P;S ← A
OP (·,0)
1 (); 1← A2(Q,S, P) ∧DIST({Ti}pi=1)]−

Pr[P ←$ P;S ← A
OP (·,1)
1 (); 1← A2(Q,S, P) ∧DIST({Ti}pi=1)]|

At this point, we have finished describing the properties that will be needed to construct a
reduction proof for WOTS-TW. But for the further analysis of those properties and analysis of
SPHINCS+ one would need several more properties.

Decisional Second Preimage Resistance (DSPR) and its variants were introduced and motivated
in [BH19a]. Here we present a multi-target version of DSPR which is denoted as SM-DSPR. To do
so, we need a second-preimage exists predicate for THFs.

Definition 5 (SPP,T). A second preimage exists predicate of tweakable hash function Th : P ×T ×
{0, 1}m → {0, 1}n with a fixed P ∈ P, T ∈ T is the function SPP,T : {0, 1}m → {0, 1} defined as
follows:

SPP,T (x)
def
=

{
1 if |Th−1P,T (ThP,T (x))| ≥ 2

0 otherwise
,

where Th−1P,T refers to the inverse of the tweakable hash function with fixed public parameter and a
tweak.

6 A. Hülsing, M. Kudinov

Now we present the definition of SM-DSPR from [BHK+19] for a tweakable hash function. The
intuition behind this notion is that the adversary should be unable to find a preimage such that
doesn’t have a second preimage.

Definition 6 (SM-DSPR). Let Th be a tweakable hash function. Let A = (A1,A2) be a two
stage adversary. The number of targets is denoted with p, where the following inequality must hold:
p ≤ |T |. A1 is allowed to make p classical queries to an oracle Th(P, ·, ·). We denote the query set
Q = {(Ti,Mi)}pi=1 and predicate DIST({Ti}p1) as in previous definitions.

Advsm-dspr
Th,p (A) = max{0, succ− triv},

where

succ = Pr[P ←$ P;S ← A
Th(P,·,·)
1 (); (j, b)← A2(Q,S, P) :

SPP,Tj (Mj) = b ∧ DIST({Ti}p1)].

triv = Pr[P ←$ P;S ← A
Th(P,·,·)
1 (); (j, b)← A2(Q,S, P) :

SPP,Tj (Mj) = 1 ∧ DIST({Ti}p1)].

Security for a collection of tweakable hash functions. In more complex constructions like
SPHINCS+, we make use of a collection of tweakable hash functions which we call Thλ. In this case
Thλ consists of a set of tweakable hash functions Thmi for different mi, the length of messages they
process. This notion of a collection of tweakable hash functions is necessary as we use the same public
parameters for all functions in the collection. Especially, it is necessary to make the security notions
above usable in the context of SPHINCS+. The problem is that when used in constructions like
SPHINCS+ or XMSS, queries to the challenge oracle may depend on the outputs of other functions
in the collection, or even the same function but with different tweaks. This is incompatible with
above definitions as the public parameters are only given to the adversary after all challenge queries
are made.

We solve this issue by extending all the above stand-alone security properties to the case of
collections. The definitions for functions that are part of a collection only differ from the above in
a single spot. We give the first part of the adversary A1, that makes the challenge queries, access
to another oracle Thλ(P, ·, ·), initialized with P . The oracle takes an input M and a tweak T and,
depending on the length m = |M | of M returns Thm(P, T,M). The only limitation is that A is
not allowed to use the same tweak in queries to both oracles, the challenge oracle and the collection
oracle. In general, A is allowed to query the challenge oracle as well as Thλ with a message of length
x, as long as the used tweak is never used in a query to the challenge oracle.

Definition 7 (SM-TCR, SM-PRE, SM-UD, SM-DSPR for members of a collection).
Let Thm be a THF as defined above with message length m. Moreover, let Thm be an element
of a collection Thλ of THFs as described above. Consider an adversary A = (A1,A2) against the
SM-TCR (, SM-PRE, SM-UD, SM-DSPR) security of Thm as part of collection Thλ (which we
denote as Thm ∈ Thλ). Let Thλ(P, ·, ·) denote an oracle for Thλ as described above and denote
by {Tλi }

pλ
1 the tweaks used in the queries made by A. We define the success probability of A against

SM-TCR (, SM-PRE, SM-UD, SM-DSPR) security of Thm as part of collection Thλ as the
success probability of A against stand-alone SM-TCR (, SM-PRE, SM-UD, SM-DSPR) security
of Thm defined above, when A1 is additionally given classical oracle access to Thλ(P, ·, ·) with the
condition that {Ti}p1 ∩ {Tλi }

pλ
1 = ∅.

In the case of SM-TCR, we will abuse notation when it comes to the security of SPHINCS+ and
consider the joined security of several members of a collection of tweakable hash functions.

Recovering the tight security proof of SPHINCS+ 7

3 WOTS-TW

SPHINCS+ [BHK+19] developed its own variant of the Winternitz OTS. However, the authors
never explicitly defined that variant. Since the flaw in the SPHINCS+ security proof was in the
proof for their WOTS scheme, we give a separate description of the scheme in this section. As the
distinguishing feature of this variant is the use of tweakable hash functions, we call it WOTS-TW.

3.1 Parameters

WOTS-TW uses several parameters. The main security parameter is n ∈ N. The length of messages
that are signed is denoted as m. In the case of SPHINCS+, m = n. The Winternitz parameter w ∈ N
determines a base of the representation that is used in the scheme and determines the parameter l:

l1 =

⌈
m

log(w)

⌉
, l2 =

⌊
log(l1(w − 1))

log(w)

⌋
+ 1, l = l1 + l2.

The tweak space T must be at least of size lw. The size of the tweak space should be bigger if we use
several instances of WOTS-TW in a bigger construction such as SPHINCS+ so we can use a different
tweak for each hash function call. We also need a pseudorandom function PRF : {0, 1}n × T →
{0, 1}n, and a tweakable hash function Th : {0, 1}n × T × {0, 1}n → {0, 1}n.

3.2 Addressing scheme

For the tweakable hash functions to guarantee security, they have to be called with different tweaks.
This is achieved using what was called an addressing scheme in SPHINCS+. Such an addressing
scheme assigns a unique address to every tweakable hash function call in the scheme and the address
space is part of the tweak space such that addresses can be used as tweaks. We do not specify a
concrete addressing scheme in this work (see the SPHINCS+ specification [ABB+20] for an example).
Abstractly, we achieve unique addresses the following way. A Winternitz key pair defines a structure
of l hash chains, each of which makes w − 1 calls to the tweakable hash function. For a unique
addressing scheme, one may use any injective function that takes as input i ∈ [0, l−1], j ∈ [0, w−2],
and possibly a prefix, and maps into the address space. The prefix is necessary to ensure uniqueness
if many instances of WOTS-TW are used in a single construction. We will use ADRS to denote
that prefix. The tweak associated with the j-th function call in the i-th chain is then defined as the
output of this function on input i, j (and a possible prefix) and denoted as Ti,j . The prefix can also
be used to distinguish other parts of a signature scheme such as binary trees or few time signatures.
Note that the addresses (ADRS, tweaks) can be publicly computed and known to everybody.

3.3 WOTS-TW scheme

The main difference betweenWOTS variants is in the way they do hashing. Previously, the distinction
was made in the definition of the so-called chaining function that describes how the hash chains are
computed. For WOTS-TW this distinction is further shifted into the construction of the tweakable
hash function Th. The chaining function then looks as follows:

Chaining function cj,k(x, i,Seed): The chaining function takes as inputs a message x ∈ {0, 1}n,
iteration counter k ∈ N, start index j ∈ N, chain index i, and public parameters Seed. The chaining
function then works the following way. In case k ≤ 0, c returns x, i.e., cj,0(x, i,Seed) = x. For k > 0
we define c recursively as

cj,k(x, i,Seed) = Th(Seed, Ti,j+k−1, c
j,k−1(x, i,Seed)) .

8 A. Hülsing, M. Kudinov

If we consider several instances of WOTS-TW then we will use cj,kADRS(x, i,Seed) to denote that
tweaks that are used to construct the chain have ADRS as a prefix. With this chaining function,
we describe the algorithms of WOTS-TW.

Key Generation Algorithm (SK,PK)←WOTS-TW.kg(C;S):
The key generation algorithm optionally takes as input context information C = (Seed,ADRS),
consisting of a public seed Seed ∈ {0, 1}n and a global address ADRS, as well as randomness
S ∈ {0, 1}n which we call the secret seed. These inputs are meant for the use in more complex
protocols. If they are not provided, key generation randomly samples the seeds and sets ADRS
to 0. The key generation algorithm then computes the internal secret key sk = (sk1, . . . , skl) as
ski ← PRF(S, Ti,0)), i.e., the l · n bit secret key elements are derived form the secret seed using
addresses. The element of the public key pk is computed as

pk = (pk1, . . . , pkl) = (c0,w−1(sk1, 1,Seed), . . . , c
0,w−1(skl, l, Seed)).

The key generation algorithm returns SK = (S, C) and PK = (pk, C) Note that we can compute sk
and pk from SK.

Signature Algorithm σ ← WOTS-TW.sign(M, SK): On input of an m-bit message M , and
the secret key SK = (S, C), the signature algorithm first computes a base w representation of
M : M = (M1, . . . ,Ml1), Mi ∈ {0, . . . , w − 1}. That is, M is treated as the binary representation
of a natural number x and then the w-ary representation of x is computed. Next it computes
the checksum C =

∑l1
i=1(w − 1 − Mi) and its base w representation C = (C1, . . . , Cl2). We set

B = (b1, . . . , bl) = M ||C, the concatenation of the base w representations of M and C. Then the
internal secret key is regenerated using ski ← PRF(S, Ti,0) the same way as during key generation.
The signature is computed as

σ = (σ1, . . . , σl) = (c0,b1(sk1, 1,Seed), . . . , c
0,bl(skl, l, Seed)).

Verification Algorithm ({0, 1} ←WOTS-TW.vf(M,σ,PK)): On input of m-bit message M,
a signature σ, and public key PK = (pk, C), the verification algorithm computes the bi, 1 ≤ i ≤ l as
described above and checks if

pk
?
= pk′ = (pk′1, . . . , pk

′
l) = (cb1,w−1−b1(σ1, 1,Seed), . . . , c

bl,w−1−bl(σl, l, Seed)) .

In case of equality the algorithm outputs true and false otherwise.
The intuition behind the security of WOTS-TW is the following. Assume that you’ve observed a

message and a signature (M,σ). To obtain (M ′, σ′), where M ′ 6=M you will have at least one block
in some chain that occurs earlier than in σ. This is due to checksum computation.

4 EU-naCMA model

A standard definition of a Digital signature scheme and a notion of EU-CMA is given in Appendix B.
Here we define existential unforgeability under non-adaptive chosen message attack (EU-naCMA).
It is defined using the following experiment where S makes the shared state of A1 and A2 explicit.

Experiment ExpEU−naCMA
Dss(1n) (A = (A1,A2)):

(sk, pk)← Kg(1n).
({M1, . . . ,Mq}, S)← A1().
Compute {(Mi, σi)}qi=1 using Sign(sk, ·).
(M?, σ?)← A2(S, {(Mi, σi)}qi=1, pk)
Return 1 iff Vf(pk, σ?,M?) = 1 and M? /∈ {Mi}qi=1.

Recovering the tight security proof of SPHINCS+ 9

Definition 8 (EU-naCMA). Let Dss be a digital signature scheme. We define the success prob-
ability of an adversary A against the EU-naCMA security of Dss as the probability that the above
experiment outputs 1:

SuccEU−naCMA
Dss(1n),q (A) = Pr

[
ExpEU−naCMA

Dss(1n) (A) = 1
]
,

where q denotes the number of messages that A1 asks the game to sign.

If we limit the number of queries q = 1 to the signing oracle we will call the model one-time
EU-naCMA.

5 Security of WOTS-TW

Now we will reduce the security of WOTS-TW in a EU-naCMA model (see Definition 8) to the
security properties of the tweakable hash function Th and the pseudorandom function family PRF.
To do so we will give a standard game-hopping proof. Intuitively the proof goes through the following
steps.

– First, we replace the inner secret key elements that are usually generated using PRF by uniformly
random values. The two cases must be computationally indistinguishable if PRF is indeed pseu-
dorandom.

– Next we replace the blocks in the chains that become part of the signature by the hash of
random values. We need this so that we can later place preimage challenges at these positions
of the chain. Here it is important to note that preimage challenges are exactly such hashes of
random domain elements and not random co-domain elements. To argue that these two cases
are indistinguishable, we need a hybrid argument since for most chains we replace the outcome
of several iterations of hashing with a random value.

– Lastly we show that breaking the EU-naCMA property of our scheme in this final case will either
allow us to extract a target-collision or a preimage for a given challenge.

Theorem 1. Let n, w ∈ N and w = poly(n). Let Th : P × T × {0, 1}n → {0, 1}n be a SM-TCR,
SM-PRE, and SM-UD function. Let PRF : S × T → {0, 1}n be a pseudorandom function. Then
the insecurity of the WOTS-TW scheme against one-time EU-naCMA attack is bounded by

InSecEU-naCMA(WOTS-TW; t, 1) ≤
InSecprf(PRF; t̃, l) + InSecsm-tcr(Th; t̃, lw)+

InSecsm-pre(Th; t̃, l) + w · InSecsm-ud(Th; t̃, l)

with t̃ = t+ lw, where time is given in number of Th evaluations.

Proof. First consider the following two games: GAME.1 is the original EU-naCMA game and
GAME.2 is the same as GAME.1 but all outputs of PRF are replaced by random values. We
claim that the difference in the success probability of A playing these games must be bound by
InSecprf(PRF; t̃, l).

Next we consider GAME.3 which is the same as GAME.2 but to answer the message signing
request we build the signature from nodes that are computed applying Th only once instead of bi
times (except if bi = 0, then we return a random value as in the previous game). The public key
is constructed from that signature by finishing the chain according to the usual algorithm. We will
detail the process in the proof below. We claim that the difference in the success probability of A
playing these games must be bounded by w · InSecsm-ud(Th; t̃, l).

10 A. Hülsing, M. Kudinov

Afterwards, we consider GAME.4, which differs from GAME.3 in that we are considering the
game lost if an adversary outputs a valid forgery (M ′, σ′) where there exists an i such that b′i < bi
and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. We claim that the difference in the success probability of A playing

these games must be bound by InSecsm-tcr(Th; t̃, lw).
If we now consider how A can win in GAME.4 there is just one viable case left. By the properties

of the checksum, there has to be at least one i with b′i < bi. For any such i the values that get
computed from the forgery during verification fully agree with those values that are computed
during the verification of the signature by the last game hop. This means that we can use an A that
wins in GAME.4 to find a preimage. We claim that the success probability of the adversary A in
GAME.4 must be bounded by InSecsm-pre(Th; t̃, l).

In summary, we get the following claims:

Claim 1. |SuccGAME.1(A)− SuccGAME.2(A)| ≤ InSecprf(PRF; t̃, l) .

Claim 2. |SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecsm-ud(Th; t̃, l) .

Claim 3. |SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecsm-tcr(Th; t̃, lw) .

Claim 4. SuccGAME.4(A) ≤ InSecsm-pre(Th; t̃, l) .

The remainder of the proof consists of proving these claims. We then combine the bounds from
the claims to obtain the bound of the theorem.

Proof of Claim 1.

Claim 1. |SuccGAME.1(A)− SuccGAME.2(A)| ≤ InSecprf(PRF; t̃, l) .

Proof. We replace PRF in GAME.1 by the oracle provided by the PRF game and output 1 whenever
A succeeds. If the oracle is the real PRF function keyed with a random secret key, the view of A is
identical to that in GAME.1. If the oracle is the truly random function the argument is a bit more
involved. In this case, it is important to note that A never gets direct access to the oracle but only
receives outputs of the oracle. The inputs on which the oracle is queried to obtain these outputs are
all unique. Hence, the outputs are uniformly random values. Therefore, the view of A in this case is
exactly that of GAME.2. Consequently, the difference of the probabilities that the reduction outputs
1 in either of the two cases (which is the PRF distinguishing advantage) is exactly the difference of
the success probabilities of A in the two games.

Proof of Claim 2. We first give a more detailed description of GAME.3. In the EU-naCMA game
the adversary A asks to sign a message M without knowing the public key. This message M gets
encoded as B = b1, . . . , bl. In GAME.3, to answer the query we will perform the following operations.
First we generate l values uniformly at random: ui ←$ {0, 1}n, i ∈ {1, . . . , l}. Next we answer the
signing query with a signature σ = (σ1, . . . , σl), where σi = Th(Seed, Ti,bi−1, ui) if bi > 0 and
σi = ui if bi = 0. Then the public key is constructed as

pk = (pk1, . . . , pkl) = (cb1,w−1−b1(σ1, 1,Seed), . . . , c
bl,w−1−bl(σl, l, Seed)) , (1)

and public key and signature are returned to the adversary. The reason we consider this game is
that to bound the final success probability in GAME.4 we will have a reduction replace the ui with
SM-PRE challenges. The resulting signatures have exactly the same distribution as the ones we
get here. To show that this cannot change the adversary’s success probability significantly, we now
prove the following claim.

Recovering the tight security proof of SPHINCS+ 11

Algorithm 1:MA2−3
Input : Access to a distribution oracle Oφ and forger A
Output: 0 or 1.

1 Start A to obtain query with a message M .
2 Encode M as B = b1, . . . , bl as in signature algorithm.
3 Call Oφ(B) to obtain sample φ
4 Construct the signature σ doing one chain step on each sample where b > 0 and compute the public

key from the signature:
5 for 1 ≤ i ≤ l do
6 if bi > 0 then
7 σi = cbi−1,1(φi, i, Seed)

8 pki = cbi,w−1−bi(σi, i, Seed)

9 Send PK = (pk, Seed) and σ to A.
10 if A returns a valid forgery (M ′, σ′) then
11 return 1
12 else
13 return 0

Claim 2. |SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecsm-ud(Th; t̃, l) .

Proof. Consider the following scenario. Let the adversary’s query beM . During the signing algorithm
M is encoded as B = {b1, . . . , bl}. Consider two distributions D0 = {ξ1, . . . , ξl}, where ξi ←$

{0, 1}n, i ∈ [1, l] and DKg = {y1, . . . , yl}, where yi = c0,bi−1(ξi, i,Seed), ξi ←$ {0, 1}n, i ∈ [1, l].
Samples from the first distribution are just random values, and the samples from DKg are distributed
the same way as the (bi−1)-th values of valid WOTS-TW chains. Assume we play a game where we
get access to an oracle Oφ that on input B returns φ = {φ1, . . . , φl}, either initialized with a sample
from D0 or with a sample from DKg. Each case occurs with probability 1/2. Then we can construct
an algorithmMA2−3 as in Algorithm 1 that can distinguish these two cases using a forger A.

Let us consider the behavior ofMA2−3 when Oφ samples from DKg. In this case all the elements in
the chains are distributed the same as in GAME.2. The probability thatMA2−3 outputs 1 is the same
as the success probability of the adversary in GAME.2. If φ instead is from D0, then the distribution
of the elements in the chains is the same as in GAME.3. Hence, the probability thatMAUD outputs
1 is the same as the success probability of the adversary in GAME.3. By definition, the advantage
ofMA2−3 in distinguishing D0 from DKg is hence given by

AdvD0,DKg (MA2−3) = |Succ
GAME.2(A)− SuccGAME.3(A)| (2)

The remaining step is to derive an upper bound for AdvD0,DKg (MA
UD) using the insecurity of

the SM-UD property and a hybrid argument.
Let bmax = max{b1, . . . , bl} be the maximum of the values in the message encoding of M . Let

Hk be the distribution obtained by computing the values in φ as φi = ck,bi−1−k(ξi, i, Seed), ξi ←$

{0, 1}n. Then H0 = DKg and Hbmax−1 = D0 (Note that the chaining function returns the identity
when asked to do a negative amount of steps). AsMA2−3 distinguishes the extreme cases, by a hybrid
argument there are two consecutive hybrids Hj and Hj+1 that can be distinguished with probability
≥ AdvD0,DKg (MA2−3)/(bmax − 1).

To bound the success probability of an adversary in distinguishing two such consecutive hybrids,
we build a second reductionMBUD that uses B =MA2−3 to break SM-UD. For this purpose,MBUD

simulates Oφ. To answer a query for B = b1, . . . , bl, MBUD plays in the SM-UD game, interacting

12 A. Hülsing, M. Kudinov

with the SM-UD oracle OUD(·, b) to construct hybrid Hj+b, depending on the secret bit b of the
oracle. To do soMBUD makes queries to OUD with tweaks {T1,j , . . . , Tl,j}. Then, depending on b, the
responses ψ of OUD are either l random values or ψ = (cj,1(ξ1, 1, Seed), . . . , c

j,1(ξl, l, Seed), ξi ←$

{0, 1}n, i ∈ [1, l]). After thatMBUD requests Seed from the SM-UD challenger. Next,MBUD applies
the hash chain to the oracle responses ψ to compute samples

φi =

{
cj+1,bi−1−(j+1)(ψi, i, Seed), if j < bi − 1

ξi ←$ {0, 1}n, otherwise ,

and returns it to MA2−3. MBUD returns whatever MA2−3 returns. If ψ consisted of random values
the distribution was Hj+1, otherwise Hj . Consequently, the advantage of distinguishing any two
hybrids must be bound by InSecsm-ud(Th; ξ, l). Putting things together, we see that bmax ≤ w for
any message M . Hence, we get

|SuccGAME.2(A)− SuccGAME.3(A)| = AdvD0,DKg (MA2−3)
≤ w ·Advsm-ud

Th,l (MBUD) ≤ w · InSec
sm-ud(Th; ξ, l)

which concludes the proof of the claim.

Proof of Claim 3. Recall that GAME.4 differs from GAME.3 in that we are considering the game
lost if an adversary outputs a valid forgery (M ′, σ′) where there exists i such that b′i < bi and
c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. So the difference in success probability is exactly the probability that A

outputs a valid forgery and there exists an i such that b′i < bi and c(b
′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. We

will now prove Claim 3 which claims the following bound on this probability:

Claim 3. |SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecsm-tcr(Th; t̃, lw) .

Proof. To prove the claim we construct an algorithmMATCR that reduces SM-TCR of Th to the task
of forging a signature that fulfills the above condition. The algorithm is based on the following idea.
MATCR simulates GAME.4. In GAME.4 the adversary sends a query to sign a messageM . To answer
this query and compute the public key,MATCR interacts with the SM-TCR oracle. This way,MATCR

obtains target-collision challenges corresponding to the nodes in the signature and all intermediate
values of the chain computations made to compute the public key. ThenMATCR requests the public
parameters P from the SM-TCR challenger. We set the public seed Seed of WOTS-TW equal to
P and return the constructed signature and public key to A. When A returns a forgery (M ′, σ′),
there exists i such that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi per assumption. By a pigeonhole

argument there must be a collision on the way to the public key element. MATCR extracts this
collision and returns it. Algorithm 2 gives a detailed description of MATCR in pseudocode. For the
visual representation of the idea described in the mentioned algorithm see Figure 1. The algorithm
is broken into two logically separated parts: Challenge placement and obtaining the result.

Here we detail which SM-TCR challenges we create per chain in line 11 of Algorithm 2. Assume
we have σi at position bi. Then the first query will be (Ti,bi , σi). Let’s denote the answer for that
query as c1. The next query will be (Ti,bi+1, c1). We denote the answer for that query as c2. In
general we will make queries of the form (Ti,bi+k, ck). And we denote the answers for those queries
as ck+1. We make queries until we get cw−1−bi . We set pki to be cw−1−bi .

As we are set to bound the probability of those cases where the adversary outputs a valid forgery
and there exists i such that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi, MATCR never runs into the fail

cases in lines 22 and 24. Moreover, the distribution of inputs to A when run byMATCR is identical
to that in GAME.4. Therefore,MATCR returns a target-collision with probability |SuccGAME.3(A)−
SuccGAME.4(A)| which concludes the proof of the claim.

Recovering the tight security proof of SPHINCS+ 13

sk_i

Th(*,*,sk_i)

y

pk_i

x

?

?

y'

x'

original

i-th chain

adversary's

i-th chain

original

signature

block

adversary's

signature block

y ≠ y'

Fig. 1: Example of a case in claim 3

Proof of Claim 4. It remains to prove the last claim. Consider a forgery σ′ and the positions b′i of
the σ′ elements. There must exist a j such that b′j < bj by the properties of the checksum. Remember
that in GAME.4, the case where c(b

′
j ,bj−b

′
j)(σ′j , j, Seed) 6= σj is excluded for all such j. Hence, it must

hold for these j that c(b
′
j ,bj−b

′
j)(σ′j , j, Seed) = σj . Therefore, we can use A to compute a preimage of

σj . We use this to prove Claim 4.

Claim 4. SuccGAME.4(A) ≤ InSecsm-pre(Th; t̃, l) .

Proof. As for the previous claim, we construct an algorithm MAPRE that uses a forger in GAME.4
to solve a SM-PRE challenge. In the beginning,MAPRE receives a query to sign a message M from
the adversary A and encodes it into bi’s. To answer the queryMAPRE interacts with the SM-PRE
challenger to receive preimage challenges yi for tweaks that make the challenges fit into positions
bi. That way, MAPRE can use the challenges as signature values σi = yi. Then MAPRE asks the
SM-PRE challenger to return public parameters P . Given P , MAPRE can construct the public
key using the recomputation method used in the signature verification algorithm. MA sets the
public seed Seed of WOTS-TW to be P and returns the constructed signature and public key to A.
When A returns a valid forgery, this forgery must contain a signature value σj with index j such
that b′j < bj and cb

′
j ,(bj−b

′
j)(σ′j , j, Seed) = σj per definition of the game. MAPRE returns preimage

(j, cb
′
j ,(bj−b

′
j−1)(σ′j , j, Seed)). A pseudocode version of MAPRE is given as Algorithm 3. For a visual

representation of the ideas described in the Algorithm 3 see Figure 2. The algorithm is broken into
two logically separated parts: Challenge placement and obtaining the result.

Due to the properties of GAME.4, MAPRE succeeds whenever A succeeds, as the failure case in
line 19 never occurs when A succeeds. Moreover, the distribution of the inputs to A when run by
MAPRE is identical to that in GAME.4 (this was ensured in the game hop to GAME.3). Therefore,
MAPRE returns preimages with probability SuccGAME.4(A) which proves the claim.

6 Extension to multiple instances with same public seed

One-time signatures are often used in more complex constructions. For example, WOTS-TW was
developed as part of SPHINCS+. The distinguishing feature of this setting is that many WOTS-TW

14 A. Hülsing, M. Kudinov

Algorithm 2:MATCR

Input : Security parameter n, oracle access to SM-TCR challenger C and EU-naCMA forger A.
Output: A pair (j,M) or fail.

1 begin Challenge placement
2 Start A to obtain query with a message M .
3 Encode M as B = b1, . . . , bl as in signature algorithm.
4 for i ∈ {1, . . . , l} do
5 if bi = 0 then
6 Set σi ←$ {0, 1}n.
7 else
8 Sample ξi ←$ {0, 1}n,
9 Query C for SM-TCR challenge with inputs ξi, T1,bi−1.

10 Store answer as σi. // i.e., σi = Th(P, Ti,bi−1, ξi)

11 Compute public key element pki = cbi,w−1−bi(σi, i, ·) as in the verification algorithm but
using the SM-TCR challenge oracle provided by C in place of Th. // That is why
no Seed is needed

12 Get public parameters P from the challenger and set Seed = P .
13 Set signature σ = (σ1, . . . , σl) and pk = (pk1, . . . , pkl).

14 begin Obtaining the result
15 Return σ and PK = (pk, Seed) to the adversary A.
16 if The adversary returns a valid forgery (M ′, σ′) then
17 Encode M ′ as B′ = (b′1, . . . , b

′
l) according to sign.

18 if ∃ i such that b′i < bi and c(b
′
i,bi−b

′
i)(σ′i, i, Seed) 6= σi then

19 Let j be the smallest integer such that the chains collide:
cbi,j(yi, i, Seed) = cb

′
i,j(σ′i, i, Seed)).

20 return SM-TCR solotion (i, cb
′
i,(j−1)(σ′i, i, Seed))

21 else
22 return fail

23 else
24 return fail

instances are used within one instance of the complex construction. In this section we will show
that we can base the security of multiple WOTS-TW instances on the same multi-target security
properties used for a single instance. While, the number of targets increases, we argue in Section 8
that the complexity of generic attacks is not influenced by the number of targets for these notions.
Hence, there is no decrease in security to be expected when using multiple instances. We will show
that this even works when the same public seed is used for all instances, as long as different prefixes
are used for the tweaks.

In SPHINCS-like constructions WOTS-TW is used to sign the roots of trees which are not
controlled by an adversary against the construction but by the signer. More generally, this is the
case in many such constructions. Hence, we use an extension of the EU-naCMA model from last
section to d instances. We define EU-naCMA security for d instances of WOTS-TW with respect
to a collection of THFs. Our definition is non-generic but tailored to WOTS-TW and the way it is
used within SPHINCS+ and other constructions. The reason is that in these settings the THF used
in WOTS-TW is a member of the collection of THFs used in the construction and uses the same
public parameters. We could have introduced a generic model for this but this would have required
the introduction of further abstractions that would unnecessarily complicate the presentation.

Recovering the tight security proof of SPHINCS+ 15

sk_i

Th(*,*,sk_i)

y

pk_i

x

?

?

x'

original

i-th chain

adversary's

i-th chain

original

signature

block
adversary's

signature block

Fig. 2: Example of a case in Claim 4.

The security of multiple WOTS-TW instances is analyzed using the following experiment. In
which a two-stage adversary A = (A1, A2) is allowed to make signing queries to a signing oracle
WOTS-TW.sign(·, (Seed, ·,S)) and THF oracle Thλ. The signing oracle takes as inputs a messageM
and address ADRS. As we described in Section 3.2 ADRS defines a prefix that distinguishes differ-
ent instances of WOTS-TW and other structures in bigger constructions. First it runs (SK,PK) ←
WOTS-TW.kg(C = (Seed,ADRS);S). Then it computes σ ← WOTS-TW.sign(M ;SK). By PK′

we denote PK without Seed, i.e. PK′ = (pk,ADRS). The signing oracle returns (σ,M,PK′) to the
adversary. We restrict A1 from querying Thλ with tweaks for ADRSs that are used in signature
queries. We define a function adrs(·) that takes a tweak as an input and returns ADRS of that
tweak. The set of queries to signing oracle is denoted as Q = {(Mi,ADRSi)}di=1 and the set of
tweaks that are used to query Thλ is T = {Ti}pi=1. We analyze one-time signatures, so the number
of allowed signing queries for each ADRS is restricted to 1.
Experiment Expd-EU-naCMA

WOTS-TW (A)
– Seed←$ {0, 1}n
– S ←$ {0, 1}n

– state← AWOTS-TW.sign(·,(Seed,·,S)),Thλ(Seed,·,·)
1 ()

– (M?, σ?, j)← A2(state, Seed)
– Return 1 iff j ∈ [1, d] ∧ [Vf(PKj , σ

?,M?) = 1] ∧ [M? 6=Mj]∧
[DIST({ADRSi}di=1)] ∧ [∀ADRSi ∈ Q,ADRSi /∈ T ′ = {adrs(Ti)}pi=1].

We define the success probability of an adversary A in the described experiment with d instances
as Succd-EU-naCMA

WOTS-TW,d(A)
def
= Pr

[
Expd-EU-naCMA

WOTS-TW (A) = 1
]
. Note that due to ADRS restrictions for the

signing oracle the adversary can not obtain more than one signature for the same pk. The following
theorem can be proven by generalization of the proof of Theorem 1. The main idea behind the proof
is the following. First we use different tweaks in different instances of WOTS-TW as we use different
ADRSs for each instance. Next point is that we obtain d times more challenges and we separate
them in d sets. Each set will be used for one instance of WOTS-TW. Then the proof follows the
same path as in Theorem 1.

16 A. Hülsing, M. Kudinov

Algorithm 3:MAPRE

Input : Security parameter n, access to SM-PRE challenger C and forger A.
Output: A pair (j,M) or fail.

1 begin Challenge placement
2 Run A to receive initial query for a signature on message M .
3 Encode M as B = b1, . . . , bl following the steps in the signature algorithm.
4 for 1 ≤ i ≤ l do
5 if bi > 0 then
6 Query C for preimage challenge yi with tweak T1,bi−1. // yi = Th(P, Ti,bi−1, ξi)
7 else
8 yi ←$ {0, 1}n.
9 Set σi = yi.

10 Get the seed P from C and set Seed = P .
11 Compute public key pk = (pk1, . . . pkl), as pki = cw−1−bi(yi, i, Seed).

12 begin Obtaining the result
13 Return σ and PK = (pk, P) to A.
14 if A returns a valid forgery (M ′, σ′) then
15 Compute B′ = (b′1, . . . , b

′
l) encoding M

′

16 if ∃1 ≤ j ≤ l such that b′j < bj and c(b
′
j ,bj−b

′
j)(σ′j , j,Seed) = σj then

17 return SM-PRE solution (j, cb
′
j ,(bj−b

′
j−1)(σ′j , j,Seed))

18 else
19 return fail

20 else
21 return fail

Theorem 2. Let n, w ∈ N and w = poly(n). Let F := Th1 : P × T × {0, 1}n → {0, 1}n be a
SM-TCR, SM-PRE, SM-UD THF as a member of a collection. Let PRF : S × T → {0, 1}n be a
KHF. Then the following inequality holds:

InSecd-EU-naCMA(WOTS-TW; t, d) <

InSecprf(PRF; t̃, d · l) + InSecsm-tcr(F ∈ Th; t̃, d · lw)+
InSecsm-pre(F ∈ Th; t̃, d · l) + w · InSecsm-ud(F ∈ Th; t̃, d · l) (3)

with t̃ = t+ d · lw, where time is given in number of Th and PRF evaluations.

Proof sketch. Let us give a brief description how the proof for the multi-instance case is obtained.
We have the same game hopping as in Theorem 1.

GAME.1 is the original d-EU-naCMA game and GAME.2 is the same as GAME.1 but the
pseudorandom outputs from PRF are replaced by truly random values. We claim that

|SuccGAME.1(A)− SuccGAME.2(A)| ≤ InSecprf(PRF; t̃, d · l).

The reasoning here is the same as in Claim 1 in Theorem 1. Note that all inputs on which the oracle
in the PRF game is queried are unique due to the unique ADRSs for each instance. Hence, the
outputs are uniformly random values as desired.

GAME.3 is different from GAME.2 in that for each signing query we answer with a hash of a
random value rather than building it with a chaining function. In Claim 2 of Theorem 1 we reduced it

Recovering the tight security proof of SPHINCS+ 17

to the SM-UD property by using a hybrid argument. Here we need to apply the same reasoning. To
obtain the needed hybrids in case of d instances we will do the following. We use an additional index
to denote the B-values associated with the i-th message Mi. So Mi is transferred into bi,1, . . . , bi,l.
We now consider the d-fold distributions Dd-Kg = {y1,1, . . . , y1,l, . . . , yd,1, . . . , yd,l}, where yi,j =

c
0,bj−1
ADRSi

(ξi,j , j, Seed) andDd-0 = {ξ1,1, . . . , ξ1,l, . . . , ξd,1, . . . , ξd,l}, where ξi,j ←$ {0, 1}n, i ∈ [1, d], j ∈
[1, l]. The distinguishing advantage of an adversary against those two distributions is exactly the
difference of these two games. To limit this distinguishing advantage we need to build hybrids. We do
this in the same manner as in the proof of Theorem 1. Let bmax = max{b1,1, . . . , b1,l . . . , bd,1, . . . , bd,l}
be the maximum of the values in the message encoding of allMi. Let Hk be the distribution obtained
by computing the values as ck,bi,j−1−kADRSi

(ξi,j , j, Seed), ξi,j ←$ {0, 1}n. One can notice that H0 = DKg

and Hbmax−1 = D0. There must be two consecutive hybrids Hγ and Hγ+1 that we can distinguish
with probability close to the distinguishing advantage. By playing SM-UD and interacting with the
oracle O(·, b) we can construct hybrid Hγ+b. This is done in just the same way as in Claim 2 of
Theorem 1. Hence, we obtain the following bound:

|SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecsm-ud(F ∈ Th; t̃, d · l) .

Notice that in case of one instance we obtained Seed from the SM-UD challenger that we used to
construct the hybrids and obtain the WOTS-TW public key. Here instead of using Seed we need to
interact with the Thλ(Seed.·, ·) oracle. Only after all of the signing queries are made we will obtain
the Seed.

GAME.4 is different from GAME.3 in that we are considering the game lost if an adversary out-
puts a valid forgery (M?, σ?, j) where there exist such i that b?i,j < bi,j and c

(b?i,j ,bi,j−b
?
i,j)

ADRSi
(σ?j , j, Seed) 6=

σj . To show the bound we can build a reduction that works as follows. To answer the signature queries
and compute the public key, the reduction interacts with the SM-TCR oracle. The difference in case
of d instances from one instance is that we will need d times more interactions with the SM-TCR
oracle. Per assumption, there must exist at least one chain such that the chain that we built and the
chain obtained from the forged signature are different but lead to the same public key. Hence, by a
pigeonhole argument there must be a collision on the way to the public key element. This collision
is a solution for the SM-TCR challenge. So we proved that

|SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecsm-tcr(H ∈ Th; t̃, d · lw) .

To give a bound on the success probability for GAME.4 we use the SM-PRE property. To answer
signing queries we will interact with the SM-PRE oracle and place challenges obtained from that
oracle in place of signatures. To construct public keys of WOTS-TW instances we will behave in the
same way as in the undetectability case. By interacting with Thλ(Seed, ·, ·) we can build the chains
of WOTS-TW structures. Again there must exist a j such that b?i,j < bi,j by the properties of the

checksum. And since we excluded the case where c
(b?i,j ,bi,j−b

?
i,j)

ADRSi
(σ?j , j, Seed) 6= σj we can obtain a

preimage by computing c
(b?i,j−1,bi,j−b

?
i,j)

ADRSi
(σ?j , j, Seed). So we obtain

|SuccGAME.4(A)| ≤ InSecsm-pre(F ∈ Th; t̃, d · l).

This concludes the sketch of the proof.

7 SPHINCS+

In this section we will recap the SPHINCS+ structure and afterwards give fixes to the original
SPHINCS+ proof. To obtain a fixed proof we will utilize the results from Theorem 2. In SPHINCS+

18 A. Hülsing, M. Kudinov

PK

WOTS WOTS WOTS

binary

tree_2

WOTS WOTS

binary

tree_1

sign

WOTS WOTS

binary

tree_1

signsign

sign

binary

tree_0

WOTS

sign

WOTS

sign

FORS FORS

message

digest

sign

h/d

h/d

h/d

Fig. 3: Example of a SPHINCS+ structure

a special function to compute message digest is introduced. An expected property of that function
is interleaved target subset-resilience. The formal definition of this property is given in Appendix A.
The part of the proof where we use this property is the same as in the SPHINCS+ paper [BHK+19].
Hence, we will not discuss it in details.

7.1 Brief description

First we give a brief description of the SPHINCS+ signature scheme. An example of the SPHINCS+
structure is shown in Figure 3. A detailed description can be found in [BHK+19]. The public key
consists of two n-bit values: a random public seed PK.seed and the root of the top tree in the

Recovering the tight security proof of SPHINCS+ 19

hypertree structure. PK.seed is used as a first argument for all of the tweakable hash functions calls.
The private key contains two more n-bit values SK.seed and SK.prf. We discuss the main parts of
SPHINCS+. First we describe the addressing scheme. As SPHINCS+ uses THFs, different tweaks
are required for all calls to THFs. The tweaks are instantiated by the addresses. The address is a
32 byte value. Address coding can be done in any convenient way. Each address has a prefix that
denotes to which part of the SPHINCS+ structure it belongs. We denoted this prefix as ADRS in
previous sections.

Then we need to discuss binary trees. In the SPHINCS+ algorithm, binary trees of height γ
always have 2γ leaves. Each leaf Li, i ∈ [0, 2γ − 1] is a bit string of length n. Each node of the tree
Ni,j , 0 < j ≤ γ, 0 ≤ i < 2γ−j is also a bit string of length n. The values of the internal nodes of the
tree are calculated from the children of that node using a THF. A leaf of a binary tree is the output
of a THF that takes the elements of a WOTS-TW public key as input.

Binary trees and WOTS-TW signature schemes are used to construct a hypertree structure.
WOTS-TW instances are used to sign the roots of binary trees on lower levels. WOTS-TW instances
on the lowest level are used to sign the public key of a FORS (Forest of Random Subsets) few-time
signature scheme instance. FORS is defined with the following parameters: k ∈ N, t = 2a. This
algorithm can sign message digests of length ka-bits.

FORS key pair. The private key of FORS consists of kt pseudorandomly generated n-bit values
grouped into k sets of t elements each. To get the public key, k binary hash trees are constructed.
The leaves in these trees are k sets (one for each tree) which consist of t values, each. Thus, we get
k trees of height a. As roots of k binary trees are calculated they are compressed using a THF. The
resulting value will be the FORS public key.

FORS Signature. A message of ka bits is divided into k lines of a bits. Each of these lines is
interpreted as a leaf index corresponding to one of the k trees. The signature consists of these leaves
and their authentication paths. An authentication path for a leaf is the set of siblings of the nodes
on the path from this leaf to the root. The verifier reconstructs the tree roots, compresses them, and
verifies them against the public key. If there is a match, it is said that the signature was verified.
Otherwise, it is declared invalid.

The last thing to discuss is the way the message digest is calculated. First, a pseudorandom
value R is prepared as R = PRFmsg(SKprf ,OptRand,M) using a dedicated secret key element
SK.prf and the message. This function can be made non-deterministic initializing the value OptRand
with randomness. The R value is part of the signature. Using R, we calculate the index of the
FORS key pair with which the message will be signed and the message digest itself: (MD||idx) =
Hmsg(R,PK.seed,PK.root,M).

The signature consists of the randomness R, the FORS signature (under idx from Hmsg) of
the message digest, the WOTS-TW signature of the corresponding FORS public key, and a set
of authentication paths and WOTS-TW signatures of tree roots. To test this chain, the verifier
iteratively reconstructs the public keys and tree roots until it gets the root of the top tree. If this
matches the root given in the SPHINCS+ public key, the signature is accepted.

7.2 SPHINCS+ proof

In this part we fix the proof of security of the SPHINCS+ framework. The security had several issues
which are described in [KKF20,ABB+20]. The SPHINCS+ construction uses the following functions:

F := Th1 : P × T × {0, 1}n → {0, 1}n; H := Th2 : P × T × {0, 1}2n → {0, 1}n;
Thl : P × T × {0, 1}ln → {0, 1}n; Thk : P × T × {0, 1}kn → {0, 1}n;
PRF : {0, 1}n × {0, 1}256 → {0, 1}n; PRFmsg : {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}n;
Hmsg : {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}m.

20 A. Hülsing, M. Kudinov

In this section, we prove the following Theorem about the standard EU-CMA-security (for a
definition see Appendix B) of SPHINCS+. Note that F,H, Thl, and Thk are members of a collection
Th of tweakable hash functions with different message lengths.

Theorem 3. For parameters n,w, h, d,m, t, k as described in [BHK+19] and l be the number of
chains in WOTS-TW instances the following bound can be obtained:

InSecEU−CMA(SPHINCS+; ξ, qs) ≤
InSecprf(PRF, ξ, q1) + InSecprf(PRFmsg, ξ, qs)+

InSecitsr(Hmsg, ξ, qs) + w · InSecsm-ud(F ∈ Th; ξ, q2)+

InSecsm-tcr(F ∈ Th; ξ, q3 + q7) + InSecsm-pre(F ∈ Th; ξ, q2)+

InSecsm-tcr(H ∈ Th; ξ, q4) + InSecsm-tcr(Thk ∈ Th; ξ, q5)+

InSecsm-tcr(Thl ∈ Th; ξ, q6)+

3 · InSecsm-tcr(F ∈ Th; ξ, q8) + InSecsm-dspr(F ∈ Th; ξ, q8) ,

where q1 < 2h+1(kt + l), q2 < 2h+1 · l, q3 < 2h+1 · l · w, q4 < 2h+1k · 2t, q5 < 2h, q6 < 2h+1,
q7 < 2h+1kt, q8 < 2h · kt and qs denotes the number of signing queries made by A.

Proof. We want to bound the success probability of an adversary A against the EU-CMA security
of SPHINCS+. Towards this end we use the following series of games. We start with GAME.0 which
is the EU-CMA experiment for SPHINCS+. Now consider a GAME.1 which is GAME.0 but the
experiment makes use of a SPHINCS+ version where all the outputs of PRF, i.e., the WOTS-TW
and FORS secret-key elements, get replaced by truly random values.

Next, consider a game GAME.2, which is the same as GAME.1 but in the signing oracle
PRFmsg(SK.prf, ·) is replaced by a truly random function.

Afterwards, we consider GAME.3, which differs from GAME.2 in that we are considering the
game lost if an adversary outputs a valid forgery (M,SIG) where the FORS signature part of SIG
contains only secret values which were contained in previous signatures with that FORS key pair
obtained by A via the signing oracle.

Now consider what are the possibilities of the adversary to win the game. The FORS signature
in a forgery must include the preimage of a FORS leaf node that was not previously revealed to it.
There are two separate cases for that leaf:

1. The FORS leaf is different to the leaf that we would generate for that place.
2. The FORS leaf is the same to the leaf that we would generate for that place;

Let’s consider GAME.4 which differs from GAME.3 in that we are considering that the game is
lost in the first “leaf case” scenario.

Now let’s analyze those games.

GAME.0 - GAME.3 The hops between GAME.0 and GAME.3 are fully presented in the SHINCS+
paper [BHK+19]. The bound for these games are

|SuccGAME.0
A − SuccGAME.1

A | ≤ InSecprf(PRF, ξ, q1), (4)

|SuccGAME.1
A − SuccGAME.2

A | ≤ InSecprf(PRFmsg, ξ, qs), (5)

|SuccGAME.2
A − SuccGAME.3

A | ≤ InSecitsr(Hmsg, ξ, qs), (6)

where q1 < 2h+1(kt+ l) and qs is the number of signing queries made by A.

Recovering the tight security proof of SPHINCS+ 21

GAME.3 - GAME.4 Let’s break the hop between GAME.3 and GAME.4 into several steps. Since
the FORS leaf is different to the leaf that we would generate for that place there are two possible
outcomes. First is that the forged signature contains a second preimage for some input of a THF.
This can occur in the FORS or WOTS-TW instances, the compression of FORS or WOTS-TW
public keys, and in the binary trees. And second case is that a WOTS-TW forgery occurs.

Consider GAME.3.1 in which the game is lost if there is a second preimage contained in the
forged signature for an input of H in a binary tree. The difference for this case can be bounded by
building a SM-TCR adversary for H as a member of a collection. We construct the SPHINCS+
structure using SM-TCR challenger for every input to H and the oracle Thλ for the rest. Here we
also consider binary trees of FORS as part of the challenge. Hence we obtain

|SuccGAME.3
A − SuccGAME.3.1

A | ≤ InSecsm-tcr(H ∈ Th; ξ, q4), (7)

where q4 < 2h+1 · k · 2t.
Now we introduce GAME.3.2 which is different from GAME.3.1 in that we are considering the

game lost if a second preimage for Thk is contained in the FORS tree nodes computed while verifying
the forged signature. As in the previous case this can be bounded by

|SuccGAME.3.1
A − SuccGAME.3.2

A | ≤ InSecsm-tcr(Thk ∈ Th; ξ, q5), (8)

where q5 < 2h.
Next the GAME.3.3 is considered lost if a second preimage forThl is contained in the WOTS-TW

public keys computed from the forged signature. Following the same ideas as above we obtain

|SuccGAME.3.2
A − SuccGAME.3.3

A | ≤ InSecsm-tcr(Thl ∈ Th; ξ, q6), (9)

where q6 < 2h+1.
The GAME.3.4 is lost if there is a second preimage in the forged signature for some input for F

outside the WOTS-TW instances, i.e., in as a FORS signature value. The bound for this case is

|SuccGAME.3.3
A − SuccGAME.3.4

A | ≤ InSecsm-tcr(F ∈ Th; ξ, q7), (10)

where q7 < 2h · k · t.
So the only case left to hop to GAME.4 is a WOTS-TW forgery for one out of d < 2h+1 instances.

Using the bound in Theorem 2 we obtain

|SuccGAME.3.4
A − SuccGAME.4

A | ≤ InSecsm-tcr(F ∈ Th; ξ, q3)+

InSecsm-pre(F ∈ Th; ξ, q2 + w · InSecsm-ud(F ∈ Th; ξ, q2), (11)

where q2 < 2h+1 · l, q3 < 2h+1 · lw.

GAME.4 The analysis of GAME.4 can be found in the SPHINCS+ (see paper [BHK+19] Claim
23). Here we note that we cannot use the SM-PRE bound as the reduction is an instance of a
T-openPRE game as introduced in [BH19a], i.e., the reduction needs to know some preimages. The
only difference is that we have already excluded the WOTS-TW preimage case. Hence we obtain the
following bound:

SuccGAME.4
A ≤ 3 · InSecsm-tcr(F; ξ, q8) + InSecsm-dspr(F; ξ, q8), (12)

where q8 < 2h · kt.
Combining the inequalities we obtain the bound from the theorem.

22 A. Hülsing, M. Kudinov

Table 1: Success probability of generic attacks – In the “Success probability” column we give the
bound for a quantum adversary A that makes q quantum queries to the function and p classical
queries to the challenge oracle. The security parameter n is the output length of Th. We use X =∑
γ

(
1−

(
1− 1

t

)γ)k (p
γ

) (
1− 1

2h

)p−γ 1
2hγ

.

Property Success probability Status

SM-TCR Θ((q + 1)2/2n) proven (this work, [BHK+19,HRS16])
SM-DSPR Θ((q + 1)2/2n) conjectured ([BHK+19])
SM-PRE Θ((q + 1)2/2n) based on conjecture ([BH19a,BHK+19])
PRF Θ(12q/

√
2n) proven ([XY19])

SM-UD Θ(12q/
√
2n) proven (this work)

ITSR Θ((q + 1)2 ·X) conjectured ([BHK+19])

8 Analyzing Quantum Generic Security

In this section we collect bounds on the complexity of generic attacks against the properties discussed
so far for THFs and KHFs. For definitions of the properties for KHFs see Appendix C. A hash function
Th is commonly considered a good function if there are no attacks known for any security property
that perform better against Th than a generic attack against a random function. First we discuss
the current situation which is summarized in Table 1. Attacks that match the security bound for
nonnegligible probability for the UD and PRF properties are shown in Appendix F. Then we give
a new proof for the SM-UD property. To do so we follow the approach of [HRS16] where different
instances of average-case distinguishing problems over boolean functions are reduced to breaking the
different hash function security properties. The advantage of this approach is that we know lower
bounds for these decision problems, even for quantum algorithms. This allows us to derive lower
bounds on the complexity of quantum attacks against our security properties. We also give a new
proof for SM-TCR property in Appendix E which improves a previous result from [BHK+19].

8.1 Estimated security

The success probability of generic attacks against SM-TCR and a reduction to an average-case search
problem was given in [BHK+19], but it had several limitations on the adversary. In Appendix E we
give a proof without extra limitations on the adversary. A generic attack using Grover search against
plain TCR is given in [HRS16], which is applicable against SM-TCR – as it runs a second preimage
search when all information is available – and has a success probability matching the proven bound.

With regard to SM-DSPR, two bounds are proven in [BH19a]. On the one hand, the bound
O((q + 1)2/2n) is proven for single-target DSPR of a KHF, which is tight. This proof perfectly
transfers to the SM-DSPR notion of a THF by specifying the tweak we analyze Th(P, T, ·) which
can be viewed as a KHF with a fixed key. For a T -target version a factor-T lose bound is obtained via
a standard plug’n’pray argument, placing the challenge instance at a random position, hoping that
that will be the one that gets distinguished by the adversary. In [BHK+19], the authors conjecture
that the actual multi-target bound should be the same as the single-target bound. A supporting
argument for this conjecture is that the best attack against multi-target DSPR for now is still a
second-preimage search which has the same complexity in both cases.

For PRE of a KHF h, a bound of SuccPRE
h,p (A) = Θ((q+1)2/2n) is given in [HRS16] that also holds

in a multi-function, multi-target setting. The bound is proven for h that are random and compressing

Recovering the tight security proof of SPHINCS+ 23

by at least a factor 2 in the message length. It is conjectured that it also applies for length preserving
hash functions, i.e., functions that map n-bit messages to n-bit outputs, possibly taking additional
inputs like function keys or tweaks. A bound for SM-PRE can be proven using SM-TCR and
SM-DSPR (Succsm-pre

Th,p (A) ≤ 3 · Succsm-tcr
Th,p (A) + Advsm-dspr

Th,p (A)) as shown in [BHK+19, BH19a].
With this we derive the same bound of Succsm-pre

Th,p (A) = Θ((q + 1)2/2n). For the case of multiple
targets, the tight bound needs above conjecture for SM-DSPR. A factor-T -loose, unconditional
bound follows from the loose bound for SM-DSPR.

The success probability of generic attacks against PRF is analyzed in [XY19]. The analysis is
done by reducing to a distinguishing problem between a boolean function of weight 0 and a random
boolean function of weight 1.

The notion of undetectability was introduced in [DSS05]. In that work, the authors give a bound
for single-target undetectability considering classical adversaries as O(q/2n). Below, we give a bound
for multi-target undetectability of random Th considering quantum adversaries.

For all notions we conjecture that the bounds are exactly the same for the case of collections. The
reason is that for a random tweakable function, every tweak is related to an independent random
function. Hence, giving access to those does not give any information about the targets to the
adversary. This is also reflected in the reductions that we know so far. In these, the function for a
tweak that is not used for a challenge is simulated by an independent random function and we can
give access to this function in parallel to the challenge oracle as we do not touch it in the reduction.

In Section 9 we discuss properties of KHFs which are similar to ones discussed above. Specifically
DM-SPR, DM-UD, DM-PRE, DM-DSPR. In that section we show that it is possible to obtain ex-
actly the same table of success probabilities by replacing SM-TCR with DM-SPR, SM-DSPR with
DM-DSPR, SM-PRE with DM-PRE, and SM-UD with DM-UD. In the following subsections we
give proofs for the SM-TCR and SM-UD properties.

8.2 Decision Problem

Here we define distinguishing problems over boolean functions for which an optimal query complexity
bound is known. In our reductions to show lower bounds, we assume we have access to some random
functions G and g. Hence, we need to simulate G and g efficiently so that any algorithm with q queries
cannot notice a difference. According to [Zha12] this can be simulated using 2q-wise independent
hash functions or QPRFs.

Definition 9 ([HRS16]).
Let F := {f : {0, 1}m → {0, 1}} be the collection of all boolean functions on {0, 1}m. Let λ ∈ [0, 1]

and ε > 0. Define a family of distributions Dλ on F such that f ←$ Dλ satisfies

f : x→

{
1 with prob. λ
0 with prob. 1− λ

for any x ∈ {0, 1}m.

We follow the same approach as in [HRS16] and define Avg − Searchλ to be the problem that
given oracle access to f ← Dλ, finds an x such that f(x) = 1. For any quantum algorithm A that
makes q queries, we define

Succqλ(A) := Pr
f←Dλ

[
f(x) = 1 : x← Af (·)

]

Theorem 4 ([HRS16]). Succqλ(A) ≤ 8λ(q+1)2 holds for any quantum algorithm A with q queries.

24 A. Hülsing, M. Kudinov

Assume we have a family F of all n-bit boolean functions. We will call the weight of a boolean
function f the result of the following function: wt(f) = |{x : f(x) = 1}|. Let’s denote Si = {f ∈
F|wt(f) = i}. We define the distinguishing advantage for two sets Si and Sj as

Definition 10 (Dist-i,j). Let Si be as defined above. We define the distinguishing advantage between

AdvqS0,S1
(A) def

=

∣∣∣∣ Pr
f←$Si

[
Af (·) = 1

]
− Pr
f←$Sj

[
Af (·) = 1

]∣∣∣∣ .
We derive the following lemma from Theorem 9.3.2 [KLM06].

Lemma 1 ([KLM06]). Let Si be as defined above. The advantage of any q query quantum
algorithm in distinguishing S0 from S1 is AdvqS0,S1

(A) ≤ 6q/
√
2n.

Avg − Searchλ will be used to prove SM-TCR in Appendix E and SM-UD will be bounded by
AdvqS0,S1

(A).

8.3 SM-UD

In this section we analyze the SM-UD property. In our reduction we need sets Sl0 and Sl1. Sli will
contain all functions f : [1, l] × {0, 1}n → {0, 1}n. Where f(j, ·), j ∈ [1, l] is a random function
from Si. We will now show that distinguishing f ←$ S

l
1 from f ←$ S

l
0 is as hard as distinguishing

f ←$ S1 from f ←$ S0.

Lemma 2. Consider sets S0, S1, S
l
0, S

l
1 as defined above. Then AdvqS0,S1

(A) = Advq
Sl0,S

l
1
(A).

Proof. Assume we can distinguish f ←$ S1 from f ←$ S0 with some algorithm A. Then to distin-
guish f ←$ S

l
1 from f ←$ S

l
0 we run A on f(1, ·). Hence, AdvqS0,S1

(A) ≤ Advq
Sl0,S

l
1
(A).

To show equality we now give the reduction in the opposite direction. Assume we can distinguish
f ←$ Sl1 from f ←$ Sl0. Our task is to distinguish f ′ ←$ S1 from f ′ ←$ S0. To build f from
f ′ we can sample zi ←$ {0, 1}n using a random function e : [1, l] 7→ {0, 1}n, i ∈ [1, l], and set
f(i, x)

def
= f ′(x ⊕ e(i)). One can see that if f ′ was a constant zero function then f is a collection of

constant zero functions, so f ∈ Sl0. If f ′ ∈ S1 then f(i, ·) outputs 1 for one random value since zi
were chosen uniformly at random, so f ∈ Sl1. Hence, AdvqS0,S1

(A) ≥ Advq
Sl0,S

l
1
(A).

Lemma 3. Let n ∈ N, H : P × T × {0, 1}n → {0, 1}n - a random hash function. Any quantum
adversary A that solves SM-UD for p targets making q queries to H can be used to construct a
quantum adversary B that makes 2q queries to its oracle and distinguishes S0 from S1 with an
advantage Advsm-ud

H,p (A) ≤ 12q/
√
2n .

Proof. We give a reduction that distinguishes S|T |0 from S
|T |
1 . The lemma follows then by applying

Lemmas 1 and 2. Assume we obtain a function f either from S
|T |
0 or from S

|T |
1 . We build the

reduction shown in Algorithm 4 for which we refer as quantum adversary B.
As in the single-target case we can see that for any f we construct a truly random tweakable

hash function. If f ∈ S|T |0 we answer the adversary with random values. If f ∈ S|T |1 we answer the
queries with outputs of the hash function on randomly chosen inputs.

Adv2q
S

|T |
0 ,S

|T |
1

(B) = | Pr
f←$S

|T |
0

[Bf () = 1]− Pr
f←$S

|T |
1

[Bf () = 1]| = Advsm-ud
H,p (A) .

Combining this with Lemmas 1 and 2 we obtain the final bound:

Advsm-ud
Th,p (A) ≤ Adv2q

S
|T |
0 ,S

|T |
1

(B) = Adv2qS0,S1
(B) ≤ 12q/

√
2n,

where q denotes the number of queries to Th.

Recovering the tight security proof of SPHINCS+ 25

Algorithm 4: Dist-1,0 to SM-UD
Input : f , SM-UD adversary A
Output: b′ ∈ {0, 1}n

1 Choose a random public parameter P ←$ P
2 Construct a random tweakable hash function H : P × T × {0, 1}n → {0, 1}n using random

function F : P × T × {0, 1}n → {0, 1}n and ey : T → {0, 1}n the following way:
3

H(p, t, x) :

{
if (p = P, f(t, x) = 1) : Return ey(t)
Return F (p, t, x)

4 Give oracle access to H to the adversary
5 For each query Ti respond with ey(Ti), i ∈ [1, p]
6 Give the public parameter P to adversary A2

7 return Output of A2

9 Constructions of tweakable hash functions

In the Section 8 we saw bounds for the security of random THFs for the different security properties.
In this section, we discuss how to construct THFs from typical hash functions. In this context we
recall two constructions from [BHK+19]. One construction uses a KHF H : K×{0, 1}α → {0, 1}n to
build a THF. The other starts from a plain, key-less hash function. Since the properties we require
go beyond those required in [BHK+19] we need to analyze those constructions again with respect to
the newly added properties. We focus on the following two constructions:

Construction 1 ([BHK+19]) Given two hash functions H1 : {0, 1}2n × {0, 1}α → {0, 1}n with
2n-bit keys, and H2 : {0, 1}2n → {0, 1}α we construct Th with P = T = {0, 1}n, as

Th(P, T,M) = H1(P ||T,M⊕), with M⊕ =M ⊕H2(P ||T)

Construction 2 ([BHK+19]) Given a hash function H : {0, 1}2n+α → {0, 1}n, we construct Th
with P = T = {0, 1}n, as

Th(P, T,M) = H(P ||T ||M)

Security of Construction 2 can only be shown in the (Q)ROM. Assuming that H behaves like
a random function, we can simply apply the bounds discussed in the last section. When analyzing
Construction 1, security can be based on the security of the used KHF in the QROM. In [BHK+19]
three constructions were analyzed, the third one missing here is a variant of Construction 1 that is
secure in the standard model at the price of huge public parameters. This third construction was
there to demonstrate that the only reason the QROM is needed in the analysis of Construction 1 is
to prove the parameter compression secure. Below, we determine the required properties of KHFs to
obtain the desired properties of the THF constructed via Construction 1.

9.1 Construction 1

First we recall the results from [BHK+19] that show under which conditions this construction is
SM-TCR and SM-DSPR. Afterwards we give bounds for SM-PRE and SM-UD. Below, we refer
to a property as “with tweak advice” if the adversary informs the oracle about all p keys or tweaks
it will use ahead of its queries.

26 A. Hülsing, M. Kudinov

SM-TCR security. To prove SM-TCR we use the DM-SPR property of the KHF. This property
is similar to SM-TCR. It is a TCR notion for KHFs where the adversary specifies the keys for which
he will obtain the challenges. For a formal definition of the property see Appendix C. The following
result has been shown in [BHK+19]:

Theorem 5. Let H1 and H2 be hash functions as in Construction 1 and Th the THF constructed by
Construction 1. Then the success probability of any q-query time-ξ (quantum) adversary A against
SM-TCR of Th with tweak advice is bounded by

Succsm-tcr
Th,p (A) ≤ InSecdm-spr(H1; ξ, p),

when modeling H2 as quantum-accessible random oracle and not giving A1 access to this oracle.

This result requires tweak advice for technical reasons. But this is sufficient for SPHINCS+ as all
the tweaks that are needed to construct the challenge are known ahead. A bound for DM-SPR for
a random function H was given in [BHK+19]: Succdm-spr

H,p (A) ≤ Θ((q+1)2

2n).

SM-DSPR security. SM-DSPR gets related to distinct function, multi-target decisional second-
preimage resistance (DM-DSPR). This is a DSPR property for KHFs where the adversary can define
the keys used for the challenges. See Appendix C for more details.

Theorem 6 ([BHK+19]). Let H1 and H2 be hash functions as in Construction 1 and Th the
THF constructed by Construction 1. Then the advantage of any q-query time-ξ (quantum) adversary
A against SM-DSPR of Th with tweak advice is bounded by

Advsm-dspr
Th,p (A) ≤ InSecdm-spr(H, ξ, p),

when modeling H2 as quantum-accessible random oracle and not giving A1 access to this oracle.

In [BHK+19] the bound for DM-DSPR of a random function is conjectured to be Succdm-spr
H,p (A) ≤

Θ((q+1)2

2n).

SM-PRE security. Since in the new proof of SPHINCS+ we also need the SM-PRE property
we have to analyze under which conditions Construction 1 will provide this property. To do so we
will need distinct function, multi-target preimage resistance (DM-PRE), a formal definition of the
property is given in Appendix C.

Theorem 7. Let H1 and H2 be hash functions as in Construction 1 and Th the THF constructed by
Construction 1. Then the success probability of any time-ξ (quantum) adversary A against SM-PRE
of Th with tweak advice is bounded by

Succsm-pre
Th,p (A) ≤ InSecdm-pre(H1; ξ, p) .

Proof. Assume we are given access to an adversary A against SM-PRE of Th with tweak advice.
We show how to construct an oracle machine MA that breaks DM-PRE of H1. This procedure is
presented in the Algorithm 5.

First we sample a random P ←$ {0, 1}n. For each tweak T that we receive from the adversary we
construct a key for H1: K = P ||T . Then we query the DM-PRE challenger with that key and obtain
y = H1(P ||T,M ′) for a random M ′. A expects y = H1(P ||T,M⊕) where M⊕ = M ⊕H2(P ||T) for
a uniformly random M . One can see that H2(P ||T) is independent of M and M =M⊕⊕H2(P ||T).
Since M ′ = M⊕ in this case and M ′ is a uniformly random message, M is uniformly distributed.
One can conclude that answering A with y does not change A’s behavior as y follows the same
distribution as in the original game.

Recovering the tight security proof of SPHINCS+ 27

Algorithm 5: Reducing DM-PRE to SM-PRE
Input : SM-PRE adversary A = (A1, A2), DM-PRE challenger C, Th, H1, H2

Output: M∗ ∈ {0, 1}α
1 Generate P ←$ {0, 1}n.
2 For each Ti obtained from A1 query C with P ||Ti.
3 For each query P ||Ti obtain yi from C
4 Return yi to A as an answer for query Ti
5 After all queries return P to A
6 Obtain the result (j,M ′) from A
7 return M∗ =M ′ ⊕H2(P ||Tj)

Since we consider SM-PRE with tweak advice we can collect all tweaks from A1, generate keys
K1, . . .Kp, query DM-PRE challenger with those keys, get the answer Y = {yi}pi=1 for that query
and return Y to A. In response, A produces an answer (j,M ′). If this is a preimage for Th, we
can obtain the preimage for H1 by calculating M∗ = M ′ ⊕ H2(P ||T). So we obtain the bound
Succsm-pre

Th,p (A) ≤ InSecdm-pre(H1; ξ, p).

The bound for DM-PRE of H modeled as a random function can be obtained by showing that
Succdm-pre

Th,p (A) ≤ Succdm-spr
Th,p (B) + 3 · Succdm-spr

Th,p (C) for some algorithms B and C. A proof that this
holds can be found in Appendix D. If we believe the Conjecture in [BHK+19] regarding the tight
bound for DM-DSPR then we obtain Succdm-pre

Th,p (A) ≤ Θ((q+1)2

2n).

SM-UD security. Another property to finalize the analysis of Th constructions for SPHINCS+
is SM-UD. For this part we will utilize the distinct function, multi-target undetectability property
(DM-UD). For a formal definition see Appendix C.

Theorem 8. Let H1 and H2 be hash functions as in Construction 1 and Th the THF constructed
by Construction 1. Then the following equality holds:

InSecsm-ud(Th; ξ, p) ≤ InSecdm-ud(H1; ξ, p).

Proof. Let’s analyze the distribution of y ← H1(P ||T, x), where x←$ {0, 1}α and y′ ← Th(P, T, x′),
where x′ ←$ {0, 1}α (for now we fix P and T).

We can show a bijection between the sets {y = H1(P ||T, x), x} and {y = Th(P, T, x′), x′}. The
bijection is x→ x⊕H2(P ||T). Note that

Th(P, T, x⊕H2(P ||T)) = H1(P ||T, x⊕H2(P ||T)⊕H2(P ||T)) = H1(P ||T, x) .

If x is a uniformly distributed random variable than x ⊕ H2(P ||T) is also a uniformly distributed
random variable. From this bijection we can conclude that for fixed P and T and randomly sampled
x we have the same distribution of outputs for Th and H1. Hence,

AdvTh(P,T,·),H1(P ||T,·)(A) = |Pr[A
ThP,T () = 1]− Pr[AH1P ||T () = 1]| = 0

The same argument applies if we have multiple pairs {P, Ti}pi=1

Assume we have the following distributions for some fixed set Q = {P, Ti}pi=1:

– X0 = {Th(P, Ti, xi)}pi=1, where xi ←$ {0, 1}α;
– X1 = {H1(P ||Ti, xi)}pi=1, where xi ←$ {0, 1}α;
– X2 = {yi}pi=1, where yi ←$ {0, 1}n.

28 A. Hülsing, M. Kudinov

Algorithm 6: Dist-1,0 to DM-UD
Input : f , DM-UD adversary A
Output: b′ ∈ {0, 1}n

1 Construct a random keyed hash function H : K × {0, 1}n → {0, 1}n using random function
F : K × {0, 1}n → {0, 1}n and ey : K → {0, 1}n the following way:

2

H(k, x) :

{
if (f(k, x) = 1) : Return ey(t)
Return F (k, x)

3 Give oracle access to H to the adversary
4 For each query ki respond with ey(ki, i ∈ [1, p])
5 return Output of A2

The adversary will work with exactly these distributions in the SM-UD or DM-UD game if he
queried the set Q during the first stage. First by the argument above

AdvX0,X1
(A) = AdvX1,X0

(A) = 0.

Next by the triangle inequality one can see that

AdvX0,X2(A) ≤ AdvX0,X1(A) + AdvX1,X2(A).

Since the AdvX0,X1
(A) = 0 we conclude that AdvX0,X2

(A) ≤ AdvX1,X2
(A). Applying the same

argument note that

AdvX1,X2
(A) ≤ AdvX1,X0

(A) + AdvX0,X2
(A) = AdvX0,X2

(A).

From the last two inequalities we conclude that AdvX0,X2(A) = AdvX1,X2(A). The above equality
holds for any set Q that defines the distribution of X0, X1, X2. The adversary playing the UD game
will specify the set Q by performing the queries to its oracle in the first stage. It is important to ob-
serve that AdvX0,X2

(A) = AdvSM-UD
Th,p ({A1,A2 = A}) while AdvX1,X2

(A) ≤ AdvDM-UD
H1,p ({A1,A2}).

The latter is due to the fact that AdvX1,X2
(A) = AdvDM-UD

H1,p ({A1,A2}) only when A2 = A and
A1 is restricted to queries of the form P ||Ti. Hence we can conclude that

InSecsm-ud(Th; ξ, p) ≤ InSecdm-ud(H1; ξ, p).

It remains to analyze the DM-UD property for H when modeled as a random function. We
can apply the same technics as for SM-UD case. We give a reduction that distinguishes S|K|0 from
S
|K|
1 .+ Assume we obtain a function f either from S

|K|
0 or from S

|K|
1 . We build the reduction shown

in Algorithm 6.
So we can conclude that Succdm-ud

H,p (A) ≤ 12q/
√
2n.

References

ABB+20. Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan
Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rech-
berger, Joost Rijneveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+. Submission to NIST’s
post-quantum crypto standardization project, v.3, 2020. http://sphincs.org/data/sphincs+
-round3-specification.pdf.

http://sphincs.org/data/sphincs+-round3-specification.pdf
http://sphincs.org/data/sphincs+-round3-specification.pdf

Recovering the tight security proof of SPHINCS+ 29

BH19a. Daniel J. Bernstein and Andreas Hülsing. Decisional second-preimage resistance: When does
SPR imply PRE? In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology –
ASIACRYPT 2019, Part III, volume 11923 of Lecture Notes in Computer Science, pages 33–62,
Kobe, Japan, December 8–12, 2019. Springer, Heidelberg, Germany.

BH19b. Daniel J. Bernstein and Andreas Hülsing. Decisional second-preimage resistance: When does
SPR imply PRE? Cryptology ePrint Archive, Report 2019/492, 2019. https://eprint.iacr.
org/2019/492.

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld, and
Peter Schwabe. The SPHINCS+ signature framework. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer and
Communications Security, pages 2129–2146. ACM Press, November 11–15, 2019.

DSS05. C. Dods, Nigel P. Smart, and Martijn Stam. Hash based digital signature schemes. In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796
of Lecture Notes in Computer Science, pages 96–115, Cirencester, UK, December 19–21, 2005.
Springer, Heidelberg, Germany.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th Annual ACM
Symposium on Theory of Computing, pages 212–219, Philadephia, PA, USA, May 22–24, 1996.
ACM Press.

HRS16. Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in hash-based
signatures. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, edi-
tors, PKC 2016: 19th International Conference on Theory and Practice of Public Key Cryptogra-
phy, Part I, volume 9614 of Lecture Notes in Computer Science, pages 387–416, Taipei, Taiwan,
March 6–9, 2016. Springer, Heidelberg, Germany.

Hül13. Andreas Hülsing. W-OTS+ - shorter signatures for hash-based signature schemes. In Amr Youssef,
Abderrahmane Nitaj, and Aboul Ella Hassanien, editors, AFRICACRYPT 13: 6th International
Conference on Cryptology in Africa, volume 7918 of Lecture Notes in Computer Science, pages
173–188, Cairo, Egypt, June 22–24, 2013. Springer, Heidelberg, Germany.

KKF20. Mikhail Kudinov, Evgeniy Kiktenko, and Aleksey Fedorov. [pqc-forum] round 3 official com-
ment: Sphincs+. https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/
documents/round-3/official-comments/Sphincs-Plus-round3-official-comment.pdf, 2020.
Accessed: 2022-2-1.

KLM06. Phillip Kaye, Raymond Laflamme, and Michele Mosca. An introduction to quantum computing.
Oxford University Press, 2006.

XY19. Keita Xagawa and Takashi Yamakawa. (Tightly) QCCA-secure key-encapsulation mechanism in
the quantum random oracle model. In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019, pages 249–268, Chongqing, China,
May 8–10 2019. Springer, Heidelberg, Germany.

Zha12. Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 758–775, Santa Barbara, CA, USA, August 19–
23, 2012. Springer, Heidelberg, Germany.

A Hash functions properties for the SPHINCS+ security proof

In this section we provide some informal description of SM-TCR, SM-PRE, SM-UD properties of
THFs, extending on the formal definitions in Section 2. Moreover, we give formal definitions of the
PRF and ITSR properties for KHFs.

SM-TCR. One can view SM-TCR as a variant of target-collision resistance. Consider an adversary
A which consists of two parts A1 and A2. A will play a two-stage game. In the first stage, A1 is
allowed to adaptively specify p targets (multi-target). The target specification is implemented via

https://eprint.iacr.org/2019/492
https://eprint.iacr.org/2019/492
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/official-comments/Sphincs-Plus-round3-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/official-comments/Sphincs-Plus-round3-official-comment.pdf

30 A. Hülsing, M. Kudinov

access to an oracle implementing the function with a fixed public parameter (single-function as the
same public parameter is used for all targets). The query consists of a tweak and a message. Every
query to this oracle defines a target. It is important that A is not allowed to query the oracle with
the same tweak more than once. The challenge is to find a collision for one of the suggested messages
under the corresponding tweak. This is the task of A2 which will obtain all the information from A1

as well as the public parameters.

SM-PRE. As for SM-TCR, SM-PRE is a two-stage game and can be seen as a variant of preimage
resistance. Adversary A1 is allowed to specify p targets during the first stage. The speciation is again
done querying an oracle with tweaks. The oracle implements a tweakable hash function with a fixed
public parameter. Each query is answered with a hash value of the public parameter, the queried
tweak and a random input. Again, the adversary is restricted in that it may only make one query per
tweak. The second stage A2 receives all the information from A1 as well as the public parameters
and has to output a preimage for one of the targets.

SM-UD. Also, SM-UD is a variant of an established notion, in this case undetectability [DSS05],
that makes use of a two stage adversary A = (A1,A2). During the first stage A1 specifies p targets
by querying an oracle with distinct tweaks. The oracle is implemented in one of two ways. The first
instantiation initially samples a public parameter. Given a tweak as query, the oracle samples a
uniformly random message and returns the result of applying the THF using the public parameter
and the given tweak. The second instantiation simply returns a uniformly random element from the
THF’s co-domain. Each query is answered with the result of processing the oracle on the queried
tweak and a random message. The advantage of the adversary is its ability to distinguish between
these two possible oracle instantiations.

ITSR. During the SPHINCS+ signature algorithm a message digest is computed. This message
digest is interpreted as leaves of one of the FORS structures. Interleaved target subset resilience
(ITSR) is the property of a hash function that computes the message digest. Assume that several
messages were mapped to some set of leaves of the FORS structures. We do not want the adversary
to be able to find a different message that maps to a subset of used leaves. The formal definition of
the property is given bellow.

Definition 11 (ITSR [BHK+19]). Let H : K×{0, 1}α → {0, 1}m be a keyed hash function. Also
consider a mapping function MAPh,k,t : {0, 1}m → {0, 1}h × [0, t − 1]k which maps an m-bit string
to a set of k indexes. We denote those indexes as ((I, 1, J1), . . . , (I, k, Jk)), where I is chosen from
[0, 2h − 1] and each Ji is chosen from [0, t− 1].

The success probability of an adversary A against ITSR of H is defined as follows. Let G =
MAPh,k,t ◦H. Let O(·) be an oracle which on input of an α-bit message Mi samples a key Ki ←$ K
and returns G(Ki,Mi). The adversary A is allowed to query the oracle with messages of its choice.
Denote the number of queries with q. Then,

SuccitsrH,q (A) = Pr[(R,M)← AO(·)(1n)

s.t. G(K,M) ⊆
q⋃
j=1

G(Kj ,Mj) ∧ (K,M) /∈ {(Kj ,Mj)}qj=1],

where {(Kj ,Mj)}qj=1 represent the responses of the oracle O(·).

PRF. Assume we have a KHF and we sampled a random key. If interactions with such subfunction
is computationally indistinguishable from interacting with a random function we call such KHF a
pseudorandom function. The formal definition of the property is given bellow.

Recovering the tight security proof of SPHINCS+ 31

Definition 12 (Keyed hash function). Let K be the key space,M the message space, and N the
output space. A keyed hash function is an efficient function

F : K ×M→ N

generating an n-bit value out of a key and a message.

In the following we give the definition for PRF security of a KHF F : K ×M → N . In the
definition of the PRF distinguishing advantage, the adversary A gets (classical) oracle access to
either F (S, ·) for a uniformly random secret key S ∈ K or to a function G drawn from the uniform
distribution over the set G(M,N) of all functions with domain M and range N . The goal of A is
to distinguish both cases.

Definition 13 (PRF). Let F be defined as above. We define the PRF distinguishing advantage
of an adversary A making q queries to its oracle as

Advprf
F,q (A) =

∣∣∣∣ Pr
S←$K

[AF (S,·) = 1]− Pr
G←$G(M,N)

[AG(·) = 1]

∣∣∣∣ .
B Security model

Here we define what a digital signature scheme is and the EU-CMA security model.

Definition 14 (Digital signature schemes). Let M be a message space. A digital signature
scheme Dss = (Kg, Sign, V f) is a triple of probabilistic polynomial time algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private key sk and a public key pk;
– Sign(sk,M) outputs a signature σ under secret key sk for message M ∈M;
– Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that ∀(pk, sk)← Kg(1n),∀(M ∈M) : Vf(pk,Sign(sk,M),M) = 1.

The standard security notion for digital signature schemes is existential unforgeability under
adaptive chosen-message attacks (EU-CMA) [GMR88]. The notion is defined using the following
experiment for signature scheme Dss. In the experiment, the adversary A is given access to a signing
oracle Sign(sk, ·) which is initialized with the target secret key. The q queries to Sign(sk, ·) are denoted
{Mi}qs1 . Following the reasoning above, even quantum adversaries are limited to classical queries to
this oracle as it simulates an honest and hence classical user.

Experiment ExpEU−CMA
Dss(1n) (A)

(sk, pk)← Kg(1n)
(M?, σ?)← ASign(sk,·)(pk)
Return 1 iff Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}qs1 .

Definition 15 (EU-CMA). Let Dss be a digital signature scheme. We define the success probability
of an adversary A against the EU-CMA security of Dss as the probability that the above experiment
outputs 1:

SuccEU−CMA
Dss(1n),q(A) = Pr

[
ExpEU−CMA

Dss(1n) (A) = 1
]
,

where q denotes the number of queries that A makes to its oracle Sign(sk, ·).

32 A. Hülsing, M. Kudinov

C Keyed Hash function properties

In this section we provide formal definitions of security properties for KHFs used in Section 9.
We define distinct-function, multi-target versions of second-preimage resistance, decisional second-
preimage resistance, preimage resistance, and undetectability.

Definition 16 (DM-SPR [BHK+19]). Let H : K × {0, 1}α → {0, 1}n be a keyed hash func-
tion. We define the advantage of any adversary A = (A1,A2) against distinct-function, multi-target
second-preimage resistance (DM-SPR). This definition is parameterized by the number of targets p.

SuccDM-SPR
H,p (A) =Pr [{Ki}pi=1 ← A1(), {Mi}p1 ←$ ({0, 1}α)p;

(j,M ′)←$ A2({(Ki,Mi)}pi=1) :M
′ 6=Mj

∧H(Kj ,Mj) = H(Kj ,M
′) ∧DIST({Ki}pi=1)] .

where we assume that A1 and A2 share state and DIST({Ki}p1) is as in SM-TCR.

Towards defining decisional second preimage resistance we need the notion of a second-preimage
exists predicate:

Definition 17 (SPexists for keyed hash functions [BHK+19]). The second-preimage-exists
predicate SPexists(H) for a keyed hash function H is the function SP : K×{0, 1}α → {0, 1} defined
as follows:

SPK(M) =

{
1 if |H−1K (HK(M))| ≥ 2

0 otherwise,

Definition 18 (DM-DSPR [BHK+19]). In the following let H be a keyed hash function as
defined above. We define the advantage of any adversary A = (A1,A2) against DM-DSPR of H.
The definition is parameterized by the number of targets p.

AdvDM-DSPR
H,p (A) def

= max{0, succ− triv},

where

succ =Pr[{Ki}p1 ← A1(); {Mi}p1 ←$ ({0, 1}α)p;
(j, b)← A2({(Ki,Mi)}p1) : SPKj (Mj) = b ∧DIST({Ki}p1)];

triv =Pr[{Ki}p1 ← A1(); {Mi}p1 ←$ ({0, 1}α)p;
(j, b)← A2({(Ki,Mi)}p1) : SPKj (Mj) = 1 ∧DIST({Ki}p1)];

and where DIST({Ki}p1) is defined as in SM-TCR.

Definition 19 (DM-PRE). Let H : K×{0, 1}α → {0, 1}n be a keyed hash function. We define the
advantage of any adversary A = (A1,A2) against distinct-function, multi-target preimage resistance
(DM-PRE). This definition is parameterized by the number of targets p. We denote A1’s output by
Q = {Ki}pi=1 and use the same predicate DIST as in previous definitions.

SuccDM-PRE
H,p (A) = Pr[{Ki}pi=1 ← A1(), {Mi}pi=1 ←$ ({0, 1}α)p;

(j,M ′)←$ A2({Ki, H(Ki,Mi)}pi=1) :

H(Kj ,M
′) = H(Kj ,Mj) ∧DIST(Q)] .

Recovering the tight security proof of SPHINCS+ 33

Definition 20 (DM-UD). Let H : K × {0, 1}α → {0, 1}n be a keyed hash function. We define
the advantage of any adversary A = (A1,A2) against distinct-function, multi-target undetectability
(DM-UD). This definition is parameterized by the number of targets p.

Consider an oracle O(K, {0, 1}), which works as follows: O(K, 0) returns H(K,Mi), whereMi ←$

{0, 1}α for each query i; O(K, 1) returns Yi, where Yi ←$ {0, 1}n for each query i. Algorithm A1 is
allowed to make p queries to the oracle O(·, b). The set of A1’s queries is denoted by Q = {Ki}pi=1.

AdvDM-UD
H,p (A) =

|Pr[S ← AO(·,0)
1 (); 1← A2(Q,S) ∧DIST(Q)]−

Pr[S ← AO(·,1)
1 (); 1← A2(Q,S) ∧DIST(Q)]|

D DM-PRE generic security

Here we show the relation between DM-SPR, DM-DSPR and DM-PRE, for completeness. The
whole section closely follows [BH19a]. We start with the following two reductions:

Definition 21 (p-target DM-SPR from DM-PRE (DM-SPfromPp)). Let H be a keyed
hash function. Let A = (A1,A2) be an algorithm that plays the DM-PRE game. Let p be a positive
integer. Let C be a DM-SPR challenger. Then DM-SPfromPp(H,A) is the following algorithm:

– Run A1 to obtain p keys {Ki}pi=1 and send them to C;
– On input {Ki,Mi}pi=1 from C run A2 on input {Ki, H(Ki,Mi)}pi=1;
– Output the (M ′, j) that A2 outputs.

Definition 22 (p-target DM-DSPR from DM-PRE (DM-DSPfromPp)). Let H be a
keyed hash function. Let A = (A1,A2) be an algorithm that plays the DM-PRE game. Let p be a
positive integer. Let C be a DM-DSPR challenger. Then DM-DSPfromPp(H,A) is the following
algorithm:

– Run A1 to obtain p keys {Ki}pi=1 and send them to C;
– On input {Ki,Mi}pi=1 from C run A2 on input {Ki, H(Ki,Mi)}pi=1;
– Obtain (M ′, j) from A2;
– Compute b← (M ′ 6=Mj);
– Output (j, b).

The following theorem closely follows the ideas from [BH19a].

Theorem 9 (DM-DSPR ∧DM-SPR ⇒ DM-PRE). Let H be a keyed hash function. Let
A = (A1,A2) be an algorithm that plays the DM-PRE game. Let p be a positive integer. Then

SuccDM-PRE
H,p (A) ≤ SuccDM-DSPR

H,p (B) + 3 · SuccDM-SPR
H,p (C),

where B = DM-DSPfromPp(H,A) and C = DM-SPfromPp(H,A).

Proof. We will only consider A that performs correct queries, i.e. DIST{Ki}pi=1 = 1. As in [BH19a]
we split the universe of possible events into mutually exclusive events across two dimensions: the
number of preimages of H(Kj ,Mj), and whether A succeeds or fails in finding a preimage. We define

Si
def
= [|H−1(Kj , H(Kj ,Mj))| = i ∧H(Kj ,M

′) = H(Kj ,Mj)]

34 A. Hülsing, M. Kudinov

and
Fi

def
= [|H−1(Kj , H(Kj ,Mj))| = i ∧H(Kj ,M

′) 6= H(Kj ,Mj)]

We denote with si and fi the probabilities of Si and Fi respectively.

DM-PRE success probability. By definition the DM-PRE success probability of algorithm A
is
∑
i si.

DM-SPR success probability. The DM-SPR success probability of C can be calculated as∑
i>1

i−1
i si.

DM-DSPR success probability. The success probability of B against DM-SPR can be calcu-
lated as s1 +

∑
i>1

i−1
i si +

∑
i>1 fi. The trivial function probability is

∑
i>1 si +

∑
i>1 fi. Hence,

the advantage of B against DM-DSPR is s1 −
∑
i>1

si
i .

Combining the probabilities.

AdvDM-DSPR
H,p (B) + 3 · SuccDM-SPR

H,p (C) ≥ s1 −
∑
i>1

1

i
si + 3 ·

∑
i>1

i− 1

i
si

= s1 +
∑
i>1

3i− 4

i
si

≥ s1 +
∑
i>1

si ≥ SuccDM-PRE
H,p (A)

E SM-TCR

In this section we analyze the SM-TCR property. It was previously analyzed in [BHK+19] but it had
a limitation that A1 does not get quantum access to Th. We overcome this limitation. To show the
estimated hardness of the SM-TCR problem we will do perform a reprogramming of a quantumly
accessible oracle. Consider the following games for a two staged adversary A = (A1,A2):

Game 0: P ←$ P;S ← ATh(·,·,·), Th(P,·,·)
1 (); b ← ATh(·,·,·)

2 (Q,S, P), b ∈ {0, 1}, where Q =
{(Ti,Mi)}pi=1 - are A’s queries to Th(P, ·, ·). Here A gets quantum access to Th and classi-
cal access to Th(P, ·, ·).

Game 1: Adversary gets access to the tweakable hash function. It makes q queries to the tweakable
hash function Th and p queries {Ti,Mi}pi=1 to the oracle Th(P, ·, ·), which specify the challenges.
Such queries are handled differently from Game 0. In this case, instead of responding with
Th(P, Ti,Mi) a value g(Ti,Mi) = yi is returned, where g : T × {0, 1}α → {0, 1}n is a random
function. After all p challenge queries are made the Th is reprogrammed into Th′ using a random
function g the following way:

Th′(pp, t, x)

{
if (pp = P) : Return g(t, x)
Return Th(pp, t, x)

So we have the following game:
P ←$ P;S ← A

Th(·,·,·), g(·,·)
1 (); b ← ATh′(·,·,·)

2 (Q,S, P), b ∈ {0, 1}, where Q = {(Ti,Mi)}pi=1 -
queries to Th(P, ·, ·). Where A gets quantum access to Th and Th′ and classical access to g(·, ·).

Lemma 4. SuccfP−f0(A) = |Pr [A (G0) = 1]− Pr [A (G1) = 1]| ≤ δ, where δ = 4q2/|P|

To prove Lemma 4 first consider the following two oracles: fP : P → {0, 1}, where fP (pp) = 1 iff
pp = P and f0 : P → 0, which is a constant zero function. These two cases are hard to distinguish
for a random choice of P . According to [HRS16] Eq. (**)

Recovering the tight security proof of SPHINCS+ 35

Pr[b = 1 : P ←$ P, S ← AfP1 (·), b← A2(P, S)] (13)

−Pr[b = 1 : P ←$ P, S ← Af01 (·), b← A2(P, S)]

≤4q2/|P| = δ

Proof. Assume we have an adversary A = {A1, A2} for which

|Pr [A (G0) = 1]− Pr [A (G1) = 1]| > δ

then we can build an adversary B that violates the bound from Eq. (13). Let f be either fP or f0.
B = {B1,B2} is a two staged adversary, where B1 has access to f and B2 obtains P . We define T̂h to
be a random tweakable hash function, g : T ×{0, 1}α → {0, 1}n is a random function. B1 constructs
Th from f the following way: Th(pp, t, x) = T̂h(pp, t, x) if f(pp) = 0 and g(t, x) if f(pp) = 1. B1
runs ATh(·,·,·),g(·,·)

1 . When A1 finishes its work B obtains public parameter P as in Eq. (13). So B
can build

Th′(pp, t, x) =

{
if pp = P : Return g(t, x)
Return T̂h(pp, t, x)

So B2 provides A2 with Th′ and P . Now lets analyze the cases when f = fP and when f = f0.
If f = fP then g is a subfunction of Th and Th′ = Th. Which is exactly the GAME 0 for the

adversary A. If f = f0 then g outputs independent random values from Th but these values are
consistent with Th′(P, ·, ·) which is exactly the situation in GAME 1.

So B outputs the same value as A and hence distinguishes fP from f0 with probability> δ which
is a contradiction.

Now we are ready to prove the following lemma.

Lemma 5. Let Th be a tweakable hash function. Any quantum adversary A that solves SM-TCR
making q quantum queries to Th can be used to construct a quantum adversary B and C such that
SuccAvg−Search1/2n (B) + SuccfP−f0(C) ≥ Succsm-tcr

Th,p (A), where B is a 2q-query adversary and C is
a 2q-query adversary. So we get

Succsm-tcr
Th,p (A) ≤ 32(q + 1/2)2

2n
+ 16q2/|P|

Proof. For this proof we define two games:

Game 0: Original SM-TCR game.
Game 1: Adversary gets access to Th. It makes q queries to Th and makes p queries {Ti,Mi}pi=1

to the oracle Th(P, ·, ·), which specify the challenges. Such queries are handled differently
from Game 0. In this case instead of responding with Th(P, Ti,Mi) a value g(Ti,Mi) = yi
is returned, where g : T × {0, 1}α → {0, 1}n is a random function. After all p challenge
queries are made Th is reprogrammed into Th′ using a random function g the following way:

Th′(pp, t, x)

{
if (pp = P) : Return g(t, x)
Return Th(pp, t, x)

So we have the following game:

Pr[P ←$ P;S ← A
Th(·,·,·),g(·,·)
1 ();

(j,M)← ATh′

2 (Q,S, P) : Th′(P, Tj ,Mj) = Th′(P, Tj ,M)

∧M 6=Mj ∧DIST({Ti}pi=1)]

36 A. Hülsing, M. Kudinov

Algorithm 7: AvgSearch to SM-TCR
Input : f ← Dλ : [p]× {0, 1}α → {0, 1}, SM-TCR adversary A
Output: b′ ∈ {0, 1}n

1 Generate a random tweakable hash function Th, MDi ←$ {0, 1}n, i ∈ [1, p] and random
functions gi : {0, 1}α → {0, 1}n/MDi, i ∈ [1, p].

2 Give an oracle access to Th for A1, handle the queries {Ti,Mi} to the challenge oracle
Th(P, ·, ·) by responding with MDi for i-th query.

3 After A1 stops construct g : T × {0, 1}α → {0, 1}n using a random function
g′ : T × {0, 1}α → {0, 1}n the following way:

g(t,m) :


if (t = Ti ∧m =Mi) Return MDi

if (t = Ti ∧ f(i,m) = 1) Return MDi

if (t = Ti) Return gi(m)

else Return g(t,m)

4 and a THF Th′ as Th′(pp, t, x) :

{
if (p = P) : Return g(t, x)
Return Th(pp, t, x)

5 Give oracle access to Th′ for A2.
6 Output ATh′

2 (Q,S, P)

The difference in success probabilities of A in these two games can be limited by SuccfP−f0(C) as
shown in the proof of Lemma 4, where C runs A on obtained oracles and outputs 1 whenever A
succeeds.

Now we have to limit the success probability in Game 1. To do so we will utilize theAvg − Search1/2n
problem. Consider Algorithm 7 which we define to be algorithm B. Whenever A succeeds in finding
a collision the result is actually a solution for the Avg − Search1/2n problem. Hence, we get

Pr[P ←$ P;S ← A
Th(·,·,·),g(·,·)
1 ();

(j,M)← ATh′

2 (Q,S, P) : Th′(P, Tj ,Mj) = Th′(P, Tj ,M)

∧M 6=Mj ∧DIST({Ti}pi=1)] ≤ Succ2q1/2n(B) ≤
32(q + 1/2)2

2n

Combining the obtained result we get the desired bound.

F Attacks on the PRF and UD properties

In this section we will describe generic attacks on PRF and UD properties of random functions. This
will lead to a lower bound on InSec of those properties. In both cases we will use preimage search
which can be done using Grover [Gro96].

F.1 Generic attack on the UD property

First we start our discussion by presenting a generic attack on a keyed hash function. We give a
definition and propose an attack. We first describe an attack when there is only one target. This
case provides an intuition for the multi-target case which we describe later. After analyzing keyed
hash function case we describe the situation with the tweakable hash function which is mostly the
same.

Recovering the tight security proof of SPHINCS+ 37

Keyed hash function
In the following let H be a keyed hash function H : K × {0, 1}n → {0, 1}n. Let’s first consider a

case where number of targets p = 1. For Hk we denote the size of its range as (1− εk) · 2n. We will
denote actual range of Hk as Rk and a set of values in codomain but out of the range as Rk. And
assume we have an algorithm B that for ∀k ∈ K and ∀y ∈ Rk finds x : Hk(x) = y with probability
γ. Then we can build an algorithm MB that solves the DM-UD property with probability at least
εk · γ.

One can see that

Advdm-ud
H,1 (A) = |Pr[1← A(k, y); k ∈ K|y ←$ Rk] · Pr[y ∈ Rk; y ←$ {0, 1}n]+
Pr[1← A(k, y); k ∈ K|y ←$ Rk] · Pr[y ∈ Rk; y ←$ {0, 1}n]−
Pr[1← A(k, y)|y = Hk(x); k ∈ K, x←$ {0, 1}n]|

Our algorithm MB works the following way, it runs B(k, y) and if it outputs a correct preimage
than MB outputs 1 and 0 otherwise.

Pr[1←MB(k, y); k ∈ K|y ←$ Rk] · Pr[y ∈ Rk; y ←$ {0, 1}n] = γ · (1− εk)
Pr[1←MB(k, y); k ∈ K|y ←$ Rk] · Pr[y ∈ Rk; y ←$ {0, 1}n] = 0

Pr[1←MB(k, y)|y = Hk(x); k ∈ K, x←$ {0, 1}n] = γ

|γ(1− εk) + 0− γ| = |γ − γ · εk − γ| = εk · γ

For the multitarget case we can just pick a random target and preform an attack as it was the
only one. According to Theorem 19 in [BH19b] we estimate εk ≥ (1− 1/e)/2 for any k.

In case your preimage search algorithm succeeds with very high probability, for example if B can
find a preimage if there exists one with probability γ = 1, we can get a better success probability
with multiple targets. This will require p runs of a preimage search algorithm.

In the multitarget case we build M ′B that behaves the following way. On obtaining p targets it
runs a preimage search on each of them. In case it doesn’t find a preimage on at least one of those
than the algorithm outputs 0 and if the algorithm finds a preimage for all of the targets then it
outputs 1.

Advdm-ud
H,p (A) = |Pr[1← A({k1, y1}, . . . {kp, yp}); ki ←$ K|yi ←$ Rki]·
Pr[yi ∈ Rki ; yi ←$ {0, 1}n, i ∈ [1, p]]+

Pr[1← A({k1, y1}, . . . {kp, yp}); ki ←$ K|yi ←$ Rki]·
Pr[∃i : yi /∈ Rki ; yi ←$ {0, 1}n, i ∈ [1, p]]−
Pr[1← A({k1, y1}, . . . {kp, yp}); ki ←$ K, yi = Hki(xi), xi ←$ {0, 1}n, i ∈ [1, p]]|

Let’s compute the probabilities.

Pr[1←M ′B({k1, y1}, . . . {kp, yp}); ki ←$ K|yi ←$ Rki]·
Pr[yi ∈ Rki ; yi ←$ {0, 1}n, i ∈ [1, p]] = (1− εk1) · . . . · (1− εkp) · γp

Pr[1←M ′B({k1, y1}, . . . {kp, yp}); ki ←$ K|yi ←$ Rki]·
Pr[∃i : yi /∈ Rki ; yi ←$ {0, 1}n, i ∈ [1, p]] = 0

38 A. Hülsing, M. Kudinov

Pr[1←M ′B({k1, y1}, . . . {kp, yp}); ki ←$ K, yi = Hki(xi), xi ←$ {0, 1}n, i ∈ [1, p]] =

γp · |(1− εk1) · . . . · (1− εkp) · γp + 0− γp| = γp(1− (1− εk1) · . . . (1− εkp))

Twekable hash function
Similarly to the keyed hash function case we can perform an attack on one of the targets or on

all of the targets. We will describe a multitarget attack but one can assume that p = 1 and obtain
a bound for one target. M ′′B runs a preimage search on each of the targets and in case it can find
preimages for all of the challenges it outputs 1.

Pr[1←M ′′B({P, T1, y1}, . . . {P, Tp, yp}); |yi ←$ RP,Ti] · Pr[yi ∈ Rki ; yi ←$ {0, 1}n, i ∈ [1, p]] =

(1− εP,T1
) · . . . · (1− εP,Tp) · γp

Pr[1←M ′′B({P, T1, y1}, . . . {P, Tp, yp}); |yi ←$!RP,Ti]·
Pr[∃i : yi /∈ RP,Ti ; yi ←$ {0, 1}n, i ∈ [1, p]] = 0

Pr[1←M ′′B({P, T1, y1}, . . . {P, Tp, yp}); , yi = Th(P, Ti, xi), xi ←$ {0, 1}n, i ∈ [1, p]] =

γp|(1− εP,T1
) · . . . · (1− εP,Tp) · γp1 + 0− (1− γp)| = γp(1− (1− εP,T1

) · . . . · (1− εP,Tp))

Again according to Theorem 19 in [BH19b] we estimate 1 − εP,Ti ≤ (1 + 1/e)/2 with an over-
whelming probability. So we get for B be a q-query Grover search algorithm.

Advsm-ud
Th,p (M

′′B) ≥ (
q2

2n
)p · (1− (

1− 1/e

2
)p) ≥ (

q2

2n
)p · (1− 0, 68p)

F.2 Generic attack on the PRF property

Definition 23 (PRF). Let F be defined a keyed hash function. We define the PRF distinguishing
advantage of an adversary A making p queries to its oracle as

Advprf
F,p(A) =

∣∣∣∣ Pr
S←$K

[AF (S,·) = 1]− Pr
G←$G(M,N)

[AG(·) = 1]

∣∣∣∣ .
As in previous subsection we assume that we have an algorithm B that finds a preimage S such

that F (S, xi) = yi, i ∈ [1, p] with probability γ. Assume |K| = 2k.
The adversary gets an output yi for query xi, where yi = F (S, xi) or yi = G(xi). Let’s first

compute the probability that given {x1, y1}, . . . , {xp, yp} there exists a value S such that F (S, xi) =
yi, assuming F is a random function.

Pr[∃S : F (S, x1) = y1] = 1− Pr[@S : H(S, x1) = y1] =

1− Pr[H(1, x1) 6= y1] · . . . · Pr[H(2k, x1) 6= y1] = 1− (1− 1/2n)2
k

Recovering the tight security proof of SPHINCS+ 39

Assuming 2k ≈ 2n and n ≥ 256 this leads to

Pr[∃S : F (S, x1) = y1] ≈ 1− 1/e ≈ 0, 63

Pr[F (i, x1) = y1 ∧ . . . ∧ F (i, xp) = yp] = (
1

2n
)p

Pr[F (i, x1) 6= y1 ∨ . . . ∨ F (i, xp) 6= yp] = 1− (
1

2n
)p

Pr[∃S : F (S, x1) = y1 ∧ . . . ∧ F (S, xp) = yp] =

1− Pr[@S : F (S, x1) = y1 ∧ . . . ∧ F (S, xp) = yp] =

1− Pr[(F (1, x1) 6= y1 ∨ . . . ∨ F (1, xp) 6= yp)

∧ . . .∧
(F (2k, x1) 6= y1 ∨ . . . ∨ F (2k, xp) 6= yp)] =

1− (1− (
1

2n
)p)2

k

≈ 1− (
1

e
)1/p

We build an algorithm M̂B that obtains ({x1, y1}, . . . , {xp, yp}) from oracle and tries to fins S
such that F (S, xi) = yi for ∀{xi, yi}, i ∈ [1, p]. In case it finds such S then it outputs 1 meaning
that this is a PRF function and 0 otherwise. Let’s analyse the probabilities.

Pr[1← M̂B, F (S,·)] = γ

Pr[1← M̂B, G(·)] = (1− (1− (
1

2n
)p)2

k

) · γ ≈ (1− (
1

e
)1/p) · γ

γ − (1− (
1

e
)1/p) · γ = (

1

e
)1/p · γ

By setting B to be a q-query Grover search algorithm we obtain

Advprf
F,p(M̂

B) ≥ (
1

e
)1/p · q

2

2n
.

	Recovering the tight security proof of SPHINCS+

