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Abstract. PlonK is a universal and updatable zk-SNARK for general circuit satisfiability that allows
a verifier to check the validity of a certain NP statement very efficiently, optionally in zero-knowledge.
PlonK requires that the NP relation of interest be expressed as a system of so-called PlonK constraints.
Such conversion is complex and can be implemented in various ways, having a great impact on the prover
complexity (which is typically linearithmic in the number of PlonK constraints).
We propose several general results for simplifying PlonK constraint systems, which produce more
compact but equivalent systems and can lead to significant performance improvements. We also develop
an automated optimizer of constraints, based on our techniques, that can be used to construct very
compact and less error-prone constraint systems, favoring a more auditable circuit design.
Finally, we demonstrate the potential of our techniques by implementing optimized constraint systems
for the Poseidon hash, obtaining the most compact representations in the Turbo-PlonK model with
minimal custom gates. En route, we devise a novel optimization idea for implementing Poseidon partial
rounds and show that it can be applied to both simplifying SNARK circuits and achieving performance
improvements in CPU implementations of the Poseidon hash.

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) [GGPR13, BCG+13, PHGR13, Gro16] are a
class of non-interactive arguments of knowledge systems with generally constant communication complexity
and logarithmic verification complexity. This comes at the cost of a significantly slower prover, compared to
other zero-knowledge proof systems with higher communication complexity [JKO13, GMO16, CGM16].

To be secure, SNARKs usually require a so-called structured reference string (SRS), usually comprising the
successive powers of, which if known would break soundness. The generation of such SRS is usually performed
collaboratively through a multi-party computation (MPC) protocol in so-called setup ceremonies [BGM17].
These ceremonies require a significant effort and can last for several months [Com16, Fil20, Azt20].

The first SNARKs required a new SRS for every different NP relation to be proven, however, recent
designs [MBKM19, GKM+18, GWC19, CHM+20] use an SRS that is universal and can encode any circuit
(of bounded size). Furthermore, the SRS of these new constructions is updatable and can be upgraded
without having to perform a new setup ceremony. Other works [BCR+19, BDFG21] even allow for an SRS
to be subversion-resistant [ALSZ21] or in the transparent setting [BFLS91], that can be generated from
cryptographic hash functions, without a trusted setup.

PlonK [GWC19], which stands for Permutations over Lagrange-bases for Oecumenical Non-interactive
arguments of Knowledge, is a universal and updatable zero-knowledge SNARK for general circuit satisfiability.
Given its significant improvements with respect to its predecessor Sonic [MBKM19], especially on prover
efficiency, PlonK has become very popular and has been adopted by several state-of-the-art blockchain
projects such as Zcash [HBHW22], Mina [BMRS20], the Dusk Network [MKF21] or Anoma [GYB21].

In PlonK’s original paper, circuits are expressed in terms of a 2 fan-in 1 fan-out parametric arithmetic
gate over an algebraic field (typically, the scalar field of an elliptic curve). The whole constraint system
is transformed into polynomials which are then committed using a polynomial commitment scheme and
evaluated on a random point during the proving process. On the one hand, the circuit polynomials and
commitments, which correspond to the public circuit parameters, are computed in a preprocessing phase.
On the other hand, the polynomials associated to the witness of the NP relation, their commitments and
their evaluations are computed by the prover.



Using Fast Fourier Transforms for the polynomial conversion and efficient polynomial multiplication, and
computing the commitments with KZG [KZG10], the prover complexity is in O(kn · logn) scalar operations
for the former and O(kn) group operations for the latter where k is the number of wires, and n the number
of constraints.

As the gate fan-in/fan-out is limited, the arithmetization of cryptographic primitives may be inefficient
and require a significant number of constraints. PlonK extensions have been developed to alleviate this issue.
Turbo-PlonK [GW19], for instance, allows the use of custom gates to express the same statement in fewer
constraints. Many implementations [HBHW22, BMRS20] rely on this extension to enable efficient elliptic
curve operations or hashing.

The circuit is furthermore limited by the SRS size. Indeed, as the polynomials are committed with the
SRS, the number of constraints in a circuit is upper-bounded by the size of the SRS. As the SRS cannot
be easily replaced (in a trustworthy manner), its size has direct implications on the circuit and thus on the
SNARK’s scope. As such, a compact representation of circuits is paramount to make PlonK-based SNARKs
more practical. This is the subject of this paper.

1.1 Applications of SNARKs

A number of blockchain projects have jumped on the opportunity of using zk-SNARKs, and leverage the
unique properties that zero-knowledge proofs provide, for various applications. From identification to storage
(Filecoin [Lab17]) as well as private transactions (Zcash [HBHW22]). Unlike other alternative ZK proving
systems, zk-SNARKs enjoy extremely efficient verification times and very compact proofs, this makes them
particularly suitable for on-chain validation.

The prover is however significantly slower, typically, linearithmic in the number of polynomial constraints
necessary to model the circuit associated to the NP relation. Furthermore, in most SNARK implementations,
these polynomial constraints live over the scalar field of an elliptic curve, this makes it expensive to implement
circuits that contain Boolean operations, since these must be simulated using scalar values over a much bigger
domain. Consequently, modeling standard cryptographic primitives such as AES, SHA2 or Blake or standard
digital signatures with SNARKs is costly. Alternatively, many blockchain systems have opted for adopting
less standard but more SNARK-friendly hash functions such as Poseidon [GKR+21], Rescue [BCL+20] or
Sinsemilla [HBHW22]. Furthermore, SNARKs are typically efficient over their native scalar field. Modelling
algebraic operations over different fields would incur significant overheads. Consequently, a common solution
is to implement the desired (algebraic) cryptographic primitives over a curve designed to be compatible with
another curve. An example is the Jubjub curve, whose base field was designed to be compatible with the
scalar field of BLS13-381.

Hash functions are an essential building block for blockchain applications, as they are the basis for Merkle-
tree-based set accumulator schemes and signature schemes. Although SNARK-friendly hash functions can
be implemented significantly more efficiently than their more standard counterparts, they are still one of the
main bottlenecks [WS21, Zca21].

For these reasons, it is important to develop new techniques that allow us to model efficient and compact
circuits of such primitives.

1.2 Our contributions

We pursue the study of PlonK-based constraint systems and propose several general results that can lead
to performance improvements and more compact proving systems.

Simplification of PlonK constraint systems. We propose generic optimization mechanisms to simplify Turbo-
PlonK constraint systems. Our techniques can reduce the number of constraints and variables in the arith-
metization, while preserving the satisfiability of the underlying system of polynomials equations induced by
them (therefore preserving the NP relation being proved).

Our simplifications exploit the fact that Turbo-PlonK constraints can access the wires corresponding to
the next constraint in the system. We revisit this idea, originally proposed in [GW19], which opens many
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new opportunities for optimization, e.g., by sharing wires across constraints (see Section 3.1). Furthermore,
we show how different constraints with unused wires can be combined together if they are “compatible”; and
how abandoning the input/output wires abstraction and thinking of constraints as the polynomial equations
they induce can be advantageous, e.g., applying Gaussian elimination on such equations can lead to equations
that can be modeled with fewer constraints.

Automated optimizer of constraints. We propose an automated mechanism for applying the above simplifica-
tion techniques, abstracted out as simple rewriting rules (Section 3.2). This allows a user to design circuits in
the original and less error-prone (but unoptimized) input/output abstraction based on arithmetic gates and
then use our automated optimizer to benefit from our simplification techniques. Furthermore, our automated
optimizer can lead to simplifications that could hardly be implemented manually, for example, by identifying
separate parts of the circuit that can be combined together.

Optimized circuits for the Poseidon hash. We demonstrate the potential of our techniques by implementing
optimized circuits for the Poseidon hash. En route, we devise a novel idea for implementing partial rounds,
coined the linear skip (Section 4.2), that leverages the fact that partial rounds are almost linear functions,
and the composition of linear functions is again a linear function. To the best of our knowledge, this technique
has not been used in existing PlonK-based implementations of the Poseidon circuit [Dus21, Zca21, WS21]
and has not been considered in the literature.

Remark 1. This work is part of a library implemented by the Nomadic Labs’ Crypto Team [Nom22b],
designed to develop private transactions (based on the Sapling protocol by Zcash [HBHW22]) and zero-
knowledge rollups over the Tezos blockchain [Goo14]. The current proposal uses Merkle-trees as set accumu-
lators and Schnorr signatures for validating the authenticity of transactions. Both primitives heavily rely on
a secure hash function, which as been chosen to be Poseidon. This justifies our efforts to optimize constraint
systems and the choice of the Poseidon hash as our use case in this paper.

1.3 Related work

Zero-knowledge arguments. Zero-knowledge arguments were introduced by Goldwasser, Micali and Rackoff
in 1985 [GMR85]. They allow a prover to convince a verifier of the validity of a certain statement without
revealing any other information, e.g., why the statement is true. A few years later, Blum, Feldman and
Micali [BFM88], extended this notion and considered non-interactive zero-knowledge arguments (NIZK),
where the communication between the two parties is unilateral: the prover produces a “certificate” of the
validity of the statement, that can be verified by everyone.

Existing generic protocols that implement zero-knowledge argument systems [BFM88, DMP90, FLS90]
for any NP relation have been perceived as mainly theoretical results for many years, given that they used
to involve expensive NP reductions and required several executions of the same routine in order to achieve
reasonable soundness. Only special purpose protocols for specific NP languages [Sch91, Cra97, CDS94, GS08]
were considered efficient enough for practical deployment, and they have been widely used for building digital
signatures and anonymous credentials.

Recently, we have witnessed significant improvements on the design of efficient general-purpose zero-
knowledge proof systems which enjoy varying degrees of practicality [Gro16, BCG+17, BBB+18, MBKM19,
LMR19]. Such improvements have been motivated by the increasing development of blockchain systems that
demand zero-knowledge arguments to achieve privacy and scalability [BCG+14, DFKP13]. In these systems,
communication complexity is one of the most important performance factors, which has led to an increasing
interest and remarkable progress in so-called succinct non-interactive arguments of knowledge (SNARKs);
or zk-SNARKs, if they provide zero-knowledge.

PlonK family. A number of projects has branched out since PlonK’s release.
Following Turbo-PlonK, Plookup [GW20], in 2020, allows the use of look-up tables and as such facilitates

range checks and queries with the use of new identities.
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Several polynomial commitments schemes, SHPlonk [BDFG20] and FFlonk [GW21a], released in 2020
and 2021, implicitly target PlonK. FFlonk and SHPlonk are variants of the KZG protocol that respectively
allow the opening multiple polynomials at a single point, via an “FFT-like identity”, and the opening of
multiple polynomials at multiple points at lower verifier cost. However, these variants usually increase the
cost of the prover or the verifier, so they may be applicable to specific scenarios only.

Updates to the original protocol were also released over the years. This include more efficient methods
to handle zero-knowledge, published by Mina in 2020 [pro20], and public inputs, published by Gabizon and
Williamson in 2021 [GW21b].

The Electric Coin Company changed their proving system from Groth16 to PlonK in 2020 when pub-
lishing Halo2 [BGH]. This project presents a different “PLONKish” arithmetization and allows recursion.
Plonkup [PFM+22], in 2022, presented an implementation of PlonK with Turbo-PlonK and Plookup. Mir
protocol released in 2022 Plonky2 [pro22] a variant of PlonK using Fast Reed-Solomon Interactive proofs
(FRI) also enabling recursion.

R1CS vs PlonK’s constraint system. Groth16 and PlonK are the two main proof systems used in the
blockchain world. They differ in many points, including the universality of the setup, but especially in
their arithmetization. PlonK uses an algebraic gate which corresponds to the equality of the addition and
multiplication of two input and with an output variable while Groth16 uses Rank 1 Constraint Systems
(R1CS) which corresponds to the equality of the multiplication of the sum of n variables with another sum.
As such, it is hard to compare these constraint systems.

R1CS can encode linear combinations of any size without an additional overhead, whereas PlonK is
limited by the number of wires in the gate’s architecture. However, PlonK offers custom gates which allow
the verification of complex, potentially non-linear, operations in one constraint. Lookups can also be efficiently
used with PlonK’s extension, Plookup, decreasing the cost of binary operations such as decompositions as
well as facilitating standard cryptography such as Pedersen hash (c.f. Sinsemilla).

Alternative efficient implementations of Poseidon. In the original Poseidon paper [GKR+19, Appendix B],
the authors propose an optimization that exploits the structure of partial rounds and the fact that they
only involve one S-box. This idea, inspired by a similar technique proposed for LowMC [DKP+19], consists
of rearranging the structure of the constant and linear layers in order to express the (linear part) of partial
rounds as the multiplication by a very sparse matrix. This can greatly reduce the number of operations
required for its evaluation.

This technique is similar to our proposed optimization called the linear skip, where such (linear part)
of partial rounds is replaced by the identity matrix at the cost of carrying a computation for the next
layer. Another fundamental difference between the two mechanisms is that our linear skip can be applied to
jumping over several partial rounds (at the cost of carrying a bigger linear computation with every skipped
round).

2 Preliminaries

2.1 Notation

We consider bilinear groups (G1,G2,Gt, e : G1×G2 → Gt) of prime order p. We use additive notation for all
three groups. Throughout the paper, all polynomial equations will have coefficients over the scalar field Zp.

We use bold case for vectors. Given a vector x over some n dimensional vector space, we denote by xi

it’s i-th coordinate, for all i ∈ [n]. We denote concatenation as ∥, used as a separator of elements of the same
type (typically constraints).

2.2 Hades strategy

Confusion and diffusion [Sha49] are two key properties when building cryptographic primitives. One of the
simplest ways to achieve both is to use a substitution-permutation network (SPNs). This approach has been

4



ARC

S S S · · · S

MDS

(a) Poseidon full round.
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(b) Poseidon partial round.

Fig. 1: Poseidon rounds. ARC adds a round-dependent constant to each state element, S is a non-linear
function, typically x 7→ x5 and MDS is a linear function applied to all the elements in the register.

recently revisited in the case of algebraic hash functions in an effort to reduce the number of permutations.
These partial SPNs (P-SPNs) gave birth to Zorro in 2013, LowMC in 2015 and MiMC in 2016 to cite a few.
These P-SPNs are lighter in computational cost, but are also more difficult to analyze security-wise and are
sometime vulnerable to attacks [EGL+20].

Grassi et al. presented in 2020 the HADES Design Strategy together with an analysis framework built
upon the wide trail design strategy. The Hades strategy is organized in layers, with so-called partial rounds
(P-SPNs) surrounded by full rounds (SPNs) to prevent statistical attacks. They instantiated HadesMiMC
and compared it in an MPC setting with MiMC, GMiMc and rescue showing a higher runtime and lower
communication cost.

2.3 Poseidon

Poseidon [GKR+21] is an algebraic hash function family presented by Grassi et al. in 2020 relying on the
Hades Design strategy. In particular, Poseidon consists of a substitution-permutation network applied to a
state with w registers. Such network combines so-called full rounds with partial rounds. In a full round the
state is modified by adding a constant to each register element, applying a non-linear function (S-box) to
each of them and a linear linear layer involving all the elements in the state. Partial round are similar, but
only apply the non-linear S-box to one of the register elements (see Figure 1).

The use of partial rounds aims at reducing the number of non-linear (and more expensive) operations. For
this reason, it is particularly amenable for its implementation in R1CS constraint systems and PlonK-based
ones and the Poseidon function family has been used in a number of projects, including Zcash [HBHW22],
the Dusk Network [MKF21] and Mina [BMRS20].

2.4 SNARKs arithmetizations

Most SNARKs model NP relations as arithmetic circuits that are represented by systems of multivariate
polynomial equations. More concretely, let Cx(w) := R(x,w) be a circuit parameterized by a statement x,
which is satisfiable (on a certain input witness w) iff x belongs in the NP language induced by R. Circuit Cx

is modeled by a system of n multivariate polynomial equations f1(x,w) = 0 ∧ . . . ∧ fn(x,w) = 0 on variables
x and w; in such a way that Cx is satisfiable iff so is the system of equations. Variables x are so-called public
inputs whereas variables w correspond to the witness of the NP relation. The proving system allows a prover
to convince a verifier that they know an assignment on variables w that satisfies all polynomial equations
when variables x are fixed to some public value that determines the statement being proven.

The specific details about how arithmetic circuits are transformed into polynomial constraints are known
as the system’s arithmetization. Different SNARKs impose different additional restrictions on the system of
polynomial constraints. For example, Rank 1 Constraint Systems (R1CS) require that every polynomial fi
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be such that it can be factored into three linear polynomials ai, bi and ci as follows:

fi(x,w) = ai(x,w) bi(x,w)− ci(x,w) .

On the other hand, PlonK imposes the following restrictions (see Section 2.5):

• Each polynomial fi can involve on at most N different variables, where N is known as the gate architec-
ture size. The original publication [GWC19] describes a wire architecture of N = 3, but different values of
N have been explored by several implementations of PlonK, e.g., the Dusk Network uses N = 4 [Dus21]
and Mina uses N = 15 wires [WS21].

• A polynomial fi can only contain monomials of a restricted form. The original version of PlonK allows for
a constant monomial, any degree-1 monomial, and just one degree-2 monomial, but the set of supported
monomials (or more generally, terms) may be extended with so-called custom gates [GW19].

2.5 PlonK’s arithmetization

From PlonK constraint system. In the PlonK proof system [GWC19], a constraint is a tuple (a, b, c, sels)
where a, b, c are formal variables and sels is a set of so-called selectors. A selector is a circuit parameter used
as a switch to activate a gate. Constraints are often represented in a matrix, with one row per constraint
and a column for each selector, where the matrix values are the selector coefficients of each constraint.

In the original version of PlonK, the available selectors are qL, qR, qO, adding the left, right and output
wires (resp. a, b and c), qM, multiplying two wires (a and b), and qC adding a public constant.1 As such,
every constraint, induces a polynomial equation:

qL · a + qR · b + qO · c + qM · a · b + qC = 0 . (1)

Such equation captures addition and multiplication gates, useful for modeling algebraic circuits. For
example, an addition gate c = a + b can be modeled by setting qL = qR = 1, qO = −1 and qM = qC = 0.
And a multiplication gate c = ab can be modeled as qM = 1, qO = −1 and qL = qR = qC = 0.

To a polynomial equation. NP relations are converted it into algebraic circuits by modeling their satisfiability
as sets of polynomial equations of the form (1), induced by PlonK constraints {(ai, bi, ci, selsi)}i∈[n]. These
constraints are then compiled into a single polynomial equation:

(Ql ·A+Qr ·B +Qo · C +Qm ·A ·B +Qc)(X) = 0 , (2)

where polynomials A, B and C encode the witness to the NP relation and Q polynomials define the circuit
and may be precomputed. The polynomials can be efficiently computed using iFFT as follows. Let ω ∈ Zp

be a primitive 2k-th root of unity, for some k such that n < 2k. Polynomial Ql is defined as the minimal
polynomial that evaluates to qLi on ωi, for every i ∈ [n]. (The rest of Q polynomials are defined analogously.)
A PlonK proof will be simply an argument of knowledge of polynomials A,B,C such that equation (2) holds
when evaluated on ωi, for every i ∈ [n].2

Defining PlonK as a polynomial protocol. As such, PlonK can be seen as a polynomial protocol in which
a party proves the veracity of several polynomial identities on a witness in a subgroup. These identities
are those induced by circuit’s constraints, as well as those induced by copy-constraints (which check that
the witness is consistent with the circuit structure) and potentially other ones by extra functionalities like
Plookup or Turbo-PlonK. The prover computes then a new polynomial T by dividing a combination of all
identities and the unitary smallest polynomial that vanishes on each point of the subgroup.

In practice, the proof is achieved by leveraging a polynomial commitment scheme [KZG10] as follows.
The selectors and circuit-relative polynomials are committed in a preprocessing phase and made public (that
1 As we will see, extra selectors may be introduced for encoding complex functionalities more efficiently [GW19].
2 As well as other polynomial equalities relative to the so-called copy-constraints which we omit here for simplicity.
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way, the verifier only needs to handle the commitments to these polynomials, which are much more compact
than the polynomials themselves). The prover also commits to the wire polynomials A,B,C (after, possibly,
having added a blinding factor term to achieve zero-knowledge) and T . The prover is then challenged to
evaluate all committed polynomials at a point ξ ∈ Zp chosen uniformly at random.

The verifier will check the validity of the polynomial evaluations given by the prover at ξ, and then use
these evaluations to check that a certain polynomial identity is 0 at ξ. This identity ensures that T has been
computed correctly, which implies that all polynomials identities vanish in the subgroup, as desired.

Extending to arbitrary polynomials Turbo-PlonK. The Turbo-PlonK proposal is key in unlocking PlonK
capabilities by allowing one to change PlonK’s constraint equation (1) or even append another one to it.
With this technique, one can view the selectors qL and so on as elementary gates that are added up to form
an arithmetic identity. We can define new multivariate polynomials of any degree P (a, b, c), a new selector
qP and add the expression qP · P (a, b, c) to (1) and (2). Another possibility offered by Turbo-PlonK is the
addition of new identities. These identities, of the form I(a, b, c, sels) = 0, must also hold when evaluated on
all ωi. They can be switched off by setting all selectors to 0. Several identities can share the same selectors,
in which case additional identity-specific may be needed to switch identities. This new functionality can be of
great help when checking different relations on the same variable or checking domain independent relations
such as arithmetic and elliptic curve operations.

One has to be careful when adding a new gate because it increases the prover and verifier costs. A
specialized custom gate can drastically cut the cost of one component of a circuit, but may be less efficient
than a more general purpose gate which could be reused. For example, adding the rather generic power of 5
gate, qx5 , for the Poseidon circuit increases the prover cost by 1 to 2n group operations (c.f. Table 2) but as
it substantially decreases the number of constraints, from 624 to 464 constraints, the overall proving cost is
reduced by ≈ 10% (c.f. Table 1).

Furthermore, because of FFT threshold effects, experimentation is often needed when choosing the most
adequate custom gate. Hence, measuring the frequency usage of the associated selector can be helpful to
determine the usefulness of a specific custom gate alongside the analysis of a custom gate’s degree and
complexity as well as the reduction in the number of constraints.

3 New optimizations on PlonK’s arithmetization

A Turbo-PlonK constraint is simply a PlonK constraint inducing (possibly) more than one polynomial
equality.

Definition 1 (Turbo-PlonK constraint). A Turbo-PlonK constraint is a tuple (a, b, c, sels) where a, b, c
are formal variables and sels is a set of selectors. A selector is a pair q :α, where q is the selector’s name
and α ∈ Zp, its coefficient.

Definition 2 (Turbo-PlonK constraint system). A Turbo-PlonK constraint system is an ordered list
of Turbo-PlonK constraints. There exists a function P that maps each pair of consecutive constraints into
a set of polynomial equations (each corresponding to a so-called identity), involving the formal variables of
both constraints, but whose coefficients depend only on the selectors of the first.

Remark 2. One may ask why only the variables of a constraint and the next are involved in an equation. Why
not the second next too? The reason is that accessing the next constraint variables comes “for free”. Indeed,
PlonK’s permutation argument requires evaluating the permutation polynomials on ξ, but also on ξω, which
corresponds to the next constraint values. Accessing further values, e.g. two constraints away, is possible but
would incur the additional cost (for both prover and verifier) of opening polynomial commitments at a new
evaluation point, e.g. ξω2, making these gates less practical.

As an example of a Turbo-PlonK custom gate, we can introduce a selector called qbin, with associated
identity qbin a (a − 1) = 0, to ensure that the first variable in a constraint is Boolean. That way, constraint
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(a, b, c, {qM : 1, qO : −1, qbin : 1}) would model the fact that c = b or c = 0, ensured by the polynomial
constraints (checked in parallel):

−c + a b = 0 and a(a − 1) = 0 .

We can also extend the arithmetic identity by defining linear selectors referring to the next gate wires as:

(ai, bi, ci, {qL, qR, qO, qM, qC,q̃L,q̃R,q̃O}) , (3)

representing identity

qL ai + qR bi + qO ci + qM ai bi + qC + q̃L ai+1 +q̃R bi+1 +q̃O ci+1 = 0 , (4)

where ai+1, bi+1 and ci+1 refer to the next-constraint wires. Note that the polynomial equation induced
by a constraint is no longer fully determined by the constraint itself, but also its relative position in the
constraints system.

In the rest of this work, we consider all arithmetic selectors from (3), as well as an extra arithmetic
selector qx5 : δ that adds an extra term δ a5i to the identity from (4). (This selector will be used to model
Poseidon S-boxes with just 1 constraint.) Our results are generic with respect to other possible selectors
whose identity runs in parallel.

3.1 Optimizing Turbo-PlonK constraint systems

We propose several ideas for optimizing a constraint system. In Section 3.2 we then present an automated
mechanism, formalized as re-writing rules (Figure 3), that systematically applies these atomic optimizations.

Shared wires across constraints

Two linear combinations that involve common wires can be implemented more efficiently if they are
handled together. For example, a linear combination of the form out = α1x+ α2y + α3z, would require two
constraints to be implemented (over a 3-wires architecture), for example, as:3

(x, y, out, {qL :α1, qR :α2,q̃L :α3, qO :−1}) ∥ (z, , , ∅) .

Now, imagine we needed to encode an extra linear combination that depends on the same x, y, z, say out′ =
β1x+ β2y + β3z. (This situation could occur, e.g., when modelling a Poseidon linear gate.) We could model
both linear combinations with 3 constraints instead of 4 as follows:

(x, , out, {qL :α1,q̃L :α2,q̃R :α3, qO :−1}) ∥ (y, z, out′, {qL :β2, qR :β3,q̃R :β1, qO :−1}) ∥ ( , x, , ∅) . (5)

Furthermore, observe how, conveniently, some wires in the above constraints are unbound. This will be
exploited in our next optimization.

Merging constraints

The use of next-constraint selectors can lead to constraints that have an empty set of selectors whose
only purpose is to include wires that are used by the previous constraint. An example is the last constraint
of (5). Such constraints can be combined with other constraints if the wires are not in conflict. For example,
two groups of (three) constraints as the one in (5) can be combined into simply one group of five:
3 We use symbol to express the fact that the variable is not being used by the selectors of this constraint or the

previous constraint. In practice, any value could be put in the place of without affecting the induced system of
equations. But we want to highlight that is a special symbol that refers to the fact that the variable is not used.
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(x1, , out1, sels1) ∥ (y1, z1, out
′
1, sels

′
1) ∥ ( , x1, , ∅) and (x2, , out2, sels2) ∥ (y2, z2, out

′
2, sels

′
2) ∥ ( , x2, , ∅) ,

can be transformed into

(x1, , out1, sels1) ∥ (y1, z1, out
′
1, sels

′
1) ∥ (x2, x1, out2, sels2) ∥ (y2, z2, out

′
2, sels

′
2) ∥ ( , x2, , ∅) .

Also, note that the order of constraints does not matter as long as they do not use the next-constraint
selectors. Thus, we could conveniently reorder constraints to make the merging more effective.

Gaussian elimination

PlonK constraints were initially designed for modelling gates of an arbitrary circuit. (That explains the
legacy names of selectors qL, qR and qO, standing for left, right and output wires, respectively.)

It is advantageous to view constraints as the polynomial equalities that they induce and not think about
what wires represent inputs and what wires represent outputs. That way, we can transform the polynomial
equalities into an equivalent set of equalities that can be represented with simpler or fewer constraints. For
example, imagine we want to compute r := 8x5 +2y5 and s := 4x5 − 3y5. The naive approach would require
introducing two auxiliary variables and a total of 4 Turbo-PlonK constraints:

(x, , aux1, {qx5 :1, qO :−1}) (y, , aux2, {qx5 :1, qO :−1})
(aux1, aux2, r), {qL :8, qR :2, qO :−1}) (aux1, aux2, s), {qL :4, qR :−3, qO :−1})

Alternatively, we could simplify the polynomial equalities (trying to minimize the number of power-of-5
monomials) first by considering linear combinations between them. For example,{

8x5 + 2y5 − r = 0
4x5 − 3y5 − s = 0

⇐⇒
{

8x5 + 2y5 − r = 0
−8y5 − 2s+ r = 0

⇐⇒
{
32x5 − 3r − 2s = 0
−8y5 − 2s+ r = 0

Now, it is possible to model both equations with just two constraints, avoiding the use of auxiliary
variables, as follows:

(x, r, s, {qx5 :32, qR :−3, qO :−2}) (y, r, s, {qx5 :−8, qR :1, qO :−2}) .

This idea will be used in Section 4 for building highly optimized full and partial Poseidon rounds.

3.2 Automated optimizer of constraints

We propose an automated mechanism for applying the techniques presented in the previous section in order
to simplify constraint systems. This method is less error-prone and can lead to more effective optimizations
than the manual application of the simplification rules, e.g., by combining separated parts of the circuit that
are compatible. Nevertheless, specific manual optimizations for concrete parts of a circuit can result in very
performant circuits as we will show in Section 4.

Our techniques are specialized for a Turbo-PlonK design that includes the arithmetic identity from (4),
but may include other arbitrary identities (as long as they use independent selectors). Given a list of con-
straints Γ := ((a1, b1, c1, sels1), . . . , (an, bn, cn, selsn)), we say Γ is admissible if its last constraint does not
contain next-constraint selectors. We define P(Γ ) as the set:

{qLi ai + qRi bi + qOi ci + qMi ai bi + qCi + q̃Li ai+1 +q̃Ri bi+1 +q̃Oi ci+1}i∈[n] ,

where selsi = {qLi, qRi, qOi, qMi, qCi, q̃Li,q̃Ri,q̃Oi}. Note that an+1, bn+1, cn+1 are not defined, but if Γ is
admissible, its respective coefficients q̃Ln, q̃Rn, q̃On will be 0.

Let Γ be a list of Turbo-PlonK constraints and let L be a set of multivariate linear polynomials over Zp.
We say (Γ,L) is an extended constraint system.
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Permute. For any permutation of three elements σ ∈ S3:

(x1, x2, x3, sels ∪ {̃qL :α1,q̃R :α2,q̃O :α3})∥(y1, y2, y3, ∅)
(x1, x2, x3, sels ∪ {̃qL :ασ(1),q̃R :ασ(2),q̃O :ασ(3)})∥(yσ(1), yσ(2), yσ(3), ∅)

Reduce.
(x1, x2, x3, sels ∪ {̃qL :0,q̃R :0,q̃O :0})∥(y1, y2, y3, ∅)

(x1, x2, x3, sels)

Combine constraints.

(x1, x2, x3, ∅) ∥ (y1, y2, y3, sels)

(z1, z2, z3, sels)

if ∀i ∈ [3],
zi = comb(xi, yi) ̸= ⊥a

Fig. 2: Constraint rules.

a For all x ̸= y, comb(x, x) = x, comb(x, y) = ⊥, comb(x, ) = x, comb( , y) = y.

Collect linear. If Γ0 is admissible (its last constraint does not include q̃L, q̃R, q̃O):

Γ0 ∥ (x1, x2, x3, {qL :α1, qR :α2, qO :α3, qC :α0}) ∥ Γ1; L

Γ0 ∥ Γ1; L ∪ {α0 +
∑3

i=1 αixi = 0}

Free variable.
Γ ; L ∪ {α0 +

∑
i∈S αixi = 0}

Γ ; L[xj 7→ −(α0 +
∑

i∈S\{j} αixi)÷ αj ]
if xj /∈ Γ and αj ̸= 0

Efficient sum. If Γ0 is admissible:

Γ0 ∥ Γ1; L ∪ {α0 +
∑6

i=1 αixi = 0}
Γ0∥(x1, x2, x3, {qL :α1, qR :α2, qO :α3, qC :α0,q̃L :α4,q̃R :α5,q̃O :α6})∥(x4, x5, x6, ∅) ∥ Γ1; L

Auxiliary variable.
Γ ; L ∪ {t1 + t2 = 0}

Γ ; L ∪ {t1 − s = 0, s+ t2 = 0} for fresh variable s

Constraint rule. If Γ0 is admissible:

Γ0∥g∥Γ1; L

Γ0∥t(g)∥Γ1; L
for t ∈ ConstraintRules (see Figure 2)

Fig. 3: Optimizer rules.

Definition 3. We say an extended constraint system (Γ,L), with N variables, is satisfiable if there exists
an evaluation x ∈ ZN

p such that, f(x) = 0 for every polynomial f ∈ P(Γ ) ∪ L.

Our rewriting rules are described in Figure 3. For simplicity, we focus on an architecture of N = 3 wires,
but note all rules can be easily generalized to other values of N .
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Theorem 1. Let (Γ,L) be an admissible extended constraint system and let (Γ ′, L′) be the result of applying
any of the rules from Figure 3 to (Γ,L). Then, (Γ ′, L′) is admissible. Furthermore, (Γ,L) is satisfiable if
and only if (Γ ′, L′) is satisfiable.

As it will be clear in the proof (Appendix A), given a satisfying assignment for the former, we can efficiently
build a satisfying assignment for the latter and vice versa.

Our optimizer of constraints applies the rules from Figure 3 heuristically, as follows.

1. It first applies collect linear on all constraints if possible, moving all linear constraints to the set of linear
polynomials L.

2. It then applies the free variable rule on all polynomials in L that contain at most two non-constant
monomials (this is to guarantee that the substitution xj 7→ −(α0 +

∑
i̸=j αixi)/αj does not increase the

number of monomials in any polynomial in L).4 We also apply collect linear on any polynomial, if the
substituted variable xj only appears in another polynomial in L.

3. We apply the auxiliary variable rule to partition polynomials in polynomials with less than 2N monomials
(preparing them to apply efficient sum). This step is heuristically performed trying to generate partitions
that include the same monomials so that our shared-wires heuristic can be more effective.

4. We move the resulting polynomials from L to Γ by applying efficient sum one by one. The new constraints
are inserted at a position that allows us to perform further combinations if possible, e.g., with the combine
constraints rule from Figure 2 (this may require adjusting some of the constraints with the permute rule).

The optimizer is particularly efficient for optimizing circuits that involve linear computations. For exam-
ple, the naive implementation of the Poseidon circuit from Table 1 with w = 3 and N = 3, using an S-box
custom gate requires 464 constraints. It can be reduced to just 272 constraints after our optimizer. (This is
the same number of constraints that can be achieved with N = 4, but without the need of a fourth wire per
gate.) Our prototype implementation is open source [Nom22c].

4 Optimizing Poseidon Hash

4.1 Optimized implementation of Poseidon

We present an optimized Turbo-PlonK modelization of Poseidon for with w = 3. Our techniques can be
generalized to other versions, see the discussion at the end of this section. We model (shifted) full rounds
with 4 constraints where the last one has no selectors and is compatible with its successor. On the other
hand, we can leverage the linear skip and model 4 (shifted) partial rounds with just 7 constraints where
the last is compatible with its successor. Consequently we are effectively modeling every full round with 3
constraints and every partial round with 1.5 constraints.

4.2 Linear skip

A naive implementation of Poseidon Hash would require including constraints that model w additions (of w
terms) for every (full or partial) round; and constraints modelling w S-boxes (per full round) plus one S-box
per partial round.

We propose an optimization, coined the linear skip, which can be used to reduce the number of constraints
modelling partial rounds. In a nutshell, we leverage the fact that the composition of linear functions is again
a linear function in order to “skip” the evaluation of certain wires.

Consider Figure 4, describing the application of two Poseidon partial rounds to state (x1, . . . , xw), trans-
forming it into state (z1, . . . , zw). First observe that equations (7) and (11) could be ignored since bi (respec-
tively di) can be used as an alias for ai (respectively ci), for all i ∈ [w−1]. Furthermore, the constraints from
equation (6) could potentially be merged with the constraints from the preceding MDS gate (in constraint

4 Note that the more monomials a polynomial has, the more constraints we will need to model it.
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c1 c2 c3 cw

d1 d2 d3 dw

z1 z2 z3 zw

i-
th
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(i
+
1
)-

th
P

R
∀i ∈ [w]. ai = xi + κi (6)

∀i ∈ [w−1]. bi = ai (7)

bw = a5
w (8)

∀i ∈ [w]. yi =
∑w

j=1 αijbj (9)

∀i ∈ [w]. ci = yi + κ̂i (10)
∀i ∈ [w−1]. di = ci (11)

dw = c5w (12)
∀i ∈ [w]. zi =

∑w
j=1 αijdj (13)

Fig. 4: Two Poseidon partial rounds transforming state (x1, . . . , xw) into state (z1, . . . , zw). For every
i, j ∈ [w], κi, κ̂i, αij ∈ Zp are constants determined by the primitive’s specification.

systems such as R1CS or Plonk, where addition by constants is “free”), but let us ignore such optimization
for now.

The linear trick consists of also ignoring equations (9) and (10), not creating variables nor constraints
for wires yi and ci for any i ∈ [w−1]. (Note that we must keep a variable for cw, which is the input to an
S-box.) This way, the constraints modelling a pair of partial rounds can be reduced to:

∀i ∈ [w]. ai = xi + κi cw =
∑w−1

j=1 αwjaj + αwwbw + κ̂w

bw = a5w dw = c5w ∀i ∈ [w]. zi =
∑w−1

j=1 α′
ijaj + α′

iwbw + αiwdw + κ′
i ,

where coefficients α′
ij and κ′

i are the result of composing two linear functions. In particular:

∀i, j ∈ [w]. α′
ij :=

∑w−1
k=1 αikαkj ∀i ∈ [w]. κ′

i :=
∑w−1

k=1 αikκ̂i .

That is, M ′ = (α′
ij) is the result of multiplying the submatrix of M without the last column by the submatrix

of M without the last row. Furthermore, κ′ is the result of multiplying the submatrix of M without the last
column by κ̂.

Instead of having to perform 2w additions of w terms to model the pair of partial rounds, the linear skip
allows us to model them with simply 1 addition of w terms and w additions of w+1 terms.

Multiple skips Observe that the above technique can be generalized to skipping multiple partial rounds.
However, skipping too many rounds can be counterproductive, because the required sums become heavier as
the number of skips increases. In particular, skipping n partial rounds would require 1 addition of w+i terms
for every i = 0, . . . , n−1; plus w extra additions of w+n terms. This can be more expensive than simply
computing the (n+1)w additions of w terms for modelling the n+1 partial rounds with the naive approach.
Figure 5 presents a comparison of the amortized number of additions per partial round between different
choices of the skip size n. For every n and every register size w, we display tn,w/(n+1), where tn,w is the
number of additions necessary to model n+1 partial rounds when skipping n of them:

tn,w := w(w + n− 1) +
∑n−1

i=1 (w + i− 1) . (14)

Observe that the optimal number of skips will depend on the register size w, but also on the constraint
system that is being used, since some systems can handle several additions per constraint.
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Fig. 5: Number of additions per partial round for different skip sizes, n. The number of additions per
partial round is defined as tn,w/(n+1), where tn,w is defined in equation (14).
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x1 x2 x3

y1 y2 y3

y1
y2
y3

 = M

x5
1

x5
2

x5
3

+

κ1

κ2

κ3


Turbo-PlonK constraints:

( x1 y1 ) with selectors {qC, qx5 , qO,q̃R,q̃O}
( x2 y2 y3 ) with selectors {qC, qx5 , qR, qO,q̃R}
( x3 y1 y2 ) with selectors {qC, qx5 , qR, qO,q̃R}
( y3 ) with no selectors

Fig. 6: Poseidon (shifted) full round with w = 3.

Modelling (shifted) full rounds We present in Figure 6 the structure of a shifted full round. Observe
that modelling a shifted full round involves capturing the constraints y = Mx5+κ, or equivalently (moving
everything to the left-hand side of the equation and multiplying by the inverse of M), M−1y−x5−M−1κ = 0.
Let M−1 = (βij). We can model the above equations with the following constraints:

( x1 y1 ) with {qC=(−M−1κ)1, qx5=− 1, qO=β11, q̃R=β12, q̃O=β13}
( x2 y2 y3 ) with {qC=(−M−1κ)2, qx5=− 1, qR=β22, qO=β23, q̃R=β21}
( x3 y1 y2 ) with {qC=(−M−1κ)3, qx5=− 1, qR=β31, qO=β32, q̃R=β33}
( y3 ) with no selectors .

Furthermore, observe how the last constraint (with no selectors) is compatible with the first constraint of
the next shifted full round. Also, we will see that the last shifted full round (of the first block of full rounds)
is compatible with the first shifted partial round.
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b = β1x1 + β2x2 + βx5
3 + βaa

5 + κb

c = γ1x1 + γ2x2 + γx5
3 + γaa

5 + γbb
5 + κc

y1 = δ11x1 + δ12x2 + δ13x
5
3 + δ1aa

5 + δ1bb
5 + δ1cc

5 + κy1

y2 = δ21x1 + δ22x2 + δ23x
5
3 + δ2aa

5 + δ2bb
5 + δ2cc

5 + κy2

y3 = δ31x1 + δ32x2 + δ33x
5
3 + δ3aa

5 + δ3bb
5 + δ3cc

5 + κy3

Fig. 7: Four Poseidon (shifted) partial round with w = 3.

Modelling (shifted) partial rounds In Figure 7 we present the structure of 4 nested (shifted) partial
rounds and the constraints necessary to model them. Ignoring the constraint coefficients and focusing on the
variables that are involved we need to assert six linear relations that involve the following variables:5

x1 x2 x5
3 a . . . . . . . . = 0 (15)

x1 x2 x5
3 . a5 b . . . . . . = 0 (16)

x1 x2 x5
3 . a5 . b5 c . . . . = 0 (17)

x1 x2 x5
3 . a5 . b5 . c5 y1 . . = 0 (18)

x1 x2 x5
3 . a5 . b5 . c5 . y2 . = 0 (19)

x1 x2 x5
3 . a5 . b5 . c5 . . y3 = 0 (20)

We can apply Gaussian elimination and construct an equivalent system of six equations of the form. (Our
goal is to have at most one power of five per constraint, this will avoid having to use auxiliary variables for
computing such powers.)

x1 x2 x5
3 a . . . . . . . . = 0 (21)

x1 x2 . a a5 b . . . . . . = 0 (22)

. x2 . a . b b5 c . y1 y2 . = 0 (23)

x1 x2 . a . b . c c5 y1 . . = 0 (24)

x1 x2 . a . b b5 c . . . . = 0 (25)

x1 x2 . a . b . c c5 . . y3 = 0 (26)

5 Each equation must be interpreted as a linear combination of the involved terms with certain coefficients that are
not specified for simplicity. We denote by . terms whose coefficient is 0 and can be ignored.
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For that, follow these steps:

1. Cancel x5
3 in equations (16)-(20) with equation (15).

2. Cancel a5 in equations (17)-(20) with equation (16).
3. Cancel b5 in equations (18)-(20) with equation (17).
4. Cancel c5 in equation (19) with equation (18).
5. Cancel x1 in equation (19) with equation (17), note that the term b5 will come back.
6. Swap equations (17) and (19).

Finally, the above linear equations (21)-(26) can be implemented with the following constraints:

( x3 ) with selectors {qC, qx5 , q̃L, q̃R, q̃O} modelling (21)
( a x1 x2 ) with selectors {qC, qx5 , qL, qR, qO, q̃L} modelling (22)
( b y2 x2 ) with selectors {qC, qx5 , qL, qR, qO, q̃L, q̃R, q̃O} modelling (23)
( c y1 a ) with selectors {qC, qx5 , qL, qR, qO, q̃L, q̃R, q̃O} modelling (24)
( b x1 x2 ) with selectors {qC, qx5 , qL, qR, qO, q̃L, q̃R} modelling (25)
( c a b ) with selectors {qC, qx5 , qL, qR, qO, q̃L, q̃R, q̃O} modelling (26)
( y3 x1 x2 ) with no selectors .

Note how, conveniently, the last constraint with no selectors starts with y3, what makes it compatible
with the first constraint associated to the subsequent partial round. (Both constraints will be merged if the
optimizer is applied.)

As detailed in Table 1, the techniques presented above allow us to model one iteration of the Poseidon
strategy with 3 constraints per full round, plus 6 constraints per block of 4 partial rounds and two extra
constraints (given that the last full round and the last partial round cannot be merged). This gives a total
of 1.5RP + 3RF + 2 constraints with an architecture of N = 3 wires per gate.6

In the case of N = 4, we could apply the same techniques and model blocks of 6 partial rounds with 8
constraints and every full round with 3 constraint, thus achieving a total of 1.3̄RP +3RF constraints. Finally
in the case of N = 4 and w = 5, it would be possible to model blocks of 3 partial rounds with 7 constraints
and every full round in just 5, giving a total of 2.3̄RP + 5RF + 2.7

5 Results

5.1 Optimized PlonK circuits for Poseidon

In Table 1 we present a comparison with respect to the number of constraints and prover cost of our optimized
circuits for Poseidon and other existing references. We consider the most popular register sizes of w = 3 and
w = 5 and three different Turbo-PlonK models: (i) plain PlonK with no extra selectors, (ii) one extra
selector, qx5 , for computing S-boxes (function x 7→ x5) in just one constraint8, and (iii) qx5 combined with
extra linear selectors that point to the next constraint (see Section 3). These models incur an overhead on
the prover that we summarize in Table 2.9 On the other hand, they can lead to a significant reduction in the
number of constraints. In prover cost we present an estimation on the number of group and field operations
(the leading operations) that the prover would need to perform a proof for the corresponding number of
6 Remarkably, we have not used complex custom gates, simply the almost free next-constraint linear selectors and a

custom gate for exponentiating the left wire to the power of 5.
7 Again, the last partial and full rounds would include a constraint that cannot be merged with the next.
8 This is the most popular S-box, since it is the minimal power that represents a non-linear permutation over the

BLS12-381 curve and other relevant elliptic curves.
9 As in [GWC19], we have assumed the time required to perform FFT’s over polynomials of degree k comparable to

computing k log(k) scalar multiplications.
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Table 1: Different implementations of one iteration of the Hades strategy, with w register size, RF full
rounds and RP partial rounds, based on different parameter choices. N is the number of wires per PlonK
gate. The schemes proposed in this work are marked with ∗. The prover cost is an estimation on the number
of operations that the scheme incurs on the prover (based on the extra selectors used and the number of
constraints in ⊛, see Table 2).

N Reference/Scheme (w = 3) Extra selectors # Constraints ⊛
Prover cost

# G1 mul # Zp mul

3

Estimated count [GKK+19] - 9RP +15RF 624 5.61K 312K
Using S-box custom gate [GW19] qx5 7RP +9RF 464 5.10K 287K
Linear 1-skip + Optimizer ∗ qx5 , next-gate 3RP +6RF 216 2.37K 127K
Section 4.1 + Optimizer ∗ qx5 , next-gate 1.5RP +3RF +2 110 1.21K 56K

4

Estimated count [BGK+21] - 6RP +12RF 432 4.32K 272K
Using S-box custom gate [GW19] qx5 4RP +6RF 272 2.99K 193K
Linear 3-skip + Optimizer ∗ qx5 , next-gate 2.5RP +6RF 188 2.06K 136K
Section 4.1 + Optimizer ∗ qx5 , next-gate 1.3RP +3RF 98 1.07K 62K

N Reference/Scheme (w = 5) Extra selectors # Constraints ⊛
Prover cost

# G1 mul # Zp mul

4

Dusk Network (Hades252) [Dus21] - 13RP +25RF 928† 9.28K 658K
Linear 4-skip ∗ - 9.4RP +25RF 730 7.30K 500K
Linear 1-skip + Optimizer ∗ qx5 , next-gate 4RP +10RF 304 3.34K 240K
Section 4.1 + Optimizer ∗ qx5 , next-gate 2.3RP +5RF +2 173 1.90K 123K

⊛Instantiation for values RF = 8, RP = 56, the recommended and most popular choice of parameters [GKR+21].
†The Dusk Network uses RF = 8, RP = 59, which results in 967 constraints.

Table 2: Prover cost, measured in number of G1 multiplications and Zp multiplications (the leading operations
in terms of computational cost) for the different models considered in Table 1. N is the number of wires
per PlonK gate and n is the number of constraints in the circuit. These estimations have been calculated
as in [GWC19] and depend on the number of FFT’s necessary to build the polynomials associated to the
identities (whose complexity depends on the additional selectors).

Model - qx5 qx5 , next-gate

N 3 4 3 4 3 4
G1 mul 9n 10n 11n 11n 11n 11n
Zp mul 54n log(n) 72n log(n) 70n log(n) 88n log(n) 76n log(n) 96n log(n)

constraints and the corresponding model. Note that the different models that we have considered incur a
negligible overhead on the verifier.

Other projects have opted for further modifications of PlonK including extra identities. For example,
Zcash [Zca21] defines specialized custom gates for full and partial rounds which allows them to model a
Poseidon iteration with RP +RF +1 constraints (65 constraints if we set RP = 56 and RF = 8). Another
example is Mina [WS21], that opted for using an architecture of N = 15 wires per gate and defines a
very specialized custom gate to model 5 full rounds in one constraint, which allows them to implement
a Poseidon iteration in RF /5 constraints (their implementation only includes full rounds). Although these
models introduce a significant overhead on the prover, the considerable reduction on the number of constraints
pays off. However, contrary to the simple extensions we have considered in Table 1, the models adopted by
Zcash and Mina introduce a notable overhead on the verifier too. This is acceptable for their use case, since
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Table 3: Number of additions and multiplications and CPU benchmarks for two instances of Poseidon.

Poseidon instance w = 3, RF = 8, RP = 56 w = 5, RF = 8, RP = 59

# Skips no skip 1-skip 2-skip 3-skip 4-skip no skip 4-skip 5-skip 6-skip 7-skip
# Additions 579 495 486 495 513 1680 1044 1041 1051 1063
# Multiplications 816 732 723 732 750 1972 1336 1333 1343 1355
Execution time (µs) 16.03 14.19 13.97 14.05 14.41 40.14 26.09 26.06 26.42 26.68

they use recursion [BGH19, BCMS20, HGB21] and their verifier runs over another PlonK circuit. However,
these models are incomparable to those considered in this paper, where we focus on plain PlonK verifiers.

5.2 Optimized Poseidon on CPU

The linear skip essentially decreases the number of additions and multiplications in partial rounds, and it
can be exploited to build a very efficient implementation of Poseidon on CPU. We provide an OCaml script,
available in Mec [Nom21], that computes the number of additions and multiplications for a given instance
of Poseidon and a given number of skipped partial rounds. (As we argue in Figure 5 there is an optimal
number of skipped rounds after which skipping more rounds will be counterproductive.) Note that the linear
skip introduces a negligible additional memory cost.

A C implementation of HADES over the scalar field of BLS12-381 is available under the MIT license in
[Nom22a]. The implementation supports any security parameters and any number of skipped rounds. It uses
the library blst [Sup21]10 as a backend for arithmetic operations. The constants are loaded next to the state
in a contiguous C array to take advantage of the CPU cache.

In Table 3 we present a comparison between the number of operations and execution time of differ-
ent Poseidon instantiations considering different skip sizes. All experiments were performed on an Intel(R)
Core(TM) i7-8565U CPU @ 1.80GHz. We present average times in microseconds of each experiment running
for 2 seconds. Standard deviations are in the order of tens of nanoseconds. Our implementation uses the C
via FFI through an OCaml binding, but this introduces a negligible overhead.

We conclude that the linear skip can reduce the total execution time by a factor of 13% in the case of
w = 3 or 35% with w = 5, when compared with the naive implementation with no skips.

6 Conclusions

We have shown how simple, yet powerful, optimization techniques make it possible to express circuits in
the most basic Turbo-PlonK model very compactly, whose number of constraints is comparable to the
one obtained through more complex and expensive custom gates. Our automated optimizer of constraints,
implemented in a prototype which is publicly available as open source, allows users to focus on the circuit
design and obtain efficient implementations while avoiding error-prone and complex manual optimizations.
This way, the construction of circuits can be more transparent and easier to audit.

Our techniques have led to the most efficient and compact implementations of the Poseidon circuit in the
Turbo-PlonK model with basic custom gates such as qx5 and next-constraint linear selectors. Other projects,
such as the Dusk Network could benefit from our techniques (in particular the linear skip) to reduce the
number of constraints of their Hades implementation [Dus21] by at least a factor of 25% for free (without
any modifications of their model or additional custom gates). Furthermore, we believe our techniques nicely
complement other works that aim at reducing the number of constraints by exploring additional PlonK
identities and more complex custom gates [WS21, Zca21].

10 Optimizations for AVX supported architectures are implemented. The benchmark values in Table-3 enjoy these
optimizations.
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An appealing direction for future work would be to explore additional heuristics and optimizer rules that
can capture our most advanced optimizations presented in Section 4. Also, it would be very interesting to
explore whether our techniques can be extended to other arithmetizations.
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A Proofs of the main body

Proof (of Theorem 1). Let (Γ,L) be an admissible extended constraint system and let (Γ ′, L′) be the result
of applying any of the rules from Figure 3 to (Γ,L). Then, (Γ ′, L′) is admissible. Furthermore, (Γ,L) is
satisfiable if and only if (Γ ′, L′) is satisfiable.

We focus on every rule individually.

Collect linear. Since the last constraint of Γ0 does not contain next-constraint selectors, we have that
P(Γ0 ∥ (x1, x2, x3, {qL :α1, qR :α2, qO :α3, qC :α0}) ∥Γ1) is equal to P(Γ0) ∪ P(Γ1) ∪ {α0 +

∑3
i=1 αixi = 0},

and P(Γ0 ∥Γ1) = P(Γ0) ∪ P(Γ1), from which the result follows immediately.

Free variable. Say x is a satisfying assignment for (Γ,L), since L contains equation α0+
∑

i∈S αixi = 0 with
αj ̸= 0, and it is satisfied by x, it must be xj = −(α0 +

∑
i∈S\{j} αixi)÷ αj , so x must also be a satisfying

assignment for (Γ,L[xj 7→ −(α0 +
∑

i∈S\{j} αixi) ÷ αj ]). Observe that Γ = Γ ′, so P(Γ ) = P(Γ ′). On the
other hand, if x′ is a satisfying assignment for (Γ ′, L′), because xj is not in Γ ′ (and not in L′), we have that x′

modified so that xj := −(α0+
∑

i∈S\{j} αixi)÷αj is a satisfying assignment for (Γ ′, L′∪{α0+
∑

i∈S αixi}).

Efficient sum. Since Γ is admissible, its last constraint does not include next-constraint selectors. In that
case, P(Γ ) ∪ L equals P(Γ ′) ∪ L′ as desired.

Auxiliary variable. If x is a satisfying assignment of t1 + t2 = 0, then x, s 7→ t1 is a satisfying assignment for
t1 − s = 0 and s+ t2 = 0. On the other hand, if t1 − s = 0 and s+ t2 = 0 are satisfiable at the same time, by
adding both equations, t1 + t2 = 0 must also be satisfiable.

Constraint rule. Note that L = L′ and for any t ∈ ConstraintRules we have P(g∥Γ1) = P(t(g)∥Γ1) which
implies that P(Γ0∥g∥Γ1) = P(Γ0∥t(g)∥Γ1) given that Γ0 is admissible, as desired. ⊓⊔
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