
On the Security of TrCBC

Debrup Chakraborty and Samir Kundu

Indian Statistical Institute
203 B.T. Road. Kolkata 700108, India

debrup.chakraborty@gmail.com, samirkundu3@gmail.com

Abstract. TrCBC is a variant of CBC-MAC which appeared in Information Processing Let-
ters, 112(7):302-307, 2012. The authors claimed TrCBC to be a secure message authentication
code (MAC) with some interesting properties. If TrCBC is instantiated with a block cipher
with block length n, then it requires ⌈λ/n⌉ block cipher calls for authenticating a λ-bit mes-
sage and requires a single key, which is the block cipher key. The authors state that TrCBC can
have tag lengths of size less than n/2. We show that with high probability, an adversary can
forge TrCBC with tag length n/2− 1 with just three queries. The attack that we show can be
applied to forge a large class of messages. The authors proved TrCBC to be a pseudorandom
function (PRF). A scrutiny of the claimed PRF bound shows that for some recommended
values of tag lengths, the bound turns out to be quite large. Thus, the security theorem does
not imply security of TrCBC for all recommended tag lengths.

1 Introduction

CBC-MAC and its variants are widely used and are parts of different standards. It is known
that the basic CBC-MAC is not secure as a variable input length MAC; more precisely,
CBC-MAC is only secure if the message space is prefix-free [8], i.e., the message space does
not contain any two messages where one is a prefix of the other. In case the message space
is not prefix-free, a simple length extension attack [1] can be performed to obtain a forgery
with probability 1. But, CBC-MAC is optimal in terms of the number of block-cipher calls.
If CBC-MAC is instantiated with a block-cipher of block length n, then to authenticate a
message of λ bits, it requires a single key (which is the key of the underlying block cipher)
and ⌈λ/n⌉ block-cipher calls. This makes CBC-MAC a good choice for applications where
only fixed-length messages are required to be authenticated.

Over the years, several modifications over the basic CBC-MAC have been proposed
to accommodate general message spaces. Some notable constructions in this direction are
EMAC [8], XCBC[2], CMAC [3], TMAC [6], OMAC [5], GCBC1 [7], GCBC2 [7]. All these
variants require some extra overhead compared to the basic CBC-MAC either in terms of
the number of keys used and/or in the number of block-cipher calls required.

TrCBC is a variant of CBC-MAC proposed in [9]. The motivation of TrCBC construction
was to provide a CBC-MAC like message authentication code which works for general
message spaces but whose overhead in terms of the number of keys and block cipher calls
is exactly the same as the CBC-MAC. In [9], it is claimed that TrCBC achieves this with the
limitation that it can produce only short tags whose lengths are less than n/2-bits, where

n is the block-length of the underlying block cipher. The main idea of the construction is
to truncate the output of CBC-MAC. Truncated CBC-MACs have been analyzed in [4]
through a construction called TCBC which is quite different from TrCBC. We discuss more
about TCBC later in the paper.

In this paper we show that TrCBC is insecure. A variant of the length extension attack
can be mounted on TrCBC which produces (n/2− 1)-bit tags with a success probability of
1/4. The basic attack can be extended to make it work for a large class of messages.

The authors of [9] also claimed TrCBC to be a psudorandom function (PRF) and proved
an upper bound for the PRF advantage of an adversary for TrCBC. The bound on the PRF
advantage that the authors proved does not suggest TrCBC to be a PRF where the tag
length is (n/2−1)-bits. We analyze the PRF bound and conclude that the security theorem
for TrCBC does not really imply that TrCBC is a secure MAC for all suggested tag lengths.

2 Notations and Preliminaries

General Notations. For a natural number N , [N] denotes the set {1, . . . , N}. For a

set X , X $←− X denotes that X is chosen uniformly at random from X . The set of all
binary strings is denoted by {0, 1}∗, which includes the empty string ϵ. The set of all n-bit
strings is denoted by {0, 1}n. Perm(n) denotes the set of all permutations over {0, 1}n and
Func(∗, τ) denotes the set of all functions from {0, 1}∗ to {0, 1}τ . For x, y ∈ {0, 1}∗, x∥y
denotes the concatenation of x and y. For x ∈ {0, 1}∗ the length of x is denoted by |x|. For
any x ∈ {0, 1}∗, x ̸= ϵ, parsen(x) parses x as x1∥x2∥ . . . ∥xℓ where for i ∈ [ℓ − 1], |xi| = n
and 0 < |xℓ| ≤ n. We define parsen(ϵ) = x1, where x1 = ϵ, i.e, |x1| = 0. For x ∈ {0, 1}∗
and |x| ≤ n, Pad(x) = x∥10n−|x|−1, if |x| < n, and Pad(x) = x, if |x| = n. For x ∈ {0, 1}∗
and |x| ≥ τ , MSBτ (x) and LSBτ (x) stand for the most and least significant τ bits of x
respectively. We call a string x ∈ {0, 1}n as a block. We call z ∈ {0, 1}∗ as full block if |z|
is a multiple of n and as incomplete block otherwise.

Block ciphers. A block cipher is a function E : K × {0, 1}n → {0, 1}n, where K is the
key space, which generally contains fixed length strings; n is called the block length of the
block cipher. For K ∈ K and X ∈ {0, 1}n, we will denote E(K,X) by EK(X). A block
cipher also has an inverse denoted by E−1K (), but we will not have any occasion to use the
inverse in this work.

Pseudo-Random Function(PRF). Let Func(∗, τ) be the set of all functions from {0, 1}∗
to {0, 1}τ , and let {Fk}k∈K be a family of functions where for each k ∈ K, Fk : {0, 1}∗ →
{0, 1}τ . We define the PRF-advantage of an adversary A as

AdvprfF (A) =
∣∣∣Pr[k $←− K : AFk(·) ⇒ 1]− Pr[ρ

$←− Func(∗, τ) : Aρ(·) ⇒ 1]
∣∣∣ .

We say that {Fk}k∈K is a pseudorandom family of functions (or, sometimes F is a pseudo-

random function) if for all efficient adversaries A, AdvprfF (A) is small.

Message Authentication Codes. A message authentication code (MAC) is a map F :
K×M→ {0, 1}τ , where K is the key space andM the message space. We often write FK(·)
to denote F (K, ·). The output of a MAC is called the tag, and τ is called the tag length.
The security of a MAC F is defined using an interaction of F with an adversary A [1]. It is

assumed that A has an oracle access to FK(), where K
$←− K. For a query x ∈M of A the

oracle responds by sending y = FK(x). Let, A query x1, x2, . . . , xq and gets y1, y2, . . . , yq
as responses from the oracle. These queries are performed adaptively. Finally, A outputs a
pair (x∗, y∗), where x∗ /∈ {x1, x2, . . . , xq}. This pair is called a forgery and it is said that A
has successfully forged F if FK(x∗) = y∗. The auth-advantage of A is defined as

AdvauthF (A) = Pr[K
$←− K : A forges].

We say that F is (ϵ, t) secure if for every adversary A, which runs for time at most t,
AdvauthF (A) ≤ ϵ. It is well known that for any arbitrary adversary A for the MAC F there
exists a PRF adversary B for F such that

AdvauthF (A) ≤ AdvprfF (B) + 1

2τ
, (1)

where B and A both run almost for the same time and ask almost the same number of
queries.

A dominant paradigm of designing MACs is by using block ciphers, and CBC-MAC
and its variants are some notable examples of block cipher based MACs.

CBC-MAC : Consider the map CBC : K ×M → {0, 1}n, where M ⊆ ∪i>0{0, 1}ni. For
M ∈ M, let parse(M) = M1||M2|| · · · ||Mℓ and C0 = 0n, Ci = EK(Mi ⊕ Ci−1) for i ∈ [ℓ],
where EK : {0, 1}n → {0, 1}n is a block cipher. We define CBC(K,M) = Cℓ. We often
denote CBC(K,M) by CBCK(M). A schematic view of the function CBCK(M) is shown in
Figure 1. The function CBC is called the CBC-MAC and it is a secure MAC if the underlying
block cipher E is a pseudorandom function and the message space M is prefix-free, i.e.,
for any two distinct x, y ∈ M, x is not a prefix of y. For practical purposes, CBC is used
in scenarios where the message space contains strings of fixed length; such message spaces
are prefix-free.

Let X1, X2, . . . , Xℓ ∈ {0, 1}n, then it is easy to see that for any 1 < k < ℓ,

CBCK (X1∥ · · · ∥Xk∥ · · · ∥Xℓ) = CBCK (CBCK(X1∥ · · · ∥Xk)⊕Xk+1∥Xk+2∥ · · · ∥Xℓ) . (2)

Thus, if CBCK(X1∥ · · · ∥Xk) = T , then

CBCK (X1∥ · · · ∥Xk∥ · · · ∥Xℓ) = CBCK (T ⊕Xk+1∥Xk+2∥ · · · ∥Xℓ) .

This property can be easily translated into a forgery attack: an adversary queriesX1∥ · · · ∥Xk

and gets response as T ; further, it queries T ⊕Xk+1∥Xk+2∥ · · · ∥Xℓ and gets the response
T1; and finally it produces (X1∥ · · · ∥Xk∥ · · · ∥Xℓ, T1) as a forgery. From (2), it is easy to
verify that the forgery will be successful with probability 1. This specific attack is called
the length extension attack and this cannot be mounted if the message space is prefix-free.

EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Mℓ

EK

T

Fig. 1. The function CBCK(M). EK is a block cipher of block size n and M = M1|| . . . ||Mℓ, where |Mi| = n,
for i ∈ [ℓ].

3 The Scheme TrCBC

TrCBC instantiated with a block cipher E : K×{0, 1}n → {0, 1}n is described in details in
Figure 2. A schematic diagram of the same is shown in Figure 3. TrCBC takes a random

key K
$← K and a message M ∈ {0, 1}∗ as input and returns a tag T ∈ {0, 1}τ of length

τ < n/2.

MAC Algorithm: TrCBCK(M)

Input: K
$←− K, M ∈ {0, 1}∗.

Output: T ∈ {0, 1}τ , where τ < n/2.

01. M1∥ · · · ∥Mℓ ← parsen(M);
02. Y ← 0n;
03. for i← 1 to ℓ− 1 do
04. X ← Y ⊕Mi;
05. Y ← EK(X);
06. end for
07. if |Mℓ| = n then
08. X ← Y ⊕Mℓ;
09. Y ← EK(X);
10. T ← MSBτ (Y);
11. else
12. X ← Y ⊕ Pad(Mℓ);
13. Y ← EK(X);
14. T ← LSBτ (Y);
15. end if
16. return T .

Fig. 2. Specification of TrCBC instantiated with an n-bit block cipher EK .

A simplified view of TrCBC in terms of the function CBC would be useful. Let M ∈
{0, 1}∗, where |M | = λ > 0. Let x1||x2|| . . . ||xℓ = parse(M) and let r = |xℓ|. Notice that

EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Mℓ

EK

MSBτ (.)

T

EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Pad(Mℓ)

EK

LSBτ (.)

T

Fig. 3. The TrCBC construction. The first figure is for the full block messages, i.e., the message length is
a multiple of the block size n, and the second figure is for messages whose length is not a multiple of n.
Pad(Mℓ) = Mℓ∥10n−|Mℓ|−1 and τ < n/2.

r = λ− (ℓ− 1)n = λ− (⌈λ/n⌉ − 1)n. We define TrCBC as

TrCBCK(M) =

{
MSBτ (CBCK(M)) if r = n,
LSBτ

(
CBCK(M ||10n−r−1)

)
if r < n.

(3)

4 An Attack on TrCBC

It was claimed in [9] that TrCBC is a secure MAC if the underlying block cipher is a
pseudorandom permutation. We show that an adversary making just three queries to the
MAC oracle can successfully forge TrCBC with probability 1/4.

We consider TrCBC instantiated with a block cipher of block length n (which is even).
We fix the tag length τ = n/2 − 1. Let x1, x2, x3 be fixed but arbitrary strings such that
|x1| = |x3| = n and |x2| = n − 2. We set M1 = x1, M2 = x2||10 and M3 = x3. The three
queries which the adversary asks, along with the responses, are as follows.

1. Query X(1) = M1||M2, and get T1 as response.

2. Query X(2) = M1||x2, and get T2 as response.

3. Query X(3) = M1||M2||M3, and get T3 as response.

Finally, the adversary submits (M∗, T ∗) as the forgery, where

M∗ = (T1∥b∗1b∗2∥T2)⊕M3, T ∗ = T3 where b∗1, b
∗
2

$←− {0, 1}.
Note that (M∗, T ∗) is a valid forgery, as M∗ which is a single block message has never

been queried to the oracle. We are left to show that this forgery is successful with high
probability. We claim that for any choice of K ∈ K,

Pr[TrCBCK(M∗) = T ∗] = 1/4,

where the probability is over the choice of b∗1, b
∗
2. We substantiate our claim below.

From the TrCBC construction and our simplified description of TrCBC in Eq.(3) we get,

T1 = TrCBCK(M1||M2) = MSBτ (CBCK (M1∥M2)) (4)

T2 = TrCBCK(M1||x2) = LSBτ (CBCK (M1∥x2∥10)) = LSBτ (CBCK (M1∥M2)) (5)

T3 = TrCBCK(M1||M2||M3) = MSBτ (CBCK (M1||M2||M3)) . (6)

As |T1| = |T2| = τ = n/2− 1, we have for some b1, b2 ∈ {0, 1},

T1∥b1b2∥T2 = CBCK(M1||M2). (7)

Hence, using (7) and (2)

MSBτ (CBCK(T1∥b1b2∥T2 ⊕M3)) = MSBτ (CBCK (CBCK(M1||M2)⊕M3))

= MSBτ (CBCK (M1||M2||M3))

= T3,

and
TrCBCK(M∗) = MSBτ (CBCK((T1∥b∗1b∗2∥T2)⊕M3)) .

As b∗1, b
∗
2 are chosen uniformly at random from {0, 1}, so with probability 1/4, we have

(b∗1, b
∗
2) = (b1, b2), and thus

Pr[TrCBCK(M∗) = T3] =
1

4
,

as claimed.

5 Discussions

The source of insecurity. The following are the main characteristics of TrCBC:

1. For full block messages, TrCBC is exactly the CBC-MAC scheme, except that instead of
the full output only a part of the output is produced as the tag, in particular τ < n/2
most significant bits only forms the tag.

2. For messages which are not full block, a deterministic padding is applied and the CBC-
MAC of the padded message is computed and the least significant τ bits are output as
a tag.

The idea behind such a design seems to be separating the outputs for full block and
incomplete block messages and the authors thought that a small tag length would prevent
a length extension type of attack. But, as only a deterministic padding scheme is applied,
hence for any message M ∈ {0, 1}mn where the last block is not 0n almost all bits of
CBCK(M) can be recovered with just two queries to TrCBC. To see this, let M = M ′||x,
where |x| = n and x ̸= 0n. Let x = an · · · a2a1, where ai ∈ {0, 1}, and j be the smallest
element in [n] such that aj = 1. Let M1 = M ′||anan−1 · · · aj−1. Then, following the padding
scheme in TrCBC we have,

TrCBCK(M) = MSBτ (CBCK(M)),

TrCBCK(M1) = LSBτ (CBCK(M)).

Our attack essentially uses the above property of TrCBC to recover 2τ many bits of
CBCK(M). This property can be further used to forge a large class of messages, which
we will describe next.

A generic attack. Consider a message X = X1||X2|| . . . ||Xℓ, for ℓ ≥ 2 and suppose there
exists k ∈ [ℓ− 1] such that Xk ̸= 0n, i.e, X1||X2|| . . . ||Xℓ−1 is not the all zero string. Let,
Xk = x∥10m, where the first 1 (from the right) in Xk followed by m ≥ 0 zeros. As before,
we fix the tag length τ = n/2− 1. Let an adversary query with the three queries specified
below:

1. X(1) = X1||X2|| . . . ||Xk.
2. X(2) = X1||X2|| . . . ∥Xk−1||x.
3. X(3) = X1||X2|| . . . ||Xℓ.

Let the responses to the above three queries be T1, T2, T2 respectively, and let

M∗ = ((T1∥b∗1b∗2∥T2)⊕Xk+1)∥Xk+2∥ . . . ∥Xℓ,

where b∗1, b
∗
2

$←− {0, 1}. Then following the same arguments as in Section 4 it is easy to verify
that (M∗, T3) will be a forgery with a success probability 1/4.

Provable security of TrCBC. In [9] the authors claim TrCBC to be a PRF. We restate
the theorem in [9] next.

Theorem 1. Let R
$←− Func(∗, τ) and P

$←− Perm(n). Let TrCBCP be the construction
where the block cipher in TrCBC is replaced by P . A is an adversary who asks at most q
queries, having an aggregate length of at most σ blocks, then∣∣∣Pr [ATrCBCP (.) ⇒ 1

]
− Pr

[
AR(.) ⇒ 1

]∣∣∣ ≤ σ(σ − 1)

2n+1
+

σ(σ − 1)

2n−2τ+1
.

Theorem 1 claims a bound on the PRF advantage of an adversary attacking TrCBC. If
we investigate the bound a bit closely, it is clear that the bound on the advantage can be
really large for some suggested parameter values of TrCBC. For example, for τ = n/2− 1,
the dominant term in the bound is σ(σ − 1)/8, thus for any σ > 3 the bound becomes
meaningless. As a PRF advantage (which is a difference of two probabilities), being less
than 1 is a trivial information. Thus, though the theorem is correct, the bound does not
guarantee that TrCBC is a PRF for all suggested parameter values and hence the provable
security theorem, though correct, does not imply security of TrCBC for all suggested tag
lengths.

The inadequacy of the theorem gets more clear when we see it in light of our attack. For
our basic version of the attack, the adversary uses only three queries with query lengths 2
blocks, 2 blocks and 3 blocks respectively. Thus the query complexity (the total aggregate
query length) of our adversary is σ = 7 and it has a large forgery advantage of 1/4. Based
on Theorem 1 and Eq. (1), the forgery advantage of an adversary with query complexity 7
would be at most

7(7− 1)

2n+1
+

7(7− 1)

23
+

1

2n/2−1
,

which is greater than 5 irrespective of the value of n. Thus, technically our attack does not
refute the provable security claim.

It is worth investigating for which tag length(s) the bound implies security of TrCBC.
According to Eq. (1), the forgery advantage of any adversary A with query complexity σ
attacking TrCBC will be upper bounded by

σ(σ − 1)

2n+1
+

σ(σ − 1)

2n−2τ+1
+

1

2τ
.

Taking τ = n/2− α, where 1 ≤ α < n/2 we have the bound as

σ(σ − 1)

2n+1
+

σ(σ − 1)

22α+1
+

1

2n/2−α
>

1

22α+1
+

1

2n/2−α
. (8)

A simple computation shows that the expression on the right-hand side of Eq. (8) attains
the minima at α = n/6, which suggests that the best-suited value of τ will be n/2−n/6 =
n/3.

As suggested by the authors, the allowed value of τ is less than n/2. It is common knowl-
edge that shorter tags give lesser security; hence from a user’s perspective, the maximum
length of a tag, which is supported by the MAC and the application at hand, is chosen.
Thus, given the specification of TrCBC it would be alluring for a user to use the largest
possible tag length, which is n/2− 1, and as we show, this choice can be disastrous. Thus
the provable security guarantee of TrCBC which the authors provide through Theorem 1 is
very confusing without a proper interpretation of the bound.

Our analysis shows that the PRF bound suggests maximum security when the tag
length is n/3. If we consider a block cipher with a block length of 128 bits, this translates

to tags of length around 42 bits. For most applications, such short tag lengths would not be
tolerated. But TrCBC can provide adequate security when instantiated with block ciphers
with large block lengths (say 256 bits) and when the tag length is appropriately selected.

The case of TCBC . Security properties of truncated CBC-MAC has been studied in details
in [4]. In [4] a scheme called TCBC is described as

TCBCK(X) = MSBτ (CBCK (pad1(X))) .

Where pad1(x) appends a 1 followed by sufficiently many zeros to X to make the length
of the resulting string a multiple of n. In particular if x1||x2|| . . . ||xℓ = parsen(X) then

pad1(X) =

{
X||10n−|xℓ|−1 if |xℓ| < n.
X||10n−1 if |xℓ| = n.

It has been proved in [4] that TCBC is a secure pseudorandom function. In particular, if
TCBC is instantiated with a random permutation, then any adversary making q queries
with length at most λ < 2n/4 cannot distinguish TCBC from a random function with

probability more than ϵ(λ, q) = O(q(q+λ)
2n−τ + λq2

2n).

It is important to note the differences between TrCBC and TCBC. The padding scheme
of TCBC injectively maps any string in {0, 1}∗ to the set of strings ∪i≥1{0, 1}ni, whereas
the padding scheme for TrCBC is not injective. Also, for any message it is not possible for
an adversary to know more than τ bits of the final output of TCBC, but as we already
showed for TrCBC it is possible to know 2τ many bits of the output for a large class of
messages and this helps in the forgery attack. Finally, TCBC requires one more block cipher
call than TrCBC for full block messages.

6 Conclusion

We revisited the security of TrCBC. Our study shows that TrCBC is not secure for all
suggested tag lengths. In particular, for a tag length of n/2− 1, we showed a concrete and
practical attack with high success probability, which uses only three queries to the MAC.
The security theorem for TrCBC, though correct, does not imply security of TrCBC for all
suggested parameters. Our study re-confirms the need to study claimed security bounds
in security theorems for cryptographic constructions before choosing safe parameter values
for the system.

We do not see any easy way to fix TrCBC such that it retains the interesting requirement
of a single key and ⌈λ/n⌉ many block cipher calls for authenticating a λ-bit message with
a good security margin. It is worth mentioning here that GCBC1/GCBC2 [7] achieves this
to a large extent, i.e., when λ > n GCBC1/GCBC2 indeed produces a secure MAC with a
single key and ⌈λ/n⌉ block cipher calls.

References

1. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences, 61(3):362–399, 2000.

2. John Black and Phillip Rogaway. CBCMACs for arbitrary-length messages: The three-key constructions.
In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings, volume 1880 of Lecture
Notes in Computer Science, pages 197–215. Springer, 2000.

3. Morris Dworkin. The CMAC mode for authentication. Recommendation for Block Cipher Modes of
Operation, 2005.

4. Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security of truncation: Tight bounds
for keyed sponges and truncated CBC. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages 368–387.
Springer, 2015.

5. Tetsu Iwata and Kaoru Kurosawa. OMAC: one-key CBC MAC. In Thomas Johansson, editor, Fast
Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden, February 24-26, 2003,
Revised Papers, volume 2887 of Lecture Notes in Computer Science, pages 129–153. Springer, 2003.

6. Kaoru Kurosawa and Tetsu Iwata. TMAC: two-key CBC MAC. In Marc Joye, editor, Topics in Cryp-
tology - CT-RSA 2003, The Cryptographers’ Track at the RSA Conference 2003, San Francisco, CA,
USA, April 13-17, 2003, Proceedings, volume 2612 of Lecture Notes in Computer Science, pages 33–49.
Springer, 2003.

7. Mridul Nandi. Fast and secure CBC-Type MAC algorithms. In Orr Dunkelman, editor, Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised
Selected Papers, volume 5665 of Lecture Notes in Computer Science, pages 375–393. Springer, 2009.

8. Erez Petrank and Charles Rackoff. CBC MAC for real-time data sources. J. Cryptol., 13(3):315–338,
2000.

9. Liting Zhang, Wenling Wu, Peng Wang, and Bo Liang. TrCBC: Another look at CBC-MAC. Inf.
Process. Lett., 112(7):302–307, 2012.

