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Lightweight Hardware Accelerator for
Post-Quantum Digital Signature

CRYSTALS-Dilithium
Naina Gupta, Arpan Jati, Anupam Chattopadhyay, and Gautam Jha

Abstract—The looming threat of an adversary with Quantum
computing capability led to a worldwide research effort towards
identifying and standardizing novel post-quantum cryptographic
primitives. Post-standardization, all existing security protocols
will need to support efficient implementation of these primitives.
In this work, we contribute to these efforts by reporting the small-
est implementation of CRYSTALS-Dilithium, a finalist candidate
for post-quantum digital signature.

By invoking multiple optimizations to leverage parallelism,
pre-computation and memory access sharing, we obtain an imple-
mentation that could be fit into one of the smallest Zynq FPGA.
On Zynq Ultrascale+, our design achieves an improvement of
about 36.7%/35.4%/42.3% in Area×Time (LUTs×s) trade-off
for KeyGen/Sign/Verify respectively over state-of-the-art imple-
mentation. We also evaluate our design as a co-processor on
three different hardware platforms and compare the results with
software implementation, thus presenting a detailed evaluation
of CRYSTALS-Dilithium targeted for embedded applications.
Further, on ASIC using TSMC 65nm technology, our design
requires 0.227mm2 area and can operate at a frequency of
1.176 GHz. As a result, it only requires 53.7µs/96.9µs/57.7µs for
KeyGen/Sign/Verify operation for the best-case scenario.

Index Terms—post-quantum, cryptography, PQC,
CRYSTALS-Dilithium, FPGA, hardware, ASIC, hardware
accelerator

I. INTRODUCTION

The threat of an adversary with Quantum computing capa-
bility is getting increasingly realistic [1], [2], with rapid growth
in the capacity of Quantum computers, as well as, optimized
implementations of the current cryptographic primitives using
Quantum circuit simulators [3], [4]. It is predicted that current
public-key primitives could be broken within hours [5], thus
necessitating the search for alternative cryptographic primi-
tives in the era of Quantum computing. This is systematically
undertaken by NIST through its Post-Quantum Cryptography
(PQC) contest [6], which plans to roll out the winners of
this contest as a standard. Naturally, there is a pressing
need to study efficient hardware implementations of the PQC
candidates, which not only plays an important role in the
contest judgement process but also helps in the rapid adoption
of the standard.

The current finalists of the NIST PQC contest consist of
3 candidates in digital signature scheme, one of which has
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recently been attacked [7]. There have been several previous
works as well compromising the security of this scheme [8]–
[10]. This leaves two other digital signature candidates among
which Dilithium is one. Naturally, it is of high importance
to study efficient implementations of Dilithium [11]. Digital
signature being an integral part of numerous security protocols,
the use-cases and the platform constraints range from high-
speed servers to highly resource-constrained IoT platforms.
As a result, there have been several efforts towards optimiz-
ing Dilithium for different security parameters and different
platforms such as FPGAs and ASICs targeting pure-hardware
based implementation [12]–[16], HLS based implementations
[17]–[19] or as a software-hardware co-design [20]. Further,
few works focused on integration in TLS protocol [21], as a
GPU accelerator [22] and for developing a quantum secure
blockchain [23].

From our studies on the existing Dilithium implementations,
we found that there is a significant room for improvement in
terms of area-efficiency, which sets the motivation for this
work. The main contributions of this work are:

1) In this work, we designed a lightweight hardware ac-
celerator for CRYSTALS-Dilithium. We used multiple
optimization strategies such as resource and control logic
sharing, fusion of modules, pre-computed LUTs etc.

2) By achieving a reduction of about 24% in LUTs and FFs
than state-of-the-art implementation, this work presents
the smallest hardware accelerator for Dilithium. As a
result, it can now be fit into one of the smallest Zynq
FPGA.

3) In our design, we have leveraged both pipelining as
well as parallelism to achieve a good balance of perfor-
mance and area. Thus, on Zynq Ultrascale+, our design
achieves efficiency of more than 35% for Area×Time
compared to existing implementation.

4) To present a fair comparison with the existing implemen-
tations, we used two metrics - Area×Time and number
of operations that can be performed per second per
LUT on a particular platform. On Zynq Ultrascale+,
our design outperforms the state-of-the-art. Whereas, on
Artix-7, our design has better performance for signing
operation.

5) Using TSMC 65nm library, we also implemented the
design on ASIC platform and report numbers for major
modules as well as the overall design. On ASIC, our
design can run at 1.176 GHz with 0.227 mm2 area
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achieving a reduction of 1.4× in area and improvement
of more than 1.7× in execution times for KeyGen, Sign
and Verify.

6) Further, we performed hardware evaluation of the im-
plemented design as an accelerator on three different
hardware platforms and achieved a speedup of 6-15× for
modern high performance CPUs and about 105-261×
for Microblaze compared to software implementations
for different operations.

The paper is organized as follows. Section II starts with the
notations and presents a brief background about Dilithium.
Section III shows the overall system architecture alongwith
the design decisions. It is then followed by the different ex-
perimental results and performance comparison with the state-
of-the-art implementations in Section IV. The performance
evaluation as a hardware accelerator is presented in Section
V and Section VI finally concludes the work.

II. PRELIMINARIES

A. Notations

Throughout this work, we use the following notation.
Lower-case letters are used to represent vectors (e.g. e) and the
polynomials in NTT domain are represented using a hat over
the symbol (ê). Matrices are represented using bold upper-
case letters (e.g. A). R = Z[X]/(Xn+1) denotes the ring of
integer polynomials modulo (Xn +1), where n is a power of
2. Rq is the polynomial ring with coefficients modulo q. For
dilithium, n = 256 and modulus q = 223 - 213 + 1.

B. Protocol Description

The digital signature scheme CRYSTALS-Dilithium is
based on the hardness of the Module Learning with Errors
(MLWE) and the Short Integer Solution (SIS) problems. In
this section, we briefly discuss about the hardness problems
and the protocol. Interested readers are referred to [24] for
more details. Let us consider a matrix A of dimension k×l
and vectors s1 and s2 of dimensions l and k sampled uniformly.
Then, the MLWE problem can be defined as: Given (A, As1 +
s2) and (A, b) where b ≈ As1 + s2 and is a uniformly sampled
vector, the goal is to distinguish (A, As1 + s2) from (A, b). One
can note that they are approximately equal, but the unknown
error vector (s2) makes it quite difficult to distinguish. The
SIS problem can be defined as: Given A, the goal is to find a
vector x such that Ax = 0 and the norm of x is smaller than
an integer value called norm bound β. The dilithium signature
scheme consists of three algorithms key generation (KeyGen),
signature generation (Sign) and verification (Verify) shown in
Fig. 1.

1) KeyGen(): Key generation algorithm generates a keypair
consisting of a public verification key (pk) and a private
signing key (sk). It utilizes two random seeds public
seed (ρ) and noise seed (ρ′) and expands them using
a variant of SHAKE-128 to generate the matrix A and
two vectors s1 and s2. It then computes t = As1 + s2 to
generate the final keypair.

2) Sign(sk,M ): The purpose of this algorithm is to take
the message M and the signing key sk and generate
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Fig. 1. Dilithium Protocol

the signature sig. For this, first a masking vector y
is generated using SHAKE-256 and then it is used to
compute w = Ay. The high-order bits of w (denoted as
w1) are then hashed with the message M to generate
the challenge c. This challenge is used to generate the
signature as z = cs1 + y. Apart from generating z, the
algorithm also generates some hints h for the verifier.
If the signature passes all the correctness and security
checks, then sig consisting of (c, z,h) is sent as the final
signature to the verifier. Otherwise, the signature is re-
computed again as shown in the rejection loop.

3) Verify(pk, sig,M ): The verifier computes Az − ct1 and
set the high-order bits in w1. It is then hashed with the
message M to generate the challenge c. This challenge
is compared with the one received in the signature. If
the challenges match and also the norm of z is valid,
then the signature is accepted and the algorithm returns
valid sig as true, otherwise signature is rejected.

III. ARCHITECTURE AND DESIGN DECISIONS

Here, we present the overall system architecture and discuss
various design decisions which led to the overall optimized
modules.

A. System Architecture

The architecture for three algorithms KeyGen, Sign and
Verify is combined together and the resources are extensively
shared to keep the memory footprint as small as possible.
A global input enable signal is used to start the required
operation. The modules having similar control logic are also
combined together to further reduce the resource utilization.
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Such modules are shown together in the overall design archi-
tecture shown in Fig. 2.

The hardware accelerator is designed using a dedicated FSM
based control unit. All the modules have separate enable and
done signals and are connected to the memory controller. The
control logic and sequencer unit is responsible for enabling
different modules depending on the required functionality. The
memory controller consists of a dual-port switch matrix and
is responsible to connect different modules with the RAMs
depending on the input and the output for the operation.
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Fig. 2. High-level System Architecture of Dilithium

B. Memory Requirements

The upper bound on the memory storage is decided based
on the signature generation part. In the worst-case scenario for
Level V parameters, one needs to store about 118 polynomials.
This huge requirement is mainly because of matrix A of size
k×l×256. In case of KeyGen and Verify, one can generate
partial matrix of size l×256, perform the computation and
store the final result. One can execute these steps k times
separately to save resources and generate the final output of
pointwise operation. But, in case of Sign operation, due to
multiple rejections, there is a trade-off between pre-computing
and storing the complete matrix A or re-computing partial
matrix coefficients. The former approach requires more RAMs
and less clock cycles whereas the latter results in less storage
but more clock cycles. In our design we chose to compute it
fully (56 polynomials) only once at the expense of RAM re-
quirements. To balance this requirement, we analyzed the Sign
algorithm to determine which variables are never accessed
simultaneously (for instance, z and y) and utilized same RAMs
for both the variables. Also, the internal bus-width for each
polynomial is variable and optimized based on the coefficient
size. For instance, the zetas are only of size 23-bit, hence the
BRAM data width is set to 23-bit instead of 32-bit. Similarly,
most of the coefficients for Dilithium can be fit into 26-bit
resulting in a reduction of about 16.8% BRAM requirements
compared to an implementation with a fixed bus width of size
32-bit.

C. Parallel Processing

In order to reduce clock cycles, the data independent op-
erations can be executed in parallel. One can perform fine-
grained parallel execution of operations such as in [13], but,
this leads to significant area overheads, mainly because of
increase in multiplexing, additional module instances etc. We
implemented parallel execution of modules wherever possible
while ensuring low area.

D. SHAKE

Dilithium uses SHAKE-128 and SHAKE-256 extendable-
output functions (XOFs) of the SHA-3 [25] family which
is based around the Keccak permutation [26] for different
functionalities with minor variations. For instance, SHAKE-
256 and its variations are used to generate random seeds from
an initial seed, for the hashing (H) and also to generate the
challenge (c). Whereas, to generate Matrix A, vectors s1, s2
and masking vector y1, variants of SHAKE-128 are used.

As the XOFs are one of the most expensive and time
consuming operations, it is important to design them carefully.
Consequently, there can be multiple possible design choices.
One can have multiple instances of the Keccak as in [15],
cascade two rounds of Keccak [13] to increase performance or
have a single shared instance to achieve all the functionalities
to save resources at the expense of some performance. In our
design, we chose the latter approach and created a unified
wrapper around Keccak to support all the required variations.
For Keccak, we used the implementation provided by the
designers [27]. As Dilithium is a digital signature scheme,
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Fig. 3. Unified SHAKE Wrapper

the architecture should support variable input message length.
Also, the requested output length from the XOFs is different
depending on the operation being performed. Such variations
with different input/output length, different padding logic,
nonce support, etc. makes it quite challenging to have one
module which is efficient in hardware as well as serve all
the required functionalities. As a result, the overall logic for
this module is quite complex. In order to provide support for
variable input and output message length, the design has three
configurable modes of operation - perform absorb followed
by one squeeze (mode = 1), perform only squeeze (mode
= 2) and read Keccak state (mode = 3). The modes are
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extremely useful when the number of executions for squeeze
is unknown (for instance, in case of rejection sampling). Also,
mode = 3 allows the Keccak state to be accessed from outer
modules, as a result we do not need extra resources to store
additional copies of the 1600-bit register elsewhere compared
to the work in [13]. The internal state remains valid after each
squeeze operation unless reset from outside. Fig. 3 shows the
architecture for the implemented SHAKE wrapper module.
The interface is used to set the corresponding mode using
enable signal, provide necessary information such as number
of bytes to absorb (input length), shake rate (shake rate), etc.
and to communicate with the different outer modules.

The control logic for all the modes are responsible to start
the corresponding operation. For example, for a SHAKE-
128 operation, the outer module first sets the enable signal
to mode = 1 alongwith the input length and shake rate.
The operation control decodes the mode and transfers the
control to absorb control logic. This starts the absorb phase
by reading in the domain separator and input. The XORing
of the input with the Keccak state and the generation of
corresponding input addresses are handled by XOR Logic +
Input Address Controller. In our design, we are absorbing data
in chunks of 64-bits per clock cycle. The absorb control logic
is responsible for monitoring the absorbed input length and
starts the permutation if required (when the input message
length is greater than the shake rate). Further, when the input
is completely absorbed, it enables the padding logic to finalize
the absorbed block. The absorb control logic then starts a
squeeze operation by setting start sqz signal. The squeeze
block starts the Keccak permutation and waits for it to finish
execution using a dedicated counter (25 clock cycles as Keccak
has 25 rounds). It then sends the done sqz signal to the absorb
control logic which then triggers the done abs sqz signal to
operation control. Once the outer module receives the done
signal, it starts reading the Keccak state by setting mode =
3, and providing the corresponding state address. In a single
clock cycle, 64-bit data can be fetched from the wrapper. The
outer module processes this data first and if more data is
required, it simply increments the address, otherwise it sends
a read done signal to reset the internal Keccak state. If the
required output length is more than the shake rate, then after
reading enough data (= shake rate), the outer module sets
mode = 2 to start another squeeze operation and then read
the data using mode = 3. Such an approach allows us to call
squeeze back and forth only when required and when we have
exhausted all the available Keccak output. Thus, saving us
clock cycles as well as area as we do not need to pre-compute
and store extra output bytes for example, in case of rejection
sampling.

E. Sampling Modules

Dilithium requires four different types of sampling logic
to generate matrix A, the vectors s1, s2, challenge c and the
masking vector y1. Even though all of them have different
sampling logic, but the coefficients are sampled based on the
output of a variant of XOF function. Hence, the sampling
modules in our design only contain the sampling and control

logic to start and fetch coefficients from the Keccak wrapper
as discussed in III-D.

t0 = buf[pos] & 0x0F;
if (t0 < 15) {

t0 = t0 - (205 * t0 >> 10) * 5;
a[ctr++] = 2 - t0;

}

Listing 1. Rejection Eta

Listing 1 shows a small code snippet from the software
reference implementation for rejection sampling. It is used
to generate vectors s1 and s2 from the output of SHAKE-
128. One can note that the value for t0 can only be between
0 – 14. Thus, the whole computation (requiring multiple
multiplication and subtraction operations) can be completely
avoided and possible output values for polynomial coefficient
can be pre-computed and stored in a LUT. This resulted in
saving a lot of resources. The same logic is used for another
value t1. Similar optimizations are used for other sampling
modules wherever possible alongwith pipelining for good
performance.

F. Combined Power2Round and Decompose

Fig. 4 shows the combined module for Power2Round and
Decompose modules. As can be seen from the figure, the
controller unit is shared between both the modules, thus saving
about 180 LUTs and 120 FFs. The controller unit is used
to enable the operation depending on the mode and generate
address and write enable signals after receiving done from
the respective module. For simplicity we have not shown
the individual enable and done signals in the diagram. The
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Fig. 4. Power2Round and Decompose module

software reference implementation of decompose module for
Dilithium-V requires two multiplication operations to realize
high-order and low-order bits of the polynomial coefficient.
One is (a1*1025) and other one is (a1*2*GAMMA2) where
GAMMA2 = 261888, resulting in an expensive implementa-
tion for Decompose. In order to prevent DSP usage for the
two cases, we used two different strategies. We realized the
first multiplication using an addition operation as (a1*1025) is
equivalent to (a1*1024 + a1) and (a1*1024) is very efficient
in hardware and can be realized by shift logic. For the second
multiplication, we used a small 4-bit lookup-table (LUT) as the
input a1 can only have 16 possible values. We pre-computed
the output of (a1*2*GAMMA2) for all 16 possible values and
used the LUT whenever required. The rest of the operations
are mostly either shift operations or addition/subtraction with
a constant value. Because of the optimizations employed, the
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resource utilization of decompose is thus significantly reduced
to only about 120 LUTs and 203 FFs. Power2Round is a very
simple module requiring only one addition and subtraction
operation. We have performed such control logic unification
with multiple modules and benefited in terms of area.

G. NTT/INTT

The NTT/INTT is one of the most computationally expen-
sive operations in Dilithium. Fig. 5 shows the basic architec-
ture utilized in this implementation. As the NTT operations
in Dilithium allows implementations with two simultaneous
butterfly operations we have utilized two 64×256 dual-port
memories attached with a dual butterfly unit. This allows
for two butterfly-operations to be performed per clock cycle.
The dual butterfly unit internally utilizes two multiplication-
reduction units as described in section III-H.
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The NTT operation is performed in three stages. First,
the data from external memory is copied over to RAM-
A. Second, the data in RAM-A is processed (128 butterfly
operations) and written over to RAM-B and reverse, until all
the layers have been processed. Finally the result is written
back to the external RAM. The entire operation requires
multiple addresses, write enables and zetas to be generated
and provided to various modules. This is performed by the
address generation and control state machine. At the end of
INTT, the required scaling by 1/n is performed by the butterfly
unit as well. So, no additional resources or clock cycles are
utilized.

H. Modular Reductions

The work in [28], [29] proposed an efficient method
for modular reduction in hardware for NewHope-NIST and
CRYSTALS-Kyber. In this work, we followed a similar ap-
proach for efficient modular reduction in Dilithium. In order
to compute a mod q, we used Dilithium modulus property
223 = 213 − 1 (mod 8380417) recursively. The corresponding
equations are as shown below:

a = 223a[45 : 23] + a[22 : 0]

= 213a[45 : 23]− a[45 : 23] + a[22 : 0]

= 223a[45 : 33] + 213a[32 : 23]− a[45 : 23] + a[22 : 0]

= 213a[45 : 33]− a[45 : 33] + 213a[32 : 23]

− a[45 : 23] + a[22 : 0]

= 223a[45 : 43] + 213a[42 : 33] + 213a[32 : 23]

− (a[45 : 33] + a[45 : 23]) + a[22 : 0]

= 213(a[45 : 43] + a[42 : 33] + a[32 : 23])

− (a[45 : 43] + a[45 : 33] + a[45 : 23]) + a[22 : 0]

= 213c− e+ a[22 : 0]( mod q)

where c = (a[45 : 43] + a[42 : 33] + a[32 : 23]) and
e = a[45 : 43] + a[45 : 33] + a[45 : 23]. Using the same
modulus property again, c can be further reduced as:

213c = 223c[11 : 10] + 213c[9 : 0]

= 213(c[11 : 10] + c[9 : 0])− c[11 : 10]

= 213f − c[11 : 10]( mod q)

Further reduction is possible for f as shown below:

213c = 223f [10 : 10] + 213f [9 : 0]− c[11 : 10]

= 213(f [10] + f [9 : 0])− (f [10] + c[11 : 10])
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Fig. 6. Efficient Modular Reduction Module

Fig. 6 shows the implemented reduction module. The extra
multiplication operation required before modular reduction
operation is also integrated in this module. In order to reduce
the input to 23-bit before multiplication, we first performed
an initial reduction using the same recursive property. This
helped in the reduction of 2 DSP resources per such module.
The back-to-back flip flops correspond to the pipeline delays
required for optimal DSP implementation. Two such modules
are instantiated in hardware to speed up operations.

IV. RESULTS AND PERFORMANCE COMPARISON

In this section, we present resource utilization and perfor-
mance results for both FPGA and ASIC implementations. We
also compare our results with the state-of-the-art implementa-
tions for Dilithium-V. The implemented design is realized in
Verilog and the results are presented after synthesis and place
and route using Vivado 2020.1 targeting two platforms Xilinx
Artix-7 (XC7A200T-2) and Zynq UltraScale+ (XCZU9EG-
2). The correctness of the implementation is verified using
the KAT provided in the NIST package. From here on,
Artix-7 is referred as A7 and Zynq UltraScale+ is referred
as ZUS+. For ASIC, we synthesized the design for TSMC
65nm process technology. We used Synopsys Design Compiler
version R-2020.09-SP5 for synthesis and Cadence Innovus
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version V19.10-P002 for place-and-route of the design. We
used CCS-based standard cell library for accurate results.
Synopsys DesignWare library components were used wherever
applicable.

A. Resource Utilization

Table I shows resource utilization for the major components
required in Dilithium. Through extensive resource sharing
between the modules, we obtained a significant reduction in
overall resource utilization. One can note that the resource
utilization for Sampling is quite low compared to the other
existing implementations. This is mainly because the different
Sampling modules contain only the minimal arithmetic and
control logic with the XOFs shared between them. The slice
registers usage is somewhat higher in our case because of the
deep pipelines needed for good performance on both FPGA
and ASIC. The various modules were individually optimized
for hardware using multiple strategies wherever applicable.

TABLE I
RESOURCE UTILIZATION FOR FPGA AND ASIC. THE ASIC RESOURCES

ARE REPORTED IN GATE EQUIVALENTS (GES).

Sub-module FPGA ASIC Reference
LUT F/F DSP BRAM GEs

MakeHint 2389 740 0 0 - [15]

67 85 - - 1423.7 This Work

UseHint 6453 2808 0 0 - [15]

186 279 0 0 4740 This Work

Encode + 1626 461 0 0 - [15]

Pack 650 603 0 0 8884 This Work

Decode + 2189 239 0 0 - [15]

Unpack 694 568 0 0 9458.3 This Work

Decompose 1437 680 0 0 - [15]

120 203 0 0 3028.7 This Work

NTT + 4509× 2 3146× 2 16 0 - [15]

PolyArith 5676 1218 41 1 - [16]

2759 2037 4 7 40182 This Work

SampleA + 3548 1015 0 0 - [15]

SampleS 1479 189 - - - [16]

360 355 0 0 4710.3 This Work

SampleY
2220 630 0 0 - [15]

469 48 - - - [16]

99 199 0 0 2353 This Work

SampleC
1856 868 0 0 - [15]

384 662 - - - [16]

289 244 0 0 3782.7 This Work

Keccak
5483× 3 4451× 3 0 0 - [15]

3708 1623 - - - [16]

4202 1800 0 0 42155.3 This Work

B. FPGA Implementation

Table II presents detailed results for our implementation
as well as existing implementations for Dilithium-V. In our
case, the combined architecture (for KeyGen, Sign and Verify)
requires about 13.9k LUTs, 6.8k Slice registers, 35 BRAMs

and 4 DSPs. Due to a deeply pipelined architecture, our design
can run at a maximum frequency of 163 MHz on Artix-7 and
391 MHz on Zynq Ultrascale+. As a result, we require 387µs,
699µs and 416µs for KeyGen, Sign and Verify operations on
Artix-7. For Zynq Ultrascale+, the respective operations can
be finished in 161µs, 291µs and 173µs. We also report number
of operations that can be performed per second (OP/s) for all
the implementations.

Currently, to the best of our knowledge, there are four
known hardware implementations which report results for
Dilithium Security Level V. Hence, we compare our results
with only these implementations.

1) Comparison with [15].: The work by Beckwith et. al.
present results for multiple platforms as well as for all the
security levels. For a fair comparison, we compare our results
with the similar FPGA plaform. The authors in [15] targeted
a high-performance implementation. As a result, they can
perform Keygen, Sign and Verify in 121µs, 210µs and 126µs
achieving a reduction of about 3.2×, 3.33× and 3.30× com-
pared to our implementation. Even though the performance
achieved is better, their design requires 3.81×, 4.14× and 4×
more LUTs, FFs and DSPs than our design. This is because
their architecture utilizes multiple cores to perform expensive
operations such as NTT, Keccak whereas we are using only
one core for almost all the modules. Thus, the high latency
in our design is compensated by low area utilization as well
as higher achievable frequency. As a result, their design has
a higher Area×Time trade-off metric of 18.8%, 14.3% and
15.3% for KeyGen, Sign and Verify operations respectively.

2) Comparison with [16].: The authors in [16] target to
reduce the area in terms of LUTs and FFs by utilizing more
DSP resources in their architecture. Their design requires
3.2×, 2.02× and 11.25× more LUTs, FFs and DSP resources
and about 1.13× less BRAMs compared to our design. Even
though, our implementation has slightly more latency for
the three operations, the overall improvement in terms of
efficiency (Area×Time) is quite high. Compared to ours, their
design has a lower Area×Time trade-off efficiency by 200%,
129% and 188% for KeyGen, Sign and Verify operations
respectively.

3) Comparison with [13].: Zhao et. al. proposed a com-
pact and high-performance hardware design. They did sev-
eral optimizations such as segmented pipeline processing to
achieve a high-performance architecture. As a result, they
can perform KeyGen/Sign/Verify in 90µs/505µs/93µs which is
4.3×/1.38×/4.47× lower than our design execution time. One
can note that the improvement in execution time for Sign is not
that significant. We believe this is because the Sign operation
does not offer much scope for parallel execution of operations.
Further, even though their design offers high-performance, it
comes at an expense of consuming large amounts of resources.
Compared to our design, their implementation requires 114.7%
and 51% more LUTs and FFs. As a result, the Area×Time
trade-off is better in our case for Sign operation whereas it is
better in [13] for KeyGen and Verify.

4) Comparison with [14].: The design by Aikata et. al.
presents a unified architecture for Dilithium and Saber. The
authors in [14] target a low area implementation. Hence, the
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TABLE II
PERFORMANCE AND COMPARISON FOR DILITHIUM-V FOR BEST-CASE SCENARIO (SIGNATURE IS VALID AFTER THE FIRST ITERATION) ON FPGA AND

ASIC. THE THE AREA FOR ASIC IS EXCLUDING ON-CHIP MEMORY AND IS REPORTED IN mm2 AND GATE EQUIVALENTS (GES)

Reference Family Freq. Area KeyGen Sign Verify

LUT FF RAM DSP Cycles Time OP/s Cycles Time OP/s Cycles Time OP/s
(MHz) (×103) (µS) (×103) (µS) (×103) (µS)

FPGA Results

This Work Artix-7 163 13,975 6,845 35 4 63.2 387 2580 113.9 699 1430 67.9 416 2401
Beckwith et. al. [15] Artix-7 116 53,187 28,318 29 16 14.0 121 8263 24.4 210 4762 14.6 126 7922
Land et. al. [16] Artix-7 140 44,653 13,814 31 45 51.0 364 2746 70.4 503 1989 52.7 377 2656
Zhao et. al. [13] Artix-7 96.9 29,998 10,336 11 10 8.8 90 11055 49.0 505 1977 9.0 93 10720
Beckwith et. al. [15] Kintex-7 173 54,468 28,639 29 16 14.0 81 12324 24.4 141 7102 14.6 85 11815

This Work Zynq Ultrascale+ 391 13,975 6,845 35 4 63.2 161 6189 113.9 291 3431 67.9 173 5759
Aikata et. al. [14] Zynq Ultrascale+ 200 18,406 9,323 24 4 38.8 194 5149 68.5 342 2920 45.8 229 4368
Beckwith et. al. [15] Virtex Ultrascale+ 256 53,907 28,435 29 16 14.0 55 18238 24.4 95 10509 14.7 57 17483

ASIC Results

This Work TSMC 65nm 1176 0.227 mm2 157 kGE 63.2 53.7 18614 113.9 96.9 10320 67.9 57.7 17322
Aikata et. al. [14] UMC 65nm 400 0.317 mm2 220 kGE 38.8 97.1 10298 68.5 171.3 5839 45.8 114.5 8735

Keccak core and the polynomial multiplier are shared between
the two algorithms. But, there are many specialized modules
required just for Dilithium, similarly for Saber. As a result,
their implementation requires 31.7% and 36.2% more LUTs
and FFs compared to our design but the BRAM utilization
is comparatively low in their implementation. One interesting
thing to note is our design can run at about twice the speed
of their design. As a result, we are able to achieve an
improvement of 17%, 14.9% and 24.5% in the execution
time of KeyGen, Sign and Verify operations. Further, the
Area×Time trade-off efficiency is lower by 57.9%, 54.8% and
73.3% compared to ours for the respective operations.

Efficiency Metrics. In order to collate all the results, we
compare our work with the existing implementations using two
metrics - Area×Time (LUTs×s) trade-off (shown in Fig. 7)
and Number of operations (KeyGen/Sign/Verify) that can be
performed per second per LUT (shown in Fig. 8). Both metrics
are used to quantify the efficiency of an implementation. In the
former case, a lower value denotes a better design, whereas
for the latter, a higher value is considered to be good.
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Fig. 7. Area×Time (LUTs×s) trade-off: Our design has better Area×Time
trade-off in case of Ultrascale+ compared to the existing implementations. For
A7 the implementation by Zhou et. al. [13] has better Area×Time trade-off
for KeyGen and Verify, whereas our design is better for Sign operation. One
interesting thing to note is that our result on Zynq Ultrascale+ is best across
all platforms.
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Fig. 8. Operations/second/LUT: In case of Zynq Ultrascale+, we are
able to achieve an improvement of about 58.78%, 54.72% and 73.84% for
KeyGen, Sign and Verify operations over the best known state-of-the-art
implementation [14]. Whereas, when comparing our design on Artix-7, the
improvement is about 54.5% for Sign operation. The improvement in ZUS+
is quite high for all the operations because our design is better in terms of
both area as well as performance than the existing implementation.

C. Post-layout ASIC Implementation

Table II shows the results for the ASIC implementation.
Our design requires an area of about 0.227 mm2 (≈ 157k
GEs) after place-and-route excluding on-chip memory. Be-
cause of the highly pipelined architecture, the design can run
at 1.176 GHz. As a result, the KeyGen/Sign/Verify takes only
53.7µs/96.9µs/57.7µs. Compared to state-of-the-art implemen-
tation, we achieve a reduction of 1.4× in area and improve
the runtime of KeyGen/Sign/Verify by 1.81×/1.77×/1.98×.

The physical layout of the implemented design after place-
and-route is shown in Fig. 9. We have highlighted the regions
for individual modules in Dilithium. One can see that majority
of the area in the design is consumed by Keccak, Sampling,
Reduction and NTT modules with Keccak being the largest. In
our design, we are using 2 instantiations of reduction modules
(marked as Reduction-1 and Reduction-2). The remainder of
the space is utilized by the multiplexers connecting the various
modules and the FSM based control logic.

V. HARDWARE EVALUATION AS AN ACCELERATOR

To demonstrate the effectiveness of the developed hardware
accelerator, we evaluated our design on three test platforms:
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TABLE III
PERFORMANCE AS AN ACCELERATOR FOR BEST-CASE SCENARIO: SIGNATURE IS VALID IN THE FIRST ITERATION AND IN THE WORST-CASE SCENARIO:

REJECTION LOOP IS EXECUTED 17 TIMES BEFORE A VALID SIGNATURE IS GENERATED. THE NUMBERS ARE CPU CLOCK CYCLES (× 103) ELAPSED
WHEN THE OPERATION IS EXECUTED ON HARDWARE VERSUS ON SOFTWARE.

FPGA Processor KeyGen Sign: Best-case Sign: Worst-case Verify

HW SW Speedup HW SW Speedup HW SW Speedup HW SW Speedup

XC7A75T-2 Microblaze 48.2 12613.3 261.7 85.9 16210.8 188.7 796.7 84363.9 105.9 51.4 12857.7 250.1
XC7Z010-1 ARM Cortex-A9 337.5 5079.6 15.05 607.9 6907.6 11.36 5661.3 39156.1 6.92 362.2 5248.9 14.49
XCZU3EG-1 ARM Cortex-A53 254.1 2134.5 8.4 456.3 3747.8 8.21 4245.9 27240.7 6.42 271.7 2347.7 8.64

Fig. 9. Physical layout of the Dilithium-V Core after place-and-route.

Artix-7 (XC7A75T-2) with Microblaze@100MHz processor,
Zynq-7000 (XC7Z010-1) with ARM Cortex-A9@667MHz
and Zynq Ultrascale+ (XCZU3EG-1) with ARM Cortex-
A53@1200MHz. It is important to quantify the real practical
benefits of a hardware accelerator in a complete system as in
many situations the full potential of an accelerator might not
be achieved. Fig. 10 shows setup for the Zynq Ultrascale+
platform using the Ultra96 board.

Fig. 10. Setup with Ultra96-v2 (XCZU3EG-1) as one of the hardware
evaluation board.

Fig. 11 shows the block diagram of the accelerator con-
nected as an AXI Peripheral applicable for both the Zynq Plat-
forms. A very similar block design is used for the Microblaze
setup as well. We created an AXI4-lite memory mapped regis-
ter based peripheral and implemented support for control and
data logic to connect with the designed Dilithium core. The
AXI packet handler is responsible for receiving and sending
AXI commands from CPU core and decoding them. Based on
the received command, it sends the corresponding operation

request to the state handler. It also communicates with the data
handler for address and data read/write operations. Both the
state and data handler act as a bridge between the AXI packet
handler and the Dilithium accelerator. Since, the accelerator is
designed to be configurable from outside, one can also use it
to only accelerate individual operations like KeyGen, Sign or
Verify.
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ARM Core
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Fig. 11. Dilithium as an Accelerator on Xilinx Zynq. The same AXI periph-
eral IP was used for the Microblaze processor as well. Due to connectivity
using AXI4-lite bus, the accelerator can easily be connected with other
processors as well such as RISC-V.

In Table III, we report results for the hardware accelerator.
For comparison, we chose one best-case scenario where a valid
signature is generated after the first iteration itself and a worst-
case scenario where the valid signature is generated after the
rejection loop is executed for 17 times. It is clear from the
figure that the speedup obtained is inversely proportional to the
performance of the associated CPU. In case of a modern high
performance CPUs like ARM cortex A53 and A9 we obtain
speedups of about 6.42 to 15.05×. Whereas, for Microblaze
the speedup is significantly higher at 105-261×.

VI. CONCLUSION AND FUTURE WORK

By utilizing multiple optimization strategies such as re-
source and control logic sharing, pre-computed LUTs, fusion
of modules etc. we achieved a reduction of 24% in LUTs
and FFs in area compared to the best known implementation.
As a result, our design requires only 13.9k LUTs, 6.8k FFs, 4
DSPs and 35 BRAMs. To the best of our knowledge, this work
presents the smallest hardware accelerator for CRYSTALS-
Dilthium which can now be fit into the smallest Zynq FPGA.
We also present detailed comparison with existing implemen-
tations and show that our design achieves more than 35%
efficiency for Area×Time product on Zynq UltraScale+ for
all the operations.
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We also implemented our design on ASIC and report
numbers for major components of Dilithium as well as the
overall design. Compared to the state-of-the-art implementa-
tion, our design requires about 157 kGE with 0.227 mm2 area,
achieving a reduction of about 1.4×. In terms of performance,
the implemented design can run at 1.176 GHz achieving an
improvement of about 2.95×.

Further, this work presents the first hardware evaluation for
complete Dilithium-V as an accelerator on three different plat-
forms and demonstrate that achieved speedup is significantly
high, about 105-261× for Microblaze and about 6.42-15.05×
for ARM Cortex compared to the software implementations
on these platforms.

In the future, we plan to integrate low-cost side-channel
countermeasures in the design.
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