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Abstract. 3kf9 is a three-key CBC-type MAC that enhances the standardized integrity algorithm f9
(3GPP-MAC). It has beyond-birthday-bound security and is expected to be a possible candidate in
constrained environments when instantiated with lightweight blockciphers. Two variants 2kf9 and 1kf9
were proposed to reduce key size for efficiency, but recently, Leurent et al. (CRYPTO’18) and Shen et
al. (CRYPTO’21) pointed out critical flaws on these two variants and invalidated their security proofs
with birthday-bound attacks.
In this work, we revisit previous constructions of key-reduced variants of 3kf9 and analyze what went
wrong in security analyses. Interestingly, we find that a single doubling near the end restores the
intended beyond-birthday-bound security of both 2kf9 and 1kf9. We then propose two new key-reduced
variants of 3kf9, called n2kf9 and n1kf9. By leveraging previous attempts, we prove that n2kf9 is secure
up to 22n/3 queries, and prove that n1kf9 is secure up to 22n/3 queries when the message space is prefix-
free. We also provide beyond-birthday analysis of n2kf9 in the multi-user setting. Note that compared
to EMAC and CBC-MAC, the additional cost to provide a higher security guarantee is expected to be
minimal for n2kf9 and n1kf9. It only requires one additional blockcipher call and one doubling.
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1 Introduction

A Message Authentication Code (MAC) is a fundamental symmetric-key primitive used to ensure
the authenticity of messages. A MAC is typically built from a blockcipher (e.g., CBC-MAC [6,1],
OMAC [25], PMAC [10]), or from a hash function (e.g., HMAC [5], NMAC [5], NI-MAC [2]). At
a high level, many of these constructions iterate the underlying primitive with an n-bit inter-
nal state size, and thus they are subject to a generic attack using 2n/2 queries by Preneel and
Oorschot [34] exploiting internal state collisions. However, the birthday-bound security 2n/2 is not
always enough in practice, particularly when a MAC is implemented with a lightweight blockci-
pher. To reduce implementation costs, these blockciphers often offer a block length n of 64 bits
or even shorter [11,12,3,38,39,17,4]. In the case of n = 64, the birthday-bound becomes 232 and is
vulnerable in certain practical applications [9].
Double-block Hash-then-Sum constructions. To overcome the birthday-bound barrier, a
series of blockcipher-based MACs has been proposed, including SUM-ECBC [40], PMAC_Plus [41],
3kf9 [42], and LightMAC_Plus [29]. The first one is a rate-2 construction, whereas the last three
are rate-1 constructions and thus more efficient in that aspect.1 2 These constructions follow a
similar paradigm called Double-block Hash-then Sum (DbHtS), where the internal state of the hash
function is 2n-bit and two encrypted values each of n-bit half are xored to generate the tag. Datta
et al. [14] formalized this paradigm and proved these DbHtS MACs including their two-key variants
are secure up to 22n/3 queries. Leurent et al. [28] proposed a generic attack on DbHtS MACs with
query complexity 23n/4. Later, a matching proof by Kim et al. [27] confirmed that the security of
DbHtS MACs stands at 23n/4 queries. Shen et al. [35] also proved that two-key variants of DbHtS
MACs are secure against 22n/3 queries in the multi-user setting.
Key-size reduction and field multiplications. All the above DbHtS MACs require at least
three or two blockcipher keys. Although in some practical protocols, the multiple keys can be
generated from a master key, it has two drawbacks: (i) the construction inherently requires multiple
blockcipher key schedulings, and typically need more invocation time and more energy consumption;
(ii) the previous provable results cannot be applied since they are done by assuming independent
keys. Hence another popular direction is to study how to reduce the key size of these MACs for
better efficiency, while at the same time keeping their high security. Datta et al. [16] showed that
the single-key variant of PMAC_Plus dubbed 1k-PMAC_Plus is secure up to 22n/3 queries. Naito [30]
also showed that the single-key variant of LightMAC_Plus dubbed LightMAC_Plus1k remains secure
up to 22n/3 queries. Inheriting from their original versions, besides blockcipher invocations, both 1k-
PMAC_Plus and LightMAC_Plus1k require at least one additional field multiplication per message
block (and totally at least ℓ field multiplications if the message is ℓ-block). On the contrary, as a
CBC-type mode, 3kf9 does not need field multiplications, and its key-reduced version is likely to
be particularly appealing to applications in serial processing. Yet, reducing its key size appears to
be a challenging problem as discussed below.
A brief history of key-reduced variants of 3kf9. 3kf9 [42] is designed by combining f9
(3GPP-MAC) [37,24] and EMAC [33]. Datta et al. [15] initialized the study of key-reduced variants
of 3kf9 and proposed a single-key variant called 1kf9. Later, Leurent et al. [28] showed a birthday-
bound attack on 1kf9 and thus invalidated its security proof. In an other paper, Datta et al. [14]

1 Rate is the average number of blockcipher invocations per message block [18,19].
2 The rate of LightMAC_Plus will increase with the counter size.
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proposed a two-key variant called 2kf9. Very recently, Shen et al. [35] found a flaw in 2kf9 that it
can be forged by using a single-block message. They also attempted to fix 2kf9 with several variants,
yet all subject to a birthday-bound attack.
Our contributions. We revisit previous constructions of key-reduced variants of 3kf9 and analyze
what went wrong in previous proofs. Interestingly, we find that a single doubling near the end (which
can be computed efficiently by one-bit shift and one conditional XOR with a constant string)
restores the intended beyond-birthday-bound security of both 2kf9 and 1kf9. We then propose
two key-reduced variants of 3kf9, namely a two-key variant called n2fk9 and a single-key variant
called n1kf9 (illustrated in Fig. 6 and Fig. 7, respectively). Note that to provide a higher security
guarantee that is beyond the birthday-bound, the additional cost compared to EMAC and CBC-
MAC is expected to be minimal for n2kf9 and n1kf9: it only requires one additional blockcipher call
and one finite field doubling.

We then give security analyses for n2kf9 and n1kf9. We prove that n2kf9 is secure up to 22n/3

queries, and prove that n1kf9 is secure up to 22n/3 queries when the message space is prefix-free.
Prefix-free means that no query is a prefix of another as in the case of CBC-MAC, and can be
realized by putting the n-bit length encoding of each message as its first block. Note that both
our proofs and previous attempts [15,14] use a similar proof strategy: first show that any pair of
the final 2n-bit state (Σi, Λi) is cover-free, that is at least one of them is fresh, and then apply
the lemma of sum of two identical permutations to get to a beyond-birthday-bound security result.
Yet, the difficulties lie in how to show that (Σi, Λi) is cover-free, which is an essential part of the
proof and where previous attempts failed. Learning from previous mistakes, we provide detailed
analyses to show that (Σi, Λi) of constructions n2kf9 and n1kf9 is indeed cover-free with the help of
doubling, and thus prove that both of them are secure beyond the birthday-bound. These analyses
require surmounting some obstacles and are based on the structure graph of CBC-MAC [8,26].
Moreover, the dominant term in our bound is q3ℓ2/22n for n2kf9 and q3ℓ3/22n for n1kf9 where q is
the number of MAC queries and ℓ is the maximal block length among these MAC queries. Both
are better than the previous bound q3ℓ4/22n of 2kf9 [14] and 1kf9 [15] in terms of length ℓ. The
improvement of mitigating the influence of length ℓ on the bound is non-trivial since it requires a
fine-grained analysis of cases with multiple ‘accidents’ (collisions) in CBC-MAC. We also provide a
beyond-birthday analysis of n2kf9 in the multi-user setting.
Discussion of our bound. Our bound is interesting for beyond-birthday-bound security with
practical interest, especially when communicated messages are of limited length. We show that for
any adversary making q MAC queries of maximal block length ℓ, the advantages against the PRF
security of n2kf9 and n1kf9 are of the order q3ℓ2/22n +q2ℓ4/22n and q3ℓ3/22n +q2ℓ4/22n respectively.
3 We compare the later term with the bound q2ℓ/2n of conventional rate-1 MACs such as CBC-
MAC, OMAC and PMAC. With a 64-bit block size and a guarantee that adversaries do not forge
with probability more than one in a million, one gets a restriction of the form

q2ℓ

264 ≤
1

220 or q3ℓ3

2128 + q2ℓ4

2128 ≤
1

220 .

If the messages are 26 blocks long, then 219 messages can be tagged and total 231 bits = 256
MB of data for the bound q2ℓ/2n, while 229 messages and total 241 bits = 256 GB for the bound

3 To the best of our knowledge, all security bounds of CBC-like MACs (regardless of beyond the birthday-bound or
not) include a similar term (ℓ2/2n)a for a ≥ 1 [8,31,14,27]. This seems to be inherent that arises from the collision
analysis of CBC-like structure.
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q3ℓ3/22n +q2ℓ4/22n. We stress that using 128-bit blockciphers with n2kf9 and n1kf9 can also provide
higher security guarantees.
Organization. First, we set useful notations and security notions in section 2. In section 3 we
revisit different variants of 3kf9 with their associated proofs, and motivate our constructions n2kf9
and n1kf9. Then, in section 4 and section 5 we give the security proofs for n2kf9. In section 6,
we demonstrate the proof for n1kf9. We also provide multi-user security analysis for n2kf9 in Ap-
pendix A.

2 Preliminaries

Notation. Let ε denote the empty string. Let {0, 1}∗ be the set of all finite bit strings including
the empty string ε. For a finite set S, we let x←$ S denote the uniform sampling from S and
assigning the value to x. Let |x| denote the length of string x. Let |x|n denote the n-bit encoding
of the length of string x. Concatenation of strings x and y is written as x ∥ y or simply xy. x10∗
denotes the padding that right padded with a single 1 and as few 0 bits so that the length of string
to be a multiple of n bits. We let y ← A(x1, . . . ; r) denote running algorithm A with randomness r
on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the result of picking r at
random and letting y ← A(x1, . . . ; r). Let Perm(n) denote the set of all permutations over {0, 1}n,
and let Func(∗, n) denote the set of all functions from {0, 1}∗ to {0, 1}n. For integer 1 ≤ a ≤ N , let
(N)a denote N(N − 1) . . . (N − a + 1).
Security definitions. An adversary A is an algorithm that always outputs a bit. We write
AO = 1 to denote the event that A outputs 1 when given access to oracle O. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher. Let π←$ Perm(n) be a random permutation. The advantage of
A against the PRP security of E is defined as

Advprp
E (A) = Pr

[
AEK = 1

]
− Pr [Aπ = 1 ]

where K is chosen uniformly at random from {0, 1}k.
Let F : K×{0, 1}∗ → {0, 1}n be a MAC algorithm. Let R←$ Func(∗, n) be a random function.

The advantage of A against the PRF security of F is defined as

Advprf
F (A) = Pr

[
AFK = 1

]
− Pr

[
AR = 1

]
where K is chosen uniformly at random from K. We note that the above definition captures the
security of a MAC as a pseudorandom function (PRF). It is well known that any PRF is a secure
MAC [7].
The H-coefficient Technique. Following from Hoang and Tessaro [23], we consider interac-
tions between an adversary A and an abstract system S which answers A’s queries. The resulting
interaction can then be recorded with a transcript τ = ((x1, y1), . . . , (xq, yq)). Let pS(τ) denote the
probability that S produces τ . It is known that pS(τ) is the description of S and independent of
the adversary A. We say that a transcript is attainable for the system S if pS(τ) > 0.

We now describe the H-coefficient technique of Patarin [32,13]. Generically, it considers an
adversary that aims at distinguishing a “real” system S1 from an “ideal” system S0. The interactions
of the adversary with those systems induce two transcript distributions X1 and X0 respectively.
It is well known that the statistical distance SD(X1, X0) is an upper bound on the distinguishing
advantage of A.
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procedure f9-hash[E](L, M)
M [1] ∥ . . . ∥M [ℓ]←M ; Y0 ← 0n

for i← 1 to ℓ do
Yi ← EL(Yi−1 ⊕M [i])

Σ = Yℓ; Λ = Y1 ⊕ Y2 ⊕ · · · ⊕ Yℓ

return (Σ, Λ)

Fig. 1: The f9-hash algorithm producing a 2n-bit output.

Lemma 1. [32,13] Suppose that the set of attainable transcripts for the ideal system can be parti-
tioned into good and bad ones. If there exists ϵ ≥ 0 such that pS1 (τ)

pS0(τ)
≥ 1− ϵ for any good transcript

τ , then
SD(X1, X0) ≤ ϵ + Pr[X0 is bad] .

Sum of two identical permutations. The following result of sum of two identical permutations
under conditional distribution is helpful in our analysis.

Lemma 2. [16] For any tuple (T1, . . . , Tq) such that each Ti ̸= 0n, let U1, . . . , Uq, V1, . . . , Vq be 2q
random variables sampled without replacement from {0, 1}n \ Z that can be regarded as the outputs
of a random permutation where the subset Z is of size z, and satisfy Ui ⊕ Vi = Ti for 1 ≤ i ≤ q.
Denote by S the set of tuples of these 2q variables. Then

|S| ≥ (2n)2q

2nq
(1− µ) ,

where µ = 4qz2+8q2z+6q3

22n by assuming z + 2q ≤ 2n−1.

3 The n2kf9 and n1kf9 Constructions

In this section, we first go through previous constructions based on f9-hash (see Figure 1), including
3kf9 [42], 2kf9 [14], 1kf9 [15] and a plausible construction (see Figure 5) where 2kf9 and 1kf9 are
actually broken. We then propose two new constructions called n2kf9 and n1kf9, and show that
they are both secure beyond the birthday-bound.

3.1 Previous Constructions

The 3kf9 construction uses 3 different keys (see Figure 2). It processes the message via f9-
hash and then compute T = EK1(Σ)⊕EK2(Λ). It has a provable beyond-birthday-bound security.
Intuitively, using two different keys to compute the tag makes it harder for an attacker to exploit
some relations between Σ and Λ. Events like Σi = Λi for some message Mi or again Σi = Λj ,
Σj = Λi for some pair of messages Mi, Mj are hardly detectable by looking at the output tags.
The 1kf9 construction uses a single-key for both the f9-hash and tag computation (K = L) (see
Figure 3). It starts by processing an all-0 block before the message in f9-hash and then finishes by
computing T = EL(fix0(2Σ))⊕EL(fix1(2Λ)) where the fix0 and fix1 functions set the least significant
bit to 0 and 1 respectively, and multiplication by 2 is done in a Galois field. The fix function acts
as a domain-separation ensuring that no fix0(2Σ) values can ever collide with a fix1(2Λ) value.
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[1] [2] [3]

Fig. 2: The 3kf9 construction. It is built on top of a blockcipher E : {0, 1}k ×{0, 1}n → {0, 1}n with three keys L, K1
and K2.

0 [1] [2]

fix
0

fix
1

2

Fig. 3: The 1kf9 construction. It is built on top of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n with a single key L.

However, there is a birthday-bound attack by Leurent et al. [28] on 1kf9 that actually exploits the
fix function. The attack looks for two values x and y such that EL(x⊕EL(0))⊕EL(y⊕EL(0)) = d,
where d is the inverse of 2, as it implies a collision between the tags of messages x||0 and y||d.
Indeed, the Σ parts will be equal as the injection of d cancels the difference, and the Λ parts will
differ by d which becomes 1 after multiplication and is absorbed by the fix function. This describes
a full-state collision attack with birthday-bound complexity.

The 2kf9 construction uses two different keys (see Figure 4), one for f9-hash and the other for the
tag computation as T = EK(Σ)⊕EK(Λ). It doesn’t use any fix function or finite field multiplication.
However, Shen et al. [35] realized that when f9-hash processes a single-block message then Σ is
always equal to Λ and thus the tag is always 0. This is a single-query forgery attack which clearly
demonstrates that one cannot simply use the raw f9-hash to get security beyond the birthday-
bound. Shen et al. [35] further realized that adding a fix function and finite field multiplication
leads to essentially the same birthday-bound attack as for 1kf9.
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[1] [2] [3]

Fig. 4: The 2kf9 construction. It is built on top of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n with two keys L and
K.

A plausible construction. The 1kf9 construction does not need the fix functions to avoid the
one-query attack, thanks to prepending an all-0 block at the beginning which forbids one-block
calls to f9-hash. One can wonder if doing the same for 2kf9 would suffice to fix it (see Figure 5).
Unfortunately, in this case, there is still a distinguisher attack with birthday-bound complexity
that exploits another undesirable property of f9-hash. For any prefix M (note that ΣM and ΛM

as the internal state values of f9-hash after processing M), if we query M ||x for many x, then
the tags should collide about twice often than expected. Indeed, by varying the last block only a
new Σx value is added to the bottom part to compute Λx = ΛM ⊕ Σx. Therefore, for any value
x, the probability that Σy = ΛM ⊕ Σx is about 1/2n for another value y, which implies Σy = Λx

and Λy = Σx and thus results in a non-random tag collision. Both non-random and random tag
collisions happen at the birthday-bound which effectively doubles the chance of observing a tag
collision compared with a PRF. Even though it is not clear whether we can use this property to
forge a tag, we can easily construct a distinguisher with non-negligible advantage that looks at the
number of tag collisions happening around the birthday-bound. Notice that this birthday-bound
distinguisher also applies to the original 2kf9 construction.

3.2 Looking Back at Proofs

Those attacks often indicate flaws in the proof that we can learn from. In fact, there are flaws in
the original proofs of 3kf9 (see the discussion in [14, Section 6.5]), 2kf9 (attacked by [35]) and 1kf9
(withdrawn by the authors [15] and attacked by [28]). Therefore, it is important to analyze what
went wrong before moving forward to fix with new constructions.

The proof of 1kf9 was already known to have flaws and was withdrawn so the attack only
confirmed that the proof couldn’t be fixed.

The single-query attack on 2kf9 exploits the fact that the event Σi = Λi automatically occurs
for any single-block message Mi. In the proof of [14], they study the probability of the event Σi = Λi

as the event that the following equation occurs (namely the intermediate values as in Figure 1):

Y i
1 ⊕ · · · ⊕ Y i

li−1 = 0
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0 [1] [2]

Fig. 5: A plausible construction. It is built on top of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n with two keys L
and K, and prepends an all-0 block at the beginning.

whose dotted notation may prevent to see that whenever li−1 = 0, the case of a one-block message,
the equation becomes trivial. Interestingly, even though they pointed out the attack, [35] missed
this event from their multi-user setting analysis (which will be further discussed in Appendix A) .
While the missing analysis is simple in most cases, it still shows that some terms are missing from
the final bound.

The birthday-bound distinguisher of the plausible construction exploits the event that “Σi =
Λj and Σj = Λi” for two messages Mi and Mj . The analysis of this event is simply missing from
[14].

3.3 Our Constructions

In the rest of this paper, we will show that a simple doubling (multiply by 2) of the Λ value can
fix both 2kf9 and 1kf9 to go beyond the birthday-bound security. We now present the two new
constructions n2kf9 and n1kf9.
Intuition behind the designs. Before the presentation of new constructions, we briefly discuss
the intuition that the single doubling helps to avoid the problems in previous constructions. The
reason is that multiplying the sum of Y1 ⊕ Y2 · · · ⊕ Yℓ by 2 can break the relation between Σ
and Λ. More concretely, firstly, it avoids the single-query attack as finite field doubling has no fix
point except for 0. Secondly, for any prefix M , playing with a single block suffix x will introduce
a unique 3 · Σx difference between the top and bottom part and thus avoids the birthday-bound
distinguishing attack. Thirdly, the removal of two fix functions fix0 and fix1 avoids the attack in
1kf9. Finally, as evidenced in the proof, for any three messages Mi, Mj and Mk, the probability
that Σi = Σj or Σi = Λj , and Λi = Σk or Λi = Λk is small. Similar argument also holds for the
case of two messages Mi and Mj .
The n2kf9 construction. Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher. The n2kf9 is built
from a blockcipher E with two keys L and K. Multiplication ⊙ is done on a finite field. Note that
the single doubling (multiply by 2) can be computed efficiently by one-bit shift and one conditional
XOR with a constant string. The specification of n2kf9 is illustrated in Fig. 6.
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procedure n2kf9[E](L, K, M)
M [1] ∥ . . . ∥M [ℓ]←M10∗; Y0 ← 0n

for i← 1 to ℓ do
Yi ← EL(Yi−1 ⊕M [i])

Σ = Yℓ; Λ = 2 · (Y1 ⊕ Y2 ⊕ · · · ⊕ Yℓ)
(U, V )← (EK(Σ), EK(Λ))
T ← U ⊕ V ; return T

[1] [2] [3]

2

Fig. 6: The n2kf9[E] construction. It is built on top of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n with two keys
L and K.

Security of n2kf9. Given that EL and EK are two good PRPs, we have the following result.

Theorem 1. For any adversary A against the PRF security of n2kf9 that runs in time at most t
and makes at most q queries of block length at most ℓ, we have

Advprf
n2kf9[E](A) ≤ Advprp

E (B1) + Advprp
E (B2) + 60q3ℓ2

22n
+ 8q3

22n
+ 122q3ℓ6

23n
+ 30q2ℓ4

22n

+ 108q3ℓ4

23n
+ 2q2

22n
+ qℓ2

2n
+ 3q

2n

by assuming ℓ ≤ 2n−3, where B1 and B2 are two adversaries against the PRP security of the
blockcipher EL and EK respectively, the former running in time at most t1 = t + O(qℓ) and making
at most qℓ queries while the latter running in time at most t2 = t + O(q) and making at most q
queries.

The proof of Theorem 1 is in section 4 and section 5. We also provide beyond-birthday analysis of
n2kf9 in the multi-user setting in Appendix A.
The n1kf9 construction. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. The n1kf9 is
built from a blockcipher E with a single key K. Multiplication ⊙ is done on a finite field. The
specification of n1kf9 is illustrated in Fig. 7. Note that the first block should always be the n-bit
length encoding of the message to realize prefix-free as in the case for CBC-MAC.
Security of n1kf9. Given that EK is a good PRP, the n1kf9 is a good PRF with beyond-birthday-
bound security as shown in the following theorem. The proof of this theorem is in section 6.
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procedure n1kf9[E](K, M)
M [1] ∥ . . . ∥M [ℓ]←M10∗; Y0 ← EK(|M |n)
for i← 1 to ℓ do

Yi ← EK(Yi−1 ⊕M [i])
Σ = Yℓ; Λ = 2 · (Y0 ⊕ Y1 ⊕ · · · ⊕ Yℓ)
(U, V )← (EK(Σ), EK(Λ))
T ← U ⊕ V ; return T

[1] [2]

2

Fig. 7: The n1kf9[E] construction. It is built on top of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n with a single
key K.

Theorem 2. For any adversary A against the PRF security of n1kf9 that runs in time at most t
and makes at most q queries of block length at most ℓ, we have

Advprf
n1kf9[E](A) ≤ Advprp

E (B) + 8q3(ℓ + 3)3

22n
+ 129q3(ℓ + 2)6

23n
+ 36q2(ℓ + 2)4

22n

+ 6q3

22n
+ q(ℓ + 2)2

2n
+ 3q

2n

by assuming ℓ ≤ 2n−3− 2, where B is an adversary against the PRP security of the blockcipher EK

that runs in time at most t = t + O(q(ℓ + 3)) and makes at most q(ℓ + 3) queries.

Tightness of the bound. We remark that the provable 2n/3-bit security for both n2kf9 and
n1kf9 may not be tight. Currently we don’t find a matching attack with 22n/3 queries complexity.
On the other hand, intuitively the difficulty of improving the bound lies in how to handle the case
when (Σi, Λi) is not cover-free instead of simply setting bad events since the final two blockciphers
use the same key.

4 Security Analysis of n2kf9 Construction

In this section, we prove Theorem 1, which shows that n2kf9 achieves beyond-birthday-bound
security.
Overview of the proof. In the proof, we first replace blockciphers with random permutations
in a standard way, and then adopt the H-coefficient technique as described in section 2 to bound
the distance between real world and ideal world.
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To upper bound the probability of bad transcripts in the ideal world, we define several bad
conditions and grant the adversary simulated values which may be reminiscent of previous at-
tempts [14,35]. Yet, we work on the case of the permutation instead of the key being revealed to
the adversary, and some subtleties arise when calculating the ratio of good transcripts. Moreover,
to analyze the bad conditions when (Σi, Λi) is not cover-free and obtain a good bound (beyond
birthday-bound), we need to show that the equations related to these two variables have a rank
greater than or equal to 2. This analysis requires surmounting some obstacles and is based on the
knowledge of structure graph of CBC-MAC [26,8]. In particular, to mitigate the influence of length
ℓ on the bound, it requires to consider the event when there are two collisions among the computa-
tion of a triplet of messages, and show that these equations (including the ones related to variables
Σi and Λi and the ones induced by these two collisions) have a rank greater than or equal to 3.
Multiple subcases also occur when analyzing the event of one collision among the computation of
a pair of messages. Finally, we conclude the proof by analyzing the ratio of good transcripts.

4.1 Game Description

Proof. Without loss of generality, we assume that the adversary A never repeats a previous query
since otherwise it will receive the same answer. It is helpful to decompose the 2n-bit hash function
H of n2kf9 into two n-bit hash function H1 and H2 where H1

L(M) = Yℓ and H2
L(M) = 2 · (Y1 ⊕

Y2 ⊕ · · · ⊕ Yℓ), and thus n2kf9[E](L, K, M) = EK(H1
L(M)) ⊕ EK(H2

L(M)). We first replace the
blockciphers EL and EK of n2kf9 with two independent random permutations π1 and π2, and by
using the standard argument, we have

Advprf
n2kf9[E](A) ≤ Advprp

E (B1) + Advprp
E (B2) + Advprf

n2kf9[π1,π2](A) ,

where B1 is an adversary against the PRP security of EL that runs in time at most t1 = t + O(qℓ)
and makes at most qℓ queries, B1 is an adversary against the PRP security of EK that runs in
time at most t2 = t + O(q) and makes at most q queries. To bound the last term on the right
side of the inequality (the main part of the proof), we will use the H-coefficient technique. At
this stage, we can further assume that the adversary A is computationally unbounded and thus is
deterministic. Here the real system corresponds to the world when A is interacting with the scheme
n2kf9[π1, π2], and the ideal system corresponds to the world when A is interacting with a random
function R← Func(∗, n).
Setup. After the adversary A finishes querying, it obtains a sequence of query-answer entries
(M1, T1), . . . , (Mq, Tq) that records the interaction between the adversary and its oracle, where
Ti = n2kf9[π1, π2](Mi) in the real world and Ti = R(Mi) in the ideal world. In the real world, we
denote by Σi and Λi the internal outputs of H during the computation of entry (Mi, Ti), namely
Σi = H1(Mi) and Λi = H2(Mi). We denote by Ui and Vi the corresponding outputs of permutation
π2, namely Ui = π2(Σi) and Vi = π2(Λi). After the interaction, we will reveal the encoding of
permutation π1 to the adversary, and grant it all the internal values Ui and Vi. While in the ideal
world, we will instead give the adversary a permutation π1←$ Perm(n) that is independent of its
queries, and grant it q pairs of dummy values Ui and Vi sampled as follows: the simulation oracle
Off(q) is invoked which is illustrated in Fig. 8 and returns q pairs of (Ui, Vi) to the adversary.
Note that this additional information can only help the adversary as it can simply ignore them. In
addition, the internal values Σi and Λi appeared during the computation of Off(q) are uniquely
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determined by message Mi and permutation π1. Hence a transcript consists of the query-answer
pairs (Mi, Ti), the permutation π1, and the internal values (Ui, Vi).

4.2 Bad Transcripts

Defining bad transcripts. We now give the definition of bad transcripts. The goal of this
definition is to ensure that for each query, the corresponding pair of (Σi, Λi) is always cover-free.
That is, at least one of Σi and Λi is fresh. Formally, we say a transcript is bad if at least one of the
following conditions is triggered:

(1) There exists an entry (Mi, Ti) such that Ti = 0n. This will force Ui = Vi in the real world even
when both Σi and Λi are fresh, while there is no such constraint in the ideal world.

(2) There exists an entry (Mi, Ti) such that Σi = Λi. This will force Ti = 0n, while there is no such
constraint in the ideal world.

(3) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Σi = Σj and Λi = Λj , or Σi = Λj

and Λi = Σj . This will force Ti = Tj in the real world, while there is no such constraint in the
ideal world.

(4) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Σi ∈ {Σj , Λj} and Vi ∈ {Vj , Uj}.
This guarantees that the outputs of Φ in the simulation oracle Off(q) are compatible with a
permutation in all good transcripts; namely, when the inputs are distinct the corresponding
outputs should also be distinct.

(5) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Λi ∈ {Σj , Λj} and Ui ∈ {Vj , Uj}.
Again, this guarantees that the outputs of Φ in the simulation oracle Off(q) are compatible
with a permutation in all good transcripts.

(6) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that Σi ∈ {Σj , Λj} and
Λi ∈ {Σk, Λk}. This guarantees that for each query of good transcripts, at least one of Σi and
Λi is fresh, and thus at least one of corresponding outputs Ui and Vi has fresh randomness in
the real world.

(7) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that Σi ∈ {Σj , Λj} and
Vi ∈ {Uk, Vk}. This guarantees that the outputs of Φ in the simulation oracle Off(q) are
compatible with a permutation in all good transcripts; namely, distinct inputs lead to distinct
outputs.

(8) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that Λi ∈ {Σj , Λj}, and
Ui ∈ {Uk, Vk}. Again, this guarantees that the outputs of Φ in the simulation oracle Off(q) are
compatible with a permutation in all good transcripts.

If none of above conditions is met, then we say it is a good transcript. Denote by X1 and X0 the
random variables for the transcript distribution in the real and ideal worlds respectively.
Probability of bad transcripts. We now proceed to bound the probability that X0 is bad in
the ideal world. For 1 ≤ i ≤ 8, denote by badi the event when the ith condition is triggered. We
analyze each event in turn. We begin with the first event. Recall that in the ideal world, each Ti is
a random n-bit string. Hence the probability that Ti = 0n is exactly 1/2n. Summing over at most
q queries,

Pr [ bad1 ] = q

2n
. (1)
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The probability of events from 2 to 8 is bounded by the following lemma. The proof of this lemma
is postponed to section 5, as its analysis is based on the structure graph of CBC-MAC [8,26] and is
involved.

Lemma 3. For any adversary that makes at most q queries of block length at most ℓ,

8∑
j=2

Pr [ badj ] ≤ 60q3ℓ2

22n
+ 2q3

22n
+ 122q3ℓ6

23n
+ 22q2ℓ2

22n
+ 108q3ℓ4

23n
+ 8q2ℓ4

22n
+ 2q2

22n

+ qℓ2

2n
+ 2q

2n
.

4.3 Good Transcripts

Transcript ratio. Let τ be a good transcript. Note that for any good transcript and for any
pair of (Σi, Λi), at least one of Σi and Λi is fresh. Hence the set N in Off(q) (see Fig. 8) is empty,
and the game will not abort. In the set H, there are exactly q + |F| fresh values (2|F| fresh values
for all indices in F and additional (2q − 2|F|)/2 fresh values for some indices in G), and q − |F|
non-fresh values. For the entries that are recorded by the set G, suppose that there are g classes
among the values Σi and Λi: the elements in the same class are either connected by the equation of
Φ(Σi)⊕ Φ(Λi) = Ti, or connected by the equation of Σi = Σj or Σi = Λj , or Λi = Σj or Λi = Λj .
That is, the pair (Σi, Λi) is obviously in the same class. And if Σi = Σj , then (Σi, Λi) and (Σj , Λj)
are also in the same class. Note that each class contains at least three elements, and has only one
corresponding sampled value since other values will be determined by the equations. On the other
hand, since τ is good, the corresponding values Ui and Vi of these g distinct classes are compatible
with a permutation. That is, these g sampled values are sampled such that they are distinct from
each other and do not collide with other values during the computation of the set F .
We now proceed to compute the transcript ratio. In the ideal world, since τ is good, the event
X0 = τ is the composition of the following independent events:

– We sample a random permutation π1←$ Perm(n) to compute the internal Y state values in τ .
Let σ the number of unique inputs, this happens with probability 1/(2n)σ.

– The answers of these q queries are the same as the values defined in τ . This happens with
probability 2−qn. On the other hand, the internal values (Ui, Vi)1≤i≤q from Off(q) (Figure 8)
are the same as the values defined in τ . This happens with probability 1/|S| ·1/(2n−2|F|)g: the
variables (Ui, Vi)i∈F are uniformly at random sampled from the set S, and there are g variables
sampled without replacement from the remaining 2n − 2|F| elements for the rest (Ui, Vi)i∈G .

Therefore,

Pr [ X0 = τ ] = 1
(2n)σ

· 1
2qn
· 1
|S|
· 1

(2n − 2|F|)g
.

On the other hand, in the real world, the probability of the event X1 = τ entirely comes from the
two random permutations:

– For the first permutation π1←$ Perm(n), the number of unique inputs appearing in τ is σ as
defined in the ideal world analysis. This happens with probability 1/(2n)σ.
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– The number of unique inputs to the second permutation is the number of unique (Ui, Vi)1≤i≤q as
appearing in τ . That is exactly q + |F|+g, because we have a total of q + |F| fresh input-output
tuples, and for each class in G, we have one additional input-output tuple.

Hence,
Pr [ X1 = τ ] = 1

(2n)σ
· 1

(2n)q+|F|+g
.

Therefore,

Pr [ X1 = τ ]
Pr [ X0 = τ ]

= 2qn · |S| · (2n − 2|F|)g

(2n)q+|F|+g

≥
2(q−|F|)n · (2n)2|F| · (2n − 2|F|)g

(2n)q+|F|+g
· (1− 6|F|3

22n
)

≥ 2(q−|F|)n

(2n − 2|F| − g)q−|F|
· (1− 6|F|3

22n
)

≥ 1− 6q3

22n
, (2)

where the first inequality comes from Lemma 2 by fixing the conditional set to be empty.

4.4 Conclusion

Wrapping up. From Lemma 1, and combining Equation (1), Lemma 3 and Equation (2), we
obtain

Advprf
n2kf9[π1,π2](A) ≤ 60q3ℓ2

22n
+ 8q3

22n
+ 122q3ℓ6

23n
+ 30q2ℓ4

22n
+ 108q3ℓ4

23n
+ 2q2

22n

+ qℓ2

2n
+ 3q

2n

and conclude the proof of Theorem 1.

5 Proof of Lemma 3

In this section, we analyze the probability of events from 2 to 8 and prove Lemma 3. In n2kf9[π1, π2],
the first n-bit hash function H1(M) is exactly the CBC-MAC on message M , while the second n-bit
hash function H2(M) simply xor-sums all the internal outputs of CBC-MAC and then doubles it.
In Appendix B, we recall the definition and properties of a combinatorial tool called the structure
graph of CBC-MAC [8,26] that is useful in our analysis.

Intuitively, a structure graph GM
π is a directed graph that is generated from the computation of

CBC-MAC on various inputs M = {M1, M2, . . .}. The starting node of a structure graph is always
the value 0n, and each output of the permutation π is regarded as a node in the graph. In the
structure graph GM

π , there may be some accidental collisions (called accidents) on the nodes that
is captured by the set Acc(GM

π ). We will first limit the number of accidents, and then analyze the
probability of bad events conditioned on it.
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procedure Off(q)
∀1 ≤ i ≤ q : (Σi, Λi)← (H1(Mi), H2(Mi))
H = {(Σi, Λi) : 1 ≤ i ≤ q}
F = {i : both Σi and Λi are fresh in H}
G = {i : only one of Σi and Λi is fresh in H}
N = {i : neither Σi nor Λi is fresh in H}
I: set of tuples of 2 |F| distinct values from {0, 1}n

S = {(Wi, Xi)i∈F ∈ I : Wi ⊕Xi = Ti}
(Ui, Vi)i∈F ←$ S
∀i ∈ F : (Φ(Σi), Φ(Λi))← (Ui, Vi)
∀ i ∈ G :

if Σi is not fresh in H then
if Σi /∈ Dom(Φ)

then Ui←$ {0, 1}n \ Rng(Φ); Φ(Σi)← Ui

else Ui ← Φ(Σi)
Vi ← Ti ⊕ Ui; Φ(Λi)← Vi

else
if Λi /∈ Dom(Φ)

then Vi←$ {0, 1}n \ Rng(Φ); Φ(Λi)← Vi

else Vi ← Φ(Λi)
Ui ← Ti ⊕ Vi; Φ(Σi)← Ui

∃ i ∈ N : return ⊥
return (Ui, Vi)1≤i≤q

Fig. 8: Offline oracle used in the proof of n2kf9. Here Φ is a partial function that aims to simulate a random
permutation. Variables Σi and Λi are inputs of a random permutation, and Ui and Vi are corresponding outputs of
this random permutation. The domain and range of Φ are both initialized to be empty.

Restricting the accidents. We limit the number of accidents that can arise within any single,
pair or triplet of messages. Consider the following event for any distinct messages Mi, Mj , Mk:

crash = |Acc(GMi
π )| ≥ 1 or |Acc(G{Mi,Mj}

π )| ≥ 2 or |Acc(G{Mi,Mj ,Mk}
π )| ≥ 3 .

From Lemma 8 and the union bound, and summing over q messages,
(q

2
)

pairs of messages,
(q

3
)

triplets of messages:

Pr [ crash ] ≤ qℓ2

2n
+
(

q

2

)
· 16ℓ4

22n
+
(

q

3

)
· 729ℓ6

23n
≤ qℓ2

2n
+ 8q2ℓ4

22n
+ 122q3ℓ6

23n
. (3)

We now analyze the probability of events from 2 to 8 in conjunction with ¬crash. That is when
there is no accident within any single message, at most one accident within any pair of messages,
and at most two accidents within any triplet of messages.
Proof ideas of each event. We provide some intuition before the formal analysis of each event.
For event 2, it involves only one message and is easy to show that the rank of one equation produced
by this event is 1. For event 3, it consists of two sub-cases from two messages. The crucial part is to
show that the rank of two equations produced by each sub-case is 2 when |Acc(G{Mi,Mj}

π )| = 1. The
analyses of event 4 and 5 are a bit easier than the one of event 3 since one of two equations comes
from the string Ti which is random and independent of queries in the ideal world. For event 6, it
includes totally four sub-cases that are involved three messages. Each sub-case should be analyzed
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separately but the main idea is similar. The point is to show that the rank of two equations produced
by each sub-case is 2 when |Acc(G{Mi,Mj ,Mk}

π )| = 1. Moreover, when |Acc(G{Mi,Mj ,Mk}
π )| = 2,

it requires to show that the rank of two equations produced by each sub-case and the additional
equation introduced by accidents is 3. Some details are required in this analysis. Finally, the analyses
of event 7 and 8 are analogous to those of event 4 and 5, since one of two equations comes from
the random string Ti.
Event 2. For the event 2, it is the same as the equation

Y i
ℓ = 2 · (Y i

1 ⊕ · · · ⊕ Y i
ℓ ) ,

which is equivalent to
3 · Y i

ℓ ⊕ 2 · (Y i
1 ⊕ · · · ⊕ Y i

ℓ−1) = 0 .

Since the number of accidents of the structure graph GMi
π is 0, Y i

1 , . . . , Y i
ℓ are all distinct from each

other, and thus the rank of this equation is exactly 1. According to Lemma 9, the probability that
this equation holds is at most 1/(2n − ℓ + 1) ≤ 2/2n by assuming ℓ ≤ 2n−1. Summing over at most
q queries,

Pr [ bad2 ∧ ¬crash ] ≤ 2q

2n
. (4)

Event 3. Next, we bound the probability of event 3. This event consists of two subcases: (i) Σi =
Σj ∧ Λi = Λj ; (ii)Σi = Λj ∧ Λi = Σj . The first subcase is the same asY i

ℓi
= Y j

ℓj

2 · (Y i
1 ⊕ · · · ⊕ Y i

ℓi
) = 2 · (Y j

1 ⊕ · · · ⊕ Y j
ℓj

) .

If the number of accidents of the structure graph G
{Mi,Mj}
π is 0, then this subcase cannot happen

since the first equation requires at least one accident. If |Acc(G{Mi,Mj}
π )| = 1, then the rank of the

above two equations is 2, which will be justified below. Hence from Lemma 9,

Pr
[

Σi = Σj ∧ Λi = Λj ∧ |Acc(G{Mi,Mj}
π )| = 1

]
≤ 1

(2n − 2ℓ + 2)2
·
(

2ℓ

2

)
≤ 8ℓ2

22n

where we assume ℓ ≤ 2n−2 and the number of structure graphs G
{Mi,Mj}
π with one accident is at

most
(2ℓ

2
)

from Lemma 7. We now justify that when |Acc(G{Mi,Mj}
π )| = 1, the rank of above two

equations is 2. Without loss of generality, assume that ℓi ≥ ℓj . Let α be the length of common
suffix of Mi and Mj . Then the above two equations are the same asY i

ℓi−α ⊕ Y j
ℓj−α = 0

Y i
1 ⊕ · · · ⊕ Y i

ℓi−α−1 ⊕ Y j
1 ⊕ · · · ⊕ Y j

ℓj−α−1 = 0 .

If α = ℓj , namely Mj is a suffix of Mi, then these two equations degenerate toY i
ℓi−ℓj

= 0
Y i

1 ⊕ · · · ⊕ Y i
ℓi−ℓj−1 = 0 .
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In this case, the first equation cannot hold otherwise it contradicts the assumption that |Acc(GMi
π )| =

0. If α + 1 ≤ ℓj , then these two equations are the same asY i
ℓi−α−1 ⊕ Y j

ℓj−α−1 = Mi[ℓi − α]⊕Mj [ℓj − α]
Y i

1 ⊕ · · · ⊕ Y i
ℓi−α−1 ⊕ Y j

1 ⊕ · · · ⊕ Y j
ℓj−α−1 = 0 .

If ℓi = α + 1, then the first equation cannot hold since Mi[1]⊕Mj [1] ̸= 0 (note that Y i
0 = Y j

0 = 0).
If ℓi = α + 2, then the second equation degenerates to Y i

1 ⊕ Y j
1 = 0 or Y i

1 = 0, neither of which can
hold. Therefore ℓi ≥ α + 2. Due to |Acc(GMi

π )| = 0, all the variables Y i
1 , . . . , Y i

ℓi−α−1 are distinct,
and Y i

ℓi−α−2 /∈ {Y j
1 , . . . , Y j

ℓj−α−1}, otherwise it will induce one additional accident on the structure

graph G
{Mi,Mj}
π . Hence variable Yℓi−α−2 is unique in the second equation and does not appear in

the first equation. Therefore, the rank of these two equations is 2. The first subcase holds with
probability at most

Pr [ Σi = Σj ∧ Λi = Λj ∧ ¬crash ] ≤ 8ℓ2

22n
.

Next, we analyze the subcase ii. This subcase is the same asY i
ℓi

= 2 · (Y j
1 ⊕ · · · ⊕ Y j

ℓj
)

2 · (Y i
1 ⊕ · · · ⊕ Y i

ℓi
) = Y j

ℓj
,

which is equivalent to Y i
ℓi
⊕ 2 · (Y j

1 ⊕ · · · ⊕ Y j
ℓj

) = 0
2 · (Y i

1 ⊕ · · · ⊕ Y i
ℓi

)⊕ Y j
ℓj

= 0 .

If |Acc(G{Mi,Mj}
π )| = 0, then the rank of above two equations is 2. From Lemma 9, we have

Pr
[

Σi = Λj ∧ Λi = Σj ∧ |Acc(G{Mi,Mj}
π )| = 0

]
≤ 1

(2n − 2ℓ + 2)2
≤ 4

22n

by assuming ℓ ≤ 2n−2. If |Acc(G{Mi,Mj}
π )| = 1, then this accident appears between the path of Mi

and Mj since |Acc(GMi
π )| = |Acc(GMj

π )| = 0. Without loss of generality, assume ℓi ≥ ℓj . Then there
exists some variable Y i

a for 1 ≤ a ≤ ℓi such that Y i
a /∈ {Y j

1 , . . . , Y j
ℓj
}. It can be seen that the rank of

these two equations is 2, since Y i
a is unique and has different coefficients in each equation, and at

least one of two equations contains a different variable Y j
b for 1 ≤ b ≤ ℓj . Hence from Lemma 9,

Pr
[

Σi = Λj ∧ Λi = Σj ∧ |Acc(G{Mi,Mj}
π )| = 1

]
≤ 1

(2n − 2ℓ + 2)2
·
(

2ℓ

2

)
≤ 8ℓ2

22n

where we assume ℓ ≤ 2n−2 and the number of structure graphs G
{Mi,Mj}
π with one accident is at

most
(2ℓ

2
)

from Lemma 7. Thus the probability that subcase ii occurs is at most

Pr [ Σi = Λj ∧ Λi = Σj ∧ ¬crash ] ≤ 4
22n

+ 8ℓ2

22n
.
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By the union bound, and summing over at most
(q

2
)

pairs of Mi and Mj ,

Pr [ bad3 ∧ ¬crash ] ≤ 8q2ℓ2

22n
+ 2q2

22n
. (5)

Events 4 and 5. We then bound the probability of event 4. We begin by analyzing the first two
equations. The equations Σi = Σj or Σi = Λj are the same as

Y i
ℓi

= Y j
ℓj

or Y i
ℓi

= 2 · (Y j
1 ⊕ · · · ⊕ Y j

ℓj
) .

If |Acc(G{Mi,Mj}
π )| = 0, then the first equation cannot hold since it requires one accident. For

the second equation, all these variables are distinct and thus the rank of this equation is 1. By
Lemma 9, this equation holds with probability at most 1/(2n− ℓ) ≤ 2/2n by assuming ℓ ≤ 2n−1. If
|Acc(G{Mi,Mj}

π )| ≥ 1, then by Lemma 8, this condition itself holds with probability at most 4ℓ2/2n.
For the last two equations Vi = Vj or Vi = Uj , they are the same as

Ui ⊕ Ti = Vj or Ui ⊕ Ti = Uj

which holds with probability at most 2/2n since Ti is a random string and independent of these
queries. Summing over at most

(q
2
)

pairs of queries,

Pr [ bad4 ∧ ¬crash ] ≤
(

q

2

)
· ( 2

2n
+ 4ℓ2

2n
) · 2

2n
≤ 6q2ℓ2

22n
.

From similar arguments,

Pr [ bad5 ∧ ¬crash ] ≤
(

q

2

)
· ( 4

2n
+ 4ℓ2

2n
) · 2

2n
≤ 8q2ℓ2

22n

by assuming ℓ ≤ 2n−2.
Event 6. Next, we bound the probability of event 6. This event consists of four subcases, namely
(i)Σi = Σj ∧Λi = Σk; (ii) Σi = Σj ∧Λi = Λk; (iii)Σi = Λj ∧Λi = Σk; (iv) Σi = Λj ∧Λi = Λk. The
first subcase is the same as Y i

ℓi
= Y j

ℓj

2 · (Y i
1 ⊕ · · · ⊕ Y i

ℓi
) = Y k

ℓk
,

which is equivalent to Y i
ℓi
⊕ Y j

ℓj
= 0

2 · (Y i
1 ⊕ · · · ⊕ Y i

ℓi
)⊕ Y k

ℓk
= 0 .

If |Acc(G{Mi,Mj ,Mk}
π )| = 0, then the first equation cannot hold since it requires one accident. If

|Acc(G{Mi,Mj ,Mk}
π )| = 1, then the first equation counts this accident. If ℓi = 1, then obviously these

two equations have rank 2 since Y i
1 has different coefficients in each equation. If ℓi > 1, then we
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can always find some Y i
a for 1 ≤ a < ℓi such that Y i

a ̸= Y i
ℓi

since |Acc(GMi
π )| = 0. Hence the rank of

these two equations is 2 since Y i
a only appears in the second equation. From Lemma 9,

Pr
[

Σi = Σj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}
π )| = 1

]
≤ 1

(2n − 3ℓ + 2)2
·
(

3ℓ

2

)
≤ 18ℓ2

22n

where we assume ℓ ≤ 2n−3 and the number of structure graphs G
{Mi,Mj ,Mk}
π with one accident is

at most
(3ℓ

2
)

from Lemma 7. On the other hand, if |Acc(G{Mi,Mj ,Mk}
π )| = 2, then again, the first

equation counts one accident. Then the other accident will introduce a third equation Y α
a ⊕ Y β

b =
Mα[a + 1]⊕Mβ[b + 1] which is linearly independent from the first equation. The second equation
is always linearly independent from the first and the third equation due to the coefficient 2. Hence
the rank of these three equations is 3. From Lemma 9,

Pr
[

Σi = Σj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}
π )| = 2

]
≤ 1

(2n − 3ℓ + 2)3
·
(

3ℓ

2

)2

≤ 162ℓ4

23n
,

where the number of structure graphs G
{Mi,Mj ,Mk}
π with two accidents is at most

(3ℓ
2
)2 from

Lemma 7. Thus subcase i holds with probability at most

Pr [ Σi = Σj ∧ Λi ∧ ¬crash ] ≤ 18ℓ2

22n
+ 162ℓ4

23n

We then bound the probability of subcase ii. This subcase is the same asY i
ℓi

= Y j
ℓj

2 · (Y i
1 ⊕ · · · ⊕ Y i

ℓi
) = 2 · (Y k

1 ⊕ · · · ⊕ Y k
ℓk

) ,

which is equivalent to Y i
ℓi−1 ⊕ Y j

ℓj−1 = Mi[ℓi]⊕Mj [ℓj ]
Y i

1 ⊕ · · · ⊕ Y i
ℓi
⊕ Y k

1 ⊕ · · · ⊕ Y k
ℓk

= 0 .

If |Acc(G{Mi,Mj ,Mk}
π )| = 0, then the first equation cannot hold since it requires one accident. If

|Acc(G{Mi,Mj ,Mk}
π )| = 1, then the first equation counts this accident. If ℓi = 1, then ℓk ̸= 1 otherwise

the second equation cannot hold since Mi and Mk are two distinct messages. Hence we can always
find some Y k

a for 1 ≤ a ≤ ℓk such that Y k
a ̸= Y i

1 . Then Y k
a only appears in the second equation, and

thus the rank of these two equations is 2. If ℓi > 1, then we can always find some Y i
a for 1 ≤ a ≤ ℓi

such that Y i
a ≠ Y i

ℓi−1 since |Acc(GMi
π )| = 0. Then Y i

a only appears in the second equation, and thus
the rank of these two equations is 2. From Lemma 9,

Pr
[

Σi = Σj ∧ Λi = Λk ∧ |Acc(G{Mi,Mj ,Mk}
π )| = 1

]
≤ 1

(2n − 3ℓ + 2)2
·
(

3ℓ

2

)
≤ 18ℓ2

22n
.

On the other hand, if |Acc(G{Mi,Mj ,Mk}
π )| = 2, then the first equation counts one accident. The other

accident will introduce a third equation Y α
a ⊕Y β

b = Mα[a+1]⊕Mβ[b+1] which is linearly independent
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from the first equation. Obviously (α, β) ̸= (i, j) otherwise |Acc(G{Mi,Mj}
π )| = 2 which contradicts

¬crash. We discuss two cases here, namely (α, β) = (i, k) or (α, β) = (j, k). For (α, β) = (i, k), the
third equation is Y i

a ⊕ Y k
b = Mi[a + 1]⊕Mk[b + 1]. If ℓi = ℓk = 1, then the second equation cannot

hold since Mi and Mk are two distinct messages. If ℓk = 1 and ℓi = 2, then if a = 1, Y i
2 only

appears in the second equation, and thus the rank of these three equations is 3; and if a = 0, then
Y i

2 also only appears in the second equation and the rank of these three equations is 3. If ℓk = 1
and ℓi ≥ 3, then we can always find some Y i

c /∈ {Y i
ℓi−1, Y i

a} so that Y i
c only appears in the second

equation, and thus the rank of these three equations is 3. If ℓk > 1, then we can always find some
Y k

c ̸= Y k
b such that Y k

c only appears in the second equation. Thus the rank of these three equations
is 3. On the other hand, for the case of (α, β) = (j, k), we can analyze it similarly. Hence the rank
of these three equations is 3. From Lemma 9,

Pr
[

Σi = Σj ∧ Λi = Λk ∧ |Acc(G{Mi,Mj ,Mk}
π )| = 2

]
≤ 1

(2n − 3ℓ + 2)3
·
(

3ℓ

2

)2

≤ 162ℓ4

23n
.

Thus,

Pr [ Σi = Σj ∧ Λi = Λk ∧ ¬crash ] ≤ 18ℓ2

22n
+ 162ℓ4

23n
.

Next, we bound the probability of subcase iii. This subcase is the same asY i
ℓi

= 2 · (Y j
1 ⊕ · · · ⊕ Y j

ℓj
)

2 · (Y i
1 ⊕ · · · ⊕ Y i

ℓi
) = Y k

ℓk
,

which is equivalent to Y i
ℓi
⊕ 2 · (Y j

1 ⊕ · · · ⊕ Y j
ℓj

) = 0
2 · (Y i

1 ⊕ · · · ⊕ Y i
ℓi

)⊕ Y k
ℓk

= 0 .

If |Acc(G{Mi,Mj ,Mk}
π )| = 0, then the rank of above two equations is 2 due to the coefficient 2. From

Lemma 9, we have

Pr
[

Σi = Λj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}
π )| = 0

]
≤ 1

(2n − 3ℓ + 2)2
≤ 4

22n

by assuming ℓ ≤ 2n−3. If |Acc(G{Mi,Mj ,Mk}
π )| = 1, then this accident appears between two paths of

Mi, Mj and Mk. Suppose this accident introduces a third equation Y α
a ⊕Y β

b = Mα[a+1]⊕Mβ[b+1]
for α ̸= β. Then these two equations are linearly independent from this third equation due to the
coefficient 2 (note that Y ⊕2 ·Y = 3 ·Y ). Thus the rank of these three equations is at least 2. From
Lemma 9, we have

Pr
[

Σi = Λj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}
π )| = 1

]
≤ 1

(2n − 3ℓ + 2)2
·
(

3ℓ

2

)
≤ 18ℓ2

22n

where we assume ℓ ≤ 2n−3 and the number of structure graphs G
{Mi,Mj ,Mk}
π with one accident is

at most
(3ℓ

2
)

from Lemma 7. If |Acc(G{Mi,Mj ,Mk}
π )| = 2, then it introduces two linearly independent
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equations: Y α
a ⊕ Y β

b = Mα[a + 1] ⊕ Mβ[b + 1] and Y γ
c ⊕ Y δ

d = Mγ [c + 1] ⊕ Mδ[d + 1] where
α, β, γ, δ ∈ {i, j, k} and α ̸= β, γ ̸= δ, (α, β) ̸= (γ, δ). Then these two accidental equations are
linearly independent from the above two equations due to the coefficient 2. Thus the rank of these
four equations is at least 3. From Lemma 9,

Pr
[

Σi = Λj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}
π )| = 2

]
≤ 1

(2n − 3ℓ + 2)3
·
(

3ℓ

2

)2

≤ 162ℓ4

23n
.

Thus subcase iii holds with probability at most

Pr [ Σi = Λj ∧ Λi = Σk ∧ ¬crash ] ≤ 18ℓ2

22n
+ 4

22n
+ 162ℓ4

23n
.

Next, we bound the probability of subcase iv. This subcase is the same asY i
ℓi

= 2 · (Y j
1 ⊕ · · · ⊕ Y j

ℓj
)

2 · (Y i
1 ⊕ · · · ⊕ Y i

ℓi
) = 2 · (Y k

1 ⊕ · · · ⊕ Y k
ℓk

) ,

which is equivalent to Y i
ℓi
⊕ 2 · (Y j

1 ⊕ · · · ⊕ Y j
ℓj

) = 0
Y i

1 ⊕ · · · ⊕ Y i
ℓi
⊕ Y k

1 ⊕ · · · ⊕ Y k
ℓk

= 0 .

Then analogously to the analysis in subcase iii,

Pr [ Σi = Λj ∧ Λi = Λk ∧ ¬crash ] ≤ 18ℓ2

22n
+ 4

22n
+ 162ℓ4

23n
.

By the union bound, and summing over at most
(q

3
)

triplets of (Mi, Mj , Mk),

Pr [ bad6 ∧ ¬crash ] ≤ 12q3ℓ2

22n
+ 2q3

22n
+ 108q3ℓ4

23n
. (6)

Events 7 and 8. Bounding the probability of event 7 is similar to handling event 4, except that now
there are at most q3 triplets of queries and the probability of |Acc(G{Mi,Mj ,Mk}

π )| ≥ 1 is bounded
by 9ℓ2/2n. Hence,

Pr [ bad7 ∧ ¬crash ] ≤ q3 · ( 2
2n

+ 9ℓ2

2n
) · 2

2n
≤ 22q3ℓ2

22n
.

Similarly,

Pr [ bad8 ∧ ¬crash ] ≤ q3 · ( 4
2n

+ 9ℓ2

2n
) · 2

2n
≤ 26q3ℓ2

22n
.

Summing up,
8∑

j=2
Pr [ badj ] ≤ Pr [ crash ] +

8∑
j=2

Pr [ badj ∧ ¬crash ]

≤ 60q3ℓ2

22n
+ 2q3

22n
+ 122q3ℓ6

23n
+ 22q2ℓ2

22n
+ 108q3ℓ4

23n
+ 8q2ℓ4

22n
+ 2q2

22n
+ qℓ2

2n
+ 2q

2n

and conclude the proof of Lemma 3.
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6 Security Analysis of n1kf9 Construction

In this section, we prove Theorem 2 that states the beyond-birthday-bound security of n1kf9 (illus-
trated in Fig. 7).
Overview of the proof. The proof idea of n1kf9 mainly follows from the one of n2kf9. Yet, since
n1kf9 only requires one key that is both used in the hash part and final encryption, there are some
points that are different and non-trivial. This is also the reason that the bound of n1kf9 is slightly
worse than the bound of n2kf9. First, the simulation oracle used in the ideal world is adjusted to
take into account the relation between the hash part and final encryption. The calculation of good
transcripts is changed accordingly. In addition, more bad events emerge since Σi and Λi may collide
with previous inputs of hash part. Moreover, to mitigate the influence of length ℓ on the bound, a
fine-grained analysis is again required.
Remark. It may be interesting to summarize some property of enhanced f9 hash for generalized
proof. However, as far as we can see, the analysis of single-key 2n-bit hash function is case dedicated
and requires many insights on the concrete construction.

6.1 Game Description

Proof. Without loss of generality, we assume that the adversary never repeats a prior query since
otherwise it will receive the same answer. The 2n-bit hash function H of n1kf9 consists of two n-bit
hash functions H1 and H2 where H1

K(M) = Yℓ and H2
K(M) = 2 · (Y0 ⊕ Y1 ⊕ · · · ⊕ Yℓ), and thus

n1kf9[E](K, M) = EK(H1
K(M))⊕EK(H2

K(M)). As usual, we first replace the blockcipher EK with
a random permutation π←$ Perm(n), and from the standard argument,

Advprf
n1kf9[E](A) ≤ Advprp

E (B) + Advprf
n1kf9[π](A) ,

where B is an adversary against the PRP security of the blockcipher EK that runs in time at most
t = t + O(q(ℓ + 3)) and makes at most q(ℓ + 3) queries. We will use the H-coefficient technique
to bound Advprf

n1kf9[π](A), even when A is computationally unbounded. The real system and ideal
system correspond to the game when A is interacting with the scheme n1kf9[π] and a random
function R←$ Func(∗, n), respectively.
Setup. After the adversary A finishes querying, it obtains a sequence of query-answer entries
(M1, T1), . . . , (Mq, Tq) that records the interaction with its oracle, where Ti = n1kf9[π](Mi) in the
real world and Ti = R(Mi) in the ideal world. In the real world, let Σi = H1(Mi) and Λi = H2(Mi)
be the internal outputs of H for entry (Mi, Ti). Let Ui = π(Σi) and Vi = π(Λi) be the outputs
of permutation π after the hash part. After the interaction, we reveal the random permutation
π to the adversary, and grant it all the internal values Ui and Vi. In the ideal world, we instead
give the adversary a fresh random permutation π that is independent of its queries, and grant it q
pairs of dummy values Ui and Vi sampled as follows: the simulation oracle Off(q) is invoked which
is illustrated in Fig. 12 of Appendix D and returns (Ui, Vi) to the adversary. These additional
information can only help the adversary. In addition, the internal values Σi and Λi (and also
Y i

0 , . . . , Y i
ℓi

) appearing during the computation of Off(q) are uniquely determined by message Mi

and permutation π. Hence a transcript consists of the query-answer pairs (Mi, Ti), the permutation
π, and the internal values (Ui, Vi).

22



6.2 Bad Transcripts

Defining bad transcripts. We now give the definition of bad transcripts. The goal is to ensure
that for each query, the corresponding pair of (Σi, Λi) is always cover-free. Formally, we say a
transcript is bad if at least one of the following conditions is triggered:

(1) There exists an entry (Mi, Ti) such that Ti = 0n. This will force Ui = Vi in the real world, while
there is no such constraint in the ideal world.

(2) There exists an entry (Mi, Ti) such that Σi = Λi. This will force Ti = 0n, while there is no such
constraint in the ideal world.

(3) There exists an entry (Mi, Ti) such that Σi ∈ {|Mi|n, Y i
0 ⊕Mi[1], . . . , Y i

ℓi−1 ⊕Mi[ℓi]} and Λi ∈
{|Mi|n, Y i

0 ⊕Mi[1], . . . , Y i
ℓi−1 ⊕Mi[ℓi]}. That is, both Σi and Λi collide with previous inputs of

permutation π for the same query. This guarantees that for each query of all good transcripts,
at least one of Σi and Λi is fresh, and thus at least one of corresponding outputs Ui and Vi has
fresh randomness in the real world.

(4) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Σi ∈ {|Mj |n, Y j
0 ⊕Mj [1], . . . , Y j

ℓj−1⊕
Mj [ℓj ], Σj , Λj} and Λi ∈ {|Mj |n, Y j

0 ⊕Mj [1], . . . , Y j
ℓj−1⊕Mj [ℓj ], Σj , Λj}. That is, both Σi and Λi

collide with previous inputs of permutation π for another entry (Mj , Tj). Again, this guarantees
that for each query of good transcripts, at least one of Σi and Λi is fresh.

(5) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Σi ∈ {|Mj |n, Y j
0 ⊕Mj [1], . . . , Y j

ℓj−1⊕
Mj [ℓj ], Σj , Λj} and Vi ∈ {Y j

0 , . . . , Y j
ℓj

, Uj , Vj}. This guarantees that the outputs of permutation
π in the simulation oracle Off(q) are compatible with a permutation for all good transcripts,
namely when the inputs are distinct, then the corresponding outputs should also be distinct.

(6) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Λi ∈ {|Mj |n, Y j
0 ⊕Mj [1], . . . , Y j

ℓj−1⊕
Mj [ℓj ], Σj , Λj} and Ui ∈ {Y j

0 , . . . , Y j
ℓj

, Uj , Vj}. Again, this guarantees that the outputs of per-
mutation π in the simulation oracle Off(q) are compatible with a permutation for all good
transcripts.

(7) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that Σi ∈ {|Mj |n, Y j
0 ⊕

Mj [1], . . . , Y j
ℓj−1⊕Mj [ℓj ], Σj , Λj} and Λi ∈ {|Mk|n, Y k

0 ⊕Mk[1], . . . , Y j
ℓk−1⊕Mk[ℓk], Σk, Λk}. That

is, Σi and Λi collide with previous inputs of permutation π for two different entries (Mj , Tj)
and (Mk, Tk).

(8) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that Σi ∈ {|Mj |n, Y j
0 ⊕

Mj [1], . . . , Y j
ℓj−1 ⊕ Mj [ℓj ], Σj , Λj} and Vi ∈ {Y k

0 , . . . , Y k
ℓk

, Uk, Vk}. This guarantees that the
outputs of permutation π in the simulation oracle Off(q) are compatible with a permutation
for all good transcripts, namely distinct inputs produce distinct outputs (and conversely).

(9) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that Λi ∈ {|Mj |n, Y j
0 ⊕

Mj [1], . . . , Y j
ℓj−1⊕Mj [ℓj ], Σj , Λj} and Ui ∈ {Y k

0 , . . . , Y k
ℓk

, Uk, Vk}. Again, this guarantees that the
outputs of permutation π in the simulation oracle Off(q) are compatible with a permutation
for all good transcripts.

If none of above conditions is met, then we say it is a good transcript. Denote by X1 and X0
the random variables for the transcript distribution in the real and ideal worlds respectively. The
probability of bad transcripts in the ideal world is bounded by the following lemma; the proof is in
Appendix C.
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Lemma 4. For any adversary that makes at most q queries of block length at most ℓ ≤ 2n−3 − 2,

Pr [ X0 is bad ] ≤ 5q3(ℓ + 3)3

22n
+ 3q3(ℓ + 3)2

22n
+ 24q2(ℓ + 2)4

22n
+ 122q3(ℓ + 2)6

23n

+ 7q3(ℓ + 3)5

23n
+ q(ℓ + 2)2

2n
+ 3q

2n
.

6.3 Good Transcripts

Transcript ratio. Let τ be a good transcript. Similarly to the arguments in Section 4.3, the set
N in Off(q) (illustrated in Fig. 12) is empty. In the set of Σi and Λi, there are q + |F| fresh values
and q − |F| non-fresh values. For the entries that are recorded by the set G, suppose there are g
sampled values.
We now proceed to compute the transcript ratio. In the ideal world, since τ is good, the event
X0 = τ is the composition of the following independent events:
– When we sample a random permutation π←$ Perm(n), we use exactly |H| values which appear

in τ . This happens with probability 1/(2n)|H|.
– The answers of these q queries are the same as the values defined in τ . This happens with

probability 2−qn. On the other hand, the internal values (Ui, Vi)1≤i≤q from Off(q) are the same
as the values defined in τ . This happens with probability 1/|S|·1/(2n−|H|−2|F|)g: the variables
(Ui, Vi)i∈F are uniformly at random sampled from the set S, and there are g variables sampled
without replacement from the remaining 2n − |H| − 2|F| elements for the rest (Ui, Vi)i∈G .

Therefore,
Pr [ X0 = τ ] = 1

(2n)|H|
· 1

2qn
· 1
|S|
· 1

(2n − |H| − 2|F|)g
.

On the other hand, in the real world, the probability of the event X1 = τ only comes from the
computation of the random permutation π:
– First we draw |H| values from π to compute the internal Y states values.
– To compute the (Ui, Vi)1≤i≤q, the number of permutation outputs required is exactly q+ |F|+g,

because we totally have q + |F| fresh input-output tuples, and for each class in G, we have one
additional input-output tuple.

Hence,
Pr [ X1 = τ ] = 1

(2n)|H|+q+|F|+g
.

Therefore,

Pr [ X1 = τ ]
Pr [ X0 = τ ]

= 2qn · |S| · (2n − |H| − 2|F|)g

(2n − |H|)q+|F|+g

≥
2(q−|F|)n · (2n − |H|)2|F| · (2n − |H| − 2|F|)g

(2n − |H|)q+|F|+g
· (1− 4|F||H|2 + 8|F|2|H|+ 6|F|3

22n
)

≥ 2(q−|F|)n

(2n − |H| − 2|F| − g)q−|F|
· (1− 4|F||H|2 + 8|F|2|H|+ 6|F|3

22n
)

≥ 1− 4q(ℓ + 2)2 + 8q2(ℓ + 2) + 6q3

22n
, (7)

24



where the first inequality comes from Lemma 2.

6.4 Conclusion

Wrapping up. From Lemma 1 and combining Lemma 4 and Equation (7), we obtain

Advprf
n1kf9[π](A) ≤ 8q3(ℓ + 3)3

22n
+ 129q3(ℓ + 2)6

23n
+ 36q2(ℓ + 2)4

22n

+ 6q3

22n
+ q(ℓ + 2)2

2n
+ 3q

2n

and conclude the proof of Theorem 2.
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A Multi-User Security of n2kf9

In this section, we show that n2kf9 is secure beyond the birthday-bound in the multi-user (mu)
setting. The proof is done in the ideal-cipher model which is common in most analyses for the mu
security. The mu security of n2kf9 is formalized by the following theorem.

Theorem 3. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that is modeled to be ideal. Then
for any adversary A that makes at most q MAC queries and p ideal-cipher queries,

Advmprf
n2kf9(A) ≤ 52q3ℓ2

22n
+ 40q3

22n
+ q(3q + p)(6q + 2p)

22k
+ 20q2ℓ4

22n
+ 122q3ℓ6

23n

+18q2ℓ3

2n+k
+ 2qpℓ2

2n+k
+ 10qpℓ

2n+k
+ qℓ2

2n
+ 2q

2k
+ 3q

2n

by assuming that ℓ ≤ 2n−3 and p + qℓ ≤ 2n−1.

To prove this theorem, we first recall the security framework by Shen et al. [35,36] for two-key
DbHtS construction that is useful in our analysis.
Remark. Recently Guo and Wang [21] pointed out a miscalculation in the proof by Shen et al. [35].
The authors consequently updated the security framework in ePrint [36] to fix this issue. Here we
will adopt the updated framework to analyze the multi-user security of n2kf9.
The DbHtS construction. Let H : Kh×M→ {0, 1}n×{0, 1}n be a 2n-bit hash function where
Kh is the key space andM is the message space. The 2n-bit hash function H consists of two n-bit
hash functions H1 and H2, and HKh

(M) = (H1
Kh,1

(M), H2
Kh,2

(M)) where Kh = (Kh,1, Kh,2). Given
a 2n-bit hash function H and a blockcipher E, the DbHtS construction is defined as follows

DbHtS[H, E](Kh, K, M) = EK(H1
Kh,1

(M))⊕ EK(H2
Kh,2

(M)) .

Algorithm n2kf9 can be regarded as one of DbHtS constructions, where HKh
(M) = (H1

L(M), H2
L(M)),

H1
L(M) = Yℓ and H2

L(M) = 2 · (Y1 ⊕ · · · ⊕ Yℓ), and thus n2kf9[E](L, K, M) = EK(H1
L(M)) ⊕

EK(H2
L(M)).

We recall two useful properties with respect to a hash function. For a hash function H : Kh ×
M→ {0, 1}n, we say it is ϵ1-regular if for any M ∈M and Z ∈ {0, 1}n,

Pr [ Kh←$Kh : HKh
(M) = Z ] ≤ ϵ1 ,

and say it is ϵ2-almost universal if for any two distinct strings M1, M2 ∈ {0, 1}n,

Pr [ Kh←$Kh : HKh
(M1) = HKh

(M2) ] ≤ ϵ2 .

Multi-user security. For an adversary A, let

Advmprf
DbHtS(A) = 2 Pr[Gmprf

DbHtS(A)]− 1

be the advantage of the adversary against the multi-user PRF security of DbHtS construction,
where game Gmprf

DbHtS is defined in Fig. 9. We now recall the multi-user security framework of DbHtS
construction, which is characterized by the following lemma.

28



procedure Initialize
(K1

h, K1), (K2
h, K2), · · · , ←$Kh ×K

f1, f2, · · · , ←$ Func(M, {0, 1}n)
b←$ {0, 1}

procedure Prim(J, X)
if X = (+, x) then return EJ (x)
if X = (−, y) then return E−1

J (y)

procedure Eval(i, M)
T1 ← DbHtS[H, E](Ki

h, Ki, M)
T0 ← fi(M)
return Tb

procedure Finalize(b′)
return (b′ = b)

Fig. 9: Game Gmprf
DbHtS defining the multi-user prf security of construction DbHtS.

Lemma 5. [36] Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that is assumed to be ideal.
Suppose that each n-bit hash function of H = (H1, H2) is ϵ1-regular and ϵ2-almost universal. Then
for any adversary A that makes at most q MAC queries and p ideal-cipher queries,

Advmprf
DbHtS(A) ≤ q

2n
+ 2q

2k
+ q(3q + p)(6q + 2p)

22k
+ 2qpℓ

2n+k
+ 2qpϵ1

2k
+ 4qp

2n+k

+qϵ1 + 4q2ϵ1
2k

+ 2q2ℓϵ1
2k

+ 2q3(ϵ2
2 + 2ϵ1ϵ2) + q2ϵ3 + q3ϵ4

+8q3(ϵ1 + ϵ2)
2n

+ 6q3

22n
,

by assuming p + qℓ ≤ 2n−1, where ℓ is the maximal block length among these q MAC queries.

Note that the terms ϵ3 and ϵ4 are used to capture two joint events of hash function H1 and H2

that are Σa
i = Λb

i ∧ Λa
i = Σb

i and Σa
i = Λb

i ∧ Λa
i = Σc

i respectively. These two special joint events
cannot be simply bounded by ϵ1-regular and ϵ2-almost universal of hash functions as pointed out by
Guo and Wang [21]. The values ϵ3 and ϵ4 will become clear in the following analysis. We refer the
reader to [36] for more detailed discussions about this framework. Hence to apply this lemma, we
need to show that each n-bit hash function of HKh

= (H1
L, H2

L) of n2kf9 is ϵ1-regular and ϵ2-almost
universal, and analyze the relation between these two n-bit hash function.

Lemma 6. Assume that ℓ ≤ 2n/4. Then H1
L is (2

√
ℓ

2n + 16ℓ4

22n )-regular and (2
√

ℓ
2n + 16ℓ4

22n )-almost uni-
versal, and H2

L is ( 2
2n + ℓ2

2n )-regular and ( 2
2n + 4ℓ2

2n )-almost universal.

Proof. For H1
L which is exactly the CBC-MAC algorithm, Bellare et al. [8] and Jha and Nandi [26]

show that

Pr [ CBC[E](K, M1) = CBC[E](K, M2) ] ≤ 2
√

ℓ

2n
+ 16ℓ4

22n
,

for any two distinct messages M1 and M2 of maximal block length ℓ. This directly implies that
H1

L is ϵ1
2-almost universal where ϵ1

2 = 2
√

ℓ
2n + 16ℓ4

22n . Equipping with this result, Shen et al. [36] also
show that H1

L is ϵ1
1-regular where ϵ1

1 = 2
√

ℓ
2n + 16ℓ4

22n . For H2
L, we first show that it meets the regular

property. The equation H2
L(M) = Z is the same as

2 · (Y1 ⊕ · · · ⊕ Yℓ) = Z .
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Recall that Acc(GM
E ) denotes the set of accidents of structure graph GM

E . If |Acc(GM
E )| = 0, then

obviously the rank of this equation is 1. From Lemma 9, we have

Pr
[

H2
L(M) = Z ∧ |Acc(GM

E )| = 0
]
≤ 1

2n − ℓ + 1
≤ 2

2n

by assuming ℓ ≤ 2n−1. According to Lemma 8, the probability that there is at least 1 accident,
that is |Acc(GM

E )| ≥ 1, is at most ℓ2/2n. Hence H2
L is ϵ2

1-regular where ϵ2
1 = 2

2n + ℓ2

2n . Similarly, we
can prove that H2

L is ϵ2
2-almost universal where ϵ2

2 = 2
2n + 4ℓ2

2n by assuming ℓ ≤ 2n−2.

In the following, let ϵ1 = max{ϵ1
1, ϵ2

1} = 2
2n + ℓ2

2n , and ϵ2 = max{ϵ1
2, ϵ2

2} = 2
2n + 4ℓ2

2n . However,
until now we cannot simply apply Lemma 5 to n2kf9 since it assumes that Kh,1 and Kh,2 are two
independent keys while Kh,1 and Kh,2 are identical in n2kf9, and the terms q2ϵ3 and q3ϵ4 still
remain to be analyzed. Look more closely at the framework, the terms relying on the independence
of these two keys are qϵ1 and 2q3(ϵ2

2 + 2ϵ1ϵ2) + q2ϵ3 + q3ϵ4, which are the probabilities of three bad
events in the multi-user setting, namely for some user a

i. there exists an entry (Ma
i , T a

i ) such that Σa
i = Λa

i ;
ii. there exists a pair of entries (Ma

i , T a
i ) and (Ma

j , T a
j ) such that Σa

i = Σa
j and Λa

i = Λa
j , or

Σa
i = Λa

j and Λa
i = Σa

j ;
iii. there exists a triplet of entries (Ma

i , T a
i ), (Ma

j , T a
j ) and (Ma

k , T a
k ) such that Σa

i = Σa
j or Σa

i = Λa
j ,

and Λa
i = Σa

k or Λa
i = Λa

k.

These three bad events are exactly the same as bad2, bad3 and bad4 in the single-user setting. We
can similarly define the crash event in the multi-user setting:

crash = |Acc(GMa
i

π )| ≥ 1 or |Acc(G
{Ma

i ,Ma
j }

π )| ≥ 2 or |Acc(G
{Ma

i ,Ma
j ,Ma

k }
π )| ≥ 3

Suppose that the adversary issues totally q queries to u users, and denote by qi the number of
queries to the i-th user. Then from Equations (3), (4), (5) and (6),

Pr [ crash ] ≤
u∑

i=1

qiℓ
2

2n
+ 8q2

i ℓ4

22n
+ 122q3

i ℓ6

23n
≤ qℓ2

2n
+ 8q2ℓ4

22n
+ 122q3ℓ6

23n

and

Pr [ event i ∧ ¬crash ] ≤
u∑

i=1

2qi

2n
≤ 2q

2n

and

Pr [ event ii ∧ ¬crash ] ≤
u∑

i=1

8q2
i ℓ2

22n
+ 2q2

i

22n
≤ 8q2ℓ2

22n
+ 2q2

22n

and

Pr [ event iii ∧ ¬crash ] ≤
u∑

i=1

12q3
i ℓ2

22n
+ 2q3

i

22n
+ 108q3

i ℓ4

23n
≤ 12q3ℓ2

22n
+ 2q3

22n
+ 108q3ℓ4

23n
.

Hence from Lemma 5, Lemma 6 and above analysis, we can obtain the multi-user security of n2kf9.
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B Structure Graph of CBCMAC

The structure graph of CBC-MAC has been rigorously studied by Bellare et al. [8] and Jha and
Nandi [26], and is extensively used to prove security bounds of several cryptographic algorithms [20,22].
Here we briefly recall the structure graph whose presentation partially follows from [22], and high-
light some results that will be helpful in our analysis.

0 1 2

3

Fig. 10: Left: Illustration of the blocks C1, . . . , C4 for the case of two messages M1 and M2, and there are σ = 4
blocks. Right: The corresponding structure graph of these two messages, assuming that the blocks C1, C2, C3 are
distinct and C4 = C2.

Structure graph of CBC-MAC. For 1 ≤ i ≤ q, let ℓi be the block length of message Mi,
and σi =

∑i
j=1 ℓj be the total block length of the first i messages M1, . . . , Mi, and σ0 = 0 for

completeness. For simplicity, let σ =
∑q

i=1 ℓi and thus σ = σq. For q distinct messages M1, . . . , Mq,
let M = M1 ∥ · · · ∥Mq be the concatenation of these messages, and split it as M1 · · ·Mσ where
each M i is an n-bit block. Let C0 = 0n, and for each i ∈ {1, . . . , σ}, define

Ci =
{

π(Ci−1 ⊕M i) if i ̸∈ {σ0 + 1, . . . , σq−1 + 1}
π(M i) otherwise.

For each i ∈ {0, . . . , σ}, define the mapping map(i) = min{j : Cj = Ci}, and let pmap(i) = map(i)
if i /∈ {σ0, . . . , σq−1} and pmap(i) = 0 otherwise. Then given M and a permutation π ∈ Perm(n),
the corresponding structure graph GM

π = (V, E, L) of CBC-MAC is a directed graph where node set
V = {map(i) | 0 ≤ i ≤ σ}, edge set E = {ei = (pmap(i− 1), map(i)) | 1 ≤ i ≤ σ}, and edge-labeling
function L(ei) = M i. See Figure 10 for an illustration of two messages M1 and M2.

Suppose a structure graph GM
π is exposed edge by edge that the edge ei appears in the ith

step. A collision occurs at the step i if the exposed edge ei points to a node which is already in the
graph. We classify collisions into two types, namely induced collisions and accidents. Informally, an
induced collision at the i-th step is a collision that is implied by the collisions from previous steps,
while an accident is an accidental collision. We refer the reader to [8] for a rigorous treatment of
two types of collisions.

Take two messages M1 and M2 in Figure 11 as an example. Here M1 = M1 · · ·M5 is a five-block
message where M4 = M2, and M2 = M6 is a one-block message where M6 = M1 ⊕M3 ⊕M5. We
assume that C3 = C1, and thus

C2 ⊕M3 = C0 ⊕M1 .

31



0 1

25

Fig. 11: Illustration of accident and induced collision.

Then
C6 = π(C0 ⊕M6) = π(C0 ⊕M1 ⊕M3 ⊕M5) = π(C2 ⊕M5) = C5 .

Thus the collision C3 = C1 is an accident while the collision C6 = C5 is an induced collision.
Let G(M) be the set of structure graphs of M for all π ∈ Perm(n), let Acc(GM

π ) be the set of
accidents of GM

π . Bellare et al. [8] showed that G ∈ G(M) is uniquely determined by Acc(G) and
M alone.

For a collision that is formed by an edge ei pointing to a prior node j, if there is no prior edge
ek pointing to j, then j must be the node 0. A flag zero(GM

π ) will be set to 1 and an equation
Ci = 0n will appear if there exist an edge ei pointing node 0, and otherwise the flag will remain
to be 0. If there is a prior edge ek that points to the same node j, then we say this is a true
collision. For a true collision that is formed from two edges ei = (u, j) and ek = (v, j), it implies
that Cu ⊕M i = Cv ⊕Mk since both of them are equal to π−1(Cj), and thus

Cu ⊕ Cv = M i ⊕Mk

where Cu and Cv are variables, and M i and Mk are two n-bit strings. Let rank(GM
π ) be the

rank of the system of linear equations induced by the true collisions of GM
π . Then |Acc(GM

π )| =
rank(GM

π ) + zero(GM
π ), which is the definition of Jha and Nandi [26] for the number of accidents.

We now recall the known results on structure graph.

Lemma 7. [8] The number of structure graphs of M = M1 ∥ · · · ∥Mq with a accidents is at most(σ
2
)a. In particular, there exists exactly one structure graph with no accident.

Lemma 8. [26,8] For a given M = M1 ∥ · · · ∥Mq of total block length σ and any integer a ≥ 1,

Pr
π←$ Perm(n)

[
|Acc(GM

π )| ≥ a
]
≤
(σ2

2n

)a
.

We also recall a known result on the rank of variables in the structure graph. For these σ variables
(C1, . . . , Cσ) in the structure graph GM

π , we say two variables Ci and Cj are in the same class if
Ci = Cj , and suppose these σ variables can be divided into v classes C1, . . . , Cv. Let xi = min{k :
Ck ∈ Ci} be the minimal index of variables among each class Ci. A normalized variable of class
Ci is the variable that has the minimal index among class Ci, e.g., Cxi is the normalized variable
of class Ci. For 1 ≤ i ≤ s, let Ei denote a linear equation over variables (C1, . . . , Cσ) of the form
ai,1C1 ⊕ · · · ⊕ ai,σCσ ⊕ ci = 0 where ai,j , ci ∈ {0, 1}n. Let E = {E1, . . . , Es} be the system of these
linear equations. We replace each variable Ci in E by the corresponding normalized variable as
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follows: if Ci ∈ Cj , then replace Ci with Cxj . After that, we will obtain the normalized version of
E that is denoted by Ẽ . Note that the linear equations in E are equivalent to those in Ẽ . We will
use the following algebraic result for E , the proof of which can be found in the paper of Datta et
al. [14, Lemma 6].

Lemma 9. Let GM
π be a structure graph that is realized through variables (C1, . . . , Cσ). Suppose

there are v distinct classes among these variables. Let E be the system of linear equations over these
σ variables, and Ẽ the normalized version of E. If the rank of Ẽ is r, then

Pr [ E holds ] ≤ 1
(2n − v + r)r

.

C Proof of Lemma 4

In this section, we bound the probability that X0 is bad in the ideal world. For 1 ≤ i ≤ 9, denote
by badi the event when the ith condition is violated. We first consider event bad1. Recall that in
the ideal world, each Ti is a random n-bit string. Hence the probability that Ti = 0n is exactly
1/2n. Summing over at most q queries,

Pr [ bad1 ] = q

2n
.

The analyses of events from 2 to 9 are based on the structure graph of CBC-MAC that is recalled
in Section B. In the rest of this section, let M i = |Mi|n ∥Mi10∗ ∥ 0n.
Restricting the accidents. Before bounding the probability, it is useful to bound the number
of accidents that arise within any single, pair or triplet of messages. Define the following event for
any three distinct messages Mi, Mj and Mk:

crash = |Acc(GM i
π )| ≥ 1 or |Acc(G{M i,Mj}

π )| ≥ 2 or |Acc(G{M i,Mj ,Mk}
π )| ≥ 3

From Lemma 8,

Pr [ crash ] ≤ q(ℓ + 2)2

2n
+ 8q2(ℓ + 2)4

22n
+ 122q3(ℓ + 2)6

23n
.

We then analyze the probability of events from 2 to 9 only in conjunction with ¬crash. That is only
when there is no accident within any single message, and at most one accident within any pair of
messages, and at most two accidents within any triplet of messages.
Proof ideas of these events. Note that proof ideas of these events are essentially similar to
those in section 5, except that we need to consider the impact of Σi and Λi colliding with internal
input values of CBC-MAC.
Probability analyses of these events. For the event 2, it is exactly the same as event 2 of
Lemma 3, hence

Pr [ bad2 ∧ ¬crash ] ≤ 2q

2n
.
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We then bound the probability of event 3. If this event happens, then it requires an accident on
the structure graph GM i

π , which contradicts with the event ¬crash. Hence,

Pr [ bad3 ∧ ¬crash ] = 0 .

Next, we bound the probability of event 4. This event can be decomposed into two subcases:
(4-i) Σi ∈ {|Mj |n, Y j

0 ⊕Mj [1], . . . , Y j
ℓj−1 ⊕Mj [ℓj ], Σj} and Λi ∈ {|Mj |n, Y j

0 ⊕Mj [1], . . . , Y j
ℓj−1 ⊕

Mj [ℓj ], Σj , Λj}; (4-ii) Σi ∈ {Λj} and Λi ∈ {|Mj |n, Y j
0 ⊕ Mj [1], . . . , Y j

ℓj−1 ⊕ Mj [ℓj ], Σj , Λj}. The
first subcase requires one accident that is determined by the first set. Hence we only need to
consider it when |Acc(G{M i,Mj}

π )| = 1. Similarly to the event 3 in Lemma 3, the rank of any
two equations when variables Σi and Λi equal to values from above two sets is 2: for the two
equations from Σi ∈ {|Mj |n, Y j

0 ⊕Mj [1], . . . , Y j
ℓj−1 ⊕Mj [ℓj ], Σj} and Λi ∈ {Λj}, we can justify it

by similar arguments as in the subcase (i) of event 3; for the two equations from Σi ∈ {|Mj |n, Y j
0 ⊕

Mj [1], . . . , Y j
ℓj−1 ⊕Mj [ℓj ], Σj} and Λi ∈ {|Mj |n, Y j

0 ⊕Mj [1], . . . , Y j
ℓj−1 ⊕Mj [ℓj ], Σj}, we can justify

it by the coefficient 2 that only appears in the second equation and will not be canceled out. Hence
from Lemma 9,

Pr
[

event (4-i) ∧ |Acc(G{M i,Mj}
π )| = 1

]
≤ 1

(2n − 2ℓ− 2)2
· (ℓ + 2)(ℓ + 3) ≤ 16(ℓ + 3)2

22n

by assuming ℓ ≤ 2n−2 − 2. We then analyze subcase (4-ii). Following analogous arguments from
subcase (ii) of event 3 in Lemma 3, if |Acc(G{M i,Mj}

π )| = 0, then the rank of any two equations
from above two sets is 2. From Lemma 9,

Pr
[

event (4-ii) ∧ |Acc(G{M i,Mj}
π )| = 0

]
≤ 1

(2n − 2ℓ− 2)2
· (ℓ + 3) ≤ 4(ℓ + 3)

22n
.

On the other hand, if |Acc(G{M i,Mj}
π )| = 1, then similarly, the rank of these two equations is also 2:

for the two equations from Σi ∈ {Λj} and Λi ∈ {|Mj |n, Y j
0 ⊕Mj [1], . . . , Y j

ℓj−1⊕Mj [ℓj ], Σj}, we can
justify it by similar arguments as in the subcase (ii) of event 3 in Lemma 3; for the two equations
from Σi ∈ {Λj} and Λi ∈ {Λj}, we can justify it by the coefficient 2 since it will be canceled out in
the second equation and only appears in the first equation. Again from Lemma 9,

Pr
[

event (4-ii) ∧ |Acc(G{M i,Mj}
π )| = 1

]
≤ 1

(2n − 2ℓ− 2)2
·
(

2ℓ + 4
2

)
· (ℓ + 3) ≤ 8(ℓ + 3)3

22n
.

From the union bound and summing over at most
(q

2
)

pairs of Mi and Mj ,

Pr [ bad4 ∧ ¬crash ] ≤ 8q2(ℓ + 3)3

22n
+ 2q2(ℓ + 3)

22n
.
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We then bound the probability of event 5. For the case Σi ∈ {|Mj |n, Y j
0 ⊕ Mj [1], . . . , Y j

ℓj−1 ⊕

Mj [ℓj ], Σj , Λj}, if |Acc(G{M i,Mj}
π )| = 0, then Σi ∈ {|Mj |n, Y j

0 ⊕ Mj [1], . . . , Y j
ℓj−1 ⊕ Mj [ℓj ], Σj}

cannot happen since it requires at least one accident, and Σi ∈ {Λj} happens with probability
1/(2n − ℓ− 2) ≤ 2/2n by assuming ℓ ≤ 2n−1 − 2. If |Acc(G{M i,Mj}

π )| = 1, then from Lemma 8, this
condition itself holds with probability at most 4(ℓ + 2)2/2n. For the case Vi ∈ {Y j

0 , . . . , Y j
ℓj

, Uj , Vj},
since Vi = Ui ⊕ Ti is a random n-bit string, it holds with probability at most (ℓ + 3)/2n. Summing
over at most

(q
2
)

pairs of queries,

Pr [ bad5 ∧ ¬crash ] ≤
(

q

2

)
· ( 2

2n
+ 4(ℓ + 2)2

2n
) · ℓ + 3

2n
≤ 3q2(ℓ + 3)3

22n
.

Similarly,

Pr [ bad6 ∧ ¬crash ] ≤
(

q

2

)
· (2(ℓ + 3)

2n
+ 4(ℓ + 2)2

2n
) · ℓ + 3

2n
≤ 3q2(ℓ + 3)3

22n
.

Next, we bound the probability of event 7. This event can be decomposed into two subcases:
(7-i) Σi ∈ {|Mj |n, Y j

0 ⊕Mj [1], . . . , Y j
ℓj−1 ⊕Mj [ℓj ], Σj} and Λi ∈ {|Mk|n, Y k

0 ⊕Mk[1], . . . , Y j
ℓk−1 ⊕

Mk[ℓk], Σk, Λk}; (7-ii) Σi ∈ {Λj} and Λi ∈ {|Mk|n, Y k
0 ⊕Mk[1], . . . , Y j

ℓk−1⊕Mk[ℓk], Σk, Λk}. Similarly

to subcases (i) and (ii) of event 6 in Lemma 3, if |Acc(G{M i,Mj ,Mk}
π )| = 0, then subcase (7-i) cannot

happen since it requires at least one accident. If |Acc(G{M i,Mj ,Mk}
π )| = 1, then the accident is

determined by the first set and the rank of any two equations from above two sets is 2. From
Lemma 9,

Pr
[

event (7-i) ∧ |Acc(G{M i,Mj ,Mk}
π )| = 1

]
≤ 1

(2n − 3ℓ− 4)2
· (ℓ + 2)(ℓ + 3) ≤ 12(ℓ + 3)2

22n

by assuming ℓ ≤ 2n−3 − 2. If |Acc(G{M i,Mj ,Mk}
π )| = 2, then similarly we have

Pr
[

event (7-i) ∧ |Acc(G{M i,Mj ,Mk}
π )| = 2

]
≤ 1

(2n − 3ℓ− 4)3
·
(

3ℓ + 6
2

)
· (ℓ + 2)(ℓ + 3) ≤ 36(ℓ + 3)4

23n

Similarly to subcases (iii) and (iv) of event 6 in Lemma 3, for the subcase (7-ii), if |Acc(G{M i,Mj ,Mk}
π )| =

0, then the rank of any two equations from above two sets is 2. From Lemma 9,

Pr
[

event (7-ii) ∧ |Acc(G{M i,Mj ,Mk}
π )| = 0

]
≤ 1

(2n − 3ℓ− 4)2
· (ℓ + 3) ≤ 4(ℓ + 3)

22n
.
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If |Acc(G{M i,Mj ,Mk}
π )| = 1, then similarly the rank of any two equations from above two sets is also

2. From Lemma 9,

Pr
[

event (7-ii) ∧ |Acc(G{M i,Mj ,Mk}
π )| = 1

]
≤ 1

(2n − 3ℓ− 4)2
·
(

3ℓ + 6
2

)
· (ℓ + 3) ≤ 6(ℓ + 3)3

22n
.

If |Acc(G{M i,Mj ,Mk}
π )| = 2, then the rank of these two equations plus two accidental equations is at

least 3. Hence from Lemma 9,

Pr
[

event (7-ii) ∧ |Acc(G{M i,Mj ,Mk}
π )| = 2

]

≤ 1
(2n − 3ℓ− 4)3

·
(

3ℓ + 6
2

)2

· (ℓ + 3) ≤ 6(ℓ + 3)5

23n
.

From the union bound and summing over at most
(q

3
)

triplets of (Mi, Mj , Mk),

Pr [ bad7 ∧ ¬crash ] ≤ q3(ℓ + 3)3

22n
+ 2q3(ℓ + 3)2

22n
+ q3(ℓ + 3)

22n
+ q3(ℓ + 3)5

23n
+ 6q3(ℓ + 3)4

23n
.

Bounding the probability of event 8 is similar to handling event 5, with the difference that there
are at most

(q
3
)

triplets of queries and the probability that |Acc(G{M i,Mj ,Mk}
π )| ≥ 1 is bounded by

9(ℓ + 2)2/2n. Hence,

Pr [ bad8 ∧ ¬crash ] ≤
(

q

3

)
· ( 2

2n
+ 9(ℓ + 2)2

2n
) · ℓ + 3

2n
≤ 2q3(ℓ + 3)3

22n
.

Similarly,

Pr [ bad9 ∧ ¬crash ] ≤
(

q

3

)
· (2(ℓ + 3)

2n
+ 9(ℓ + 2)2

2n
) · ℓ + 3

2n
≤ 2q3(ℓ + 3)3

22n
.

Summing up,

9∑
j=2

Pr [ badj ] ≤ Pr [ crash ] +
9∑

j=2
Pr [ badj ∧ ¬crash ]

≤ 5q3(ℓ + 3)3

22n
+ 3q3(ℓ + 3)2

22n
+ 24q2(ℓ + 2)4

22n
+ 122q3(ℓ + 2)6

23n

+ 7q3(ℓ + 3)5

23n
+ q(ℓ + 2)2

2n
+ 2q

2n
.

D Offline Oracle in n1kf9
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procedure Off(q)
for i← 1 to q do

Mi[1] ∥ . . . ∥Mi[ℓi]←M ; Y i
0 ← π(|Mi|n)

for j ← 1 to ℓi do
Y i

j ← π(Y i
j−1 ⊕Mi[j])

Σi = Y i
ℓi

; Λi = 2 · (Y i
0 ⊕ Y i

1 ⊕ · · · ⊕ Y i
ℓi

)
H = H ∪ {Y i

0 , . . . , Y i
ℓi

, Λi}
F = {i : both Σi and Λi are fresh in H}
G = {i : only one of Σi and Λi is fresh in H}
N = {i : neither Σi nor Λi is fresh in H}
I: set of tuples of 2 |F| distinct values from {0, 1}n \ H
S = {(Wi, Xi)i∈F ∈ I : Wi ⊕Xi = Ti}
(Ui, Vi)i∈F ←$ S
∀i ∈ F : (π(Σi), π(Λi))← (Ui, Vi)
∀ i ∈ G :

if Σi is not fresh in H then
if Σi /∈ Dom(π)

then Ui←$ {0, 1}n \ Rng(π); π(Σi)← Ui

else Ui ← π(Σi)
Vi ← Ti ⊕ Ui; π(Λi)← Vi

else
if Λi /∈ Dom(π)

then Vi←$ {0, 1}n \ Rng(π); π(Λi)← Vi

else Vi ← π(Λi)
Ui ← Ti ⊕ Vi; π(Σi)← Ui

∃ i ∈ N : return ⊥
return (Ui, Vi)1≤i≤q

Fig. 12: Offline oracle used in the proof of n1kf9. Here the set H is initialized to be empty at the beginning.
Variables Σi and Λi are inputs of a random permutation, and Ui and Vi are corresponding outputs of this random
permutation. Sets Dom(π) and Rng(π) start off to be empty and automatically grow when point is applied by
permutation π, e.g., if y ← π(x), then Dom(π) = Dom(π) ∪ {x} and Rng(π) = Rng(π) ∪ {y}.
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