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Abstract. Vector commitments (VC) are a cryptographic primitive that allows one to commit
to a vector and then “open” some of its positions efficiently. Vector commitments are increasingly
recognized as a central tool to scale highly decentralized networks of large size and whose content is
dynamic. In this work, we examine the demands on the properties that a vector commitment should
satisfy in the light of the emerging plethora of practical applications and propose new constructions
that improve the state-of-the-art in several dimensions and offer new tradeoffs. We also propose a
unifying framework that captures several constructions and we show how to generically achieve some
properties from more basic ones. On the practical side, we focus on building efficient schemes that do
not require a new trusted setup (we can reuse existing ceremonies for other pairing-based schemes,
such as “powers of tau” run by real-world systems such as Zcash or Filecoin). Our implementation
demonstrates that our work overperforms in efficiency prior schemes with the same properties.
Our contributions can be summarized as follows:

– Theoretical Formalisation: We formally define the notion of Linear Map Vector Commitments
(LVC) inspired by the work of Lai and Malavolta [CRYPTO19]. Our definition aims at recov-
ering all previous notions of VC and include properties such as updatability, aggregation and
homomorphism. We introduce a stronger new unbounded aggregation concept that allows to
aggregate multiple times without a disaggregation procedure. This relaxes incremental aggre-
gation which is hard to achieve in general.

– Black-box Frameworks for LVC: We show how to lift the homomorphic properties of a simple
LVC in order to obtain an LVC with unbounded aggregation and/or updatability. We also
show that we can construct generic LVC (i.e. for any f : Fm → Fn) from homomorphic LVC
for a more restricted class of openings, inner-products IP (for n = 1).

– VC Constructions: We show two pairing-based LVC constructions for inner products IP based
on the properties of monomial and Lagrange polynomial basis. We prove that the two satisfy
all the relevant homomorphic properties to obtain unbounded aggregation and transformation
to LVC. We also extend such schemes to support subvector openings SVC in a native way for
special subsets or via aggregation for generic subsets.

– Adding Maintainability: We present two novel maintainable VC constructions that can be
instantiated from any underlying VC scheme with homomorphic proofs. We show how to
achieve a stronger, more flexible form of maintainability: our schemes allow to arbitrary tune
the memory used to save on the opening time to obtain the desired trade-off. Both constructions
are based on the tensor structure of multivariate and univariate polynomials:

1. The multivariate case is a generalisation of a recent work, Hyperproofs that uses binary
trees: we allow for any arity for the trees, so proofs are shorter and the leaves can be
commitments for any LVC scheme, to allow more expressivity.

2. The univariate construction generalizes in a similar way a previous construction of Tomescu
et al. and it has the additional feature that the setup is independent of the trade-off, so
the memory used can be decided by the prover on the fly.
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Zapico23.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Motivation for Better Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Desired Properties and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Definitions: Linear-map Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Homomorphic Properties for LVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Generic Constructions from Homomorphic Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 New Notion: Unbounded Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Unbounded Aggregation for LVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 From Inner-Products to Arbitrary Linear-Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Updability for LVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Constructions for Inner-Pairing VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Monomial Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Lagrange Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Subvector Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1 Native SV Openings for the Monomial Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Non-native SV Openings for the Monomial Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Lagrange Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Implementation and Experimental Evaluation for LVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.1 Comparison with SNARKs over Merkle Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Proving time for Range Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3 Verification for Special Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Maintainable Vector Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.1 Multivariate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 Univariate Maintainable Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Vector Commitment Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B Vector Commitment Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.1 Verifiable Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.2 Stateless Cryptocurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B.3 Proof of Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B.4 Compiling SNARKs from Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
B.5 Applications of Range Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

C Native SVC in [33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
D Lagrange basis IP for Cosets of Roots of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

D.1 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1 Introduction

Vector commitment schemes [26, 10] (or VC) allow a party to commit to a vector v through a short digest
and then open some of its elements guaranteeing position binding4 (one should not be able to open a
commitment at position i to two different values vi 6= v′i). For this primitive to be interesting the proof of
opening—or just “opening”—should be of size sublinear in m, the size of the committed vector. A vector
commitment with subvector opening also supports a short opening for arbitrary subsets of positions I

4 For the applications considered in this work, hiding properties are not necessary. In particular, our commitments
are deterministic.



(rather than individual ones only). More specifically this opening should be of size independent, not only
of m, but of |I|. We denote commitment schemes with such property as SVC [24](also called VC with
batch opening in [5]).

Functional Vector Commitments, first introduced by Libert, Ramanna and Yung in [25], capture
the ability to compute commitments to vectors and later perform openings of linear functions (inner-
products) f : Fm → Fn of these vectors, for some field F.

Both vector commitments with subvector openings and functional commitments for inner-products
can be captured as vector commitments with openings for a more general class of function families, linear
maps. Lai and Malavolta [24] were the first to introduce Linear Map Commitments (LMC). In such a
scheme, the prover is able to open the commitment to some vector v to the output of multiple linear
functions or, equivalently, to the output of one linear-map f : Fm → Fn, by producing a single short
proof. In this work, we revisit Lai and Malavolta [24] LMC notion and augment it to a full-featured
vector commitment generic definition that recovers all previously-defined schemes and more. We call our
primitive Linear Map Vector Commitment and use LVC for short5.

1.1 Motivation for Better Vector Commitments

Vector commitments are very useful to scale highly decentralized networks of large size and whose content
is dynamic [11, 5, 8, 18](such dynamic content can be the state of a blockchain, amount stored on a wallet,
the value of a file in a decentralized storage network, etc.). Beyond the basic requirement that openings
should be efficient, in this work we also discuss how to achieve some additional properties of LVC. We
discuss some of the most prominent applications of LVC to motivate and justify the importance of these
properties in practice.

Verifiable Databases. One of the applications that can be significantly improved by Vector Commitments
is Verifiable Databases (VDB). In this setting, a client outsources the storage of a database to a server
while keeping the ability to access and change some of its records, i.e. query functions of the data and
update some of the data and ensure the server does not tamper with the data. Solutions using (binding)
commitment schemes provide security but not efficiency in such a setting. A popular instantiation that
achieves both of them is a Merkle tree [27], but this is not expressive enough to allow for functional
openings.

For a VC scheme to be the ideal solution for VDB application, we require it to additionally support
efficient updates and expressive openings. For example, an LVC scheme that allows the client to update
records of the database in sublinear time and to verify linear-map queries at almost the same cost as
simple position openings is a great improvement over current solutions.

Stateless Cryptocurrency. A recent application that motivated more efficient constructions of VC schemes
is stateless cryptocurrency, i.e. a payment system based on a distributed ledger where neither validators
of transactions nor system users need to store the full ledger state. The ideal vector commitment scheme
that provides the best trade-off between storage, bandwidth, and computation in this setting should have
all of the following properties: it must have a small commitment size, short proofs, efficient computation
for openings and it should allow for proof updates and for aggregation to minimise communication in the
transactions and maintainability for the proofs, that allows updating all pre-stored proofs in sublinear
time.

Proof of Space. Proof of Space (PoS) is a protocol that allows miners (storage providers) to convince the
network that they are dedicating physical storage over time in an efficient way. In a nutshell, a miner
commits to a file (data) that uses a specified amount of disk space and then the miner proves that
it continues to store the data by answering to recurring audits that consist of random spot-checks. A
PoS construction based on vector commitments, as described in [15], requires short opening proofs for
subvectors to be stored in a blockchain, cross-commitments aggregation techniques and the possibility
to implement space-time tradeoffs to reduce the proving time for the miner (ideally sublinear in the size
of the vector).

5 We prefer LVC rather than LMC to emphasize the Vector Commitment aspect of our notion.
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“Caching” Optimizations. In some applications, e.g. when performing HTTP queries, clients use the so-
called prefetching6 and receive from a server not only the values of interest but other related values that
could potentially be queried in the near future (e.g., values in a neighboring range of the queried values).
Vector commitments with efficient proofs for special (“caching”) subset openings allow to add verifiability
to such queries in a way that does not affect the speed of the server since the proving procedure for a
bigger subset is close or the same as for individual positions.

1.2 Desired Properties and Limitations

At the very least a basic LVC should be efficient (small proof size and low opening/verifying computa-
tional needs). Obviously, the same design goals as with other cryptographic protocols apply, i.e. ideally
one would like to prove security under as standard assumptions as possible.

Reusable setup refers to the common reference string that many pairing-based schemes use as public
parameters. Ideally, one would like to have a transparent setup (consisting of uniformly distributed
elements) that does not rely on any trusted parameter generation. It is common to sacrifice this goal
for efficiency and settle for a trusted setup (producing a SRS, or structured reference string) that can
be generated in a ceremony. But such ceremonies are complicated to implement7, so it is interesting to
design LVC that do not have special SRS distributions and can reuse existing setups for other primitives.

Expressivity refers to the opening possibilities. One would like VC to be as expressive as possible,
meaning that it should be possible to open to functions of the vector as general as possible (subvector
openings, linear or arbitrary functions).

Proof Aggregation captures the ability to “pack” two or more proofs together obtaining a new proof
for their combined claims (e.g. f(v) = y and f ′(v) = y′). This should be done without knowledge of
the opening of the vector and aggregation cost should be sublinear in the vector length. Importantly, the
resulting proof should not significantly grow each time we perform an aggregation. One-hop aggregation
allows only to aggregate fresh proofs. Ideally, one would also want to aggregate already aggregated proofs.

Updatability allows to efficiently update opening proofs: if C is a commitment to v and a position
needs to be updated resulting in a new commitment C′, an updatable VC must provide a method to
update an opening πf for a function f that is valid for C into a new opening for the same function that
is valid for the new commitment C′. The new opening should be computed by only knowing the portion
of the vector that is supposed to change and in time faster than recomputing the opening from scratch.

Maintainability aims at amortizing the proving costs in systems where committed values have a
long life span and evolve over time. This is achieved by means of dedicated memory to reduce the
computation time needed to open proofs. Concretely, the property requires that (1) one can efficiently
store some values to reduce the cost of computing any individual openings (2) after updating a single
position of the committed vector, it should be possible to update all proofs in time sublinear in the size
of the vector (less than computing a single proof from scratch in some cases).

Homomorphic properties apply to commitments as well as to proofs. An LVC has homomorphic
commitments if it is possible to meaningfully combine commitments without knowing their openings:
that is, from commitments C1 and C2 to v1 and v2, any party must be able to compute a commitment
to αv1 + βv2 for any α, β ∈ F. The scheme has homomorphic openings if it is possible to derive a proof
that f(v1 + v2) = y1 + y2 from proofs for the claims f(v1) = y1 and f(v2) = y2. Finally, a vector
commitment scheme has homomorphic proofs when it is possible to combine proofs of statements for
different functions but same vector. As we will see, this property is interesting for its implications.

1.3 Our Contributions

Theoretical Advances. On the theoretical frontier, we unify previous definitions and augment them with
additional properties. The basic notion we use is Linear Map Vector Commitments (LVC) and is inspired
by the work of Lai and Malavolta [24]. We then define additional properties on top of this definition and
explore their relations. Specifically, we augment this notion with updatability and aggregation properties,

6 https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
7 This remains true even if many setups are updatable [21] and they can be generated and updated non-

interactively in a secure way as long as one party is honest. There might be issues if not enough parties
participate in generating the SRS or updates are not properly validated.
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VC Scheme Setup Aggregation Updates Assumption Functional Special Sets
Opening Opening (size n)

PoS aggSVC [8] Trusted? Incremental Same-Com? hint? RSA? SVC O(n)
Pointproofs [18] Trusted One-hop Cross-Com key pairings × O(n)

Stateless aggSVC [33] Trusted One-hop Same-Com key pairings SVC O(1)

Our Lagrange LVC Reusable UnboundedCross-Com key AGM LVC O(1)
Our Monomial LVC Reusable UnboundedCross-Com key AGM LVC O(1)

Table 1: Comparison of our LVCs with other aggregatable VC schemes (aggSVC) designed for Stateless Cryp-
tocurrencies and Proof of Space applications. All schemes have O(1)-sized proofs that verify in O(1) time and
can update commitments in O(1) time.
(?): additional notes on [8]: their construction can be instantiated transparently (but less efficiently) replac-
ing RSA-like assumptions with class groups; hint-based updates in their second construction are to maintain a
constant-size O(1) CRS; key-based updates are possible with a larger CRS; the work in [?] shows how to cross-
commitment aggregate in [8].

.

including a novel notion -unbounded aggregation- capturing the ability to aggregate already aggregated
proofs but relaxing incremental aggregation [8] in the sense that the verifier is allowed to do work linear
in the number of aggregation hops (i.e. aggregation is “history” dependent), also, disaggregation is not
possible. We show that having additional homomorphic properties is highly desirable, by arguing that
any LVC that satisfies them: (1) can be augmented with unbounded aggregation as well as updatability;
(2) can support general linear map openings (i.e. for any f : Fm → Fn) as long as it supports inner
product openings (i.e. for f ′ : Fm → F). This allows us to focus on efficient constructions for inner
products with homomorphic properties.

VC Constructions. First, we present two pairing-based LVC constructions for inner products based on
the properties of monomial and Lagrange polynomial basis and prove that they satisfy all the relevant
homomorphic properties to obtain unbounded aggregation and support general linear maps. In terms of
expressivity, these constructions generalize previous work [32, 33] by supporting linear functions instead
of only position or subvector openings. VC for this class of functions are core components of important
primitives such as arguments of knowledge for Inner Product (IP) relations or aggregation arguments
[12].

Second, we present two novel maintainable constructions by exploiting the tensor structure of mul-
tivariate and univariate polynomials. These constructions allow a stronger, more flexible form of main-
tainability: they support an arbitrary memory/time trade-off for openings, meaning that one can decide
how much memory it wants to use to reduce the opening time.

The multivariate case is a generalization of Hyperproofs [32] in several dimensions. Roughly speaking
maintanability is achieved in Hyperproofs by constructing a binary tree of proofs where at the leaves
there are the values of individual positions. We present a single construction that can be instantiated in
several ways (recovering Hyperproofs as a special case) with these features: (i) the tree can be of any
arity, so proofs are shorter8; (ii) the leaves can be commitments for any LVC and not only individual
openings, to achieve a fully flexible trade-off. As a result of (ii), the scheme is more expressive (as it
can support openings to linear functions/subvector openins at leaf level if the underlying commitment
supports it).

The univariate construction presents a similar generalization of previous work by [34] but it has the
additional feature that the setup is independent of the trade-off, and can be decided by the prover on
the fly.

Practical Improvements. As in some applications like Proof of Space, the subset of opened positions is
not very meaningful and its distribution is expected to be known in advance, we study how to improve
verification efficiency for certain special subsets I openings in our inner-product constructions. For some
structured sets I, we achieve a verifier that performs half of the work it does for arbitrary sets J of the

8 If one uses the Inner Pairing Product argument of Bünz et al. [7] on top of PST commitments as suggested in
Hyperproofs the difference in proof size is not so relevant, but IPP will be much cheaper to run.
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VC Scheme Setup Homomorphic Aggregation |π| Prove OpenAll UpdateAll

Merkle Trees Transparent × SNARK logm O(k) O(m) O(k + logm′)
Hyperproofs [32] Trusted X IPP logm O(k) O(m logm′) O(logm′)

Our Multivariate LVC Trusted X IPP log`m
′ O(k) O(m logm′) O(logm′)

Our Univariate LVC Reusable X IPP logm′ O(k) O(m logm′) O(logm′)

Table 2: Comparison of our schemes with other maintainable VC. We consider vectors of dimension m = k ·m′

where m′ is the amount of memory dedicated for storing proofs. All schemes are aggregatable using generic
techniques, SNARKs or Inner Pairing Products [7]. All times/sizes omit the dependence on the security parameter
λ. We omit constant additive terms from proof sizes. In the multivariate construction, ` refers to a constant
parameter.

same size in the Lagrange construction, and only a constant number of group operations in the one that
uses the monomial basis.

Second, we mitigate the challenges of deploying these constructions due to their need of a trusted
setup. With the exception of the multivariate variant of the maintainable construction, all our construc-
tions can reuse trusted setups such as “powers of tau” that were run for pairing-based SNARK schemes
used in real-world applications.9, as opposed to for example [18], in which a certain middle power of τ
needs to be missing in the SRS.

In Appendix 7 we demonstrate the practical benefits of our special subset construction by providing
an implementation and comparisons with current solutions.

1.4 Related Work

Vector commitments were fully formalized in [10] and two first constructions were proposed under stan-
dard, constant-size, assumptions: CDH in bilinear groups and RSA respectively. Many follow-up works
built on these constructions to obtain better efficiency and more properties such as subvector openings,
functional openings, aggregation, updates and variants of these. A number of constructions [8, 5] use the
properties of hidden order groups to achieve constructions with attractive features such as constant size
parameters or incremental aggregation but are concretely less efficient than pairing-based constructions.

Merkle trees are quite efficient and only need a transparent setup. They also offer natural time-
memory tradeoffs due to their tree structure. Nevertheless, VC schemes based on bilinear groups are
more expressive in terms of openings, have homomorphic properties, allow for efficient updates for the
proofs and aggregation mechanisms, so they are becoming an interesting alternative.

Expressivity. VC were generalized by Libert et al. [25], who formalize the notion of functional commit-
ments (FC). They construct vector commitments with openings to linear-forms of the vector based on
the Diffie-Hellman exponent assumption over pairing groups. Later, Lai and Malavolta [24] introduce
subvector openings and show applications to building succinct-arguments of knowledge (similar appli-
cations were shown by [5]) in the bilinear group setting. They also generalize the notion of SVCs to
allow the prover to reveal arbitrary linear maps computed over the committed vector. Previously, only
Functional VC for single-output linear functions were proposed which did not account for provers that
want to reveal multiple locations or function outputs of the committed vector in a concise way.

Updatability. Vector commitments that allow for updates are useful in applications such as stateless
cryptocurrencies. A weak variant of updatability requires the algorithms that update the commitment
and the opening to take as input an opening for the position in which the vector update occurs called
hints. Recent RSA-based constructions are hint-updatable [5, 8]. Compared to hint updates, key-updates
only need fixed update keys corresponding to the updated positions. Schemes based on bilinear groups
require such fixed keys, and no extra information about the change made in the vector in order to update.

Aggregation. Vector Commitments with an additional aggregation property are very appealing for
blockchain applications for their even shorter proofs of opening. Campanelli et al. [8] showed two con-
structions of incrementally aggregatable SVCs, that have constant-size parameters and work over groups

9 E.g., the one used by ZCash. https://z.cash or and Filecoin [14]

6

https://z.cash


of unknown order. Unfortunately, the practical efficiency of these constructions is still not suffiecient for
their deployment in real-world systems.

Gorbunov et al. [18] show how to extend the VC scheme of [26] to allow for cross-commitment
aggregation. Like our constructions, they assume the Algebraic Group Model (AGM) [17] in bilinear
groups and a random oracle. Their final SVC requires public parameters whose size is linear in the size
of the committed vector, while cross-commitment aggregation allow for splitting up a long vector into
shorter ones and simply aggregate the proofs. However, this approach allows only for one-hop aggregation,
meaning that already aggregated proofs cannot be reused in further aggregations by external nodes.

Tomescu et al.[33] showed how to realize an updatable SVC with one-hop aggregation from bilinear
groups. Their scheme has linear-sized public parameters, and it supports commitment updates, proof
updates from a static linear-sized update key tied only to the updated position, in contrast with the
dynamic update hints required by related works.

Maintainability. Apart from Merkle tree based Vector Commitments which are known to be maintain-
able, Srinivasan et. al. [32] show that the multilinear PST polynomial commitment [29] can be turned to
a maintainable VC construction. Pre-computing all (single-position) opening proofs is done in quasilin-
ear time (contrary to the trivial quadratic time) and updating all proofs after a (single position) vector
update needs only logarithmic time. Contrary to Merkle tree based approaches, the scheme has homo-
morphic properties. Furthermore, due to its algebraic structure, it supports one-hop aggregation through
generic means, namely, Inner Pairing Product Arguments [7], albeit with a concretely expensive prov-
ing computation. Tomescu et al. [34] add the same attribute to KZG polynomial commitment schemes,
resulting in an univariate construction with the same properties.

2 Preliminaries

We denote the set of natural numbers by N and let λ ∈ N be the computational security parameter.
We denote the list of integer numbers between 1 and n as [n]. All the algorithms defined throughout
this work are assumed to be probabilistic Turing machines that run in polynomial time (abbreviated as
PPT). We say that a function is negligible (in λ), and we denote it by negl(λ), if negl(λ) = Ω(λ−c) for
any fixed constant c > 1.

Vectors. For m-dimensional vectors a ∈ Fm, we denote the i-th entry by ai ∈ F. We use ei ∈ Fm to
denote the vectors of the canonical basis, more concretely ei is the vector with a 1 in the i-th coordinate
and 0’s elsewhere. For vectors a ∈ Fm,b ∈ Fn, we denote a ⊗ b ∈ Fm·n = (a1b, . . . , anb) the tensor
product of the vectors.

Lagrange basis. Let H = {h1, . . . , hm} be a multiplicative group of size m in F. We consider the set of
Lagrange interpolation polynomials {λj(X)}mj=1 associated with H, namely,

λj(X) =
∏
i 6=j

X − hi
hj − hi

.

Recall that
∑m
j=1 λj(X) = 1. Moreover, we define t(X) =

∏m
j=1(X − hj) the vanishing polynomial. We

will also consider tk(X) =
∏
j∈Jk(X − hj), the vanishing polynomial of a subset {hj}j∈Jk ⊂ H and

tkc(X) =
∏
j /∈Jk(X − hj).

For the multivariate case, recall that λσ(Xν , . . . , X1) =
∏ν
j=1 λσj (Xj). Using these, we can write the

vector of multivariate Lagrange as the tensor product λ(Xν)⊗· · ·⊗λ(X1), where λ(X) is the univariate
Lagrange basis.

Bilinear Groups. A bilinear group is given by a description gk = (p,G1,G2,GT , e) with additive notation
such that p is prime, so F = Fp is a field. G1,G2 are cyclic (additive) groups of prime order p. We use
the notation [a]1, [b]2, [c]t for elements in G1,G2 and GT respectively. e : G1 × G2 → GT is a bilinear
asymmetric map (pairing), which means that ∀a, b ∈ Zp, e([a]1, [b]2) := [ab]t. We implicitly have that
[1]t := e([1]1, [1]2) generates GT . We use [a]1,2 to refer to 2 group elements [a]1 ∈ G1, [a]2 ∈ G2. In
our constructions, we denote by G(p) the algorithm that, given as input the prime value p, outputs a
description gk = (p,G1,G2,GT , e).
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Algebraic Group Model (AGM). The algebraic group model [17] lies between the standard model and the
stronger generic group model. In AGM, we consider only so-called algebraic adversaries. Such adversaries
have direct access to group elements and, in particular, can use their bit representation, like in the
standard model. However, these adversaries are assumed to output new group elements only by applying
the group operation to received group elements (like in the generic group model). This requirement is
formalized as follows: Suppose an adversary A is given some group elements [x1]1 . . . [xm]1 ∈ G1. Then,
for every new group element [z]1 ∈ G1 that the adversary outputs, it must also output z1 . . . zm ∈ F such
that [z]1 =

∑m
i=1[zixi]1.

Assumptions. We state the computational assumptions used in this work.

Definition 1. The (q1, q2)-DLOG assumption holds relative to G(1λ) if for all PPT adversaries A, the
following probability is negligible in λ.

Pr
[
τ ← A(gk,

{
[τ i]1

}q1
i=0

,
{

[τ i]2
}q2
i=0

) gk← G(1λ); τ ← F
]
.

In the tree-based construction we rely on a q-type assumption, the Bilinear Strong Diffie Hellman
assumption ((q1, q2)-BSDH) [4]. When q1 = q2, we simply call it q-BSDH Assumption. We present it
next.

Definition 2. The (q1, q2)-BSDH assumption holds relative to G(1λ) if for all PPT adversaries A, the
following probability is negligible in λ.

Pr
[
(c, 1

(τ−c)e([1]1, [1]2))← A(gk,
{

[τ i]1
}q1
i=0

,
{

[τ i]2
}q2
i=0

) gk← G(1λ); τ ← F
]
.

3 Definitions: Linear-map Vector Commitments

We introduce preliminaries in App. 2.n the following, we define what we call Linear-map Vector Commit-
ments (LVC) schemes. Notably, this definition has been introduced by Lai and Malavolta in [24] (except
that there the name is Linear Map Commitments) to capture further functionalities of vector commit-
ments, whose definition before only account for proofs of position openings (Vector Commitments) or
more generally subvector openings (Sub-vector commitments) (See Appendix A for the formal defini-
tions).e introduce the definition and security properties of LVC. Importantly, we do not consider the
hiding property as for our applications all vectors are public.

Linear-map Vector Commitment A linear-map vector commitment scheme for function families
F ⊂ {f :Mm →Mn} is a tuple of PPT algorithms

(
LVC.KeyGen, LVC.Commit, LVC.Open, LVC,Vf

)
that

work as follows:

LVC.KeyGen(1λ,F)→ (prk, vrk): The setup algorithm takes the security parameter λ, a family of func-
tions F implicitly defining the message spaceM, and the maximum vector length m = poly(λ), and
outputs a pair of keys (prk, vrk).

LVC.Commit(prk,v)→ (C, aux): On input the proving key prk, and a vector v = (v1, v2 . . . , vm) ∈ Mm,
returns a commitment C and auxiliary information aux. This algorithm is deterministic.

LVC.Open(prk, aux, f,y)→ πf : Takes as input prk, the auxiliary information aux, a function f ∈ F , and
a claimed result y ∈Mn. It outputs a proof πf that f(v) = y.

LVC.Vf(vrk,C, f,y, πf )→ 0/1 : Takes as input the verification key vrk, C, function f , y ∈Mn, and proof
πf . It accepts or rejects.

A LVC scheme must satisfy the following properties:

Definition 3 (LVC correctness). An LVC scheme is perfectly correct if for all λ ∈ N, for any family
of functions F ⊂ {f :Mm →Mn} and any v ∈Mm,

Pr

LVC.Vf(vrk,C, f,y, πf ) = 1
(prk, vrk)← LVC.KeyGen(1λ,F)
(C, aux)← LVC.Commit(prk,v)
πf ← LVC.Open(prk, aux, f,y)

 = 1.
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Definition 4 (LVC (strong) function binding.). A linear map commitment LVC satisfies strong
function binding if, for any PPT adversary A, for all λ ∈ N, for all integers K ∈ poly(λ), and for any
family of functions F , the following probability is negligible in λ:

Pr


∀k ∈ [K] :

LVC.Vf(vrk,C, fk,yk, πfk) = 1
∧ 6 ∃ v ∈Mm s. t.
∀k ∈ [K] : fk(v) = yk

(prk, vrk)← LVC.KeyGen(1λ,F)(
C, {fk,yk, πfk}k∈[K]

)
← A(prk, vrk)


The definition above can be relaxed to hold only for honestly-generated commitments C, raising to

the weak function binding notion. In the weak definition, the adversary A returns a vector v while the
commitment C is computed via LVC.Commit. In this work, constructions are proven strong function
binding.

3.1 Homomorphic Properties for LVC

Homomorphic Commitments. Linear-map vector commitment schemes that satisfy homomorphic com-
mitments allow to combine commitments of two vectors into a single one of their sum (or any linear com-
bination). Namely, for all λ, and (vrk, prk) ← LVC.KeyGen(1λ,F), if (C1, aux1) ← LVC.Commit(prk,v1)
and (C2, aux2)← LVC.Commit(prk,v2), then C̃ = (αC1 +βC2) is a valid commitment to ṽ = (αv1 +βv2)
for any α, β ∈M.

In this work, we are particularly interested in LVC that also have homomorphic proofs for different
functions applied to a committed vector and homomorphic openings for the same function applied to
different initial vectors.

Homomorphic Proofs. An LVC scheme has homomorphic proofs if it allows recombine two proofs π1, π2
corresponding to linear maps f1, f2 into a new proof π̃ that opens to a linear combination of f1 and f2
applied to the same committed vector. Namely, for all λ, F ⊂ {f :Mm →Mn} and all vectors v ∈Mm,
and (vrk, prk) ← LVC.KeyGen(1λ,F), (C, aux) ← LVC.Commit(prk,v), if π1 ← LVC.Open(prk, aux, f1,y1)
and π2 ← LVC.Open(prk, aux, f2,y2), then for all α, β ∈M:

π̃ = (απ1 + βπ2) verifies LVC.Vf(vrk,C, f̃ = (αf1 + βf2), ỹ = (αy1 + βy2), π̃
)

= 1.

Homomorphic Openings. An LVC scheme has homomorphic openings if we can combine opening proofs
for the same linear-map f applied to two different vectors v1 and v2 to obtain a new proof of opening
π̃ that verifies with respect to the linear combination C̃ of the two initial commitments C1,C2 and show
the result of f applied to the linear combination of the vectors v1 and v2.

More formally, for all λ, F ⊂ {f :Mm →Mn}, vectors v1,v2 ∈Mm, and (vrk, prk)← LVC.KeyGen(1λ,F),
if π1 ← LVC.Open(prk, aux1, f,y1) and π2 ← LVC.Open(prk, aux2, f,y2), where (C1, aux2)← LVC.Commit(prk,v1)
and (C2, aux2)← LVC.Commit(prk,v2), then for all α, β ∈M:

π̃ = (απ1 + βπ2) verifies LVC.Vf(vrk, C̃ = (αC1 + βC2), f, ỹ = (αy1 + βy2), π̃
)

= 1.

4 Generic Constructions from Homomorphic Proofs

Many natural schemes (such as [33, 18], PST commitments or our constructions in Section 5) have
homomorphic proofs or openings. This motivates us to consider generic constructions that enhance any
LVC scheme with homomorphic properties. We start by defining the notions of unbounded aggregation
for same and cross-commitments and then we show how to add such properties to LVC schemes that
have homomorphic proofs for the former and, additionally, homomorphic commitments for the latter.

4.1 New Notion: Unbounded Aggregation

The intuition for our definition is that, given t proofs, commitments or openings, we can aggregate them
by performing a linear combination with random coefficients. Importantly, these coefficients have to
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be chosen after the claims are fixed and for that we rely on the RO model, as it is often the case for
aggregation in the literature.

In our work, we go a step further and show how this procedure can be done over already aggregated
proofs. Actually, aggregating already aggregated proofs consists off just sampling new coefficients and
using them for fresh linear combinations. Importantly, the verifier needs to have access to the aggregation
history: it has to recompute the coefficient corresponding to each initial proof π, which is the product of
all the coefficients used in the aggregations it was involved in. Note that this also adds a small overhead
to the verifier: it makes a linear (in the number of aggregation “hops”) number of hash computations.

Example for same-commitment aggregation: Consider vector v committed in C, functions f1, f2 and f3;
let π1, π2 and π3 be proofs that f1(v) = y1, f2(v) = y2 and f3(v) = y3. An aggregated proof for
f2(v) = y2, f3(v) = y3, would be π∗1 = π2 + γ1π3, for γ1 = H(C, {(f2,y2), (f3,y3)}). In a second step,
we can aggregate a proof that f1(v) = y1, by performing π∗2 = π1 + γ2π

∗
1 , for γ2 = H(C, (f1,y1), γ1).

At the verification step, the verifier would reconstruct the coefficients of each initial proof in π∗2 . For
instance, δ1 = 1, δ2 = γ1γ2, δ3 = γ2. Then, the verifier can run the LVC.Vf algorithm to check whether
π∗2 = π1 + γ2π

∗
1 = π1 + γ1γ2π2 + γ2π3 is a valid proof that function f = f1 + γ1γ2f2 + γ2f3 evaluated

at the vector committed in C opens to y = y1 + γ1γ2y2 + γ2y3. For this last step to work we need the
homomorphic proof property and the verifier to have access to the aggregation “history”.

To describe our history of claims we move to trees of statements {fj ,yj}tj=1. In these trees, leaves
are pairs of function–output (f,y). As in the usual case internal nodes are defined as an ordered list
of subtrees. An empty history/tree is referred to as null. We denote trees using the syntax Tf,y and
the operation that “merges” two subtrees in order adding a new root as “∴”. The following definition
formalizes the above and will be useful in our construction. We remark that we include the commitment
in each of the leaves of the trees Tf,y. This does not increase the input size for cross-commitment
aggregation where this information is necessary (for same-commitment aggregation the commitment is
not necessary). This also allows to model more closely the “claims” for the cross-commitment case where
each proof is for a statement (C, f,y).

Definition 5. Given a tree T we associate to each of its internal nodes a hash label h defined so that
h(L ∴ R) := H(C,L,R). We then associate to each of the leaves in the tree a label

δ(leaf) :=
∏

i=1,...,t

h(xi)
r(xi,leaf)

where the xi-s are the internal nodes along the path from leaf to the root (root included and starting from
the bottom), the predicate r(x, leaf) is 1 if leaf is a right child of x and 0 otherwise.

Remark 1 (Unbounded vs One-hop vs Incremental). Previous works have defined other types of ag-
gregation. In one-hop aggregation (or batching) [5] aggregated proofs cannot be aggregated further.
Incremental aggregation [8] does not have this limitation. The difference between the latter and our
notion is that incremental aggregation does not require to keep track of the order in which the aggre-
gation has been applied (for verification or further aggregation). On the other hand, we do require to
track order, but we argue that this is not an overhead in many settings. In particular, even incremental
aggregators and verifiers need to know the claims related to the proofs being aggregated, albeit in no
order. Adding a structure to the claims roughly adds a number of bits linear in the length of the opening
for additional separators (see also examples on tree histories above).

When we consider unbounded-aggregatable LVC, we assume KeyGen outputs additional parameters
for aggregations in pp. The aggregation algorithm will follow this syntax10:

LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π
′)→ π∗

We subsequently modify the syntax for the verification algorithm in an (unbounded) aggregatable
LVC as follows:

LVC.Vf(vrk,C, Tf,y ∴ T ′f,y, π
∗)→ b ∈ {0, 1}

with Tf,y replacing f,y.
We require the following correctness property and that function binding still holds.

10 The algorithms can be generalized for more proofs. Proof size remains the same, also for cross-commitment
aggregation.
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Definition 6 (Unbounded Aggregation Correctness). For any Tf,y, Tf ′,y′ and any π, π′:

Pr

 (LVC.Vf(vrk,C, Tf,y, π) = 1 ∧
LVC.Vf(vrk,C, T ′f,y, π

′) = 1
)
⇒

LVC.Vf(vrk,C, Tf,y ∴ T ′f,y, π
∗)=1

(prk, vrk, pp)← LVC.KeyGen(1λ,F)
(C, aux)← LVC.Commit(prk,v)

π∗ ← LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π
′)

 = 1

Definition 7 (Unbounded Aggregation Function Binding). For any Tf,y, Tf ′,y′ the following
probability is negligible in λ:

Pr

[
LVC.Vf(vrk,C, Tf,y ∴ T ′f,y, π

∗)=1

∧ @a s.t. f(a) = y ∧ f ′(a) = y′
(prk, vrk, pp)← LVC.KeyGen(1λ,F)
(C, π∗, Tf,y, T

′
f,y)← A(pp, prk, vrk)

]

Definition: Cross-Commitment Aggregation. Unbounded aggregation can be performed across
different commitments as well. This property is called Cross-commitment Aggregation and makes sense
when we have a set of commitments C′1, . . . ,C

′
t that we want to open at one or more maps f , as it allows to

compute a succinct proof of opening for linear-maps from different vectors committed separately. Below
we show our syntax which directly expands on our same-commitment aggregation described above. Func-
tion binding and correctness are also straightforward to expand. We let Tf,y include our commitments
in the leaves (see also next section).
Cross-commitment aggregation: LVC.CrossAgg(pp, Tf,y, π, Tf ′,y′ , π

′)→ π∗

Cross-commitment verification: LVC.CrossVfy(vrk,
(
C′j
)
j
, Tf,y, π

∗)→ 0/1

4.2 Unbounded Aggregation for LVC

We now describe unbounded aggregation algorithms for any LVC scheme that satisfies the homomorphic
properties of Section 3.1.

LVC.KeyGen(1λ,F)→ (prk, vrk, pp, {upkj}mj=1): Additionally generate the description of a hash function
H(·) and set it as pp.

LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π
′)→ π∗ :

Compute γ = H(C, Tf,y, Tf ′,y′)
Output π∗ = π + γπ′.

LVC.Vf(vrk,C, Tf,y ∴ Tf ′,y′ , π
∗)→ b

Return b← LVC.Vf
(
vrk,C, f∗, y∗, π∗

)
where:

– let {leafi = (C, fi,yi)}`i=1 be all the leaves in Tf,y ∴ Tf ′,y′ .
– For each i let δi := δ(leafi) be the value defined as in Definition 5.

f∗ :=
∑
i

δifi y∗ :=
∑
i

δiyi

Theorem 1. When applied to a function binding LVC scheme with homomorphic proofs,
(
LVC.Agg, LVC.Vf

)
satisfies Unbounded Aggregation Correctness (as in Def. 6) and Function Binding (Def. 7) in the ROM.

Proof. Correctness follows by inspection, using the fact that the LVC satisfies homomorphic proof, so
we omit it.

For function binding, let A be an adversary against it and
(
C, π∗, Tf,y, Tf ′,y′

)
an output of them such

that LVC.Vf(vrk,C, Tf,y ∴ Tf ′,y′ , π
∗)=1. By construction this implies LVC.Vf

(
vrk,C,

∑
i δifi,

∑
i δiyi, π

∗) =
1. Because LVC is function binding, except with negligible probability, there exists a vector a such that
f(a) = y, for y =

∑
i δiyi, f(X) =

∑
i δifi(X) then there exists a such that

t∑
i=1

δifi(a) =

t∑
i=1

δiyi.

Since H is a random oracle, the coefficients δi do not depend on yi, fi. And by the Schwartz-Zippel
lemma, except with probability m/F, where m is the degree of f , fi(a) = yi for all i, which concludes
the proof. ut
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Cross-Commitment Aggregation for LVC. For the case of cross-commitment aggregation, we pro-
ceed similarly but we also need to homomorphically operate on the commitments (recall that hashing
on trees implicitly hashes the commitments too since we include them there).

LVC.CrossAgg(pp, Tf,y, π, Tf ′,y′ , π
′)→ π∗ :

Compute γ = H(Tf,y, Tf ′,y′)
Output π∗ = π + γπ′

LVC.CrossVfy(vrk,
(
C,C′, Tf,y ∴ Tf ′,y′ , π

∗)→ b
– let leaf1, . . . , leaf` be all the leaves in Tf,y ∴ Tf ′,y′ . We add to each leaf leafi and additional

subindex j that refers to which commitment the proof in leafij corresponds to. Note that we still
consider ` leaves.

– each leafij is of the form (Cj , fi,yi)
– For each i let δij := δ(leafij) be the value defined as in Definition 5.
– Compute

f∗j :=
∑
i

δijfi y∗j :=
∑
i

δijyi

– Return 1 iff bj = 1 for all bj ← LVC.Vf
(
vrk,Cj , f

∗
j , y
∗
j , π
∗).

Efficiency. For our constructions, the verification equations for computing bi = IP.Vf
(
vrk,C∗, f∗, y∗, π∗

)
are two pairing equations where the elements in the right side can be aggregated, and thus the verifier
performs only `+ 1 pairings.

Security. The security of this augmented construction follows analogously to that for same-commitment
aggregation, with the additional requirement for the LVC scheme to have homomorphic commitments
and openings.

4.3 From Inner-Products to Arbitrary Linear-Maps

In this section we show we can obtain LVC schemes for any family of functions F ⊂ {f : Fm → Fn}
starting from simpler constructions that have homomorphic proofs and openings. Our starting point
are LVC schemes for FIP = {f : Fm → F}, or inner-product VC schemes, that we will denote as
IP = (IP.KeyGen, IP.Commit, IP.Open, IP.Vf). All this algorithms work as the ones for LVC, except that
instead of f ∈ FIPm,p , they use the vector f ∈ Fm so that f(v) = f · v.

We can write the linear-map f : Fm → Fn as f = (f1, f2, . . . fn), where each fi is an inner product
function. If the IP scheme has homomorphic proofs, and we set πi to be the proof that fi(v) = fi ·v = yi,
an aggregation of {πi}ni=1 is a proof of the statement f(v) = y. Later, in the following section, we show
two possible constructions of IP vector commitments schemes that can be used to instantiate the frame-
work in this section. An IP aggregation algorithm for one-hop aggregation11 of proofs works as follows:

IP.Agg(pp, {fi, yi}ni=1, π = (πi)
n
i=1)→ π′ :

Parse pp = H, where H is a hash function, compute γ = H(C, {fi, yi}ni=1)
Output π′ =

∑n
i=1 γ

i−1πi
IP.VfAgg(vrk,C, {fi, yi}ni=1, π

′)→ b :
Compute γ = H(C, {fi, yi}ni=1), f ′ =

∑n
i=1 γ

i−1fi, y′ =
∑n
i=1 γ

i−1yi
Output b← IP.Vf(vrk,C, f ′, y′, π′).

Using IP.Agg, we present an alternative way of computing concise proofs of LVC for more general func-
tions f : Fm → Fn, based on aggregation.

LVC.KeyGen(1λ,F)→ (prk, vrk, pp):
1. Run (prk, vrk)← IP.KeyGen(1λ,FIP)
2. Generate aggregation parameters pp = H (a hash function).
3. Output (prk, vrk, pp).

11 Naturally, this can be seen as a particular case of unbounded aggregation.
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LVC.Commit(prk,v)→ (C, aux) :
1. Run (C, aux)← IP.Commit(prk,v)
2. Output (C, aux).

LVC.Open(prk, pp, aux, f,y)→ π :
1. Parse f = (f1, f2, . . . fn) and y = (y1, . . . yn). Consider fi as the vector representing inner-product

function fi.
2. Run πi ← IP.Open(prk, aux, fi, yi) for i ∈ [n]
3. Output π ← IP.Agg(pp, {fi, yi}ni=1, (πi)

n
i=1).

LVC.VfAgg(vrk, pp,C, f,y, π)→ b :
1. Parse f = (f1, f2, . . . fn) and y = (y1, . . . yn). Consider fi as the vector representing function fi.
2. Output b← IP.VfAgg(vrk,C, {fi, yi}ni=1, π)

4.4 Updability for LVC

We consider updatability as an extra property of the LVC scheme. The KeyGen algorithm additionally
computes the update keys, while two extra algorithms are defined as follows:

LVC.UpdCom(upk,C, j, δ)→ C′: takes as input C, a position j ∈ [m], update key upk, and a constant
δ ∈M. It outputs C′ as a commitment for v′ = v + δej

12.
LVC.UpdOpen(upk, j, δ, f,y, π)→ π′ : Takes as input upk, j, δ, a function f , a valid opening pair (y, π)

for f and outputs a proof π′ for the new opening y′ = f(v + δej),

and satisfy Update Correctness, as defined below:

Update Correctness. Let
(
prk, vrk, upk

)
← LVC.KeyGen(1λ,F), and let (C, j, f,y, π) be a tuple such that

LVC.Vf(vrk,C, f,y, π) = 1. Then LVC satisfies update correctness if for any δ ∈M,

Pr

[
LVC.Vf(vrk,C′, f,y′, π′)=1
∧ y′ = y + δf(ej)

C′ ← LVC.UpdCom(upkj ,C, j, δ)
π′ ← LVC.UpdOpen(upkj , j, δ, f,y, π)

]
= 1.

Updates for IP. We present a generic construction of the updatability algorithms for inner-product
schemes. We state that even though algorithms can be generalized to LVC for arbitrary functions, for
ease of exposition we only present it for inner-product openings, rather than generic linear-maps.

It is easy to see that commitments can be updated when one value of the vector changes by simply
applying the linear-homomorphic property of the underlying IP scheme. Given C such that (C, aux) ←
LVC.Commit(prk,v), when position t of the vector changes, i.e. v′ = v+δet we can compute a commitment

to the new vector v′ as C′ = (C + Ĉ) where (Ĉ, ˆaux)← LVC.Commit(prk, et) is given as an update key.
Moreover, it is possible to update existing proofs using the homomorphic openings property of the

IP scheme: when position t of the vector changes as above, to update a prior proof we simply add to π
a proof π̂ corresponding to the opening of f(δet). The resulting π′ = π + π̂ corresponds to the opening

of the sum f(v′) = f(v) + δf(et) with respect to the updated commitment C′ = C + Ĉ.
We extend IP arguments to satisfy updatability by asking the IP.KeyGen algorithm to additionally

generate updatable keys and introduce IP.UpdCom and IP.UpdOpen that work the following way;

IP.KeyGen(1λ,FIP)→ (prk, vrk, {upkj}mj=1):
1. Additionally generate public update keys upk:
2. Set πuij ← IP.Open(prk, auxj , ei, uij = ei · ej), ∀i, j ∈ [m] .
3. Define upkj = {πuij}mi=1 for all j ∈ [m]
4. Output (prk, vrk, {upki}mi=1).

IP.UpdCom(prk,C, t, δ)→ C′ :

1. Set Ĉ← IP.Commit(prk, et).

2. Output C′ = C + δĈ.
IP.UpdOpen(upkt, t, δ,C, f , y, π)→ π′ :

12 This notion can be generalized to more than one position.
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1. Parse upkt = {πuit}mi=1

2. Compute π̂ =
∑m
i=1 fiπuit .

3. Set π′ = π + δπ̂ as proof for y′ = y + f · δet
4. Output π′.

Theorem 2. If IP satisfies function binding and has homomorphic commitments and openings, the ex-
tension above satisfies update correctness.

The proof follows directly by the definition of homomorphic proof and IP.UpdCom, IP.UpdOpen.

5 Constructions for Inner-Pairing VC

In this section, we present two constructions of LVC for inner products, that is, for functions f ⊂ FIP =
{f : Fm → F}. We denote as IP = (IP.KeyGen, IP.Commit, IP.Open, IP.Vf) a vector commitment scheme
with inner product openings. All the algorithms work as the ones for LVC, except that they take as inputs
the vector of coefficients of the linear function f ∈ FIP, f(v) = f · v, i.e. use the vector f ∈ Fmp .

The first one is in the monomial basis and the other based on the univariate sumcheck of [3, 30]
that considers vectors encoded as polynomials in the Lagrange basis. We prove they are indeed linear
vector commitment arguments with homomorphic proofs and openings. Therefore, they can be used as
a starting point to obtain further aggregation properties as shown in Section 4.1 and, in particular, lead
to two different more generic linear-map vector commitment schemes.

5.1 Monomial Basis

For the first scheme, we consider vectors a ∈ Fm encoded as a polynomial in the monomial basis, that is
as a(X) =

∑m
i=1 aiX

i−1.

IP.KeyGen(1λ,FIP)→ (prk, vrk):
1. Generate group description gk = (p,G1,G2,GT , e)← G(p)
2. Sample τ ← F
3. Output prk =

(
{[τ i]1,2}mi=0

)
, vrk =

(
[τm−1]1,

{
[τ i]2

}m
i=0

)
.

IP.Commit(prk,a)→ (Ca, aux):
1. Compute Ca =

∑m
i=1 ai[τ

i−1]1 and output (Ca,a).
IP.Open(prk, aux,b, y)→ π :

1. Find R(X), H(X) such that deg(R) < m− 1 and(
m∑
i=1

aiX
i−1

)(
m∑
i=1

biX
m−i

)
− yXm−1 = R(X) +XmH(X).

2. Define R̂(X) = X2R(X)
3. Output π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1).

IP.Vf(vrk,Ca,b, y, π)→ 0/1 :
1. Compute Cb =

∑m
i=1 bi[τ

m−i]1, parse π = ([R]1, [H]1, [R̂]1) and output 1 if and only if

e
(
Ca,Cb

)
− e
(
y[τm−1]1, [1]2

)
= e
(
[R]1, [1]2

)
+ e
(
[H]1, [τ

m]2
)

and

e([R]1, [τ
2]2) = e([R̂]1, [1]2).

We implement this construction for single positions and compare it with individual position openings
in Merkle tree-based vector commitments in Appendix 7.1.

Theorem 3. The construction above satisfies Completeness, Homomorphic Proofs and Homomorphic
Openings.

Proof. Completeness follows from simple inspection.
Homomorphic Proofs. Let yb = a ·b, yc = a ·c, πb ← IP.Prove(srs,a,b, yb) and πc ← IP.Prove(srs,a, c, yc),
where πb = ([Rb(τ)]1, [Hb(τ)]1, [R̂b(τ)]1), πc = ([Rc(τ)]1, [Hc(τ)]1, [R̂c(τ)]1) are such that
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(
m∑
i=1

aiX
i−1

)(
m∑
i=1

biX
m−i

)
− ybXm−1 = Rb(X) +XmHb(X),

(
m∑
i=1

aiX
i−1

)(
m∑
i=1

ciX
m−i

)
− ycXm−1 = Rc(X) +XmHc(X),

and R̂b(X) = X2Rb(X), R̂c(X) = X2Rc(X).

In order to compute a proof that a · (αb + βc) = αyb + βyc, the prover proceeds as follows:(
m∑
i=1

aiX
i−1
) (

α
m∑
i=1

biX
m−i + β

m∑
i=1

ciX
m−i

)
=

= α

(
m∑
i=1

aiX
i−1
)(

m∑
i=1

biX
m−i

)
+ β

(
m∑
i=1

aiX
i−1
)(

m∑
i=1

ciX
m−i

)
= α

(
ybX

m−1 +Rb(X) +XmHb(X)
)

+ β
(
ycX

m−1 +Rc(X) +XmHc(X)
)

= (αyb + βyc)X
m−1 + (αRb(X) + βRc(X)) +Xm(αHb(X) + βHc(X)),

and therefore for y = αyb + βyc it outputs π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1) where R(X) = αRb(X) +
βRc(X), H(X) = αHb(X) + βHc(X) and R̂(X) = X2R(X) = αX2Rb(X) + βX2Rc(X) = αR̂b(X) +
βR̂c(X), i.e., π = απb + βπc.

Homomorphic Openings. The proof for homomorphic openings work analogous as the previous case.
Indeed, for ya = a · c, yb = b · c and πa ← IP.Prove(srs,a,b, ya), πc ← IP.Prove(srs, c,b, yc), πa =
([Ra(τ)]1, [Ha(τ)]1, [R̂a(τ)]1), πc = ([Rc(τ)]1, [Hc(τ)]1, [R̂c(τ)]1), it is enough to see that:

(
α

m∑
i=1

aiX
i−1 + β

m∑
i=1

ciX
i−1
) (

m∑
i=1

biX
m−i

)
= α

(
yaX

m−1 +Ra(X) +XmHa(X)
)

+ β
(
ycX

m−1 +Rc(X) +XmHc(X)
)

= (αya+ βyc)X
m−1 + (αRa(X) + βRc(X)) +Xm(αHa(X) + βHc(X)),

and the rest of the proof is the same as the one for homomorphic openings. ut

Theorem 4. The construction above satisfies Strong Function Binding in the AGM under the dlog
Assumption.

Proof. We will proceed through a series of games, and we set Game0 to be the strong binding game of
Definition 3. Let A be an adversary against it, whose advantage is Advs.bindingA . We define Game1 and
specify a reduction B1 such that

Advs.bindingA ≤ AdvqDHE
B1

+ AdvGame1
A .

Let Game1 be the game that goes exactly as Game0 except that, upon receiving [R]1, [R̂]1 from A,
it checks whether deg(R) ≤ m − 2, where R(X) is the algebraic representation of [R]1 and aborts if it
is not. If A wins Game0 but not Game1, then we construct B1 that extracts R(X) =

∑m
s=0 rsX

s as the

algebraic representation of [R]1 where r̂s 6= 0 for s = m−1 or s = m. Then, B1 sets R̂′(X) = X2R(X) =∑m
s=0 r̂sX

2+s. Note that, from the second verification equation [R̂′(τ)]1 = [R̂]1.

Now, B1 outputs
(
[R̂]1 − [R′(τ)]1

)
1
rs

= [τ2+s]1, wining qDHE as 2 + s > m, the highest available
power of τ in G1. Thus,

Advs.bindingA = AdvGame1
A + AdvqDHE

B1
.

Now, we prove that the advantage of A in Game1 is negligible. We define Ca(X) =
∑m+1
j=1 ajX

j−1

the algebraic representation of Ca and set P (X) = Ca(X)Cb(X) − yXm−1 − R(X) − Q(X)zH(X) and
the first verification equation says that, either τ is a root of P (X), or P (X) ≡ 0. If the latter is the case,
we have m+1∑

j=1

ajX
j−1

 m∑
j=1

bjX
m−j

− yXm−1 = R(X) +XmQ(X).
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The left side equals
∑m
j=1

∑m
j=1 ajbjX

i−1+m−j − yXm−1 + am+1X
m

m∑
j=1

bjX
m−j . Because deg(R) <

m − 1 and deg(XmQ(X)) > m − 1, we have that the right side of the equation has coefficient zero for
Xm−1 and so does the left side then. Thus,

∑m
j=1 ajbjX

m−1 − yXm−1 = 0, which happens if and only

if
∑m
j=1 ajbj − y = 0. Namely, there exists a = (aj)

m
j=1 such that a · b = y, and A looses Game1.

Then, it must be the case that P (X) 6= 0 and P (τ) = 0. As in the proof of the previous theorem,
we construct an adversary B2 against the dlog assumption. On input [τ ]1, B2 calculates all the roots of
P (X) and checks, in polynomial time, which is the one that encoded in G1 equals [τ ]1. Thus,

Advs.bindingA ≤ AdvqDHE
B1

+ AdvdlogB2
.

ut

Updates Without Hints. We remark that we do not need any additional update keys added to the
setup. Indeed, the update key is made by proofs of inner products between cannonic vectors ei · ei = 1
or ei ·ej = 0. In our construction for encodings in the monomial basis, a proof that ei ·ei = 1 consists on
R(X) = H(X) = 0. On the other hand, to prove that ei · ej = 0 for i 6= j the proof is (the evaluation in
the group of) either R(X) = Xm+i−j if j > i, or H(X) = Xi−j if i > j. As such powers of τ are already
included in prk, upk ⊆ prk.

5.2 Lagrange Basis

In this second scheme, for a Lagrange basis {λi(X)}mi=1 over a multiplicative group H = {h1, . . . , hm} of
size m in F we encode a vector a ∈ Fm as a polynomial a(X) =

∑m
i=1 aiλi(X). The construction uses

few properties of Lagrange basis over multiplicative groups that we would like to remind before formally
presenting our scheme. When H is a multiplicative subgroup, λi(0) = m−1 for all i ∈ [m]. Moreover, if
H = {hi}mi=1 consists oof the roots of unity of order m, then λi(hi) = 1 and λi(hj) = 0 for i 6= j and for
the vanishing polynomial t(X) =

∏m
i=1(X − hi) we have that

λi(X)λj(X) ≡ 0 mod t(X), λi(X)2 ≡ λi(X) mod t(X).

The construction below, presented in [30], exploits these properties in the proof of openings for inner-
products:
IP.KeyGen(1λ,FIPm)→ (prk, vrk):

Generate group description gk = (p,G1,G2,GT , e)← G(p)
Define multiplicative group H = {h1, . . . , hm} in F
Compute Lagrange polynomials {λj(X)}mj=1 over H.
Sample τ ← F
Output prk =

(
{[τ i]1,2, [λi(τ)]1}mi=1

)
and vrk =

(
[1]1,2,

{
[τ i]2, [λi(τ)]2

}m
i=1

)
.

IP.Commit(prk,a)→ (Ca, aux): Compute Ca =
∑m
i=1 ai[λi(τ)]1 and output (Ca,a).

IP.Open(prk, aux,b, y)→ π :
Find R(X), H(X) such that deg(R) < m− 1 and(

m∑
i=1

aiλi(X)

)(
m∑
i=1

biλi(X)

)
−m−1y = XR(X) + t(X)H(X)

Define R̂(X) = X2R(X) and output π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1).
IP.Vf(vrk,Ca,b, y, π)→ 0/1 : Calculate Cb =

∑m
i=1 bi[λi(τ)]2

Parse π = ([R]1, [H]1, [R̂]1) and output 1 if and only if

e
(
Ca,Cb

)
− e
(
m−1y[1]1, [1]2

)
= e
(
[R]1, [1]2

)
+ e
(
[H]1, [t(τ)]2

)
, and

e
(
[R]1, [τ

2]2
)

= e
(
[R̂]1, [1]2

)
.

We omit the proof of completeness as it can be found in [30]. Still, since there it is presented as an
NIZK argument for inner-product relations as opposite to LVC scheme as considered in this paper, we
prove Strong Function Binding and homomorphic proofs and openings below.
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Theorem 5. The construction above has Homomorphic Proofs and Openings.

Proof. Completeness follows from simple inspection.
Homomorphic Proofs. Let yb = a ·b, yc = a ·c, πb ← IP.Prove(srs,a,b, yb) and πc ← IP.Prove(srs,a, c, yc),
where πb = ([Rb(τ)]1, [Hb(τ)]1, [R̂b(τ)]1), πc = ([Rc(τ)]1, [Hc(τ)]1, [R̂c(τ)]1) are such that(

m∑
i=1

aiλi(X)

)(
m∑
i=1

biλi(X)

)
−m−1yb = XRb(X) + t(X)Hb(X),

(
m∑
i=1

aiλi(X)

)(
m∑
i=1

ciλi(X)

)
−m−1yc = XRc(X) + t(X)Hc(X),

and R̂b(X) = X2Rb(X), R̂c(X) = X2Rc(X).

In order to compute a proof that a · (αb + βc) = αyb + βyc, the prover proceeds as follows:(
m∑
i=1

aiλi(X)

)(
α

m∑
i=1

biλi(X) + β
m∑
i=1

ciλi(X)

)
= α

(
m∑
i=1

aiλi(X)

)(
m∑
i=1

biλi(X)

)
+ β

(
m∑
i=1

aiλi(X)

)(
m∑
i=1

ciλi(X)

)
= α

(
m−1yb +XRb(X) + t(X)Hb(X)

)
+ β

(
m−1yc +XRc(X) + t(X)Hc(X)

)
= m−1(αyb + βyc) +X(αRb(X) + βRc(X)) + t(X)(αHb(X) + βHc(X)),

and therefore for y = αyb + βyc it outputs π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1) where R(X) = αRb(X) +
βRc(X), H(X) = αHb(X) + βHc(X) and R̂(X) = X2R(X) = αX2Rb(X) + βX2Rc(X) = αR̂b(X) +
βR̂c(X), i.e., π = απb + βπc.

Homomorphic Openings. The proof for homomorphic openings work analogous as the previous case.
Indeed, for ya = a · c, yb = b · c and πa ← IP.Prove(srs,a,b, ya), πc ← IP.Prove(srs, c,b, yc), it is enough
to see that: (

α
m∑
i=1

aiλi(X) + β
m∑
i=1

ciλi(X)

)(
m∑
i=1

biλi(X)

)
= α

(
m∑
i=1

aiλi(X)

)(
m∑
i=1

biλi(X)

)
+ β

(
m∑
i=1

ciλi(X)

)(
m∑
i=1

biλi(X)

)
= α

(
m−1ya +XRa(X) + t(X)Ha(X)

)
+ β

(
m−1yc +XRc(X) + t(X)Hc(X)

)
= m−1(αya + βyc) +X(αRa(X) + βRc(X)) + t(X)(αHa(X) + βHc(X)),

and the rest of the proof is the same as the one for homomorphic openings. ut

Theorem 6. The construction above satisfies Strong Function Binding in the AGM under the dlog
Assumption.

Proof. We will proceed through a series of games, and we set Game0 to be the strong binding game of
Definition 3. Let A be an adversary against it in our scheme, whose advantage is Advs.bindingA . Note that
the second verification equation in our scheme is the same as in the scheme using the monomial basis,
so we define Game1 and the reduction B1 as in the proof of Theorem 4, and have

Advs.bindingA ≤ AdvdlogB1
+ AdvGame1

A .

Now, we prove that the advantage of A in Game1 is negligible. Indeed, let Ca(X) =
∑m
j=1 ajλj(X) +

Xmâ, R(X) and Q(X) be the algebraic representations of Ca, [R]1 and [Q]1, and recall deg(R) ≤ m− 2
while deg(Ca),deg(Q) ≤ m.

We set P (X) = Ca(X)Cb(X) −m−1y − XR(X) − Q(X)zH(X), the first verification equation says
that P (τ) = 0, which means either that (i) P (X) is the zero polynomial, or (ii) τ is a root of it. Assume
for now that P (X) ≡ 0, then m∑

j=1

ajλj(X) +Xmâ

 m∑
j=1

bjλj(X)

 = m−1y +XR(X) + zH(X)Q(X)
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Because deg(R) ≤ m−2, we know zH(X) does not divide XR(X) and since for all i 6= j λi(X)λj(X) ≡
0 mod zH(X) and λ2i (X) ≡ λi(X) mod zH(X), we have that

(∑m
j=1 ajλj(X)

)(∑m
j=1 bjλj(X)

)
=∑m

j=1 ajbjλj(X) mod zH(X). Then,

m∑
j=1

ajbjλj(X) +Xmâ

m∑
j=1

bjλj(X) = m−1y +XR(X)

and thus m−1y =
∑m
j=1 ajbjλj(0). As H is a multiplicative subgroup, λj(0) = m−1 for all j ∈ [m] and

thus
∑m
j=1 ajbj = y. Namely, there exists a = (aj)

m
j=1 such that a · b = y, and A looses Game1.

Then, it must be the case that P (X) 6= 0 and P (τ) = 0. We construct an adversary B2 against the
dlog assumption. On input [τ ]1, B2 calculates all the roots of P (X) and checks, in polynomial time,
which is the one that encoded in G1 equals [τ ]1. Thus,

Advs.bindingA ≤ AdvqDHE
B1

+ AdvdlogB2
.

ut

Updatability with Short Keys In this construction, a proof that ei ·ei = 1 is the encoding in a group
of the polynomial Ri(τ), for Ri(X) = (λi(X)− 1)/X. On the other hand, the proof that ei · ej = 0 for
i 6= j is [H(τ)]1, for H(X) = ((λi(X)λj(X))/t(X). Including the evaluation of all these polynomials in
upk would require a srs of quadratic size. Still, as noted in [33],

λi(X)λj(X)

t(X)
=

t(X)

(X − hi)(X − hj)
,

and can be computed as
1

hi − hj

(
t(X)

X − hi
+

t(X)

X − hj

)
.

Therefore, it is enough to include in upk the evaluations of (λi(X) − 1)/X for the proofs of same
position and then the evaluations of {t(X)/(X − hi)}mi=1, so the verifier can reconstruct the one of
λi(X)λj(X)/t(X) from there, requiring only 2m elements instead of m2.

6 Subvector Openings

In this section, we present schemes for VC with Subvector Openings (SVC), starting from the construc-
tions of Section 5. Instead of using Def. 9, we will consider SVC as a special case of LVC. The class of
functions that open a set of positions I = {i1, . . . , in} of a committed vector v ∈ Fm is given by the
linear-map fI with

fI : Fm → Fn, fI(v) = (ei1 · v, . . . ein · v)

where for each k ∈ [n], eik is the ikth vector of the canonical basis Fm.
Naturally, for a vector v ∈ Fm, we can construct proofs of openings of subvectors vI = (vi)i∈I by

aggregating different inner product proofs for vectors eik for ik ∈ I using the techniques in Section 4.1.
We refer to these aggregated proofs as non-native subvector openings, given that they require a random
oracle and in particular, are no longer algebraic and homomorphic. As opposed to them, we call native
subvector opening, a scheme that is algebraic and homomorphic.

In what follows, we improve on Subvector Openings in some special scenarios, achieving native ag-
gregation for new schemes and reducing the verifier complexity in existing ones.

6.1 Native SV Openings for the Monomial Basis

For the construction of Section 5.1, we introduce native subvector openings for subsets with consecutive
position I = {i, i+ 1, . . . , i+ k}. That is, for c̃ = (ci)i∈I such that there exist u1,u2 with c = (u1, c̃,u2).

To prove an opening of c̃, we only need commitments to R(X) =
∑i−1
s=1 ciX

m−i+s−1 and H(X) =
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∑m
i=i+k+1 cm−i+s+1X

s−1, which are shifted-encodings of u1, u2. The verifier checks that deg(R) < m−1,

computes C̃(X) =
∑i+k
s=i c̃sX

s−i and C̃ = [C̃(τ)]1 and checks whether

e(C− C̃, [τm−i]1) = e([R]1, [1]2) + e([H]1, [τ
m+k]2).

Note that, given individual proofs of openings as in Section 5.1, that is, [Rs(τ)]1, [Hs(τ)]1 such that
C(X)Xm−s − csXm−1 = Rs(X) +XmHs(X) and deg(Rs) < m− 1, for the commitments defined above
we have [R]1 = [Ri(τ)]1 and [H]1 = [Hi+k(τ)]1, that is, proofs can be aggregated at no cost for the
prover.

We implement this scheme and compare it with opening consecutive positions, or ranges, using Merkle
trees in Appendix 7.2.

6.2 Non-native SV Openings for the Monomial Basis

For the LVC scheme of Section 5.1, the techniques of Section 4.1 allow us to redefine the Open and Vf
algorithms to work for an arbitrary subset of positions I ⊂ [m]. More specifically, the prover will simply
run IP.Open(prk, aux, eik ,v) for k = 1, . . . , n to obtain (vik , πik) and πik a proof of correct computation
of vik . Then, use the random oracle to sample a randomness γ ∈ F and output πI =

∑n
k=1 γ

k−1πik .

The verifier will receive πI = ([R]1, [H]1, [R̂]1), compute y =
∑n
k=1 γ

k−1vik , and check as before

e([R]1, [τ ]2) = e([R̂]1, [1]2) and

e

(
C,

n∑
k=1

γk−1[τm−ik ]2

)
− e

(
y[τm−1]1, [1]2

)
= e ([R]1, [1]2) + e ([H]1, [τ

m]2) .

Note that verifier’s work is dominated by the computation of
∑n
k=1 γ

k−1[τm−ik ]2, so we analyze for
which sets I ⊂ [m] this computation can be cheaper than |I| G2-exponentiations. Without loss of gener-
ality, we can re-assign γk−1 → γm−ik , and thus our verifier now needs to compute

∑n
k=1[(γX)m−ik ]2 =∑

i∈I [(γX)m−i]2.

Now, note that if Ik,s,n ⊂ [m] is an arithmetic progression, i.e. it is such that for a given ratio s, a
starting power k and a number n of desired elements, Ik,s,n = {k, s+ k, . . . , (n− 1)s+ k}, then

∑
i∈Ik,s,n

(γX)m−i = (γX)k
1− (γX)n

1− (γX)s
.

This reduces the work of the verifier to compute
∑
i∈Ik,s,n(γX)m−i to constant. Note that the verifier

cannot compute (1−(γX)s)−1, so we multiply all the terms of the equation by 1−(γX)s. I.e, the verifier
computes y =

∑
i∈Ik,s,n γ

m−iyi and checks whether

e
(
[C]1, γ

k[τk]2 − γk+n[τk+n]2
)
− e
(
[τm−1]1y − [τn+s−1]1γ

sy, [1]2
)

= e
(
[R]1, 1− γs[τs]2

)
) + e

(
[H]1, [τ

n]2 − γs[τn+s]2
)
.

6.3 Lagrange Basis

Native. In the Lagrange Basis, one can use the native subset openings of [33]. There, the verifier needs to
compute computation the vanishing polynomial tI(X) =

∏
i∈I(X − hi)(we recall SVC.Open and SVC.Vf

algorithms in Appendix C). To reduce verifer’s work we focus on those subsets I ⊂ [m] such that tI(X)
can be calculated in less than |I| computations. One answer to this question comes from cosets. That is,
given H = {1, ω, ω2, . . . , ωm−1} group of roots of unity where m = 2n, let Hk be the subgroup of order
2k of H, where k goes from 0 to n. Then, for each 0 ≤ s < 2n/k we can construct the coset I = ωsHk,

whose vanishing polynomial is tI(X) = X2k − (ωs)2
k

. Verifier accepts if and only if

e
(
C− C̃, [1]2

)
= e
(
[H]1, [x

2k ]2 − ωs2
k)
.
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Non-native. Given that the native subvector opening procedure above works for arbitrary subsets
I ⊂ [m], we don’t consider aggregation of individual positions. The latter makes sense only when applying
a linear function to the new subset. That is, when the verifier is given Cf,I , claimed to be a commitment
to f · cI , for some linear function f applied to the vector cI = (ci)i∈I .

7 Implementation and Experimental Evaluation for LVC

We implement our monomial basis construction in Rust on top of the paired library13 and is available on
Github14. In this section we experimentally evaluate different features of our monomial-basis construction.
In particular we investigate and provide estimates for the following questions:
– For which set sizes can we expect proving time in our construction to be more efficient than that in

SNARKs over Merkle Trees?
– How beneficial is for proving time our range opening?
– How much can verification time benefit from special subset opening?
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Fig. 1: Proving time in our scheme with monomial basis vs SNARKs for Merkle trees opening. Plot is in log-scale.

7.1 Comparison with SNARKs over Merkle Trees

We show our comparison in Fig. 1. We compare to Merkle trees instantiated with both Poseidon hash [19]
and with SHA256. The underlying proof system used here is Groth16 [20] in its libsnark implementation15.

We estimate our construction to have more efficient proving time for vectors up to approximately
218, where SNARKs over Poseidon are of similar efficiency. Our construction is more efficient than
SNARKs for SHA-based Merkle trees for larger vectors. We point out that while Poseidon is a highly
SNARK-friendly hash function it is slower than SHA when executed “natively” and it has received little
cryptanalytic scrutiny so far.

Our proving time has a steeper growth than that of the SNARKs. This is a direct consequence of the
following: our proving consists of multiexponentiations roughly linear in the size of the vector; SNARKs
over Merkle trees, on the other hand, are still Merkle tree openings and thus logarithmic in the vector
size despite their larger hidden constants.

The diagram shows proving time for a single opening only. Our scheme performs better than MT+Poseidon
hashes for vectors of size up to 218, while we do better than Merkle Trees with SHA256 for vector of size
up to 225.

13 https://github.com/filecoin-project/paired
14 Our code is available at https://github.com/matteocam/lvc-mon-rust.
15 https://github.com/scipr-lab/libsnark
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7.2 Proving time for Range Queries

The results of this comparison are in Fig. 2. We compare the proving time of our range subvector opening
of Section 6.1 to range opening through a SNARK (again Groth16) over Merkle trees with the Poseidon
hash function. For the latter, we make use of the fact that a range opening in a Merkle tree can often
be significantly optimized by opening an “upper path” only once and then opening a whole subtree
stemming from that upper path and corresponding to the whole range16.

Except for very small ranges, Merkle trees perform worse. The savings are of a few order of magnitudes
even for moderately sized ranges. The reason for this is the virtually constant proving time in our range
subset compared to the one for SNARKs which roughly grows linearly with it (our proving time actually
decreases with the range size, but in the diagram we just consider the proving time for the most expensive
case). We performed similar evaluations for different set sizes and find little difference in the patterns.
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Mon. Basis Range-VC (this work)

Range Poseidon MT

Fig. 2: Proving time for range queries in our scheme with monomial basis vs SNARKs for Merkle trees with
Poseidon in a vector of size 220. Plot is in log-scale.

7.3 Verification for Special Subsets

The results of this comparison are summarized in Fig. 3. We compare our verifier in Section 6.2 with that
in Pointproofs [18]. Our estimates indicate that our verifier can be twice as fast as that in Pointproofs for
appropriately large opening subsets. See Fig. 3. We describe the costs of these verifier reducing all other
operations to their corresponding costs in |G1|. For this we use the thorough conversions documented
in [2, Table 2]. All our costs refer to an instantiation with BLS12-381.
Cost of the Pointproofs verifier opening a subset |I|:

2|ML|+ 1|FE|+ 1|G1|+ |I|| (|F|+ |G2|) + c (|G1|+ |GT |) |

Cost of our verifier in Section 6.2:

6|ML|+ 2|FE|+ |I||F|+ c′ (|G1|+ |G2|) |

Above ML and FE correspond respectively to Miller Loop and Final Exponentiation for the pairing. Field
operations refer to multiplications. The constants c, c′ are small enough to be ignored in our figure. We
estimate the cost of a field operation as approximately 1

8 of a G1 operation17.

16 Consider for example the opening of range 1, . . . , 256 = 28 in a tree with 220 leaves. We can first open the
leftmost path of depth 12 (20− 8) and then open the whole subtree of depth 8 stemming from there.

17 A point addition in G1 costs at least 4 field multiplications and 5 squarings (cost of point doubling for Jacobian
coordinates in short Weierstrass). With a squaring at 0.8 field multiplication we can approximate 8|F| ≈ 1|G1|.
https://www.hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html
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Fig. 3: Verification cost for subset opening. Costs are independent of original vector size. Plot is in log-scale.

Our construction has an initially higher cost which is soon compensated as the subset size increases.
This is due to the more expensive G2 operation that dominate in Pointproofs. Our verification achieves
a speedup of approximately 16× in this cost model. The maximum subset size we show in the plot is
also roughly the parameter at which the ratio between the two verification times converges, i.e., the
multiplicative speedup of our construction does not increase for larger subsets.

We stress that our goal here is to give an indication of the fact that our approach can be useful.
Concrete speedups would be highly dependent on the implementation of algebraic primitives and on the
curve as well as other optimizations we have not considered in the analysis above.

All the curve operations are instantiated over curve BLS12-381 [6]. Our timings for SNARKs over
Merkle trees are (generous) lower bounds extrapolated from[9, Figure 5]. All our benchmarks refer to
executions run single-threaded on Amazon EC2 using r5.8xlarge instances (248GB of memory).

8 Maintainable Vector Commitment Schemes

8.1 Multivariate Case

One of the key points of vector commitment schemes that allow to speedup subvector openings is the
ability to pre-compute and store individual openings and later aggregate them to create subvector open-
ings without incurring linear amount of computations each time. This is the case for the construction
in [33], presented in Section C, and also for the maintainable scheme of [34].

In constructions such as the ones presented in Section 5, the proof of opening of one position involves
all other elements in the vector. That is, the polynomials committed to create the proof have coefficients
that involve all the values of the committed vector v ∈ Fm. As a consequence, prover work is linear in the
size of v (as it has to evaluate polynomials of degree m). To alleviate this, Shrinivasan et. al. [32] utilize
a tree-like structure for computing/communicating proofs which allows pre-computation in quasi-linear
(instead of quadratic) time and efficient updates at the cost of a proof of size logm.

In this section, we extend the techniques of [32] to achieve trade-offs and efficiency improvements.
Roughly speaking, we present a way to “compose” the tree-based commitments of [32] with constant
size ones. We achieve this by considering trees that themselves have commitments for leaves instead of
openings. The intuition is the following: we divide the vector v in small chunks {vj} ∈ Fk. We then
arrange these chunks in a tree as follows: each chunk corresponds to a leaf of the tree and each node is a
succinct representation of its children. The root of the tree is the commitment to the vector. An opening
proof only involves the elements in the path of the root to the leaf containing the position to be opened.
That is, if we want to open value a in position i of v ∈ Fk·m′ , we prove that (1) cj is the leaf that contains
the commitment to the j chunk containing i and (2) cj opens to a in the position corresponding to i.
The former part can be pre-computed and efficiently maintained while the latter is computed on the fly.
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This results in a construction with the following memory/time trade-off: for any k,m′ ∈ N with
m = k ·m′, any opening can be computed in time independent of m′ after pre-computing and storing
Oλ(m′) values (independent of k). Furthermore, a relaxed maintainability notion is satisfied: all stored
values can be pre-computed efficiently in Oλ(m · logm′) time and updated in O(logm′) time.

Additionally, we show how to use a higher arity tree (any constant ` contrary to the binary ones used
in [32]) to further reduce the proof size by a constant factor, namely Oλ(log`m

′) (assuming a constant
size commitment for the leaf part), at the expense of a slightly worse prover time. We note that –apart
from the evident advantage of shorter proofs– this results in smaller aggregation time for the prover and
verifier when using inner pairing products.

PST polynomial commitment as a maintainable vector commitment. Our starting point is the PST
polynomial commitment [29], a n natural generalization of the KGZ polynomial commitment [22] for
multivariate polynomials. The PST polynomial commitment allows to commit to ν-variate polynomials
of individual degrees less than `. The core idea of the construction lies in the fact that for every p(X) ∈
F[Xν , . . . , X1] and x = (xν , . . . , x1) ∈ Fν , p(x) = y if and only if there exist polynomials Hν(X), . . . ,
H1(X) such that

p(X)− y =

ν∑
j=1

Hj(X) · (Xj − xj)

where the proof polynomials Hj(X) are efficiently computable.
Using standard techniques to encode polynomials in a cryptographically secure bilinear group (pub-

lishing some monomial basis evaluated at a secret point τ and encoding polynomials by evaluating
them at the secret point “in the exponent” via linear combinations of the public elements) results in a
polynomial commitment with proof of size roughly ν group elements.

Srinivasan et. al. [32] observe that computing all polynomial evaluations and proofs for a committed ν-
variate multilinear polynomial in the hypercube {0, 1}ν can be done in quasi-linear time in the dimension
of the vector, instead of the trivial quadratic time. By encoding a vector as the corresponding interpolating
polynomial in {0, 1}ν , we get a vector commitment with quasi-linear time for pre-computing all proofs.
Furthermore, the homomorphic properties along with the tensor structure of multivariate polynomials
allow to efficiently (in logarithmic time) update all proofs after a position update. Thus, the resulting
construction is a maintainable vector commitment scheme.

We extend these techniques to construct a multi-variate vector commitment scheme with the same
properties while reducing proof size. Specifically, we observe that evaluating all openings in any set of
the form Σν for small ν has lower amortized cost than computing the evaluations individually. Using
Σ of size ` instead of 2 -or equivalently using a low degree instead of a multilinear encoding- results
in smaller proof size. Concretely, the proof size depends on the dimension of the hypercube. Setting
` = O(1) to avoid a blowup in the prover’s computation results in proof size roughly log`m instead of
log2m, reducing the proof size by a constant factor.

We next describe the high level idea of the construction. First, fix an alphabet Σ ⊆ F of size ` and
consider the hypercube Σν . Assume (w.l.o.g.) Σ = {0, . . . , `−1} so that we can encode indices of vectors
in `-ary.

Now, we can encode a vector v ∈ F`ν by considering the (unique) low degree interpolating polynomial
p(X) of v, that is, the ν-variate polynomial of individual degree less than ` such that for all σ ∈ Σν ,
p(σ) = vσ. This corresponds to position i with `-ary representation (σ)`. Computing all opening proofs
corresponds to evaluating and proving evaluations of p(X) in the hypercube Σν . To compute these
evaluations in quasi-linear (instead of quadratic) time we rely on the following lemma which is implicit
in the computation of the Hj(X) polynomials of PST.

Lemma 1. Let Σ ⊆ F be a subset of F. Also, let p(Xν , . . . , X1) ∈ F[Xν , . . . , X1] be a polynomial in
ν variables and pσ(Xν−1, . . . , X1) ∈ F[Xν−1, . . . , X1] be a polynomial in ν − 1 variables. Then, for all
σ ∈ Σ, p(σ,Xν−1 . . . , X1) = pσ(Xν−1 . . . , X1) iff there exist a polynomial H(Xν , . . . , X1) such that

p(Xν , . . . , X1)− pσ(Xν−1, . . . , X1) = H(Xν , . . . , X1)(Xν − σ) (1)

To open the polynomial at σ = (σν , . . . , σ1) ∈ Σν , the prover can compute the polynomials p(σν , Xν−1,
. . . , X1), . . . , p(σν , . . . , σ1) and compute “proof” polynomials Hν(X), . . . ,H1(X). That is, for 1 ≤ j ≤ ν
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the following equations hold:

p(σ|j+1, Xj , . . . , X1)− p(σ|j+1, σj , Xj−1, . . . , X1) = Hj(X)(Xj − σj)

Summing all the ν claims, we derive the PST verification equation. Note that the polynomial Hj(X)
is independent of the variables Xν , . . . , Xj+1. Hence, each iteration is cheaper than the previous one.

The interesting part is that proofs for different positions share elements. Consider a polynomial H(X)
asserting p(σ,Xν , . . . , X1) − pσ(Xν−1, . . . , X1). This element will be part of the proof for all elements
σ ∈ Σν whose first component is σν = σ. We utilize this fact to get a smaller amortized cost for
evaluating all “proof” polynomials in the hypercube.

The tensor structure of the multivariate polynomial allows to express the openings in the hypercube
as a tree. Each node of the tree corresponds to a partial evaluation of p. A proof polynomial H is
associated with each of them. We demonstrate this in Fig. 4.

p(X3, X2, X1)

p(0, X2, X1) p(1, X2, X1)

p(1, 0, X1) p(1, 1, X1) p(1, 2, X1)

p(1, 2, 0) = v1,2,0 p(1, 2, 1) = v1,2,1 p(1, 2, 2) = v1,2,2 p(1, 2, 3) = v1,2,3

p(1, 3, X1)

p(2, X2, X1) p(3, X2, X1)

Fig. 4: Tree structure for polynomials in 3 variables with individual degree at most 3. The dimension of the
committed vectors with these parameters is 43 = 64. We follow the path until we reach the leafs prefixed with
(1, 2). Note that each polynomial is an encoding of the leafs of the sub-tree it defines.

Finally, when using the Lagrange basis to encode polynomials, the interpolating polynomial p(X)
corresponding to v becomes λ(Xν , . . . , X1) · v. Furthermore, each node of the tree is of the form
λ(Xi, . . . , X1) · v′ where v′ is the subvector of v corresponding to the leaf descendants of the node.

Tree structure. To achieve the flexible memory/time trade-off, instead of having the vector values in the
leaves of the tree, we replace them with elements [r]1 · vj where [r] ∈ Gk1 is the commitment key of an
arbitrary algebraic vector commitment scheme LVC. To open a position of v, we use the PST approach
to reach corresponding leaf j, and then the opening algorithm of LVC on vj . We illustrate this structure
in Fig. 5.

One subtlety of replacing leaves with commitments is that a standalone PST proof is no longer
binding, that is, the prover can undetectably claim arbitrary values that supposedly correspond to a leaf.
We overcome this by using a low degree test to ensure that the claimed value for the leaf is uniquely
defined.

Note that the root of the tree depends on the elements τ , r. Viewing both τ = (τν , . . . , τ1) and
r = (rk, . . . , r1) as formal variables X,R, we can treat the root node (the commitment) as an evaluation
of a polynomial. Now, note that this polynomial corresponds to the interpolation of the elements of the
leaves in Σν . Thus, the aforementioned polynomial is

p(X,R) = λ(X) · (R · v1, . . . ,R · v`ν ) = (λ(X)⊗R) · v

The prover can still evaluate one by one the variables Xν , . . . , X1 at σν , . . . , σ1 -as it would do in the
simple PST case- and end up with a polynomial q(R) = p(σ,R) = R · vj . To ensure that q does not
contain any Xj variable, we also include a low degree test in the proof. The evaluation of the latter
polynomial at [r]1 corresponds to the leaf commitment at position σ and can be opened by employing
the Open algorithm of the leaf commitment scheme with key [r]1.
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c = λ(τ3)>( c0c1 )

c0 = λ(τ2)>( c00c01 )

c00 = λ(τ1)>( c000c001 )

r>v000 r>v001

c01 = λ(τ1)>( c010c011 )

r>v010 r>v011

c1 = λ(τ2)>( c10c11 )

c10 = λ(τ1)>( c100c101 )

r>v100 r>v101

c11 = λ(τ1)>( c110c111 )

r>v110 r>v111

Fig. 5: Demonstration of the tree structure of a commitment. Leaf nodes are commitments to k-dimensional
vectors for an arbitrary vector commitment scheme. Each node is a commitment to its children under a Lagrange
based key. The message space of the scheme is k · 23.

Construction. First, we introduce some notation. Let Σ ⊆ F denote an interpolating set of size `. Given
σ = (σν , . . . , σ1) ∈ Σν , we denote σ|i = (σν , . . . , σi) ∈ Σν−i+1. For v = (vσ)σ∈Σν with vσ ∈ Fk
and σ1 ∈ Σi we denote with vk,σ1 the vector (vσ1,σ2)σ2∈Σν−i , that is, the concatenation of vectors vj
whose `-ary representation of the index j is prefixed with σ1. Finally, we denote with τν,` the ν-variate
monomial basis of individual degree less than ` evaluated at τν , . . . , τ1. In all cases, we omit the subscript
when it is clear from the context.

We present the construction next. While our aim is individual position openings, the construction
supports a bigger family of functions: linear forms18 applied to one of the k-sized chunks of the vector.
Concretely, let Fp,k ⊆

{
f : Fk → F

}
be the family of linear forms supported by the leaf commitment

scheme. We define the `, ν-extended family as

Ext`,ν-Fp,k = {f : Fk·`
ν

→ F | ∃f ′ ∈ Fp,k, i ∈ {1, . . . , `ν} s.t.

∀v1, . . . ,v`ν ∈ Fk : f(v1, . . . ,v`ν ) = f ′(vi)}

Our construction is a linear vector commitment MVTree for the family Ext`ν -Fp,k, that uses as a black
box an algebraic linear vector commitment scheme LVC′ for the family Fp,k.
MVTree.KeyGen(1λ,Ext`ν -Fp,k)→ (prk, vrk):

1. (prk′ = [r]1, vrk
′)← LVC′.KeyGen(1λ,Fp,k)

2. Let λ(X) be the vector of Lagrange polynomials associated to Σ.
3. Sample τν , . . . , τ1 ← F
4. Output prk = (prk′, [λ]1 = [λ(τν)⊗ · · · ⊗ λ(τ1)⊗ r]1, [τ ⊗ r]1),

vrk = (vrk′, [τν ]2, . . . , [τ1]2, [τ
`−1
ν · · · τ `−11 ]2)

upk = ({[λ(τj)⊗ · · · ⊗ λ(τ1)⊗ r]1}1j=ν−1),
MVTree.Commit(prk,v)→ (C, aux):

1. For all σ ∈ Σν : compute (Cσ, auxσ)← LVC′.Commit(prk′,vσ).
2. Compute C = [p(τ , r)]1 = [λ]1 · v
3. Output C, aux =

(
{auxσ}σ∈Σν ,v

)
MVTree.Open(prk, aux, f,y)→ π:

1. Let f(v1, . . . ,v`ν ) = f ′(vi) for f ′ ∈ Fp,k and i = (σ)` in `-ary.
2. Consider τ , r as formal variables X = (Xν , . . . , X1),R = (Rk, . . . , R1).
3. Denote pν+1(X,R) = p(X,R) = (λ(X)⊗R) · v
4. For all ν ≥ j ≥ 1:

Compute pj(Xj−1, . . . , X1,R) = λ(Xj−1, . . . , X1,R) · vσ|j

Compute Hj(Xj , . . . , X1,R) as

Hj(Xj , . . . , X1,R) =
pj+1(Xj , . . . , X1,R)− pj(Xj−1, . . . , X1,R)

(Xj − σj)

Compute group element [Hj ]1 = [Hj(τj , . . . , τ1, r)]1

18 We use linear forms for simplicity, one could also consider general linear functions.
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5. Compute Ĉσ = [τ `−1ν · · · τ `−11 · r]1 · vσ

6. Compute π′ ← LVC′.Open(prk′, auxσ, f
′,y)

7. Output π = ([Hν ]1, . . . , [H1]1,Cσ, Ĉσ, π
′).

MVTree.Vf(vrk,C, f,y, π)→ 0/1:
1. Let f(v1, . . . ,v`ν ) = f ′(vi) for f ′ ∈ Fp,k and i = (σ)` in `-ary.
2. bPath ← e(C− Cσ, [1]2) =

∑ν
j=1 e([Hj ]1, [τj − σj ]2)

3. bLD-Test ← e(Cσ, [τ
`−1
ν · · · τ `−11 ]2) = e(Ĉσ, [1]2)

4. bLeaf ← LVC′.Vf(vrk′,Cσ, f
′,y, π′)

5. Output bPath ∧ bLD-Test ∧ bLeaf
We omit explicitly describing the update algorithm. Instead, we demonstrate in Thm. 8 how to efficiently
update all proofs after modifying a position in the committed vector.

We summarize the properties of the construction in the following theorems.

Theorem 7. Let LVC′ be an algebraic vector commitment scheme that satisfies completeness, homo-
morphic openings and weak function binding for a function family Fp,k. Then, MVTree satisfies (1)
completeness, (2) Homomorphic Openings and (3) strong function binding for Ext`ν -Fp,k in the AGM
under the (`− 1) · ν-BSDH assumption.

Proof.
Completeness. Consider an honest execution of MVTree.Open. Let y = f(v) = f ′(vi) for some i = (σ)`.
Also, by construction, the low degree test always succeeds. It remains to show that the first test outputs
1.

Let pν+1(Xν , . . . , X1,R) = p(Xν , . . . , X1,R) be the polynomial (λ(X) ⊗ R)>v. Next, consider the
polynomial equations that the polynomials Hj are constructed to satisfy:

pj+1(Xj , . . . , X1,R)− pj(Xj−1, . . . , X1,R) = Hj(Xj , . . . , X1,R)(Xj − hj)

Summing all these equation for 1 ≤ j ≤ ν gives

pν+1(Xν , . . . , X1,R)− p1 =

ν∑
j=1

Hj(Xj , . . . , X1,R)(Xj − hj)

and note that this corresponds to the verification equation. Thus, the first test passes. Finally, note that
all the monomials involved these polynomials are included in the commitment key λ(τν , . . . , τ1) ⊗ r, so
the prover can encode these in G1.

Function Binding. First, we prove a claim stating that we can extract an opening of a leaf commitment
in the AGM.

Claim. Let π = ([Hν ]1, . . . , [H1]1,Cσ, Ĉσ, π
′) be an accepting proof. Then, for all algebraic adversaries

A outputting accepting proofs, there exists an extractor that outputs opening of Cσ w.r.t. key r in the
AGM.

Proof. Since we work in the AGM, we can extract coefficients â,a of polynomials Ĉ(X,R), C(X,R)

with degree less that ` − 1 in Xν , . . . , X1 such that [Ĉ(τ , r)]1 = Ĉ and [C(τ , r)]1 = C. By the low
degree test, either Ĉ(X,R) = C(X,R) ·X`−1

ν · · ·X`−1
1 holds or â · (τ , r) = a(τ , r) · τ `−1ν · · · τ `−11 holds

and we find a non-trivial discrete logarithm relations of the elements of the commitment key. Assume
the latter event did not happen. For this polynomial relation to hold with polynomial of degree less
that ` − 1 in Xν , . . . , X1, only the coefficients involving R are non-zero, in which case we extract a
leaf commitment opening. Now, either this holds or the adversary successfully computed a non-zero
polynomial p(R,X) = Ĉ(X,R)− C(X,R) ·X`−1

ν · · ·X`−1
1 that has a root in (τ , r) which happens with

negligible probability.

Now, consider two opening/proof pairs Cσ , fd,yd, πd for d ∈ {1, 2}. Note the only way that the
functions are inconsistent is if f1(v) = f ′1(vi) and f2(v) = f ′2(vi) for the same index i.

Let f1(v) = f ′1(vi) and f2(v) = f ′2(vi) for the same i = (σ)`. We consider two cases. First, assume
that C1,σ = C2,σ = Cσ. By the fact that the low-degree test passes, we can extract an opening vσ for
this commitment except with negligible probability. Then, by the last verification test we have

LVC′.Vf(vk′, Cσ, f
′
1,y1, π

′
1) = LVC′.Vf(vk′, Cσ, f

′
2,y2, π

′
2) = 1
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Noting that the openings for f ′1, f
′
2 are inconsistent if the openings for f1, f2 are inconsistent, we conclude

that we have solved a strong function binding challenge for LVC′ Indeed, we have a commitment Cσ with
a valid opening vσ that f ′1-opens to y1 and f ′2-opens to y2 for some inconsistent values since f1,y1

and f2,y2 are inconsistent.

Next, consider the case where C1,σ 6= C2,σ. We show that, in this case, an winning adversary can be
used to break BSDH assumption. The reduction works as follows: on input [1]1,2, [τ ]1,2, . . . , [τ

(`−1)·ν ]1,2,
sample a key for MVTree in the following way:

– Guess index i = (σ)`.
– Sample (pk′ = [r]1, vk

′)← LVC′.KeyGen(1λ,Fp,k) along with the discrete logarithms of [r]1
19

– for all 1 ≤ j ≤ ν set [τj ]1 = [ρjτ + σj ]1 for random ρj .
– Compute the encodings of the multivariate Lagrange and monomial polynomials [λ(τν , . . . , τ1)]1, [τ ]1

and [τν ]2, . . . , [τ1]2, [τ
`−1
ν · τ `−1ν ]2. Note that this step is efficient since any element λσ(τ1, . . . , τν) and

in τ is a polynomial of total degree at most (`− 1) · ν on variables τj = ρjτ so it can be computed
using the ν powers of τ .

– Compute the proving commitment key by computing r⊗ [λ(τν , . . . , τ1)]1.

First, we argue that the commitment key is correctly distributed. Indeed, we evaluate the multivariate
Lagrange and monomial polynomials on a random point since τ, ρν , . . . , ρ1 are uniformly distributed, and
we compute r honestly.

Next, assume that the guess of index i was correct (which happens with 1/`ν = m/k probability)
and that the verifying proofs contain C1,σ 6= C2,σ. By the fact that the low-degree test passes, we get
two valid openings v1,σ,v2,σ for these commitments w.r.t. the key [r]1. Since we know r in the field, we
can compute the discrete logarithms of these elements: specifically,

(C1,σ, C2,σ) = (r>v1,σ, r
>v2,σ)

To simplify notation, denote these values v, v′ ∈ F respectively and note that v 6= v′.

By the first verificatioon test, the following equations holds:

e([C − v]1, [1]2) =

ν∑
j=1

e([Hj ]1, [τj − σj ]2), e([C − v′]1, [1]2) =

ν∑
j=1

e([H ′j ]1, [τj − σj ]2)

Subtracting and setting zj = Hi −H ′i gives

e([v′ − v]1, [1]2) =

ν∑
j=1

e([zj ]1, [τj − σj ]2)⇔ e([v′ − v]1, [1]2) =

ν∑
j=1

e([zj ]1, ρj [τ ]2)⇔

(v′ − v) · e([1]1, [1]2) = τ · e

 ν∑
j=1

ρj [zj ]1, [1]2

⇔
τ−1 · e([1]1, [1]2) = (v′ − v)−1 · e

 ν∑
j=1

ρj [zj ]1, [1]2

⇔
e([τ−1]1, [1]2) = ·e

(v′ − v)−1
ν∑
j=1

ρj [zj ]1, [1]2


so by the final equation

1

τ−1
e([1]1, [1]1) = (v′ − v)−1

ν∑
j=1

ρj [zj ]1

Therefore,
(

0, (v′ − v)−1e(
∑ν
j=1 ρj [zj ]1, [1]2)

)
is a solution to the BSDH challenge.

19 We implicitly assume here that the distribution of the key generation algorithm is witness samplable. This is
always the case for all distribution of interest.
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Homomorphic Proofs. Let (C1, f,y1, π1), (C2, f,y2, π2) be accepting statement-proof pairs with respect
to some key vk. We show that for all α, β ∈ F, the statement-proof pair (C, f,y, π) = (αC1+βC2, f, αy1+
βy2, απ1 + βπ2) is also accepting. Let

π = (α[Hν,1]1 + β[Hν,2]1, . . . , α[H1,1]1 + β[H1,2]1,

αC1,σ + βC2,σ, αĈ1,σ + βĈ2,σ, απ
′
1 + βπ′2)

be the combined proof. First, note that for the function f ′ and σ ∈ Σν corresponding to f , the second
verification test LVC′.Vf(vk′, αC1,σ + βC2,σ, f

′, αy1 + βy2, απ
′
1 + βπ′2) outputs 1 by the homomorphic

openings property of LVC′. For the first test, we have

e(C− Cσ, [1]2) = e(αC1 + βC2 − αC1,σ − βC2,σ, [1]2)

= α · e(C1 − C1,σ, [1]2) + β · e(C2 − C2,σ, [1]2)

= α

ν∑
j=1

e([Hj,1]1, [τj − σj ]2) + β

ν∑
j=1

e([Hj,2]1, [τj − σj ]2)

=

ν∑
j=1

e(α[Hj,1]1 + β[Hj,2]1, [τj − σj ]2) =

ν∑
j=1

e([Hj ]1, [τj − σj ]2)

Similarly, for the low degree test we have

e(Ĉσ, [1]2) = e(αĈ1,σ + βĈ2,σ, [1]2) = α · e(Ĉ1,σ, [1]2) + β · e(Ĉ2,σ, [1]2)

= α · e(C1,σ, [τ
`−1
ν · · · τ `−11 ]2) + β · e(C2,σ, [τ

`−1
ν · · · τ `−11 ]2)

= e(αC1,σ + βC2,σ, [τ
`−1
ν · · · τ `−11 ]2) = e(Cσ, [τ

`−1
ν · · · τ `−11 ]2)

ut
Thus, the new statement/proof pair passes all verification tests.

Remark 2. Note that in the function binding proof, we only use the AGM to extract openings for the
leaf commitments but not for the tree part of the construction. The latter is sound under falsifiable
assumptions.

Theorem 8. Consider construction MVTree and let πσ = ([Hσ
ν ]1, . . . , [H

σ
1 ]1,Cσ, Ĉσ, π

′
σ) be some proof

of opening for a leaf commitment in position σ written in `-ary.

Then, computing all partial proofs
{

([Hσ
ν ]2, . . . , [H

σ
1 ]1,Cσ, Ĉσ)

}
σ∈Σν

can be done in Oλ(k · ν · `ν) =

Oλ(ν ·m) time and storing them needs Oλ(`ν) = Oλ(m/k) space. Furthermore, if we update C by adding
δ in some position i∗, we can update all partial proofs in time Oλ(ν).

Proof.
Pre-computing partial proofs. Let p(Xν , . . . , X1,R) be the polynomial encoding of v w.r.t. Σν and con-
sider the evaluation of polynomials pσ1(X,R) = p(σ1,X,R) arranged in a tree: the root is the polynomial
p(Xν , . . . , X1,R) and the children of a node in level j are

{
pσν ,...,σj (σ,Xj−2, . . . , X1,R)

}
σ∈Σ . Comput-

ing all proofs corresponds to computing a divisor polynomial for each node that asserts that the node
is consistent with its parent node, plus some constant work for computing each leaf commitment along
with its low degree proof. Assuming ` = O(1), each divisor polynomial proof can be computed in time
linear in the total degree of pσν ,...,σj . A simple counting argument is enough to conclude the proof. In
level j of the tree, we need to compute `j proofs, each for a polynomial of total degree k · `ν−j . Thus,
for each level of the tree, we need time linear in k · `ν = m. Having ν levels, the total time is Oλ(m · ν).
For the space requirements, it is enough to note that the tree is has O(m) nodes, and we associate one
group element to each.

Updating all partial proofs. The updatability property follows directly by the homomorphic opening
property of the construction. We focus on the computation needed for updating all stored proofs. The
strategy is to consider the new commitment as C′ = C + Ĉ where Ĉ is a commitment to the vector
δ · ei∗ , where σ denotes leaf corresponding to i∗. We claim that (1) we can compute all proofs for Ĉ in
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logarithmic time and (2) all but O(ν) proof elements are 0. By this two facts the claim follows since we

can combine all the non-zero proof elements of Ĉ with the corresponding elements of C.
The commitment Ĉ corresponds to a polynomial of the form p(X,R) = δ ·λσ(X) ·Rj . All polynomials

labeling nodes in the tree are 0 apart from the ones being in the path from the root to the leaf containing
i∗. Such a node always has the zero polynomial nodes as descendants, and the proof corresponding to
each is 0 since 0 = 0 · (Xj − σj). The proof polynomials for the rest ` · ν nodes can be computed in
constant time each and each can be encoded to the group in constant time since each involves a unique
commitment key element. ut

Efficiency of the Multivariate Construction. We only consider the case where ` = O(1). First,
let’s focus on the time needed to compute [Hj ]1. One can simply write the polynomial pj − pj−1 as
a polynomial in 1, Xj , . . . , X

`−1
j with polynomial coefficients in the other variables. Then, we can use

standard (univariate) polynomial division to divide each term with Xj − σj in constant time. To encode
it in the group, it is enough to note that the total degree of each term is k · `j−1, so we need to perform
` multi-exponentiations of this size totaling in O(k · `j) operations.

That said, we demonstrate the efficiency of the construction. The commitment key consists of linear
in m group elements. Opening needs O(k · `j) operations for each iteration, totaling in O(k · `ν) time. By
inspection of the construction, proofs size is log`(m/k) + 2 + |π′|, where π′ is the size of an opening of
the leaf commitment. Finally, verification consists of (1) a log`(m/k)-size pairing product equation, (2) a
low degree test involving constant operations and (3) a verification of an opening of a leaf commitment.

Remark 3 (On aggregation). The first two verification tests are pairing product equations. Assuming
the leaf commitment verification is also a pairing product equation, one can use inner pairing prod-
ucts [7] to aggregate many such equations as done in [32] and, thus, achieve one-hop cross commitment
aggregation. While the aggregated proof size decreases exponentially, this comes at the cost of a sig-
nificant overhead for the prover due to the need to work in the target group. Reducing the proof size
from log2m to roughly log`(m/k) (assuming constant size/verification for leaf commitment opening) can
make aggregation significantly cheaper for the prover.

8.2 Univariate Maintainable Vector Commitments

In this section, we give an optimized construction that achieves the same memory-time tradeoffs for the
prover that the scheme in Section 8.1, but for univariate polynomials. For that, we rely on the q-BSDH
assumption for q = m ([4]), while we only needed q = logm plus the assumption that the leaf commitment
is sound in the multivariate case. Our work generalizes a previous univariate construction of [34] in a
similar way as the previous schemes generalizes Hyperproofs. Namely, our construction truncates the
tree at some level so that leaves are commitments and not individual positions.

For vectors of size m, we offer the following trade-off: for any ν, κ, such that m = 2ν+κ+1, one can
derive openings of size ν + 6 group elements. The prover can pre-compute and store 2ν − 1 proofs, and
then realize functional openings by performing O(κ2κ) group operations. We show also how to compute
all proofs with O(νm) group operations (plus O(m(ν+κ)) field operations). The scheme is maintainable,
as an update in a position requires recomputing O(ν) proofs. One interesting feature is that the trusted
setup depends only on m (the powers of τ) and not on ν, κ, so the right tradeoff can be decided on the
fly.

Overview. Our construction builds a tree of commitments to a vector v ∈ Fm build as follows. The root
of the tree is a commitment C = [λ]1v, where λ = ([λ1(τ)]1, . . . , [λm(τ)]1), for {λj(X)} the Lagrange
interpolation polynomials for H. The two children will be C0 = [λ0]1v0 and C1 = [λ1]1v1, which are
commitments to v0 and v1 with keys λ0 and λ1 of half the size to be specified next. The two children of
C0 will be C00 = [λ10]1v10,C10 = [λ10]1v10 and so on. The leaves are commitments Cb, b = (bν , . . . , b0) ∈
{0, 1}ν+1 to vectors of size 2κ. For any leaf index b = (bν , . . . , b0), we denote b|j = (bj . . . b0) the suffix20

of size j. Note that Cb|j for j = 0, . . . , ν − 1 denotes all the commitments from the root to the leaf Cb.

20 Note that this notation is different than the one we used in the multivariate case. In the latter case, this
notation denoted prefixes while here it denotes suffixes. We do this because in each case the corresponding
notation makes presentation easier.
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The division into vectors of half the size is done in bit reverse order according to the least significant
bit of the binary representation of the index, b0. At the first level, there will be two vectors v0,v1 of size
m/2 containing all positions of v with suffix b0 = 0 and b0 = 1, respectively. At the next level, there will
be four vectors v00,v01,v10,v11 of size m/4, and vb1b0 indicates all the positions of v (in the natural
order) that have as suffix b1b0 and so on.

The division into commitment keys of half the size will follow a similar pattern. At level 1, the
group of roots of unity H will be split into H0 and H1, according to the least significant bit of the
binary representation of the index of the root, i.e. H0 consists of all even and H1 all odd powers of ω.
In particular, H0 consists of the roots of unity of size m/2, and H1 = ωH0 is a coset. At level 2, the
commitment keys will be associated to H00, H01, H10,H11 and by the same reasoning, H00 are the roots
of unity of size m/4, H10 = ω2H00, H01 = ωH00 and H11 = ω3H00. More generally, we note that for any

0 ≤ j ≤ ν and any string (bj , . . . , b0) ∈ {0, 1}j+1, Hb|j = ωsHr, for s =
∑j
i=0 bi2

i and r = m
2j+1 . The

vanishing polynomial associated to Hb|j will be denoted tb|j (X) = Xr − (ωs)r = X
m

2j+1 − ω
m

∑j
i=0

bi2
i

2j+1 .
The Lagrange polynomials associated to the interpolation set Hb|j with the natural order will be written

as λb|j (X) = (λ
b|j
1 (X), . . . , λ

b|j
r (X)) and the commitment key for node b|j is λb|j = [λb|j (τ)]1.

As in the multivariate case, to open the commitment to some function f that is a linear function of
some chunk vi the prover has to (1) open the root commitment to the leaf and (2) open the commitment
to the leaf using the IP argument for the Lagrange basis of Section 5 or the construction of Tomescu et
al. [33]. For (2), since at the leaf level the commitment is w.r.t to the key λb for some b = (bν , . . . , b0), we
use the following theorem, proven in Appendix D.1, that shows that the construction for inner products
of Section 5 works for any coset of roots of unity.

Theorem 9. Let H ⊂ F be a subset of roots of unity of size m = 2ν+κ+1, for some κ, ν ≥ 0. Given some
b ∈ {0, 1}ν+1, define s =

∑ν
i=0 bi2

i, r = m
2ν+1 = 2κ, Hr ⊂ H the subgroup of roots of unity of size r,

and Hb = ωsHr. Let tb(X) be the vanishing polynomial at Hb and λb(X) the associated Lagrange basis
polynomials. Then, if A(X) = λb(X) · a and B(X) = λb(X) · b, it holds that a · b = y if and only if
there exist polynomials H(X), R(X) with deg(R) < r − 2 such that

A(X)B(X)− r−1y = XR(X) + tb(X)H(X).

Therefore, at any leaf b we can open the commitment to any linear relation and verify with the same
equation. To open C to a certain leaf commitment Ci, the idea is to implicitly show from root to leaf that
Cb|j , Cb|j+1

agree in Hb|j+1 . This is proven by showing that their difference is divisible by t(1−bj+1)b|j (X).
More specifically, we prove the following lemma, that shows how the parent and the children nodes at
each level relate through a simple equation:

Lemma 2. Let H ⊂ F be a subgroup of roots of unity of size m = 2ν+κ+1, for some κ, ν ≥ 0. Denote
H` ⊂ H as the subgroup of size ` and define Hb|j = ωsHr, and H0b|j = wsH r

2
and H1b|j = ws+2j+1H r

2
.

Let Cb|j (X) be an encoding of vector vb|j with respect to key λb|j as defined above and C0b|j (X),

C1b|j (X) those of vectors v0b|j and v1b|j with, respectively, keys λb0|j and λb1|j . Then, the following
equality holds:

Cb|j (X) = t1b|j (X)
C0b|j (X)− C1b|j (X)

2ωsr
+ C1b|j (X)

Cb|j (X) = t0b|j (X)
C0b|j (X)− C1b|j (X)

2ωsr
+ C0b|j (X)

Proof. We start with the equality Cb|j (X) = t1b|j (X)(C0b|j (X) − C1b|j (X))(2ωsr)−1 + C1b|j (X) and

evaluate it in any h ∈ H0b|j and h′ ∈ H1b|j , using the result of Lemma 4 in Appendix D.

Cb|j (h) = t1b|j (h)
C0b|j (h)− C1b|j (h)

2ωsr
+ C1b|j (h), i.e., v

0b|j
h = 2ωsr

v
0b|j
h − C1b|j (h)

2ωsr
+ C1b|j (h) = v

0b|j
h .

Also, Cb|j (h
′) = t1b|j (h′)

C0b|j (h
′)− C1b|j (h

′)

2ωsr
+ C1b|j (h

′). Simplifying, v
1b|j
h′ = v

1b|j
h′ .
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Therefore, the left and right side of the equation are polynomials of degree 2r−1 that agree at 2r points,
so we conclude they are equal.

For the other case, note that

Cb|j (h) = t0b|j (h)
C0b|j (h)− C1b|j (h)

2ωsr
+ C0b|j (h) and v

0b|j
h = v

0b|j
h . Also,

Cb|j (h
′) = t0b|j (h′)

C0b|j (h
′)− C1b|j (h

′)

2ωsr
+ C0b|j (h

′),

so v
1b|j
h′ = −2ωsr

C0b|j (h
′)− v

1b|j
h′

2ωsr
+ C0b|j (h

′) = v
1b|j
h′ .

ut

Scheme Description. Formally, we present an LVC commitment scheme that works for the function
family:

Extν-Fp,2κ = {f : Fm → F,m = 2κ+ν+1 | ∃f ∈ F2κ , i ∈ 2ν s.t.

∀v1, . . . ,v2ν ∈ F2κ : f(v1, . . . ,v2ν ) = vi · f}
.

Algorithms LVC.KeyGen and LVC.Commit are the same as the Lagrange basis construction of Section 5
and are omitted. The commitment to v is C = [λ>]1v together with the auxiliary input information aux.
Note that step 4. of the open algorithm is IP.Open from Section 5.2.
UVTree.Open(pk,b, aux, f,y)→ π: 1. Let f(v0...0, . . . ,v1...1) = vb · f for f ∈ F2κ and some b =

(bν , . . . , b0).
2. For any 0 ≤ j ≤ ν, compute Cb|j = [λb|j ]1vb|j .

3. Compute [H]1 = (C0 − C1)/2, and for any 0 ≤ j ≤ ν − 1, compute Kb|j = (2ωsr)−1 for s =∑j
i=0 bi2

i and r = m
2j+1 . Then define [Hb|j ]1 = Kb|j (C0bj ...b0 − C1bj ...b0).

4. Find R(X), Hb(X) such that

(
λb(X) vb

)( 2κ∑
i=1

fiλ
b
i (X)

)
− y2−κ = XR(X) +Hb(X)tb(X).

Define R̂(X) = Xm+2−2κR(X).21 and Ĉb = [Ĉb(τ)]1 where Ĉb = Xm−2κCb(X).

5. Output π = ([H]1, [Hb0 ]1, . . . , [Hb|ν−1
]1, [Hb(τ)]1, [R(τ)]1, [R̂(τ)]1,Cb, Ĉb).

UVTree.Vf(vk,C, f,y, π)→ 0/1:

1. Use the vector representation f of f and compute Cf =
∑2κ

i=1 fi[λ
b
i (τ)]2.

2. Check that

e(C− Cb, 1) = e([H]1, [t
b0(τ)]2) +

ν−1∑
j=0

e([Hb|j ]1, [t
b|j+1(τ)]2) (2)

e
(
Cb,Cf

)
− e
(
2−κy[1]1, [1]2

)
= e
(
[R]1, [1]2

)
+ e
(
[Hb]1, [t

b(τ)]2
)

(3)

e
(
[R]1, [τ

m+2−2κ ]2
)

= e
(
[R̂]1, [1]2

)
(4)

e
(
Cb, [τ

m−2κ+1]2
)

= e
(
Ĉb, [1]2

)
(5)

Maintainability. The cost of computing all proofs is O(νm). For each piece vi with O(κ2κ) operations
one can compute the coefficients in the monomial basis. Following Lemma 2, the parent node can be
computed in cost dominated by 2κ = m

2ν+1 exponentiations from the expression of children nodes, and
since there are 2ν parent nodes the cost is dominated by m

2 exponentiations. Going one level up, the
vector size doubles but the number of nodes is halved. We conclude that to compute all proofs one needs
O(κ2κ + νm2 ). The number of proofs to store (including leaf commitments) is 2ν+1 − 1.

Theorem 10. When instantiated with a function binding argument for inner product relations IP, the
scheme above is a function binding LVC argument under the AGM if the (m,m)-DLOG assumption
holds.
21 We assume as most m powers of τ are in the SRS in group G1. The degree check is meant to ensure that R(X)

is of degree at most 2κ − 2.
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Proof. Let A be an adversary against the function binding game as in Definition 3. We will see, through
game reductions, that the advantage of A in strong function binding is negligible even for k = 2, that is,
for two non-compatible functions f1, f2. Note that for two functions to be non compatible they must be
defined on the same block b.
A plays Game0, the strong function binding game as in Definition 3, and outputs (C, {fk, yk,πk}k=1,2),

where π1 = ([H]1, {[Hb|j]1, }ν−1j=0 , [Hb]1, [R]1, [R̂]1,Cb, Ĉb),π2 = ([H ′]1, {[H ′b|j]1}
ν−1
j=0 , [H

′
b]1, [R

′]1, [R̂
′]1,C

′
b, Ĉ

′
b),

s.t. LVC.Verify(vk,C, f1, y1,π1) = 1, LVC.Verify(vk,C, f2, y2,π2) = 1, and wins if there exists no v ∈ Fm
such that f1(v) = y1 and f2(v) = y2.

Recall A is algebraic and thus we assume one can extract polynomials Cb(X), C ′b(X), Ĉb(X), Ĉ ′b(X)
which are, algebraic representations of Cb,C

′
b and H(X), H ′(X), Hb(X), H ′b(X), {Hb|j (X), H ′b|j (X)}ν−1j=0

the ones for [H]1, [H
′]1, [Hb]1, [H

′
b]1, {[Hb|j ]1, [H

′
b|j

]1}ν−1j=0 , respectively.

Let Game1 be exactly as Game0 but the game aborts if Cb(X) or C ′b(X) are polynomials of degree
more than 2κ − 1. If this is not the case, it is easy to find τ by observing that in this case either
Cb(X)Xm−2κ+1 − Ĉ(X) or C ′b(X)Xm−2κ+1 − Ĉ ′(X) is a non-zero polynomial with a root in τ so the
difference between both games is bounded by the advantage of any adversary against the (m − 1,m)-
DLOG problem.

Let Game2 be exactly as Game1 but upon receiving π1,π2, it checks if Cb and C′b are equal and aborts
otherwise. We next bound the probability of abort.

Define the polynomial

p(X) = Cb(X)− C ′b(X)− (H(X)−H ′(X))tb0(X) +
ν−1∑
j=0

(Hb|j (X)−H ′b|j (X))tb|j+1(X),

which is the difference of verification equation (2) for each commitment. If p(X) 6= 0, the output of the
adversary can be used to construct an adversary against the (m− 1,m)-DLOG assumption, since τ is a
root of p(X). On the other hand, if p(X) = 0, Cb(X)−C ′b(X) can be written as a sum of terms that are
multiples of tb|j (X) for j = 0, . . . , ν. But all of these vanishing polynomials evaluate to 0 in h ∈ Hb, since
tb(X)|tb|j (X) for j = 0, . . . , ν. Therefore, Cb(X) − C ′b(X) is also 0 when evaluated at the coset. But
since this polynomial is of degree at most 2k, Cb(X) = C ′b(X) which implies that necessarily Cb = C′b.

Therefore, in Game2, except with negligible probability the leaf commitment is the same and the
probability that the adversary wins is the same as in the strong function binding game of the inner
product commitment. ut
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A Vector Commitment Definitions

In this section we provide the classical definitions of vector commitments (VC), introduced by Catalano
and Fiore [10], and subvector commitments (SVC), as in [5, 24], that are particular cases of Linear-map
Vector Commitments (LVC).

Definition 8 (Vector Commitment). A vector commitment for vectors from the message space M
is a tuple of PPT algorithms

(
KeyGen,Commit,Open,Vf

)
that work as follows:

VC.KeyGen(1λ,M,m)→ prk, vrk: On input the security parameter λ, the message space M for the vec-
tors and the maximum vector length m22. It returns s proving key prk that includes M, and a
verification key vrk.

VC.Commit(prk,v)→ (C, aux): Takes prk and a vector v = (v1, v2 . . . , vm) ∈ Mm, and returns a com-
mitment C and auxiliary information aux.

VC.Open(prk, aux, i, vi)→ πi: On input prk, aux, an index i ∈ [n], and a value vi, it outputs a proof πi
that the value vi is at position i.

VC.Vf(vrk,C, i, v, πi)→ b ∈ {0, 1}: On input vrk, C, i ∈ [m], a value v ∈ M and πi, it outputs 1 if the
proof verifies and 0 otherwise.

Perfect Correctness A VC scheme is perfectly correct if, for all λ ∈ N, any vector length m = poly(λ),
any index i ∈ [n], and any v ∈Mm, we have:

Pr

VC.Vf(vrk,C, i, vi, πi) = 1
(prk, vrk)← VC.KeyGen(1λ,M,m)

(C, aux)← VC.Commit(prk,v)
πi ← VC.Open(prk, aux, i, vi)

 = 1.

Strong Position Binding A VC scheme satisfies strong position binding if, for all PPT adversaries A,
for all λ ∈ N, any vector length m = poly(λ),:

Pr

 VC.Vf(vrk,C, i, v, π) = 1
∧ VC.Vf(vrk,C, i, v′, π′) = 1

∧ v 6= v′

(prk, vrk)← VC.KeyGen(1λ,M,m)
(C, i, (v, π), (v′, π′))← A(prk, vrk)

 = negl(λ).

Weak Position Binding If we relax the definition above to hold only for honestly-generated commit-
ments C, we obtain a weak position binding notion. In other words, for all PPT adversaries A, for all
λ ∈ N, any vector length m = poly(λ),

Pr

 VC.Vf(vrk,C, i, v, π) = 1
∧ VC.Vf(vrk,C, i, v′, π′) = 1

∧ y 6= y′

(prk, vrk)← VC.KeyGen(1λ,M)
(v, i, v, π, v′, π′)← A(prk, vrk)
(C, aux)← VC.Commit(prk,v)

 = negl(λ).

Definition 9 (Sub-Vector Commitment). A Sub-Vector Commitment scheme is a VC scheme
that opens subsets rather than positions. It consists on algorithms

(
SVC.KeyGen,SVC.Commit,SVC.Open,

SVC.Vf
)

that work as follows:

22 Some schemes are unbounded : they ignore m since they can commit to vectors of any length poly(λ).
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SVC.KeyGen(1λ,M,m)→ prk, vrk: Takes the security parameter λ, the message space M for the vectors
elements and the maximum vector length m. It outputs a proving key prk and verification key vrk.

SVC.Commit(prk,v)→ (C, aux): On prk and a vector v = (v1, v2 . . . , vm) ∈ Mm, returns a commitment
C and auxiliary information aux.

SVC.Open(prk, aux, I,vI)→ πI : Takes as input prk, aux, a set of index I ⊂ [m] and values vI = {vi}i∈I
and outputs a proof πI that vi is the value in position i, for all i ∈ I.

SVC.Vf(vrk,C, I,y, πI)→ b ∈ {0, 1} : Takes as input vrk, C, I, a vector y = {yi}i∈I and πI . It outputs
1 for accept or 0 for reject.

SVC correctness An SVC scheme is perfectly correct if, for all λ ∈ N, any vector length m = poly(λ),
any index set I ⊂ [m], and any v ∈Mm,

Pr

SVC.Vf(vrk, C, I,vI , πI) = 1
(prk, vrk)← VC.KeyGen(1λ,M,m)

(C, aux)← VC.Commit(prk,v)
πI ← SVC.Open(prk, aux, I,vI)

 = 1.

SVC binding. Binding captures the impossibility of creating inconsistent openings for subvectors. An
SVC scheme satisfies strong position binding if, for all PPT adversaries A, for all λ ∈ N, any vector length
m = poly(λ),

Pr

SVC.Vf(vrk,C, I,y, πI) = 1 ∧
SVC.Vf(vrk,C, J,y′, πJ) = 1
∧ ∃i ∈ I ∩ J s.t. yi 6= y′i

(prk, vrk)← VC.KeyGen(1λ,M,m)(
C, I, J,

y, πI ,y
′, πJ

)
← A(prk, vrk)

 = negl(λ).

Weak Position Binding is considering the definition above to hold only for honestly-generated commit-
ments C computed via SVC.Commit.

B Vector Commitment Applications

Here we describe in more detail some of the applications of our work and their specific requirements.

B.1 Verifiable Databases

Vector commitments are a solution for the problem of outsourcing storage to untrusted parties. In the
verifiable database (VDB) setting, a client owns a database D and wishes to outsource the storage of D
to a server while keeping the ability to query and update the database. The security goal is to prevent
an untrusted server from tampering with the database and cheat on the query outcomes that it provides
to the client. A good solution should enable the client to run efficiently once the outsourcing has been
performed. Furthermore, the communication and running time of the query and update protocols should
not depend on the total size of the database.

The basic problem of integrity of outsourced data can be easily solved by using the celebrated Merkle
tree construction [27]. It consists in hashing the data using a tree structure in which the leaves are the
blocks of D and every internal node is the hash of its two child nodes; the root of this tree is the so-called
Merkle hash (digest) of D. To use Merkle trees to solve the outsourced storage problem, the client can
compute the Merkle tree and store only the root. When the client wants to retrieve the k-th record
Dk, the server responds with the data and a logarithmic-size path consisting of the nodes from Dk until
the root, and the client can then verify the authenticity of Dk in logarithmic time by recomputing a
hashed value using the path and check it against the stored digest (Merkle root). The security of this
construction can be reduced to the collision resistance of the hash function [27]. In terms of efficiency,
the communication complexity of this protocol is O(log n).

While Merkle trees solution is asymptotically better than resending the entire database, Vector Com-
mitments allow to improve the communication complexity beyond logarithmic and to add important
properties such as updatability or functional openings.
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B.2 Stateless Cryptocurrency

One of an important decentralised applications of vector commitments is in distributed ledger-based
payment systems, known as cryptocurrencies. The best-known examples of cryptocurrency largely used
today are Bitcoin, Ethereum, or Zcash to name a few. Such a system, utilises a blockchain in order to
post and record peer-to-peer payment transactions. This translates into an ordered log of transactions,
in other words an append-only public ledger, that is replicated across nodes in the network. We will call
such nodes that store and check the transactions log validators, as opposed to simple cryptocurrency
users who only store their account balances. The validators are essential to reach consensus on what is
the current state of the public ledger.

Unfortunately, there is a bottleneck: verifying the validity of a transaction requires querying the entire
ledger to obtain the latest state of the account balances. However, maintaining the entire ledger increases
the memory requirements and reduces the number of possible validators.

To reduce the amount of storage required of validators, there have been solutions [5, 11] based on
vector commitments. Instead of storing the entire ledger state, the validators can keep commitments
to vectors representing the state. Using vector commitments properties, validators with a commitment
to the ledger state can still validate transactions sent by users by checking opening proofs against the
commitment. More concretely, the users will send their account balance values and a proof that this is
consistent with respect to the commitments stored by the validators. After the transaction is accepted,
the validators should be able to update the commitment to the old state to a commitment to the new
state that includes the changes made by the transaction. If the vector commitment scheme has small
commitment sizes, short proofs, efficient opening computation and allow for updates, then such a solution
provides the best trade-off between storage, bandwidth, and computation.

We call such a solution a stateless cryptocurrency, i.e. a system where neither validators nor cryp-
tocurrency users need to store the full ledger state. While the stateless cryptocurrencies overcome the
storage overhead when performing transaction validation, they increase network communication because
of extra opening proofs added to each transaction payload. To minimise communication in the transac-
tions, an important feature of vector commitments is aggregation. Using aggregation to ”pack” together
multiple opening proofs for a batch of transactions into a single constant-size proof allows a significant
improvement in the communication.

Another important property for applications to stateless cryptocurrencies is maintainability. This
guarantees that re-proving an opening about the new state requires less time than computing it from
scratch, which would make all previous computations useless. Instead, the individual proofs are initially
computed and stored and efficiently updated after each state transition. Collective updates or maintain-
ability saves computational resources since computing a single proof needs linear time while updating
all proofs needs sublinear (e.g. logarithmic time).

To summarize, in order to provide the best trade-off between storage, bandwidth, and computation
in stateless cryptocurrency application, the following properties are required from a VC scheme:
Short Commitment: validators store only a commitment to the ledger state.
Short Opening Proofs: to submit a transaction, users will send their account balance values and a

proof that this is consistent with respect to the commitments stored by the validators.
Efficient Verification: to validate transactions, validators check opening proofs against the commit-

ment.
Updatability: after the transaction is accepted, the validators should be able to update the commitment

to the old state to a commitment to the new state that includes the changes made by the transaction.
Aggregation: to minimise communication in the transactions, some nodes can ”pack” together multiple

opening proofs for a batch of transactions into a single small proof.
Maintainability: to save proving time at each update, maintaining all the proofs up to date should be

possible in sublinear time each time the state changes.

B.3 Proof of Space

Proof-of-Space (PoS) is an eco-friendly alternative to proof-of-work (PoW) in blockchain-based consensus
mechanisms that does not consume its resource (space vs. energy), but rather reuses it. A PoS, was
introduced in [13] and further studied in [31, 1, 16]. It is an interactive protocol between a prover and a
verifier that allows to check if the prover is storing intactly a file (data) that uses a specified amount of
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disk space. The protocol must have compact communication relative to the prover’s space requirements
and efficient verification. A PoS is persistent if repeated audits force the prover to permanently store the
file over a period of time.

Proof of Space protocols consist of two main steps:
– Initialization (Setup phase): On public input v, an advice a (e.g., vector of random data) of size m

is created and committed to in C. The advice is stored by the prover, while the verifier knows only
the commitment C to the advice.

– Execution (Audit phase): The verifier sends a challenge, for example asking the prover to open some
positions in the advice and the prover responds. The verifier outputs accept if they are convinced
that the prover stores the advice. This phase can be repeated many times.
We require that the verifier is highly efficient in both phases, whereas the prover is highly efficient

in the execution phase if they are honest and had stored the data as expected. Otherwise, if the prover
deleted parts of the file, regenerating the advice in order to pass the audit phase should be more costly
(in time or computation cost) than just storing the file. A PoS can be run non-interactively using a
public blockchain to perform the Setup and the Audit phase of the protocol described above. Provers
and verifiers will post their challenge-response in the blockchain and this should be publicly verifiable.

Publicly Verifiable Proof of Space. A classical publicly verifiable PoS is based on Merkle trees and random
spot-checks. A drawback of this construction is that proofs grow with the number of spotchecks (and the
size of the tree) and become undesirably large to be stored in a blockchain. While these checks can be
compressed through a SNARK (Succinct Non-interactive Argument of Knowledge) [20], this still require
hundreds of GB of RAM and tens of minutes compared to our vector commitment solution.

For a construction of PoS based on vector commitments, the prover (miner) uses a VC to commit to
a file (seen as a vector of blocks); then at every audit the verifier chooses a challenge by picking a set
of many randomly chosen positions, and the prover responds by sending the subvector and an opening
proof. The soundness property of a PoS scheme requires that for any prover that convinces the verifier
that it is storing the file, there exists an algorithm called the extractor that interacts with the prover
and extracts the file.

A vector commitment construction with openings for subvectors immediately implies a publicly-
verifiable proof of storage.

Finally, our tree-based constructions allows reduced proving costs in the audit phase of PoS by instead
using some extra memory to store proofs. A prover can efficiently pre-compute and store proofs and simply
serve them on demand. Since memory is expensive, however, it is not optimal to store all the proofs. Our
construction is flexible: a prover only stores partial proofs to reduce computation. Importantly, the part
of the proof that is computed on the fly has constant size and therefore the proof size only depends on
the amount of memory dedicated by the prover. Finally, our proofs can be aggregated using standard
techniques [7]. The smaller proof size translates to a cheaper aggregation cost.

B.4 Compiling SNARKs from Vector Commitments

Our LVC schemes can be used to construct new efficient Succinct Non-interactive Arguments of Knowl-
edge (SNARKs) with constant-size opening. Following up on the approach pioneered by Kilian [23] and
Micali [28], recent works [5, 24] show that we can construct SNARKs based on probabilistically check-
able proofs (PCPs) or interactive oracle proofs (IOPs) by plugging in vector commitments with subvector
openings.

In an IOP the prover sends multiple proof oracles to a verifier. The verifier uses these oracles to query
a small subsets of the proof in order to decide acceptance or rejection. Recent practical instantiations of
proof systems from IOPs use Merkle trees as a vector commitment. While Merkle trees do not require a
trusted setup, these schemes have two significant drawbacks for the two above applications: first, position
openings are not constant size, and second, the openings of several positions cannot be compressed into a
single constant size proof (i.e. it does not support aggregation or subvector openings). LVC with subvector
openings are a perfect candidate to instantiate IOP-based SNARKs.

Replacing Merkle trees with a vector commitment, Lai and Malavolta [24] obtain a SNARK where
the proof consists of 3 field elements and 2 group elements. Using the same blueprint, we can use LVC to
match the same proof size as theirs and improve the trusted setup by making it compatible with other
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widely deployed proof systems. On the other hand, the construction in [24] (last row in their Table 2)
requires a trusted setup with a “gap” in the powers of exponent.

B.5 Applications of Range Openings

One of the features of our monomial-basis construction is to have efficient range openings. These arguably
have several natural applications.

In several protocols involving queries, it is common to perform some type of “caching” optimizations.
For example, an HTTP client can perform prefetching2324 and receive from a server not only the values
of interest but other related values that could potentially be queried in the near future (e.g., values in a
neighboring range of the queried values). Our range-based queries can be used in similar setting whenever
we need to query a resource whose digest consists of a vector commitment.

C Native SVC in [33]

For a vector v ∈ Fm and a subset I ⊂ [m], the subvector opening scheme of Tomescu et. al. ([33]) con-
sists on algorithms (SVC.KeyGen,SVC.Commit,SVC.Open,SVC.Vf) such that SVC.KeyGen, SVC.Commit
behave as IP.KeyGen, IP.Commit in the construction of Section 5.2 and the other two as follows:
SVC.Open(prk, aux, I, c̃) → πI : Compute C̃(X) =

∑
i∈I c̃iµi(X), where {µi(X)} are the Lagrange

interpolation polynomials of the set {hi}i∈I , and find H(X) such that for tI(X) =
∏
i∈I(X − hi),

C(X)− C̃(X) = tI(X)H(X).

Output πI =
(
C̃ = [C̃(τ)]1, [H]1 = [H(τ)]1

)
.

SVC.Vf(vrk,C, I, c̃, πI)→ b ∈ {0, 1} : Compute [tI ]2 = [tI(τ)]2 and output 1 if and only if

e
(
C− C̃, [1]2

)
= e
(
[H]1, [tI ]2

)
.

D Lagrange basis IP for Cosets of Roots of Unity

In this section, we prove some facts about the Lagrange and vanishing polynomials corresponding to
cosets of subgroups of roots of unity, that are used in the scheme of Section 8.2.

We argue that the IP vector commitments construction in Section 5.2 can be implemented when we
set H to be a set of roots of unity of size m where m is a power of two, and use as interpolation set a
coset of size r(that is a smaller power of 2) instead of H. We denote these cosets as Hb|j and {λbi (X)}ri=1,
tb(X) its Lagrange and vanishing polynomials, and set λb(X) = (λb1 (X), . . . , λbr (X)).

D.1 Proof of Theorem 9

Proof. First, note that

A(X)B(X) =
(
λb(X) · a

) (
λb(X) · b

)
= λb(X)(a ◦ b) mod tb(X)

Then, there exists Q′(X) s.t. A(X)B(X) = λb(X)(a ◦ b) + tb(X)Q′(X).
Remember that r = m

2j+1 = 2κ.
For the first implication, note that if a ·b = y, because λbi (0) = r−1 for all i = 1, . . . , r (See Lemma 3

below),
∑r
i=1 aibiλ

b
i (0) = r−1

∑r
i=1 aibi = r−1y, which implies that

∑r
i=1 aibiλ

b
i (X)− r−1y vanishes at

X = 0 and thus there exists R(X) such that
∑r
i=1 aibiλ

b
i (X) = XR(X).

On the other hand, if we have that A(X)B(X) =
∑r
i=1 aibiλ

b
i (X) + tb(X)Q′(X) and A(X)B(X)−

r−1y = XR(X) + tb(X)Q(X), because deg(XR(X)) < r, Q(X) = Q′(X) and
∑r
i=1 aibiλ

b
i (X)− yr−1 =

XR(X). Set X = 0 in the equation and we have r−1
∑r
i=1 aibi = r−1m, i.e, a · b = y. ut

23 https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
24 We thank Agi Sferro for helpful clarifications around this topic.
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Lemma 3. Consider H a group of roots of unity of size m, where m is a power of 2 and a coset
Hb = {hb1 , . . . , hb2κ} of size 2κ = m

2ν+1 . Then, λbi (0) = −r, where λbi (X) is the ith Lagrange interpolation
polynomial associated to Hb.

Proof. First, we note that tb(X) = X2κ − ωs2κ is the vanishing polynomial of Hb. Indeed, it has degree

2κ and for every hbi = ωs+(i−1)2ν+1 ∈ Hb we have

(hbi )2
κ

− ωs2
κ

= (ωs+(i−1)2ν+1

)2
κ

− ωs2
κ

= ωs2
κ

− ωs2
κ

= 0.

Thus,

X2κ − ωs2
κ

=

2κ∏
i=1

(X − hbi ) and
X2κ − ωs2κ

X − hbi
=

2κ∏
j 6=i

(X − hbj ).

Now, we claim that if we denote λbi (X) as the ith Lagrange interpolation polynomial of Hb and h0i
as the ith element of the set of roots of unity H0 of size 2κ, then

λbi (X) =
h0i

2κωs(2κ−1)
X2κ − ωs2κ

X − hbi
.

To prove our claim, first note

λbi (X) =
h0i

2κωs(2κ−1)
X2κ − ωs2κ

X − hbi
=

h0i
2κωs(2κ−1)

2κ∏
j 6=i

(X − hbj ).

It is clear from the above that λbi (hbj ) = 0 for all j 6= i, now

λbi (hbi ) =
h0i

2κωs(2κ−1)

2κ∏
j 6=i

(hbi − hbj ) =
h0i

2κωs(2κ−1)
ωs(2

κ−1)
2κ∏
j 6=i

(h0i − h0j ) =
h0i
2κ

2κ∏
j 6=i

(h0i − h0j )

Since H0 is a group of roots of unity of size 2κ, we know that
h0i
2κ

∏r
j 6=i(h

0
i − h0j ) is its ith Lagrange

polynomial evaluated at h0i , which is its ith interpolation point. Thus the equation above equals 1.

Then, λbi (X) is a polynomial of degree 2κ − 1 such that vanishes at all elements in Hb except for hbi
where takes value 1 and so we conclude it is the ith Lagrange polynomial of Hb.

Finally, recall that as H0 is a set of roots of unity of size 2κ, all its Lagrange polynomials take value
(2κ)−1 when evaluated in 0. Then,

λbi (0) =
h0i

2κωs(2κ−1)

2κ∏
j 6=i

(0− hbj ) =
h0i

rωs(2κ−1)
ωs(2

κ−1)
2κ∏
j 6=i

(0− h0j ) =
h0i
2κ

2κ∏
j 6=i

(0− h0j )

equals the ith Lagrange polynomial of H0 evaluated in zero, that is, (2κ)−1. ut

The following lemma relates the vanishing polynomial and elements of two different cosets of size
r = m

2k
whose elements belong to the same coset of size m

2k−1 . Recall that this is the case for cosets

H0b|j , Hs′,r if and only if s ≡ s′ mod 2k−1. The lemma will be used in the next section to prove
what constitutes, along with the result on arguments for inner products using cosets, the core of our
maintainable construction.

Lemma 4. Consider Hr ⊂ H the subgroup of roots of unity of size r, and Hb = ωsHr. Let H0b|j , H1b|j

be two cosets of Hb and t0b|j (X) and t1b|j (X) its vanishing polynomials. Then, for every h ∈ H0b|j and

h′ ∈ H1b|j , s0 =
∑j
i=0 bi2

i, s1 =
∑j
i=0 bi2

i + 2j+1 and r = m
2j+2 :

t0b|j (h′) = −2ωsr, t1b|j (h) = 2ωsr.
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Proof. First, note that s1 = s0 + 2j+1, h = ωs+(i−1)2j+2

for some i = 1, . . . , r and h′ = ωs+2j+1+(i−1)2j+2

.
Also, remark that ω

m
2 = −1, t0b|j (X) = Xr − ωsr and t1b|j (X) = Xr − ωs1r = Xr − ω(s0+2j+1)r. Then,

t0b|j (h′) = (ωs+2j+1+(i−1)2j+2

)r − ωsr = (ωs+2j+1

)r − ωsr

= ωsr
(
(ω2j+1)r − 1

)
= ωsr

(
ω
m
2 − 1

)
= ωsr

(
− 1− 1

)
= −2ωsr.

Analogously,

t1b|j (h) = hr − ω(s+2j+1)r = (ωs+(i−1)2j+2

)r − ω(s+2j+1)r

= (ωs)r
(
1− ω2j+1)

= ωsr
(
1− ωm

2

)
= ωsr

(
1− (−1)

)
= 2ωsr.

ut
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