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Abstract. Fully Homomorphic Encryption (FHE) is a groundbreaking
technology that allows for arbitrary computations to be performed on en-
crypted data. State-of-the-art schemes such as Brakerski Gentry Vaikun-
tanathan (BGV) are based on Learning with Errors over rings (RLWE)
assumption and each ciphertext has an associated error that grows with
each homomorphic operation. For correctness, the error needs to stay be-
low a certain threshold, requiring a trade-off between security and error
margin for computations in the parameters. Choosing the parameters ac-
cordingly, for example, the polynomial degree or the ciphertext modulus,
is challenging and requires expert knowledge specific to each scheme.

In this work, we improve the parameter generation process across all
steps of its process. We provide a comprehensive analysis for BGV in the
Double Chinese Remainder Theorem (DCRT) representation providing
more accurate and better bounds than previous work on the DCRT, and
empirically derive a closed formula linking the security level, the poly-
nomial degree, and the ciphertext modulus. Additionally, we introduce
new circuit models and combine our theoretical work in an easy-to-use
parameter generator for researchers and practitioners interested in using
BGV for secure computation.

Our formula results in better security estimates than previous closed
formulas while our DCRT analysis results in reduced prime sizes of up
to 42% compared to previous work.

Keywords: Fully Homomorphic Encryption, BGV Scheme, Parameter Gener-
ation, RLWE Security, DCRT Representation

1 Introduction

Since Gentry’s seminal work in 2009 [18], fully homomorphic encryption (fully
homomorphic encryption (FHE)) has attracted much attention from the cryp-
tographic research community [1, 26, 27]. FHE enables arbitrary computations
on encrypted data and thus opens up new possibilities in data processing. As
an example, hospitals analyzing health information can work only on encrypted
data and provide clients with an encrypted result, thus not risking leaking any
sensitive data.
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The BGV scheme [9] is currently considered one of the state-of-the-art FHE
schemes. BGV is based on the Learning with Errors (LWE) problem and its ring
variant RLWE [25, 30]. RLWE-based FHE schemes, including BGV, need to keep
the error associated with each ciphertext below a certain threshold, as decryption
would fail otherwise. This requires a trade-off between security (small ciphertext
modulus), and error margin (implying a large ciphertext modulus) [26].

In general, choosing parameters for FHE schemes such as the polynomial
degree d or the ciphertext modulus q is challenging and requires expert knowledge
specific to each scheme. Multiple parameters must be considered, and users and
developers alike need to take many deliberate choices when using state-of-the-
art software libraries. A real-world example is the programming interface of
PALISADE [29], an open-source FHE library that also implements BGV. A
user needs to choose a polynomial implementation as well as seven additional
parameters that all influence the polynomial degree as well as the ciphertext
modulus (Listing 1.1).

auto ctx = CryptoContext <DCRTPoly >:: BGVrns(

2, // cyclic order

65537, // plaintext modulus

HEStd_128_classic , // security level

3.2, // error standard deviation

2, // multiplicative depth

OPTIMIZED , // secret distribution

BV); // key switching method

Listing 1.1. BGV setup routine in PALISADE

This flexibility can be valuable for researchers familiar with FHE. For other users,
however, this burden of choice increases the difficulty of generating a reasonable
and secure FHE instance.

There are several challenges within the parameter selection process that need
to be addressed in order to choose correct and secure parameters. Given a FHE
scheme, we first adjust the error growth analysis depending on implementation
choices as well as use-case-specific requirements and then compute error bounds
for each individual operation. Using these bounds, we model the homomorphic
circuit and determine a lower bound on the ciphertext modulus. Finally, we
need to select the polynomial degree sufficiently large enough to provide a se-
cure scheme instantiation for the desired security level. In the following, we will
highlight the current state-of-the-art for each step in this process.

Related Work. For BGV, there currently are two main approaches to analyz-
ing the error growth: the canonical norm [11, 12, 22] or the infinity norm [23].
While the canonical norm is known to result in better parameters, the only work
analyzing BGV operations in the Double Chinese Remainder Theorem (DCRT)
representation is the latter using the less optimal infinity norm. Since current
state-of-the-art libraries all use the DCRT for efficient implementation, correctly
modeling it in the bound computation is essential. Costache et al. [13] present an
average-case noise analysis approach for BGV which is tailored to the dynamic
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noise estimation in HElib [21]. However, while there are case studies with specific
parameter sets [10], the more general circuit models for static parameter gener-
ation have remained simple, excluding for example operations such as rotations
[19] or the constant multiplication [23].

One challenge in standardizing FHE schemes in general is determining the
optimal parameter sets for various cryptographic schemes. To address this chal-
lenge, several efforts have been made. For instance, Bergerat et al. [7] proposed a
framework for parameter selection in TFHE-like schemes, whereas Biasioli et al.
[8] extended this work, developing an interactive parameter generator for the
FV scheme [16] that supports an arbitrary circuit model. The Homomorphic
Encryption Standard [3] provides parameter sets based on the Lattice Estima-
tor [5], a software tool to determine the security level of RLWE instances. More
specifically, the standard gives upper limits on the size of the ciphertext modulus
for certain security levels λ and polynomial degrees d in the form of lookup ta-
bles. Libraries such as PALISADE then use these lookup tables for fast security
estimation during parameter generation. However, as FHE parameters depend
on the specific use case, the trade-off is non-optimized parameter sets leading to
larger parameters than necessary. This can adversely affect the runtime, memory
usage, and overall performance of FHE implementations.

Contribution The main idea of our work is to improve the current state-of-the-
art of parameter selection process in all three steps of the process. Moreover, we
aim to improve the usability of the BGV scheme. To achieve this goal, our work
provides the following contributions:

– We provide a comprehensive analysis of noise growth in BGV using the
canonical embedding norm for the DCRT representation, the current state-
of-the-art for implementing RLWE-based schemes. To the best of our knowl-
edge, these bounds are currently the best theoretical bounds for the BGV
scheme with the DCRT representation.

– We empirically derive a closed formula computing the security for a given
ciphertext modulus and polynomial degree. This enables the fast evaluation
of a security estimate in the last step of the parameter selection process
(Section 3.7).

– We provide new circuit models considering additional cases such as rotations
or constant multiplications resulting in closer matching noise estimates for
different use cases (Section 3).

– Using our theoretical and empirical formulas, we provide an interactive pa-
rameter generator for the leveled BGV scheme (Section 3.8). Additionally,
the generator outputs easy-to-use code snippets for the generated parameters
for multiple state-of-the-art libraries.

2 Preliminaries

2.1 Notations

We start with general notations we will use in the remainder of this work.



4 J. Mono et al.

For a positive integer m, we denote by Zm the ring of integers modulo m.
We denote by Z∗

m = {x ∈ Zm | (x,m) = 1} the multiplicative group of units. We
denote by R = Z[x]/⟨Φm(x)⟩ and by Rp = Zp[x]/⟨Φm(x)⟩, where p is an integer
and Φm(x) is the cyclotomic polynomial (see Section 2.2). We denote by t and
q the plaintext and the ciphertext modulus, respectively, and Rt the plaintext
space. Moreover, we set t ≡ 1 mod m and q a chain of primes, such that

q = qL−1 =

L−1∏
j=0

pj ,

where pi (for 1 ≤ i ≤ L − 2) are roughly of the same size and pj ≡ 1 mod m
[19]. The multiplicative depth M of the circuit determines the number of primes

L = M + 1. Thus, for any level ℓ, we have qℓ =
∏ℓ

j=0 pj .
Polynomials are denoted by lower letters such as a, vectors of polynomials are

denoted in bold a. Polynomial multiplication is denoted as a · b while multipli-
cation with a scalar t is denoted as ta. Let x ∈ R, we write [x]m ∈ [−m/2,m/2)
for the centered representative of x mod m.

We denoted by χe the RLWE error distribution, typically a discrete Gaussian
with standard deviation σ = 3.19 [3], and by χs the secret key distribution. In
general, if χ is a probabilistic distribution and a ∈ R a random polynomial, we
write a← χ when sampling each coefficient independently from χ.

2.2 Mathematical Background

Cyclotomic polynomial Let F be a field and m be a positive integer. We recall
that a m-th root of unity is a number ζ ∈ F satisfying the equation ζm = 1. It
is called primitive if m is the smallest positive integer for which ζm = 1. The
m-th cyclotomic polynomial is defined as Φm(x) =

∏
(j,m)=1(x−ζj). The degree

of Φm is ϕ(m) = m
∏

p|m (1− 1/p) = |Z∗
m|, Euler’s totient function.

Canonical embedding and norms In this section, we recall the result of
[11, 12, 22].

Let a ∈ R be a polynomial. We recall that the infinity norm of a is defined as
||a||∞ = max{|ai| : 0 ≤ i ≤ ϕ(m)− 1}. If we consider two polynomials a, b ∈ R,
the infinity norm of their product is bounded by ||ab||∞ ≤ δR||a||∞||b||∞, where
δR is the expansion factor.

The canonical embedding of a is the vector obtained by evaluating a at all
primitive m-th roots of unity. The canonical embedding norm of a ∈ R is defined
as ||a||can = maxj∈Z∗

m
|a(ζj)|. For a vector of polynomials a = (a0, . . . , an−1) ∈

Rn, the canonical embedding norm is defined as ||a||can = maxi ||ai||can. For any
polynomial a, b ∈ R, the following properties hold:

– ||a||can ≤ ϕ(m)||a||∞.
– ||ab||can ≤ ||a||can||b||can.
– ||a||∞ ≤ cm||a||can for the ring expansion factor cm.
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Note that, cm = 1 if the degree of Φm(x) is a power-of-two [14].
Let us consider a random a ∈ R where each coefficient is sampled indepen-

dently from one of the following zero-mean distributions:

– DGq(σ2), the discrete Gaussian distribution with standard deviation σ over
the interval (−q/2, q/2].

– DBq(σ2), the discrete Binomial distribution with standard deviation σ over
the interval (−q/2, q/2].

– U3, the uniform distribution over the ternary set {±1, 0}.
– Uq, the uniform distribution over Zq.
– ZO(ρ), a distribution over the ternary set {0,±1} with probability ρ/2 for
±1 and probability 1− ρ for 0 with ρ ∈ [0, 1].

If we choose a ∈ R from the distributions above, the random variable a(ζ)
has variance V = ϕ(m) ·Va, where Va is the variance of each coefficient in a and
it is bounded

||a||can ≤ Dσ
√

ϕ(m) = D
√

ϕ(m) · Va, (1)

for some D [11]. Moreover, the probability that the variable a exceeds its stan-
dard deviation by more than a factor of D is roughly erfc(D). Thus, we have
to choose D large enough to obtain a reasonable failure probability. Specifically,
erfc(6) ≈ 2−55, erfc(5) ≈ 2−40 and erfc(4.5) ≈ 2−32.

If a, b ∈ R are chosen independently randomly and γ is a constant, the
following holds for the variances [12]:

– Va+b = Va + Vb.
– Vγa = γ2Va.
– Vab = ϕ(m)VaVb.

Thus, to study the variance of ||a||can, we have to study the variance Va of
each coefficient ai of a. Specifically,

ai ∈ Uq ⇒ Va ≈ q2/12, ai ∈ U3 ⇒ Va = 2/3,
ai ∈ DGq(σ2)⇒ Va = σ2, ai ∈ ZO(ρ)⇒ Va = ρ.

(2)

As in [11], we assume that messages behave as if selected uniformly at random
from Ut. Thanks to Equations (1) and (2), we have that

||m||can ≤ Dt
√
ϕ(m)/12. (3)

Lattices and Hermite Factor Let B = (b1, . . . ,bk) be linearly independent
vectors in Rn, then the lattice L(B) generated by the base B is defined by

L = L(B) =
{ k∑

i=1

γibi : γi ∈ Z,bi ∈ B
}
.

The dimension k of a lattice L ⊂ Rn is called rank. The volume (or determinant)
of L is defined as Vol(L) =

√
det(BtB). In the special case that L is a full rank
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lattice, i.e. when k = n, we have that Vol(L) = |det(B)|. Finally, we can define
the Hermite factor δk0 as

δk0 = ||b1||/Vol(L)1/k (4)

where b1 is the shortest vector in the reduced base B of the lattice L. The factor
δ0 is called the root Hermite factor.

2.3 Security of RLWE-Based Schemes

The LWE problem consists of finding the secret vector s ∈ Zn
q , given b ∈ Zm

q

and A ∈ (Zq)
m×n such that As + e = b mod q, where e ∈ Zm

q is sampled
from the error distribution χe. The security of LWE-based schemes depends on
the intractability of this problem and attacks on these schemes are based on
finding efficient algorithms to solve them [26]. In [5], the authors presented three
different methodologies to solve the LWE problem and the central part of two
of them is based on lattice reduction. Namely, starting from a bad (i.e. long)
lattice basis, find a better (i.e. reduced and more orthogonal) basis.

The most well-known lattice reduction algorithm used in practice is BKZ
(block Korkin-Zolotarev reduction) due to Schnorr and Euchner [31]. In these
algorithms, the time complexity and the outcome quality (i.e. the orthogonality
of the reduced basis) is characterised by the Hermite factor [17]. Specifically,
the run time of the BKZ algorithm is higher when the root-Hermite factor δ0
is smaller [31]. This result is also supported by a realistic estimation provided
in [5], where the authors show that the log of the time complexity to get a
root-Hermite factor δ0 with BKZ is

log(tBKZ)(δ0) = Ω

(
− log(log δ0)

log δ0

)
(5)

if calling the SVP oracle costs 2O(β), where β is the the block-size of BKZ
algorithm.

2.4 DCRT Representation

The DCRT changes the representation of the polynomials. This also influences
the computations itself and thus slight adaptations to the bounds have to be
made. In the following, we will briefly explain the DCRT representation and
adjust the error bounds accordingly.

To represent polynomials in the DCRT representation, we need to apply two
concepts based on the Chinese Remainder Theorem (CRT): the residue number
system (RNS) and the Number Theoretic Transform (NTT). The residue number
system (RNS) decomposes integers in Zq into smaller integers Zpi

for q =
∏

pi.
For pairwise coprime pi, we define a ring isomorphism Zq

∼= Zp1
× . . .×Zpk

with

x mod q 7→ (x mod p1, . . . , x mod pk).
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In the context of BGV, we decompose a polynomial in Rq into smaller polyno-
mials in Rp1

× . . .×Rpk
.

The Number Theoretic Transform (NTT) and its inverse, the INTT, trans-
form a polynomial to a point-wise representation such that

INTT(NTT(a)⊙NTT(b)) = a · b

where ⊙ denotes the point-wise multiplication of the transformed polynomials.
This significantly reduces the cost of polynomial multiplication from O(n2) to
O(n log n), the running time of the NTT. Mathematically, the NTT evaluates
the polynomial in each of the m-th roots of unity ζj , namely, it decomposes the
polynomial into linear terms modulo (x− ζj). For a full definition, we refer the
interested reader to [32].

2.5 The BGV Scheme

The BGV scheme is state-of-the-art FHE scheme based on the RLWE hardness
assumption. As is common with RLWE-based schemes, implementations of BGV
use the DCRT representation for polynomials (see Section 2.4).

Usually, the BGV scheme is used for leveled circuits, that is circuits with
a somewhat low multiplicative depth as bootstrapping is very expensive [19].
Hence, we will focus on the leveled version of the BGV scheme in this work.

In the following, we recall the definitions and compute the noise analysis for
encryption and the schemes arithmetic operations collecting previous studies [12,
22]. For modulus switching and key switching, we will provide only the definitions
and noise bounds, including the RNS variants, and provide a thorough noise
analysis later in Section 3. This extends previous work based on the canonical
embedding norm with a thourough analysis for an arbitrary plaintext modulus
in combination with the RNS.

Key Generation, Encryption & Decryption

KeyGen(λ)
Define parameters and distributions with respect to λ.
Sample s← χs, a← UqL and e← χe.
Output

sk = s and pk = (b, a) ≡ (−a · s+ te, a) (mod qL).

Encpk(m)

Receive plaintext m ∈ Rt for pk = (b, a).
Sample u← χs and e0, e1 ← χe.
Output c = (c, L, νclean) with

c = (c0, c1) ≡ (b · u+ te0 +m,a · u+ te1) (mod qL).
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Decsk(c)

Receive extended ciphertext c = (c, ℓ, ν) for sk = s. Decrypt with

c0 + c1 · s ≡ m+ te (mod qℓ).

Output m ≡ m+ te mod t.

Let c = (c, ℓ, ν) be the extended ciphertext, where c is a ciphertext, ℓ denotes
the level and ν the critical quantity of c. The critical quantity is defined as the
polynomial ν = [c0+c1 ·s]qℓ for the associated level ℓ [11]. The critical quantity of
a ciphertext c defines whether c can be correctly decrypt. Specifically, if the the
canonical embedding norm of ν is below a given bound the decryption algorithm
works. Otherwise, the plaintext cannot be recovered due to an excessive noise
growth.

To understand the error growth and thus analyze the critical quantity ν for
each extended ciphertext c = (c, ℓ, ν), we apply the decryption algorithm. The
following shows the decryption of a ciphertext after an encryption:

c0 + c1 · s ≡ (−a · s+ te) · u+ te0 +m+ (a · u+ te1) · s (mod qL)

≡ m+ t(e · u+ e1 · s+ e0) (mod qL).

In general, decryption is correct as long as the error does not wrap around the
modulus qℓ, that is ||ν||∞ ≤ cm||ν||can < qℓ/2. Note that applying decryption is
equivalent to evaluating the ciphertext c as polynomial in s, that is c0 + c1 · s ≡
ν mod qℓ. In the following, we will often use this polynomial representation of a
ciphertext to proof correctness of an algorithm or operation.

We derive the bounds for each operation using the canonical embedding norm
(Section 2.2). For the encryption operation, we use Equations (2) and (3)

||[c0 + c1 · s]qℓ ||can ≤ D
√
ϕ(m)V[c0+c1·s]qℓ = D

√
ϕ(m) (Vm + t2Ve·u+e1·s+e0)

≤ D
√
ϕ(m) (Vm + t2(ϕ(m)VeVu + ϕ(m)Ve1Vs + Ve0)).

Namely,
Bclean = Dt

√
ϕ(m) (1/12 + 2ϕ(m)VeVs + Ve). (6)

Addition, Multiplication & Constant Multiplication

Add(c, c′)

Receive extended ciphertexts c = (c, ℓ, ν) and c′ = (c′, ℓ, ν′).

Output (c+ c′, ℓ, νadd).

Mul(c, c′)

Receive extended ciphertexts c = (c, ℓ, ν) and c′ = (c′, ℓ, ν′).

Output ((c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1), ℓ, νmul).
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MulConst(α, c)

Receive constant polynomial α ∈ Rt and extended ciphertext c = (c, ℓ, ν).

Output (α · c, ℓ, νconst).

As long as the bound on each critical quantity stays below the decryption
threshold, correctness follows with

νadd = ν + ν′ = [c0 + c1 · s]qℓ + [c′0 + c′1 · s]qℓ ≡ m+m′ mod t

⇒||νadd||can ≤ ||ν||can + ||ν′||can

νmul = ν · ν′ = [c0 + c1 · s]qℓ · [c′0 + c′1 · s]qℓ ≡ m ·m′ mod t

⇒||νmul||can ≤ ||ν||can||ν′||can

νconst = α · ν = α · [c0 + c1 · s]qℓ ≡ α ·m mod t

⇒||νconst||can ≤ 6
√
ϕ(m)2VαVν ≤ t

√
ϕ(m)/12 ||ν||can = Bconst ||ν||can. (7)

Here, we consider the constant α to be uniformly distributed in Rt and the
bound on νconst comes from [15]. Note that the output of the multiplication is
still a polynomial in s, but of degree 2. We will later define key switching (see
Section 2.5) to modify a ciphertext polynomial c0+c1 ·s+c2 ·s2 back to another
polynomial c′0 + c′1 · s encrypting the same plaintext.

Modulus Switching Modulus switching reduces the associated level and the
critical quantity for a ciphertext, enabling leveled homomorphic computations.

The idea is to switch from a ciphertext modulus qℓ to a ciphertext modulus
qℓ′ = qℓ−k for some k ∈ Z. We thus multiply the ciphertext by qℓ′

qℓ
, roughly

reducing the error by the same factor. But, as we need to output a valid cipher-
text, we add a small correction term δ that (i) only influences the error, that
is being a multiple of t, i.e., δ ≡ 0 mod t, and (ii) modifies the ciphertext to be
divisible by qℓ/qℓ′ , i.e., δ ≡ −c mod qℓ

qℓ′
.

ModSwitch(c, ℓ′)

Receive extended ciphertext c = (c, ℓ, ν) and target level ℓ′ = ℓ− k.
Set δ = t[−ct−1]qℓ/qℓ′ and

c′ =
qℓ′

qℓ
(c+ δ) (mod qℓ′).

Output (c′, ℓ′, νms).
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For k = 1, qℓ′
qℓ

= 1
pℓ
. First, we want to show the correctness of modulus

switching. Let [c0+ c1 · s]qℓ = c0+ c1 · s−kqℓ for some k ∈ Z. For the same k, let

[c′0 + c′1 · s]qℓ′ = c′0 + c′1 · s− kqℓ′

=
1

pℓ
(c0 + c1 · s+ δ0 + δ1 · s)− kqℓ′

=
1

pℓ
([c0 + c1 · s]qℓ + kqℓ + δ0 + δ1 · s)− kqℓ′

=
1

pℓ
([c0 + c1 · s]qℓ + δ0 + δ1 · s)

≡ p−1
ℓ m mod t.

Note that we actually decrypt to the plaintext p−1
ℓ m mod t, but we can multiply

a plaintext by pℓ either before encryption or after decryption. This issue does
not exist for pℓ ≡ 1 mod t, but finding such pℓ can be difficult in practice.

The error after the modulus switching is bounded by

||νms||can ≡ ||[c′0 + c′1 · s]qℓ′ ||
can ≤ 1

pℓ
(||ν||can + ||δ0 + δ1 · s||can) .

As Vδi = Vtpℓ
=

t2p2
ℓ

12 , and thus Vδ0+δ1·s =
t2p2

ℓ

12 (1 + ϕ(m)Vs), we have

||νms||can ≤
1

pℓ
(||ν||can +D

√
ϕ(m)Vδ0+δ1·s) =

1

pℓ
||ν||can + Bscale,

with

Bscale = Dt

√
ϕ(m)

12
(1 + ϕ(m)Vs). (8)

Note that, decryption is correct as long as ||ν||can < qℓ
2cm
− pℓBscale.

For k > 1 in the DCRT representation, we apply a fast base extension from

qℓ/qℓ′ to qℓ′ for δ. For two RNS bases q =
∏κ

i=1 qi and q′ =
∏κ′

j=1 q
′
j and a

polynomial α, it is defined as

BaseExt(α, q, q′) =

κ∑
i=1

[
α
qi
q

]
qi

q

qi
(mod q′j) ∀j ∈ {1, ..., κ′}. (9)

This outputs α+ qu in the RNS base q′. We analyze the impact of the error in
Section 3.

Key Switching Key switching is used for (i) reducing the degree a ciphertext
polynomial, usually the output of a multiplication, or (ii) changing the key after
a rotation. For a multiplication, we convert the ciphertext term c2 · s2 to a
polynomial cks0 +cks1 ·s and for a rotation, we convert the ciphertext term c1 ·rot(s)
to a polynomial cks0 + cks1 · s. In the following, we will only analyze multiplication
and more specifically, we will output c′ = (c0 + cks0 , c1 + cks1 ) and denote the
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ciphertext term we want to remove by c2. This also covers rotations as one only
has to consider the term we want to remove as c1 and an output of (c0+cks0 , c

ks
1 ).

More specifically, we again make use of the RLWE hardness assumption to hide
s2 using s. Decryption with s “unboxes” s2 and applies it to the ciphertext term
c2. In the following, we provide the general algorithms for key switching:

KeySwitchGen(s, s2)

Receive secret key s2 and secret key target s.
Sample a← UqL , e← χe.
Output key switching key

ks = (ks0, ks1) ≡ (−a · s+ te+ s2, a) (mod qL).

KeySwitch(ks, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ks.
Switch key for c0 + c1 · s+ c2 · s2 with

c′ ≡ (c0 + c2 · ks0, c1 + c2 · ks1) (mod qℓ).

Output (c′, ℓ, νks).

Since qℓ divides qL, [ks]qℓ is a valid key switching key with respect to qℓ and
thus

c′0 + c′1 · s ≡ c0 + c2 · ks0 + (c1 + c2 · ks1) · s (mod qℓ)

≡ c0 − c2 · a · s+ c2 · te+ c2 · s2 + c1 · s+ c2 · a · s (mod qℓ)

≡ c0 + c1 · s+ c2 · s2 + tc2 · e (mod qℓ).

Thus, the error after the key switching algorithm is bounded by

||νks||can = ||[c′0 + c′1 · s]qℓ ||can ≤ ||ν||can + tc2 · e.

Unfortunately, the error after the key switching algorithm grows too much with
the term tc2 · e and thus, several variants exist to reduce its growth. This work
considers the three main variants: the Brakerski Vaikuntanathan (BV) variant,
the Gentry Halevi Smart (GHS) variant, and the Hybrid variant.

BV Variant The BV variant decomposes c2 with respect to a base β to reduce
the error growth [9]. For polynomials a and b and l = ⌊logβ qℓ⌉+ 1, we define

Dβ(a) = ([a]β , [⌊a/β⌋]β , . . . , [⌊a/βl−1⌋]β)
Pβ(b) = ([b]qℓ , [bβ]qℓ , . . . , [bβ

l−1]qℓ).

It follows that, for any a, b ∈ Rqℓ , we have ⟨Dβ(a),Pβ(b)⟩ ≡ a · b mod qℓ[23].
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KeySwitchGenBV(s, s2)

Receive secret key s′ and secret key target s.
Sample a← U l

qL , e← χl
e.

Output key switching key

ksBV = (ksBV0 ,ksBV1 ) = (−a · s+ te+ Pβ(s
2),a) (mod qL).

KeySwitchBV(ksBV, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksBV.
Switch key for c0 + c1 · s+ c2 · s2 with

c′ = (c0 + ⟨Dβ(c2),ks
BV
0 ⟩, c1 + ⟨Dβ(c2),ks

BV
1 ⟩) (mod qℓ).

Output (c′, ℓ, νBV
ks ).

The error after the BV key switching is c′0+c′1·s ≡ c0+c2·ksBV0 +(c1+c2·ksBV1 )·s
(mod qℓ), namely,

||[c0 + c1 · s+ ⟨Dβ(c2),Pβ(s
2)⟩+ t⟨Dβ(c2), e⟩]qℓ ||can,

that is,

||νBVks ||can = ||[c′0 + c′1 · s]qℓ ||can ≤ ||ν||can + ||t⟨Dβ(c2), e⟩||can.

Since t⟨Dβ(c2), e⟩ = t
∑l−1

i=0[⌊c2/βi⌋]β · ei = t
∑l−1

i=0 β̃i · ei, we have

Vt·⟨Dβ(c2),e⟩ = t2lϕ(m)Vβ̃i
Vei .

We can assume that β̃i behaves like a uniform polynomial drawn from Uβ . So

||t · ⟨Dβ(c2), e⟩||can ≤ D

√
ϕ(m)t2lϕ(m)

β2

12
Vei = Dtϕ(m)β

√
l
Ve

12
.

Finally, we have l =
√
⌊logβ(qℓ)⌋+ 1 ∼

√
logβ(qℓ) and can set

||νBVks ||can ≤ ||ν||can + β
√
logβ(qℓ)Bks,

where
Bks = Dtϕ(m)

√
Ve/12. (10)

BV-RNS Variant For the BV-RNS variant, we additionally define Dpi
and Ppi

not with respect to some digit decomposition β, but to the already existing
RNS decomposition which we hence can apply for free during the key switching
process.

Dpi
(a) =

[a( qℓ
p0

)−1
]
p0

, . . . ,

[
a

(
qℓ
pℓ

)−1
]
pℓ


Ppi

(b) =

([
b
qℓ
p0

]
qℓ

, . . . ,

[
b
qℓ
pℓ

]
qℓ

)
.
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Since this itself does not reduce the error enough, we apply both decompositions
at the same time with ⟨Dβ(Dpi

(a)),Ppi
(Pβ(b))⟩ = a · b mod qℓ. We analyze the

noise growth in Section 3.

GHS Variant The GHS variant [19] switches to a bigger ciphertext modulus
Qℓ = qℓP with P and q coprime. Then, key switching takes places in RQℓ

and,
by modulus switching back down to qℓ, the error is reduced again. As a tradeoff,
we have to make sure that our RLWE instances are secure with respect to Qℓ.

KeySwitchGenGHS(s, s2)

Receive secret key s2 and secret key target s.
Sample a← UQL , e← χe.
Output key switching key

ksGHS = (ksGHS0 , ksGHS1 ) ≡ (−a · s+ te+ Ps2, a) (mod QL).

KeySwitchGHS(ks, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksGHS.
For c0 + c1 · s+ c2 · s2, switch key with

c′ ≡ (Pc0 + c2 · ksGHS0 , P c1 + c2 · ksGHS1 ) mod Qℓ.

Set δ = t[−c′t−1]P , modulus switch back with

c′′ =
1

P
(c′ + δ) (mod qℓ).

Output (c′′, ℓ, νGHS
ks ).

Since we use modulus switching, showing correctness is similar in most aspects.
For some k ∈ Z, let [c′0 + c′1 · s]Qℓ

= P [c0 + c1 · s+ c2 · s2]qℓ + tc2 · e− kQℓ.

[c′′0 + c′′1 · s]qℓ = [c0 + c1 · s+ c2 · s2]qℓ +
tc2 · e+ δ0 + δ1 · s

P
≡ m mod t.

We suppose that c2 behaves like a uniform polynomial samples from Uqℓ and, as
before, [−ct−1]P behaves like a uniform polynomial samples from UP . Then,

||νGHSks ||can ≤ ||[c0 + c1 · s+ c2 · s2]qℓ ||can +
||tc2 · e+ δ0 + δ1 · s||can

P

= ||ν||can +
D
√

ϕ(m)(ϕ(m)t2q2ℓ
Ve

12 + t2P 2 1
12 (1 + ϕ(m)Vs))

P

≤ ||ν||can +
qℓ
P
Bks + Bscale,

where Bscale and Bks are as in Equations (8) and (10), respectively. Decryption,
and thus key switching, is correct as long as ||ν||can < qℓ

2cm
− qℓ

P Bks − Bscale.
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GHS-RNS Variant For the RNS variant of GHS, we set P =
∏k

j=1 Pj such that
Pi ≡ 1 mod m and extend δ from P to qℓ (see Equation (9)). Additionally, we
extend c2 from qℓ to Qℓ. We analyze the noise growth in Section 3.

Hybrid Variant The Hybrid variant combines the BV and GHS variants [19]. In
the following, we use the same notation from the variants as before.

KeySwitchGenHybrid(s, s2)

Receive secret key s2 and secret key target s.
Sample a← U l

QL
, e← χl

e.
Output key switching key

ksHybrid = (ksHybrid0 , ksHybrid1 ) ≡ (−a · s+ te+ P Pβ(s
2),a) (mod QL).

KeySwitchHybrid(ksHybrid, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksHybrid.
For c0 + c1 · s+ c2 · s2, switch key with

c′ ≡ (Pc0 + ⟨Dβ(c2), ks
Hybrid
0 ⟩, P c1 + ⟨Dβ(c2), ks

Hybrid
1 ⟩) mod Qℓ.

Set δ = t[−c′t−1]P , modulus switch back with

c′′ =
1

P
(c′ + δ) (mod qℓ).

Output (c′′, ℓ, νHybrid
ks ).

Correctness follows by combining the proofs of each variant. The bounds also
follow similarly, since before to scale down we have ν′ = νP + βlBks, where Bks

is as an Equation (10). Thus, the error after the modulus switching procedure
is bounded by qℓ

Qℓ
||ν′||can + Bscale, that is,

||νHybridks ||can ≤ ||ν||can +
β
√
logβ(qℓ)

P
Bks + Bscale,

where Bscale is defined as Equation (8).

Hybrid-RNS Variant. The Hybrid-RNS variant combines the RNS adaptations
of each variant. However, instead of decomposing with respect to each single
RNS prime, we group the primes into ω chunks of (at most) size l =

⌈
L
ω

⌉
and do

not apply the decomposition to the base β. Hence, we set q̃i =
∏il+l−1

j=il pj and
define Dq̃i and P q̃i as

Dq̃i(α) =

[α( qℓ
q̃0

)−1
]
q̃0

, . . . ,

[
α

(
qℓ
q̃l−1

)−1
]
q̃l−1


P q̃i(β) =

([
β
qℓ
q̃0

]
qℓ

, . . . ,

[
β

qℓ
q̃l−1

]
qℓ

)
.
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We now have to extend c2 from each q̃i to Qℓ instead. We analyze the noise
growth in Section 3.

3 Improving the Parameter Generation Process

In this section, we provide our improvements to the parameter generation pro-
cess. First, we offer new bounds for modulus switching and key switching in the
DCRT representation. These bounds enable correct analysis for essential BGV
operations, such as rotations supporting different methods for key switching. Af-
terward, we suggest an improvement to circuit models in general and define new
circuit models. We analyze these models with our newly improved bounds and
provide closed formulas to compute the individual primes. Finally, we introduce
the empirically derived, closed security formula for our parameter generator and
shortly describe the generator itself.

3.1 Modulus Switching

For modulus switching, we can either scale by a single modulus or by multiple
moduli. When scaling by a single modulus, the bound Bscale is as in Equation (8).

When scaling by ȷ > 1 moduli, however, we have to adjust our bound due to
the base extension of t[−ct−1]qℓ/qℓ′ from qℓ/qℓ′ to qℓ′ with ℓ′ = ℓ− ȷ.

Let [c0 + c1 · s]qℓ = c0 + c1 · s − κqℓ for some κ ∈ Z. For the same κ, let
[c′0 + c′1 · s]qℓ′ = c′0 + c′1 · s− κqℓ′ , then

[c′0 + c′1 · s]qℓ′ = c′0 + c′1 · s− κqℓ′

=
qℓ′

qℓ
(c0 + c1 · s+ δ0 + δ1 · s)− κqℓ′

=
qℓ′

qℓ
([c0 + c1 · s]qℓ + δ0 + δ1 · s).

Considering Equation (9), we extend each δi as

δi = tBaseExt(−cit−1,
qℓ
qℓ′

, qℓ′) = t

ℓ∑
i=ℓ′+1

[
−cit−1 pi

qℓ/qℓ′

]
pi

qℓ/qℓ′

pi
(mod qℓ′)

Then, the variance Vδi follows as

Vδi = t2ȷVpi

(qℓ/qℓ′)
2

p2i
= t2ȷ

(qℓ/qℓ′)
2

12
.

Thus, we introduce a factor of ȷ compared to the non-extended variance of δi
and the correct bound follows as ||νms||can ≤ qℓ′

qℓ
||ν||can +

√
ȷBscale.
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3.2 New DCRT Bounds for Key Switching

For the BV-RNS variant, Dpi
decomposes to each individual modulus and the

key switching is bound by

||νBV−RNS
ks ||can ≤ ||ν||can + ||t⟨Dpi

(c2), e⟩||can

≤ ||ν||can +
√
ℓ+ 1max(pi)Bks.

Assuming pi < pj for i < j, this simplifies to

||νBV−RNS
ks ||can ≤ ||ν||can +

√
ℓ+ 1pℓBks.

Applying the additional decomposition Dβ results in our final bound

||νBV−RNS
ks ||can ≤ ||ν||can +

√
l + 1β

√
logβ pℓBks.

For the GHS-RNS variant, we have two additional errors from the base exten-
sion: once for extending c2 from qℓ to Qℓ and once for extending δ from P to Qℓ.
When extending c2 and multiplying with the key switching key, this results in

c′0 + c′1s ≡ Pc0 + (c2 + qℓu) · ks0 + (Pc1 + (c2 + qℓu) · ks1)s (mod Qℓ)

≡ P [c0 + c1s+ c2s
2]qℓ + t(c2 + qℓu)e (mod Qℓ)

increasing the noise to ||ν′||can ≤ P ||ν||can +
√
ℓ+ 1qℓBks. When extending δ,

the additional noise behaves as equivalent to our modulus switching analysis.
Thus, for P =

∏k
j=1 Pj , we get a factor of

√
k and overall

||νGHS−RNS
ks ||can ≤ ||ν||can +

√
ℓ+ 1

qℓ
P
Bks +

√
kBscale.

For the Hybrid-RNS variant, we can combine our previous analyses. However,
we again have to adjust because we decompose the ciphertext modulus into ω
products q̃ and not necessarily to each individual RNS prime. The fast base
extension takes place before the dot product, for an upper bound we now consider
max q̃i instead of max qi leading to

||νHybrid−RNS
ks ||can ≤ ||ν||can +

√
ω(ℓ+ 1)

max(q̃i)

P
Bks +

√
kBscale.

If we again assume pi < pj for i < j, this simplifies to

||νHybrid−RNS
ks ||can ≤ ||ν||can +

√
ω(ℓ+ 1)

p
⌈ℓ/ω⌉
ℓ

P
Bks +

√
kBscale.

3.3 Modeling the Homomorphic Circuit

We generally split the homomorphic circuit into levels and reduce the ciphertext
noise to a base level B using modulus switching. The multiplicative depth M
determines the modulus count L = M + 1, which can be split into three types:
top, middle, and bottom modulus.
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– The top modulus pL−1 is the first modulus in the prime chain. Before any
operation, we reduce the fresh encryption noise Bclean down to the base noise
B using modulus switching. We continue in level L − 2 with the middle
modulus.

– The middle modulus pℓ at level 1 ≤ ℓ ≤ L − 2 reduces the noise back to
B after the arithmetic operations as defined by the model (see below) using
the modulus switching procedure. This reduces the modulus from qℓ to qℓ−1

until the last modulus q0 = p0.

– For the bottom modulus p0, we can still perform all arithmetic operations
within our model. However, we do not scale down to B. Instead, this modulus
is large enough to perform decryption correctly. Instead of performing a
key switching including modulus switching for the final multiplication, we
decrypt right after this multiplication using sk and sk2, reducing the overall
amount of operations that are performed.

This work studies the circuit models depicted in Figure 1. After the initial
modulus switching, we operate on η ciphertexts ci in parallel. In our Model 1, we
perform one constant multiplication followed by τ rotations. Finally, the cipher-
texts are accumulated and used as input to one multiplication before modulus
switching is applied. In Model 2, we switch the rotations and constant multipli-
cations, corresponding to the worst possible noise growth. For τ = 0, we refer to
the model as Base Model and provide separate formulas as it simplifies analysis
and thus also reduces the ciphertext modulus size. For comparison with previous
work, we also define the model as used in the OpenFHE library [6, 23]. For the
OpenFHE model, the multiplication is before the circuit with an input noise of
B2 for each ci. Note that within our models, all parameters can be chosen as
required by the use case.

c1 . . . cη

+

c

α0 αη

Base Model

c1 . . . cη

+

α0

rot

rot

αη

rot

rot

τ

c

Model 1

c1 . . . cη

+

rot

rot

α0

rot

rot

αη

τ

c

Model 2

c1 . . . cη

+

rot

rot

c

OpenFHE Model

Fig. 1. Our analysis models are depicted as circuits.
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3.4 Determining Modulus Sizes

In the following, we determine the modulus size by computing bounds for the
individual primes in the modulus chain. Based on our models, we assume that
after each level, we apply modulus switching to go down to a certain noise level
B. Given the top modulus, we scale down to B right after the encryption. With
the middle modulus, we scale down the level noise back to B after each level.
Finally, with the bottom modulus, we perform our leveled computation followed
by the decryption.

Middle Modulus. We describe our approach by first analyzing the middle
modulus pℓ in the base model: considering η ciphertexts ci with a starting noise of
B, we apply a constant multiplication, thus the noise increments to BconstB, and
add up all the ciphertexts, increasing the noise to ηBconstB. When multiplying
two ciphertexts within this model, the noise after the multiplication grows to
(ηBconstB)2.

We conclude the level by applying a key switching for the multiplication,
increasing the noise by νks, as well as a modulus switching which scales the noise
back down. This results in the inequality

(ηBconstB)2 + νks
pℓ

+ Bscale < B (11)

where the key switching noise νks depends on the key switching method with

νks = f0Bks +
√
f1Bscale (12)

and

f0 =



β
√
logβ qℓ for BV√

ℓ+ 1β
√
logβ pℓ for BV-RNS

qℓ/P for GHS√
ℓ+ 1qℓ/P for GHS-RNS

β
√
logβ qℓ/P for Hybrid√

ω(ℓ+ 1)p
⌈L/ω⌉
ℓ /P for Hybrid-RNS

and f1 =



0 for BV

0 for BV-RNS

1 for GHS

k for GHS-RNS

1 for Hybrid

k for Hybrid-RNS

.

We similarly model the noise growth in the other models, resulting in the
inequalities

η2(BconstB + τνks)
2 + νks

pℓ
+ Bscale < B for our model 1,

η2B2
const(B + τνks)

2 + νks
pℓ

+ Bscale < B for our model 2, (13)

ηB2 + (τ + 1)νks
pℓ

+ Bscale < B for the OpenFHE model.

Solving these inequalities then determines a value for B and the sizes of our
middle moduli pℓ. In the following, we use ε = ηBconst and ξ = ε2 to simplify
notation. If constant multiplications are not required, we set Bconst = 1.
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Top Modulus. For the top modulus, we simply want to reduce the encryption
noise to B using the modulus switching, hence we set

Bclean

pL−1
+ Bscale < B ⇐⇒ pL−1 >

Bclean

B − Bscale
. (14)

Bottom Modulus. For the bottom modulus p0 = q0, we do not apply the key
switching for the multiplication or the modulus switching afterward while still
allowing the computations as defined in the respective circuit models. To ensure
correct decryption, we require that ||ν||∞ ≤ cm||ν||can < q0/2. For our models,
this results in the following bounds for the bottom modulus:

p0 > 2cm(ηBconstB)2 for our base model,

p0 > 2cmη2(BconstB + τνks)
2 for our model 1,

p0 > 2cmη2B2
const(B + τνks)

2 for our model 2, (15)

p0 > 2cmηB2 + τνks for the OpenFHE model.

Thus, we simply choose each bottom modulus larger than the corresponding
bound in the respective model.

3.5 Computing the Noise Bound B

In the following, considering the different key-switching procedures, we deter-
mine the bound B required to select the size of our individual moduli in the
modulus chain. We apply our method exemplary to Model 2 with the worst-case
noise growth. The same techniques can, however, be applied to simpler models
as well.

Note that for GHS and Hybrid key switching as well as its RNS variants,
we can merge the key switching with the modulus switching and directly switch
down to a smaller modulus, that is, from Qℓ to qℓ−1 decreasing the noise by
qℓ−1/Qℓ = 1/(Ppℓ). Including this optimization, in the specific case of GHS and
Hybrid key switching, we have to adjust Equation (13) for Model 2 to

η2B2
const(B + τνks)

2 + f0Bscale

pℓ
+
√
f ′
1Bscale < B (16)

where

f ′
1 =

{
1 for GHS, and Hybrid

k + 1 for GHS-RNS, and Hybrid-RNS.

BV key-switching. To compute the noise bound B we have to consider the
Equation (13). Note that, since the pℓ’s have roughly the same size, fBV

0 ∼
fBV−RNS
0 . Indeed, fBV

0 = β
√

logβ qℓ ∼ β
√
(ℓ+ 1) logβ(pℓ). Since logβ(pℓ) ≤

log2(pℓ), we can set

f0 = fBV
0 = fBV−RNS

0 = β
√

(ℓ+ 1) log2(pℓ).
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Moreover, for pℓ big enough, we have that f0Bks/pℓ ∼ 0. Then, Equation (13)
becomes

ξB2

pℓ
+
(2ξτf0Bks

pℓ
− 1
)
B +

(ετf0Bks)
2

pℓ
+ Bscale < 0.

Because of the previous inequality, in the indeterminate B, must have a positive
discriminant, we have

1− 4ξτf0Bks

pℓ
− 4ξBscale

pℓ
≥ 0 ⇐⇒ pℓ > 4ξ(τf0Bks + Bscale). (17)

Thus we can set

p1 ∼ . . . ∼ pL−2 ∼ 4ξ(3τβ
√

(L− 1) log2(tϕ(m))Bks + Bscale), (18)

Indeed, considering pℓ as in Equation (18), the Equation (17) holds. Moreover,
since the discriminant ∼ 0, we have

B ∼ 1

2ξ/pℓ
∼ 2(3τβ

√
(L− 1) log2(tϕ(m))Bks + Bscale). (19)

where β ≥ 2 .
We can now compute the bottom modulus p0 starting from Equation (15).

This equation becomes z > εB + ετωBks

√
logω(2cmz2) where z =

√
q0/2cm,

i.e., q0 = 2cmz2. Since
√

logω(2cm) +
√
2 logω z >

√
logω(2cmz2), it is enough

to prove that

z > εB + ετωBks

(√
logω(2cm) +

√
2 logω z

)
(20)

We claim that this inequality holds for z = 2εB. Indeed, Equation (20) becomes

εB

ετωBks
−
√
logω(2cm) >

√
2 logω(2εB).

Since B is as in Equation (19), then 2εB < B3
ks, so the previous inequality holds

since

2
√
L− 1 logω(Bks) +

2Bscale

τωBks
>
√

6 logω(Bks) >
√
2 logω(2εB).

Namely, p0 > 8cmξB2.

Base Model. When τ = 0, Equation (13) becomes

ξB2/pℓ + β
√
(ℓ+ 1) log2(pℓ)Bks/pℓ + Bscale < B.

Following the same argument as before, we must have a positive discriminant
and thus we have p1 ∼ . . . ∼ pL−2 ∼ 4ξBscale, B ∼ pℓ

2ξ ∼ 2Bscale and p0 >

2cmξB2 = 8cmξB2
scale.
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GHS and Hybrid key-switching. Equation (16) becomes

ξB2

pℓ
+ 2ξτ

pℓ

(
f0Bks +

√
f1Bscale

)
B + ξτ2

pℓ

(
f0Bks +

√
f1Bscale

)2
+

f0
pℓ
Bks +

√
f ′
1Bscale < B.

(21)

To solve this inequality in B, we follow the idea of Gentry et al. [19]. Let

Rℓ =
ξτ2

pℓ

(
f0Bks +

√
f1Bscale

)2
+

f0
pℓ

Bks +
√
f ′
1Bscale

Since Rℓ increases with larger ℓ’s, we have to satisfy this inequality for the largest
modulus ℓ = L− 2. Moreover, RL−2 > f1Bscale. Since we want that this term is
as close to Bscale as possible, we have to set f0 ∼ Bscale/KBks, for a large enough
constant K ∈ N (i.e., we can take K ∼ 100). Namely,

P ∼


KqL−2Bks/Bscale for GHS

K
√
L− 1qL−2Bks/Bscale for GHS-RNS

Kβ
√
logβ(qL−2)Bks/Bscale for Hybrid

K
√

ω(L− 1)p
L/ω
L−2Bks/Bscale for Hybrid-RNS.

(22)

Equation (21) becomes

ξB2

pℓ
+ (

2ξτ
√
f1

pℓ
Bscale − 1)B +

ξτ2f1
pℓ

B2
scale +

√
f ′
1Bscale < 0.

Thus, to satisfy this inequality (in B), we again must have a positive discrimi-
nant, that is, 1− 4ξ(

√
f ′
1 + τ

√
f1)Bscale/pℓ ≥ 0. We then have

p1 ∼ . . . ∼ pL−2 ∼ 4ξ(
√
f ′
1 + τ

√
f1)Bscale. (23)

Finally, if we set pℓ as in (23), we have the discriminate equal to zero and we
can find B with

B ∼ (2
√
f ′
1 + τ

√
f1)Bscale. (24)

Now we can compute, the bottom modulus p0, which is the last modulus in
the prime chain, starting from Equation (15). Since P is as in Equation (22),
τνks = τ(f0Bks/P +

√
f1Bscale) ∼ τ

√
f1Bscale and thanks to Equation (24), we

have
p0 > 2cmξ

(
B + τνks)

2 ∼ 8cmξ
(
(
√

f ′
1 + τ

√
f1)Bscale

)2
. (25)

Base Model. For the base model with τ = 0, Equations (23) to (25) are as before,
instead P as in Equation (22) can be decrease to either

KqL−3Bks/Bscale in the GHS case

or
KqL−3

√
L− 2Bks/Bscale for GHS-RNS.

Indeed, Rℓ changes to either qℓ−1

P Bks+fks
1 Bscale (GHS) or qℓ−1

√
L−2

P Bks+fks
1 Bscale

(GHS-RNS) (see also [19] for the specific case when τ = 0 and Bclean = 1).
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The Key Switching Modulus P The biggest modulus for GHS and Hybrid
key-switching is Q = PqL−1, where qL−1 = q = p0pL−1

∏L−2
ℓ=1 pℓ is the the

ciphertext modulus and the value of P is summarized in Table 1.

ks RNS Case P

GHS

−
τ ̸= 0 KqL−2

Bks
Bscale

τ = 0 KqL−3
Bks
Bscale

✓
τ ̸= 0 KqL−2

√
L− 1 Bks

Bscale

τ = 0 KqL−3

√
L− 2 Bks

Bscale

− any Kβ
√

logβ(qL−2)
Bks
Bscale

Hybrid

✓ any K
√

w(L− 1)p
L/ω
L−2

Bks
Bscale

Table 1. The key switching modulus P .

From Table 1, one can also see that the hybrid key switching provide smaller P ,
whereK ∈ N is a large enough constant (i.e., we can takeK ∼ 100), Bconst, Bclean,
Bscale and Bks as in Equations (6) to (8) and (10), respectively.

Modulus Size for Power-of-Two Cyclotomics In Tables 2 and 3, we sum-
marize the moduli size considering Φm(x) = xn + 1 and n = 2κ (and so m = 2n
and ϕ(m) = n) in the case of Base Model and Model 2 depicted in Figure 1, re-
spectively. We denoted by G/H, the GHS, and the Hybrid key-switching variant
without RNS, respectively. It is worth noting that in the case of G/H-RNS, we
approximate τ

√
k + 2

√
k + 1− 1 ∼

√
k(τ + 2).

p0 pℓ pL−1

8kξB2
scale 4

√
kξBscale Bclean/(2

√
k − 1)Bscale G/H-RNS

8ξB2
scale 4ξBscale Bclean/Bscale else

Table 2. Base Model, namely, case with τ = 0.
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p0

32η2B2
const

(
3τβ

√
(L− 1) log2(tϕ(m))Bks + Bscale

)2
BV

8 (η(τ + 1)BconstBscale)
2 G/H

8k (η(τ + 1)BconstBscale)
2 G/H-RNS

pℓ

4η2B2
const

(
3τβ

√
(L− 1) log2(tϕ(m))Bks + Bscale

)
BV

4η2(τ + 1)B2
constBscale G/H

4η2
√
k(τ + 1)B2

constBscale G/H-RNS

pL−1

Bclean

/(
6τβ

√
(L− 1) log2(tϕ(m))Bks + Bscale

)
BV

Bclean/(τ + 1)Bscale G/H

Bclean

/√
k(τ + 2)Bscale G/H-RNS

Table 3. Modului size for power-of-two polynomial in the case of Model 2.

3.6 Parameters Specification

In Table 4 we summarize all the parameters specification, where, we recall that
qℓ =

∏ℓ
j=0 pj for any level 0 ≤ ℓ ≤ L− 1 and, for the RNS variant of GHS and

Hybrid, we have P =
∏k

j=1 Pj .

t ≡ 1 mod m for CRT
gcd(t, q) = 1 for security reason
Pi and pj small primes for RNS
pj ≡ 1 mod m and Pi ≡ 1 mod m for efficient NTT
pℓ roughly of the same size with 1 ≤ ℓ ≤ L− 2

Table 4. Required parameter specification

Moreover, for the scaling procedure (see Section 2.5), one can choose

pi ≡ 1 mod t and P ≡ 1 mod t.

3.7 Security Analysis

In previous works, Costache and Smart [11], following Gentry et al. [19] anal-
ysis, used the security formula by Lindner-Peikert [24], that is log tBKZ(δ0) =
1.8/ log δ0 − 110. Lindner and Peikert’s estimation has a few inaccuracies [2]
and turns out to be too optimistic. Thus, Costache et al. [12] propose param-
eters according to the Homomorphic Encryption Standard [4] for a uniformly
distributed ternary secret and λ = 128.

To enable a more flexible and faster parameter selection, we propose an
empirically derived formula linking the security level λ with the dimension n for
a given ciphertext modulus size (log q). This enables a fast security estimate for
parameter generation. Let us consider a full-rank lattice L. We know that the
shortest vector of L has norm ||b1|| = δk0q

n/k (see Equation (4)). To perform
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lattice reduction on L, the LWE attacker has to choose the number of samples
M , namely the subdimension, such that ||b1|| = δM0 qn/M is minimized.

Micciancio and Regev [28] showed that this minimum is obtained when M =√
n log q/ log δ0. We can suppose that we should reduce the basis enough so that
||b1|| = q. This implies that log q = log(δM0 qn/M ) = 2

√
n log q log δ0, that is

n = log q/(4 log δ0). (26)

Substituting Equation (26) in Equation (5), we have a bound linking λ, n.
Then, we do the following:

1. We run the Lattice Estimator [5] for the dimensions n = 2k as well as the se-
cret distribution χs = U3 and χs = χe. We choose k ∈ {10, . . . , 15} following
the Homomorphic Encryption Standard [3]. Generating this necessary data,
especially for higher degrees, is computationally intensive. For log q = 600
and n = 215 for example, it takes roughly 2.5h to evaluate the security for
three attacks.

2. Starting from the theoretical bound linking λ, n, and q, we find a param-
eterized function that follows the data points generated with the lattice
estimator.

3. Finally, we model the resulting formula with coupled optimization to find
the best constants. To ensure that our model provides accurate estimations
of security levels, we place constraints on the selection of constants. Specif-
ically, we instructed the model to choose constants such that the resulting
output slightly underestimates the security level rather than overestimating
it. This ensures that we maintain a high degree of confidence in the estimated
model (see Table 6) while avoiding potential false assurances that could have
resulted from overestimation.

Using this process, the resulting function is

λ ≈ − log

(
A log q

n

)
Bn

log q
+C

(
log q

n

)D

log

(
n

log q

)
(27)

with constants

A = 0.0508 B = 0.326 C = 17.88 D = 0.647 if χs = U3 and
A = 3.87 B = 0.74 C = 12.72 D = 0.17 if χs = χe.

3.8 A Parameter Generator for BGV

The parameter generator for BGV provides an accessible way to our theoretical
work. Most importantly, developers can use the generator and receive a simple
code example for state-of-the-art libraries. The generator itself is written in
Python and it is publicly available on GitHub4.

4 https://github.com/Crypto-TII/fhegen
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Supporting Arbitrary Circuit Models. Although we only theoretically analyze
some circuit models in our work, the generator itself is easily extendable to
arbitrary circuit models that an advanced user can compose by themself. This,
however, requires a simplification of the key switching bound for each variant, as
we otherwise have circular dependencies on the size of the moduli in the prime
chain.

We take a straightforward and practical-oriented approach: We assume a
bound on pℓ ≤ 2b, per default 2b = 2128, and extrapolate the bound to qℓ as
2Lb. For the BV, BV-RNS, and Hybrid variants, we fix β and ω, per default
as β = 210 and ω = 3. For the extension modulus P , we choose a constant
K, per default K = 100. Then, we set P = K2Lb for the GHS and GHS-RNS

variants, P = Kβ
√

logβ 2
Lb for the Hybrid variant and P = K

√
ωL(2b)⌈L/ω⌉

for the Hybrid-RNS variant. We can now easily compose different circuit models
using these constant bounds and solve the inequalities for B programmatically
by finding the local minimum in the interval [0, 2b].

Using the Parameter Generator. An interactive mode prompts the user with
several questions for required and optional inputs. We list the required inputs in
the first part and optional inputs in the second part of Table 5. After providing
all the required information, the user receives the output in text form and, if
the library option is chosen, the generated code. The output for the ciphertext
modulus contains the bound on the ciphertext modulus itself as well as the
bounds for the bottom, middle and top modulus, respectively. The generated
code is a setup routine for the chosen library and provides references to further
code examples within the respective library.

Model 'Base', 'Model1', 'Model2', 'OpenFHE'
t or log t any integer ≥ 2
λ or m any integer ≥ 40 or ≥ 4, respectively
M , η any integer > 0
τ any integer ≥ 0
Library 'None', 'OpenFHE', 'PALISADE', 'SEAL'

Full Batching full batching with t, 'True' or 'False'
Secret Distribution 'Ternary', 'Error'
Key Switching 'Hybrid', 'BV', 'GHS'
β any integer ≥ 2
ω any integer ≥ 1

Table 5. Required and optional inputs to the parameter generator

Limitations. Due to the internal workings of the libraries, we cannot guarantee
that all parameter sets work. For example, OpenFHE supports only a plaintext
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modulus of up to 60 bits. Thus, choosing a larger plaintext modulus will result
in non-working code. However, we are happy to work with the community to
integrate checks on these constraints as users encounter them.

4 Results

In the following, we compare our security formula as well as our bounds theo-
retically and practically to previous work.

4.1 Security Parameter Evaluation

In Table 6, we compare the security levels provided by our formula with the Lat-
tice Estimator and the LP model. For the LP model, we use λ ≤ 7.2n/ log q−78.9,
substituting Equation (26) in the LP formula, where the run-time is expressed in
units of computation rather than seconds. Our formula yields estimations very
close to those computed using the Lattice Estimator, whereas those computed
using the LP method tend to overestimate the security level in almost every
case. It is worth noting, however, that as shown in Table 6, the accuracy of our
estimation decreases slightly as n increases.

In Figure 2, we provide a visualization of the formula together with the
original data points by the Lattice Estimator for the secret distribution U3.

Fig. 2. The security formula with data points of the Lattice Estimator for χs = U3.

Note that for the GHS and Hybrid key switching variants, we have to consider
the bigger modulus size logQ = log qP to evaluate security.
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n = 210 n = 213

log q Estimator Our Work LP log q Estimator Our Work LP

16 221 222 382 114 258 252 438
18 195 195 331 147 193 192 322
19 184 184 244 148 192 190 320
25 137 137 216 210 131 131 202
26 132 132 216 214 128 128 197
27 127 127 216 215 127 127 195
30 114 114 167 270 101 101 139
35 97 97 132 300 91 91 118
42 80 81 97 340 80 80 95
43 79 79 93 344 79 79 93

n = 211 n = 214

28 258 257 447 230 257 250 434
29 248 247 429 231 255 248 432
35 202 201 342 293 195 192 324
36 196 195 331 297 192 189 318
37 190 190 319 298 191 188 317
53 129 129 199 400 138 138 216
54 126 127 194 429 128 128 196
85 80 80 95 430 128 127 195
86 79 79 93 680 81 80 94

n = 212 n = 215

56 261 257 448 400 303 291 511
57 256 252 438 460 258 250 434
58 251 247 430 586 196 192 324
73 194 193 325 598 192 188 317
74 191 190 320 850 131 129 199
107 128 128 197 859 129 128 196
108 126 127 194 870 128 126 192
170 80 80 95 871 127 126 192
171 79 80 93 1300 86 84 103
172 79 79 93 1400 80 78 89

Table 6. Comparison between the security level provided by our formula, the Lattice
estimator, and the LP model with secret distribution U3.
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4.2 Parameter Generation

We now compare our bounds theoretically with Kim et al. [23], who use the
infinity norm, and practically with the implementation of their theoretical work
in OpenFHE [6].

Comparing our bounds theoretically, we use the ring expansion factor δR =
ϕ(m) for the infinity norm. Here, our results are up to 20% better for the bottom
modulus and up to 42% better for the middle modulus (see also Figure 3),
reducing the size of the full ciphertext modulus significantly. Our better results
for the top modulus on the other hand do not have any effect in practice as for
NTT compatibility, we have to choose each modulus p > m anyway.

For an actual application of the bounds, Kim et al. [23] suggest using the
expansion factor δR = 2

√
ϕ(m) instead of δR = ϕ(m) as the probability of the

latter is exponentially low and the former is closer to observations in practice
[20]. The parameter generation in OpenFHE also uses this heuristic expansion
factor. Interestingly enough, this generates moduli sizes that are very similar
compared to our bounds based on the purely theoretical approach with the
canonical embedding norm. However, in the middle moduli, which for increasing
multiplicative depth is dominating the overall modulus size, we still perform
better than the heuristic bound with the infinity norm.

For the security level λ = 128, the plaintext modulus t = 216 + 1, secret
key distribution χs = U3, and D = 6, we map our results in the OpenFHE
model without any rotations, that is τ = 0, and compare them with the results
of OpenFHE theoretically in Figure 3, that is with δR = d, and practically in
Figure 4, that is for δR = 2

√
d. For a fair comparison of p0, we used p0p1 for

OpenFHE as their model does not allow any operations in the last level compared
to our bottom modulus.
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Fig. 3. Comparison of theoretical prime sizes across multiplicative depths M with
λ = 128 and t = 216 + 1 for OpenFHE and our parameter generation.
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Fig. 4. Comparison of practical prime sizes across multiplicative depths M with λ =
128 and t = 216 + 1 for OpenFHE and our parameter generation ( is matching).

5 Conclusion

Choosing parameters such as the polynomial degree or the ciphertext modulus
is challenging for BGV and requires an in-depth analysis of the noise growth
for each operation. Use-case-specific aspects, such as the order of operations,
impact noise growth, further increasing the challenge with parameter generation.
Additionally, the generated parameter sets have to be secure with respect to the
underlying RLWE assumption, requiring good lower bounds on the ciphertext
modulus.

In this work, we improve the parameter generation across all steps of its
process. First, we extend previous analyses bringing together the DCRT repre-
sentation and the canonical embedding norm and improving upon the existing
state-of-the-art. Using these bounds, we proposed new circuit models, including
essential BGV operations such as constant multiplication or rotations. Addition-
ally, we provide an empirically derived, closed formula to estimate the security
for a given parameter set based on coupled optimization for different secret key
distributions. Finally, we combine our theoretical research and implement our
results in an interactive parameter generator for BGV, which outputs easy-to-
use code snippets for the state-of-the-art libraries OpenFHE, PALISADE, and
SEAL.

Acknowledgements We want to thank Anna Hambitzer for her helpful comments
on coupled optimization.
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