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Abstract

Regev’s Learning with Errors (LWE) problem (STOC 2005) is a fundamental hardness assump-
tion for modern cryptography. The Learning with Rounding (LWR) Problem was put forth by
Banerjee, Peikert and Rosen (Eurocrypt 2012) as an alternative to LWE, for use in cryptographic
situations which require determinism. The only method we currently have for proving hardness of
LWR is the so-called “rounding reduction” which is a specific reduction from an analogous LWE
problem. This reduction works whenever the LWE error is small relative to the noise introduced
by rounding, but it fails otherwise. For this reason, all prior work on establishing hardness of LWR
forces the LWE error to be small, either by setting other parameters extremely large (which hurts
performance), or by limiting the number of LWR samples seen by the adversary (which rules out
certain applications). Hardness of LWR is poorly understood when the LWE modulus (q) is polyno-
mial and when the number of LWE samples (m) seen by the adversary is an unbounded polynomial.
This range of parameters is the most relevant for practical implementations, so the lack of a hardness
proof in this situation is not ideal.

In this work, we identify an obstacle for proving the hardness of LWR from LWE in the
above framework when q is polynomial and m is an unbounded polynomial. Specifically, we show
that any “pointwise” reduction from LWE to LWR (i.e., any reduction which maps LWE samples
independently to LWR samples) admits an efficient algorithm which directly solves LWE (without
the use of an LWR solver). Consequently, LWE cannot be reduced to LWR in our pointwise reduc-
tion model with our setting of q and m, unless LWE is easy. Our model of a pointwise reduction
from LWE to LWR captures all prior reductions from LWE to LWR except the rejection sampling
reduction of Bogdanov et al. (TCC 2016); while their reduction still operates in a pointwise manner,
it can reject an LWE sample instead of mapping it to an LWR sample. However we conjecture that
our result still holds in this setting.

Our argument proceeds roughly as follows. First, we show that any pointwise reduction
from LWE to LWR must have good agreement with some affine map. Then, we use the affine
agreement of a pointwise reduction together with a type of Goldreich-Levin “prediction-implies-
inversion” argument to extract the LWE secret from LWE input samples. Both components may be
of independent interest.
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1 Introduction
Regev’s learning with errors (LWE) problem [Reg05] is fundamental for modern cryptography due to
its versatility and strong security guarantees. LWE asks an algorithm to solve a random noisy linear
system of equations mod q: given integers n, q,m, an “error” distribution χ on Zq and a uniform
s „ Znq , recover s given samples

 

pai, bi “ xai, sy ` eiq
(

Ă
`

Znq ˆ Zq
˘m
, (1)

where the ai are drawn uniformly from Znq and the ei are drawn according to χ. It is known that
when q is sufficiently large compared to n, there are error distributions which make solving LWE effi-
ciently given any number of samples as hard as solving computational problems on lattices in the worst
case [Reg05, Pei09, BLP`13]; such problems are conjectured to be hard even for quantum computers.
In addition to the strong hardness guarantees, LWE has proven to be extremely useful for cryptography.
Since its introduction, an immense research effort has established LWE-based constructions for most
known cryptographic primitives (e.g., [GPV08, ACPS09, BGV11, MP12, GSW13, PS19] and many,
many more).

The randomness inherent to the LWE problem (i.e., the randomness used to draw the ei „ χ)
precludes straightforward constructions of certain cryptographic primitives which require determinism,
such as PRFs. Banarjee, Peikert and Rosen [BPR12] introduced the learning with rounding (LWR)
problem in order to overcome this obstacle. LWR asks an algorithm to solve a random linear system
with “deterministic noise”: given n, p, q,m with p ă q and a uniform s „ Znq , recover s from

 

pai, bi “ txai, syspq
(

Ă
`

Znq ˆ Zp
˘m
, (2)

where each ai „ Znq and where t¨sp : Zq Ñ Zp is the function which, given x P Zq, outputs the nearest
integer to px{q. Since its introduction, LWR has been used in numerous works to give cryptographic
constructions where determinism is mandatory (e.g., [BPR12, BLL`15, BV15], and more).

Hardness of LWR is established via the following reduction from LWE: given an LWE sample
pa, bq P ZnqˆZq, round the second value and output pa, tbspq P ZnqˆZp. In [BPR12], it is shown that this
reduction is valid whenever q{p “ nωp1q (n the security parameter), and so establishes hardness of LWR
for this parameter regime. In practice we would like to be able to use small q as this lends itself better
to efficient implementations. So establishing hardness for LWR in the “polynomial modulus” setting,
where q “ polypnq, was an important open problem left by [BPR12]. This direction was pursued in the
follow-up works [AKPW13, BGM`16, AA16] where it is shown that if the number of LWR samples
given to the solver (i.e., m) is bounded, then the correctness proof of the above reduction goes through
and one can establish hardness of LWR with polynomial modulus in the “bounded sample” setting.
This is good enough for some cryptographic applications [AKPW13], but not for all, e.g., PRFs.

The problem with the above reduction when q{p is small is that the error in the LWE sample might
cause the rounding function to make a mistake. The reason for this is that the “threshold points” of the
rounding function1 t¨sp : Zq Ñ Zp have density p{q in Zq, and so when q{p ! m, some of the ai’s
chosen will be such that their secret inner product xai, sy is close to a threshold point. Whenever this
occurs, the reduction will make an error if xai, sy ` ei is on the opposite side of the threshold from
xai, sy. Prior work handles this issue by forcing q{p to be large relative to m (either by setting q{p to
be superpolynomial, or by bounding m).

1By threshold points we mean the half integer multiples of q{p where the rounding function switches from rounding to
adjacent values in Zp.
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Getting a version of the above reduction to yield a hardness proof for LWR in the case when m is
large compared to q{p is challenging because it requires dealing with situations where the LWE error
creates a rounding problem. By definition, a reduction from LWE to LWR is an oracle algorithm which
solves LWE when instantiated with access to any LWR solver, including the pathological LWR solver
who aborts whenever it sees a rounding error. Specifically, suppose S is an algorithm which takes m
LWR samples

 

pai, b
1
iq
(

Ă ZqˆZp, (somehow) recovers the hidden secret s, then scans the m samples
to make sure that b1i “

X

xai, sy
T

p
for all i, aborting if it finds an error, outputting s otherwise. It is clear

that S will solve LWR when it is given true LWR samples, however in order for the reduction to make
use of S’s solving power to solve LWE, it must produce m LWR samples without making an error. This
is the core challenge in proving hardness of LWR with polynomial modulus and unbounded samples.

1.1 Our Contribution
In this work we convert the above difficulty into a lower bound for proving hardness of LWR with
polynomial modulus and an unbounded number of samples via reductions from LWE. Our barrier
applies to any “pointwise” reduction from LWE to LWR, i.e., any function f : Znq ˆ Zq Ñ Znq ˆ Zp.
This includes and broadly extends the reduction pa, bq ÞÑ pa, tbspq mentioned above. The starting
observation for our work is that any pointwise reduction f which works in this parameter regime must
implicitly be able to handle the “problematic” LWE pairs which are close to a rounding threshold.
What we prove is essentially that f ’s understanding of how to handle these threshold samples can be
extracted in the form of knowledge about the LWE secret. Our main theorem is the following.

Theorem 1 (Informal). Let n, q, p P N be integers such that q “ polypnq is prime and such that
q2{3`c ă p ă q for a small constant c ą 0. Let χ be an error distribution on Zq. Suppose an efficient
function f : Znq ˆ Zq Ñ Znq ˆ Zp is a pointwise reduction from LWEn,q,χ to LWRn,q,p. Then f can be
used to design an efficient algorithm which solves LWEn,q,χ.

The Hypotheses of our Theorem. We view the requirements that q be prime and especially that
q2{3`c ă p as shortcomings of our work, and we believe it should be possible to improve our result to
remove these extra hypotheses. Our proof requires q to be prime so that linear algebra works on the
set Znq . The lower bound on p comes from one place in the proof where we use two LWE samples
pa0, b0q, pa1, b1q P Znq ˆ Zq to generate three LWR samples:

pa10, b
1
0q “ fpa0, b0q; pa

1
1, b

1
1q “ fpa1, b1q; pa

1
2, b

1
2q “ fpa0 ` a1, b0 ` b1q P Znq ˆ Zp,

and we require essentially that the three output values b10, b
1
1, b

1
2 P Zp contain more information than

the input values b0, b1 P Zq. We suspect that a different proof technique could be used to improve the
lower bound required of p or remove it altogether. We note however that our result does not require
the amount of LWR “noise” (i.e., q{p) to be small relative to the amount of LWE noise. In particular,
our theorem applies in situations where q{p is much larger than the standard deviation of the discrete
Gaussian used for the LWE noise.

Aborting Pointwise Reductions. Another way to relax the hypotheses of our main theorem would
be to allow f to abort. In this case, the reduction works by applying the aborting pointwise function
f : Znq ˆ Zq Ñ

`

Znq ˆ Zp
˘

Y tKu to all LWE samples, and then invoking the LWR solver on all
“non-bot” outputs. Such “aborting pointwise reductions” were considered in prior work [BGM`16] as
a way to prove hardness of LWR in the polynomial modulus setting assuming hardness of LWE with
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uniform errors (uLWE). The key intuition behind the proof of our main theorem is that it is impossible
for the reduction to correctly produce the LWR distribution given LWE samples because doing this
would require converting the LWE error into the “rectangular” LWR error. In uLWE, the errors are
already rectangular and the only difference between uLWE and LWR is that in uLWE the rectangles
are centered around xa, sy while in LWR they are centered around the rounding points. Bogdanov
et al. [BGM`16] showed that it is possible to fix this “rectangle center discrepancy” using rejection
sampling and obtained an aborting pointwise reduction from uLWE to LWR. An interesting question
is: how much power do we get by allowing the reduction to abort? Does aborting allow transforming
Gaussian LWE errors to the rectangular LWR errors? Or does aborting only allow us to reposition the
centers of the error distribution, and not convert non-rectangular errors to rectangular errors? We tend
to believe that aborting reductions can only translate the errors, and cannot convert non-rectangular
errors into rectangular errors. However, several parts of our proof break down if we allow the function
to abort. We state the following conjecture.

Conjecture 1. Let n, p, q P N be integers such that such that q “ polypnq is prime and 2 ď p ă q. Let χ
be a discrete Gaussian distribution on Zq. Suppose an efficient function f : ZnqˆZq Ñ

`

ZnqˆZp
˘

YtKu

is part of an aborting pointwise reduction from LWEn,q,χ to LWRn,q,p. Then f can be used to build an
efficient algorithm B which solves LWEn,q,χ.

Compared to Theorem 1, Conjecture 1 removes the hypothesis that q2{3`c ă p and allows f to abort,
though focuses in on the case when χ is a discrete Gaussian. We tend to believe Conjecture 1 is true
for any non-rectangular error distribution χ, in which case it combines with (a slight extension of)
Theorem 5 of [BGM`16] to give a dichotomy: if q “ polypnq is prime and if there is an aborting
pointwise reduction from LWEn,q,χ to LWRn,q,p for 2 ď p ă q then either 1) χ is rectangular; or 2) there
is an efficient algorithm which solves LWEn,q,χ.

Extensions of our Reduction Model. One can ask whether our reduction holds for other extensions
of our reduction model. For example, does our theorem hold for pointwise reductions between prob-
lems with different dimensions and moduli (i.e., reductions from LWEn,q,χ to LWRn1,q1,p1)? Furthermore,
our notion of pointwise reductions does not allow the reduction to use two or more LWE samples to pro-
duce an LWR sample. One might hope that a similar theorem to ours would hold for any “k´to´one”
function f :

`

Znq ˆZq
˘k
Ñ Znq ˆZp as long as k is small enough to ensure that s has sufficient entropy

given k LWE samples. Note that if k is large enough so that k LWE samples determine s information
theoretically, then one could imagine a function f which takes k LWE samples, (somehow) recovers s,
and outputs a single LWR sample with secret s. While it feels like such a function is breaking LWE, it
would be hard to prove a theorem like the above since it seems that in order to extract any knowledge
about the LWE secret, one would have to solve LWR.

Interpreting our Result. Our main theorem identifies a barrier to proving the hardness of LWR in
certain practical parameter regimes via reductions from LWE. This explains, to some extent, why this
problem has remained open for so long. Our result does not suggest that LWR is easy. Rather, it speaks
to the fact that the current techniques we have available for deriving hardness from worst-case lattice
problems are inherently probabilistic. Our work indicates that a reduction from a hard lattice problem to
LWR with these parameter settings would be extremely interesting as it would likely contain significant
new ideas.
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1.2 Technical Overview
We now give a summary of our proof of Theorem 1 which says that a pointwise reduction from LWE
to LWR can be used to design an algorithm which solves LWE. The proof consists of three main parts.
First, we derive some basic combinatorial structure about the pointwise function which it must satisfy
if it is to be part of a reduction. Next, building on this basic structure we show that in fact the pointwise
function must very close to an affine function. Finally, we show how to use a pointwise function which
has good affine agreement and which is part of a reduction to directly solve LWE.

Notation. Let n, q, p P N such that q “ polypnq is prime, and q2{3`c ă p ă q, for a small constant
c ą 0. Let χ be an error distribution on Zq. Let f : Znq ˆ Zq Ñ Znq ˆ Zp be part of a pointwise
reduction from LWEn,q,χ to LWRn,q,p (formal definition is in Section 3). If s P Znq , then let LWEs

denote the distribution which chooses a „ Znq , e „ χ, and outputs pa, b “ xa, sy ` eq P Znq ˆ Zq.
Likewise, if s1 P Znq , then LWRs1 draws a1 „ Znq and outputs

`

a1, b1 “ txa1, s1ysp
˘

P Znq ˆ Zp. We write
pa1, b1q P LWRs1 if b1 “

X

xa1, s1y
T

p
. Finally, for m P N, let LWEm (resp. LWRm) be the distribution

which draws s „ Znq (resp. s1 „ Znq ) and outputs m samples from LWEs (resp. LWRs1).

Establishing Basic Combinatorial Structure of f . The key observation which allows us to get
started imposing structure on f is the following: all statistics of the LWR distribution and the out-
put distribution of f (given LWE samples as input) must be the same. Indeed, if there is a statistic
which differs between LWRm and fpLWEmq, we can conceive of a “pathological LWR solver” which
draws enough samples to approximate the statistic, aborting if it decides it is being fed with mapped
LWE samples, solving if it decides it is being fed with true LWR samples.

For example, for all s1 P Znq , clearly, Prpa1,b1q„LWRs1

“

pa1, b1q P LWRs1
‰

“ 1. Thus, if f is a reduction
then the following correctness condition must hold: with non-negligible probability over s „ Znq there
must exist some s1 P Znq such that

Prpa,bq„LWEs

“

fpa, bq P LWRs1
‰

“ 1´ neglpnq.

If not, then consider the “pathological LWR solver” S which, given pa11, b
1
1q, . . . , pa

1
m, b

1
mq P Znq ˆ Zp

statistically recovers s1 P Znq such that pa1i, b
1
iq P LWRs1 for all i “ 1, . . . ,m and outputs s1 (outputting K

if no such s1 P Znq exists). Note, S does indeed solve LWR when fed with samples from LWRm, however
S outputs K with high probability when fed with samples from fpLWEmq. This means that f is not a
reduction since it is unable to make use of S’s LWR solving power. The fact that f induces a mapping
on secrets s ÞÑ s1 (meaning that fpa, bq P LWRs1 holds with high probability over pa, bq „ LWEs)
turns out to be immensely useful, as we will already see throughout the remainder of this overview.
In Section 4, we use analogous “pathological solver” arguments to establish this and several other
combinatorial properties of f which will be useful throughout the remainder of the paper.

Establishing High Affine Agreement of f . After establishing some basic statistics of f , the technical
core of our paper involves proving that f has high agreement with an affine function. More specifically,
we algorithmically recover a matrix H P Znˆnq of rank n ´ Op1q and a constant dimensional vector
space V Ă Znq such that

Prpa,bq„ZnqˆZq

”

a1 P SpanpHaq `V
ı

ě 1´ η,
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for a small parameter η ą 0, where pa1, b1q “ fpa, bq. We prove this in two stages. First, we recover
V Ă Znq of constant dimension such that f passes the following test with high probability.

• Draw pa0, b0q, pa1, b1q „ Znq ˆ Zq.

• Set pa2, b2q “ pa0 ` a1, b0 ` b1q and pa1i, b
1
iq “ fpai, biq P Znq ˆ Zp for i “ 0, 1, 2.

• Pass if a12 P Span
`

ta10, a
1
1u
˘

`V, fail if not.

The idea here is that when f does not pass this test, it is using three linearly dependent relations about
the LWE secret to generate three linearly independent relations about the LWR secret. Either this
behavior must be extremely unlikely, or it must be that the map s ÞÑ s1 mapping s P Znq to s1 P Znq
such that Prpa,bq„LWEs

“

fpa, bq P LWRs1
‰

“ 1 ´ neglpnq is many-to-one, which we show is impossible
in Section 4.

We then prove a property testing-type result showing that any function f which passes this test with
high probability must be close to some linear map in the above sense. For this we use techniques from
the proof of the following “fundamental theorem of projective geometry” which says that any function
h : Znq Ñ Znq which maps lines to lines must be affine.

Proposition 1 (FTPG ´ [Art57], Section 2.10). Let q be a prime and h : Znq Ñ Znq be a function such
that for any one-dimensional line ` Ă Znq , the set hp`q :“

 

fpxq : x P `
(

Ă Znq is also a line. Then h is
affine.

To see the connection between Proposition 1 and our setting, note that high probability of passing the
above test in the simplified setting where V “ t0umeans that f is mapping 2´planes to 2´planes with
high probability. The techniques used in this part of our analysis may be of independent interest.

Solving LWE Using an Affine Reduction. Finally, once we know that f has good affine agreement,
we can use f to recover the LWR secret of the output samples using a Goldreich-Levin-type argument.
Assume for simplicity that a1 “ Ha, rather than a1 P SpanpHaq `V holds with high probability over
pa, bq „ Znq ˆ Zq where pa1, b1q “ fpa, bq. The key point is that if pa1, b1q P LWRs1 also holds with high
probability over pa, bq „ LWEs, then

b1 “
X

xa1, s1y
T

p
“
X

xa,Hts1y
T

p
,

and so b1 allows us to predict the inner product xa,Hts1y with non-negligible advantage over guessing
randomly (simply by drawing x „ Zq such that txsp “ b1). The Goldreich-Levin machinery can then
be used to recover Hts1, which will allow recovering s1 with non-negligible probability since H has
nearly full rank.

Putting Everything Together. Suppose when playing the distinguishing game for LWE we are given
samples pa1, b1q, . . . , pam, bmq P Znq ˆ Zq which are either drawn from LWEs for a uniform s „ Znq , or
from Znq ˆ Zq. We can use f to distinguish as follows.

• Let pa1i, b
1
iq “ fpai, biq P Znq ˆ Zp for i “ 1, . . . ,m.

• If the LWR secret reconstruction procedure succeeds in obtaining s1 P Znq proceed, if not output
a random bit.
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• Now check whether pa1i, b
1
iq P LWRs1 holds for all i “ 1, . . . ,m; if so output 0 (corresponding to

LWE samples), otherwise output a random bit.

As discussed above, if we have been fed with LWE samples, then the LWR recovery procedure will
work with non-negligible probability. On the other hand, a simple statistical argument (proven in
Section 4) shows that there cannot exist s1 P Znq such that f maps uniform samples into LWEs1 with
high probability.

2 Preliminaries
Throughout this work, the integer n will denote the security parameter. We use boldface lower case for
vectors, and boldface capitals for matrices (e.g., v or M). Given a distribution χ on a set X , we write
x „ χ to indicate that x P X is drawn according to χ; we write x „ X as shorthand for x „ UnifpXq,
the uniform distribution on X .

2.1 Learning with Errors/Rounding
Definition 1 (The LWE/LWR Distributions). Let n, q P N, s P Znq , and χ be a distribution on Zq.

‚ The LWE Distribution: The learning with errors distribution LWEn,q,s,χ works as follows:

´ draw a „ Znq , e „ χ, set b “ xa, sy ` e and output pa, bq P Znq ˆ Zq.

‚ The LWR Distribution: If p P N such that 2 ď p ă q, then the learning with rounding distri-
bution LWRn,q,s,p is:

´ draw a „ Znq , set b “
X

xa, sy
T

p
, and output pa, bq P Znq ˆ Zp, where t¨sp maps x P Zq to

x ¨ pp{qq rounded to the nearest integer pmod pq.

Given m P N, the distributions LWEn,q,m,χ (resp. LWRn,q,m,p) work by drawing s „ Znq and outputting
m independent samples from LWEn,q,s,χ (resp. LWRn,q,s,p).

Definition 2 (The LWE/LWR Problems). Let n, q,m P N and χ be a distribution on Zq. The
search/decisional version of the learning with errors{rounding problems refer to the following com-
putational tasks.2

‚ Search LWE: Given
 

pa1, b1q, . . . , pam, bmq
(

„ LWEn,q,m,χ, output s.

‚ Decisional LWE: Distinguish LWEn,q,m,χ from Unif
`

Znq ˆ Zq
˘m.

‚ Search LWR: If p P N such that 2 ď p ă q, then given
 

pa1, b1q, . . . , pam, bmq
(

„ LWRn,q,m,p,
output s.

Error Distributions and Rounding Subsets. The most common choice for the error distribution
χ is a discrete Gaussian on Zq, centered at 0 with standard deviation αq for some α “ 1{polypnq.
Hardness of decisional LWE with this error distribution is known assuming worst-case hardness of
computational problems on lattices which are believed to be hard even for quantum computers [Reg05,
Pei09, BLP`13]. The arguments in this work will apply equally well to any bounded error distribution
which gives output in t´B, . . . , Bu Ă Zq for B ! q with overwhelming probability 1´ 2´n.

2We will not need the decisional version of LWR in this work, so we do not give the definition.
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Solvers and Distinguishers. Given ε ą 0 and m P N, we say an algorithm S is an pε,mq´solver for
LWEn,q,χ (resp. LWRn,q,p) if it solves search LWE (resp. search LWR) with probability at least ε, given
m samples:

Prtpai,biqumi“1„LWEn,q,m,χ

”

S
`

tpai, biqu
m
i“1

˘

“ s
ı

ě ε,

and similarly for LWRn,q,m,p except the probability is over tpai, biqumi“1 „ LWRn,q,m,p. Likewise, we
say that an algorithm D is an pε,mq´distinguisher for LWEn,q,χ if

ˇ

ˇ

ˇ

ˇ

Prtpai,biqumi“1„LWEn,q,m,χ

”

D
`

tpai, biqui
˘

“ 1
ı

´ Prtpai,biqumi“1„pZnqˆZqqm
”

D
`

tpai, biqu
˘

“ 1
ı

ˇ

ˇ

ˇ

ˇ

ě ε.

We write the inputs to solvers and distinguishers as sets even though technically speaking they are lists:
they have an ordering and they can contain duplicated elements (this distinction will not matter for us).

Definition 3 (Reduction from LWE to LWR). Let n, q, p P N be integers with p ă q, and let χ be
a distribution on Zq, and let `err : Rą0 ˆ N Ñ Rą0 and `samp : Rą0 ˆ N Ñ N be functions. We say
that a PPT oracle algorithm A is an p`err, `sampq´reduction from LWEn,q,χ to LWRn,q,p if the following
holds: if S is an pε1,m1q´ solver for LWRn,q,p, then AS (i.e., A instantiated with oracle access to S) is
an pε,mq´solver for LWEn,q,χ, where pε,mq “

`

`errpε
1,m1q, `samppε

1,m1q
˘

.

Remark. We are interested in noticeable solvers which run in polynomial time; i.e., pε1,m1q´solvers
for ε1 “ poly

`

1{n
˘

and m1 “ polypnq. In order to preserve this, our reductions will always have
`errpε

1,m1q “ poly
`

1{n, ε1, 1{m1
˘

and `samppε
1,m1q “ polypn, 1{ε1,m1q. Thus, our reduction model

requires AS to be a polynomial time noticeable solver for LWE whenever S is a polynomial time
noticeable solver for LWR. As mentioned in the introduction, several prior works [AKPW13, BLL`15,
BGM`16] prove hardness results for LWR with q “ polypnq via LWE hardness as long as there is
a bound B on the overall number of samples given to the LWR solver. In the above language, these
works give a reductionA such thatAS is a polytime noticeable solver for LWE whenever S is a polytime
noticeable solver for LWR which uses m1 ď B samples.

2.2 Pseudorandomness
Definition 4 (Statistical Distance). Let X and Y be random variables, both supported on the same
set Ω. The statistical distance between X and Y , denoted ∆pX, Y q, is equal to both of the following
expressions:

max
TĂΩ

ˇ

ˇ

ˇ
Prx„X

“

x P T
‰

´ Pry„Y
“

y P T
‰

ˇ

ˇ

ˇ
“

1

2
¨
ÿ

zPΩ

ˇ

ˇ

ˇ
Prx„X

“

x “ z
‰

´ Pry„Y
“

y “ z
‰

ˇ

ˇ

ˇ
.

We will use a version of the fact that the inner product mod q is a good two-source extractor. The
original proof of this fact when q “ 2 is in [CG88]; see [LLTT05] for the following generalization to
larger prime q.

Fact 1. Let n, q P N be such that q is prime, let X Ă Znq be a subset, and let D be the distribution on
Zn`1q which draws a „ Znq , x „ X and outputs

`

a, xa,xy
˘

. Then

∆
`

D,UnifpZn`1q q
˘2
ď

q

4|X|
.
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The following corollary will be used several times throughout the paper. Intuitively, it says that any
property which holds with good probability over pa, bq „ Znq ˆ Zq holds with similar probability over
pa, bq „ LWEn,q,s,χ for almost all s P Znq .

Corollary 1 (Sampling of LWE). For any test set T Ă Znq ˆZq of size |T | “ τ ¨ qn`1, and any e P Zq,

Prs„Znq

„

ˇ

ˇ

ˇ
Pra„Znq

“

pa, xa, sy ` eq P T
‰

´ τ
ˇ

ˇ

ˇ
ą q´n{4



“ q´Ωpnq.

In particular,

Prs„Znq

„

ˇ

ˇ

ˇ
Prpa,bq„LWEs

“

pa, bq P T
‰

´ τ
ˇ

ˇ

ˇ
ą q´n{4



“ q´Ωpnq.

Proof. Fix T Ă Znq ˆ Zq of size |T | “ τ ¨ qn`1, and let S Ă Znq be the set of s P Znq such that
Pra„Znq

“

pa, xa, sy ` eq P T
‰

ą τ ` q´n{4 for some e P Zq. We will prove |S| ă qn{2`3 “ q´pn{2´3q ¨ qn;
the result follows since we can argue similarly for the set of s P Znq such that for some e P Zq,
Pra„Znq

“

pa, xa, sy ` eq P T
‰

ă τ ´ q´n{4. For the part of the claim about LWE samples, note that if
s R S then

Prpa,bq„LWEs

“

pa, bq P T
‰

“
ÿ

ePZq

Pr
“

χ “ e
‰

¨ Pra„Znq
“

pa, xa, sy ` eq P T
‰

ď τ ` q´n{4.

So it suffices to bound |S|. Let Se Ă S be the s P S such that Pra„Znq
“

pa, xa, sy ` eq P T
‰

ą τ ` q´n{4.
For all e P Zq, we have

τ ` q´n{4 ă Prs„Se,a„Znq
“

pa, xa, syq ` p0, eq P T
‰

ď τ `

c

q

4|Se|
,

where the inequality on the second line is Fact 1. Thus, |Se| ď qn{2`1{4 holds for all e P Zq, and so
|S| “

ˇ

ˇ

Ť

e Se
ˇ

ˇ ď qn{2`2. The result follows.

3 Our Reduction Model and Main Theorem

3.1 Pointwise Reductions and Main Theorem Statement
In this section we define pointwise reductions from LWE to LWR, which are the reductions ruled out by
our main theorem. To say that A is a pointwise reduction is to require that the LWE solver AS uses
its oracle access to S in a precise way. First, AS must map its input LWE samples to LWR samples
in a pointwise fashion (i.e., using f : Znq ˆ Zq Ñ Znq ˆ Zp, applied pointwise on each of the input
samples). Then AS invokes S on the outputs obtaining an LWR secret. Finally, AS outputs an LWE
secret computed using the original LWE samples and the LWR secret.

Definition 5 (Point-Wise Reduction from LWE to LWR). Let n, p, q P N be integers such that p ă q,
let χ be a distribution on Zq, and let `err : Rą0 ˆ N Ñ Rą0 and `samp : Rą0 ˆ N Ñ N be functions.
We say the PPT oracle algorithm A is an p`err, `sampq´pointwise reduction from LWEn,q,χ to LWRn,q,p
if it is a reduction per Definition 3 and, moreover, if there exists an efficiently computable function
f : Znq ˆ Zq Ñ Znq ˆ Zp and a PPT algorithm B such that for any pε1,m1q´solver S for LWRn,q,p, the
pε,mq´solver AS for LWEn,q,χ works as follows where pε,mq “

`

`errpε
1,m1q, `samppε

1,m1q
˘

.
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1. Given tpai, biqumi“1 Ă Znq ˆ Zq, compute pa1i, b
1
iq “ fpai, biq P Znq ˆ Zp for i “ 1, . . . ,m.

2. Call S
`

tpa1i, b
1
iqu

˘

obtaining s1 P Znq Y tKu (S reads only the first m1 pairs; if fewer than m1 pairs
are given, S outputs K).

3. Compute B
`

tpai, biqu, s
1
˘

obtaining s P Znq Y tKu; output s.

Note that in a pointwise reduction, m “ `samppε
1,m1q “ m1, since each LWE sample is mapped to an

LWR sample which is then used by the LWR solver. For this reason, we usually ignore `samp when
dealing with pointwise reductions.

Theorem 2 (Main). Let n, p, q P N be integers with q “ polypnq prime and q2{3`c ă p ă q “ polypnq
for a universal constant c ą 0, and let χ be a distribution on Zq. Let `err : Rą0ˆNÑ Rą0 be a function
so `errpε

1,m1q “ poly
`

1{n, 1{m1, ε1
˘

. Then any `err´pointwise reduction A “ pf,Bq from LWEn,q,χ to
LWRn,q,p can be used to build an efficient pε,mq´distinguisher for LWEn,q,χ for some non-negligible
ε ą 0 and some m “ polypnq.

If the error distribution χ on Zq is such that LWEn,q,m,χ is hard for all m “ polypnq (e.g., if χ is
a discrete Gaussian), then Theorem 2 says that it is impossible to reduce LWEn,q,χ to LWRn,q,p in a
pointwise fashion.

3.2 The LWR Secret Recovery Algorithm and Proof of Theorem 2
Notation. Let n, p, q P N be integers such that q is prime such that q2{3`c ă p ă q for a small
constant c ą 0. Let f : Znq ˆZq Ñ Znq ˆZp be part of a pointwise reduction from LWEn,q,χ to LWRn,q,p.
Since n, p, q, χ are fixed throughout the remainder of the paper, we write LWEs and LWRs1 instead of
LWEn,q,s,χ and LWRn,q,s1,p, respectively. The lemmas in this section make reference to non-negligible
quantities η, δ ą 0 which will be specified in the next section.

Lemma 1 (Main Technical Lemma). Let notations be as above. There exists an efficient algorithmA
with the following syntax and correctness guarantees.

‚ Syntax: A takes no input, gets oracle access to a
`

Znq ˆ Zq
˘

´oracle and to f , and outputs a
vector s1 P Znq .

‚ Correctness: If A is run when given oracle access to LWEs for a random s „ Znq , then with
non-negligible probability (over s „ Znq and the random coins of A), A outputs s1 P Znq such
that:

Prpa,bq„LWEs

”

b1 “
X

xa1, s1y
T

p

ı

ě 1´ η, (3)

where pa1, b1q “ fpa, bq.

Lemma 2. Assume pf,Bq is a pointwise reduction from LWEn,q,χ to LWRn,q,p. If there exists s1 P Znq
such that

Prpa,bq„ZnqˆZq

”

b1 “
X

xa1, s1y
T

p

ı

ě 1´ 2η,

where pa1, b1q “ fpa, bq, then B is a pδ,mq´solver for LWEn,q,χ for m “ np1` log qq{η.

Proof of Theorem 2 Assuming Lemmas 1 and 2. Let A denote the algorithm promised by Lemma 1.
Consider the following distinguishing algorithm D, which gets oracle access to a

`

Znq ˆZq
˘

´oracle O
and works as follows.
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1. D instantiates A with oracle access to O, obtaining output s1 P Znq . If A fails to give output of
the proper type, D outputs 0.

2. Now D draws samples pa1, b1q, . . . , paN , bNq „ O for N “ n{η, and computes an approximation
P̂ of the probability

P :“ Prpa,bq„O

”

b1 “
X

xa1, s1y
T

p

ı

,

where pa1, b1q “ fpa, bq. If P̂ ě 1´ 3η{4, D outputs 1, otherwise D outputs 0.

We show that D outputs 0 with probability 1 ´ 2´Ωpnq when O is a random oracle, and outputs 1 with
non-negligible probability when O is an LWE oracle. The theorem follows.

Uniform Samples. Consider the execution of D when O is a random oracle, and let s1 P Znq be the
vector obtained by A in Step 1 (if A outputs K during this step then D outputs a random bit). In this
case, the Chernoff-Hoeffding inequality ensures that |P̂´ P| ă η{2 holds with probability 1´ 2´Ωpnq.
Thus by Lemma 2, P̂ ă 1 ´ 3η{2 occurs with probability 1 ´ 2´Ωpnq, and so D outputs a random bit
with high probability.

LWE Samples. Now consider the execution of D when instantiated with a LWEs´oracle for a random
s „ Znq . In this case, Lemma 1 ensures that with non-negligible probability,A outputs s1 P Znq such that
P ě 1´η. In this case, P̂ is again accurate to within˘η{2 by the Chernoff bound, and so P̂ ě 1´3η{2
and D outputs 1 with non-negligible probability.

4 The Statistics of a Pointwise Reduction
In this section we begin to impose structure on f : Znq ˆ Zq Ñ Znq ˆ Zp which is part of a pointwise
reduction from LWEn,q,χ to LWRn,q,p. The fundamental intuition of this section is the following “meta”
statement: all statistics of the LWR distribution and the output distribution of f (given LWE samples
as input) must be the same. The reason for this is that any statistic which differs can be used to build a
“pathological solver” which solves LWR but which will be useless for solving LWE via f . The solver
simply draws enough samples to approximate the statistic, aborting if it decides it is being fed with
mapped LWE samples, solving if it decides it is being fed with true LWR samples.

4.1 Non-Degeneracy
We prove that the distribution which draws pa, bq „ Znq ˆ Zq, computes pa1, b1q “ fpa, bq and outputs
a1 P Znq cannot give non-negligible weight to any set T Ă Znq with negligible density.

Definition 6. Let ζ, ρ ą 0 be such that ζ ą ρ, and let f : Znq ˆ Zq Ñ Znq ˆ Zp be a function. We say f
is pζ, ρq´degenerate if there exists T Ă Znq of density |T |{qn “ ρ such that Prpa,bq„ZnqˆZq

“

a1 P T
‰

ě ζ ,
where pa1, b1q “ fpa, bq. We say that f is pζ, ρq´non-degenerate if it is not pζ, ρq´degenerate.

Claim 1 (Non-Degeneracy). Let n, q, p P N such that p ă q and χ be a distribution on Zq. Suppose
f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction pf,Bq from LWEn,q,χ to LWRn,q,p. Suppose f
is pρ ` ε, ρq´degenerate for ρ, ε ą 0 with ε non-negligible. Then B is an pε,mq´solver of LWEn,q,χ,
for m “ max

 

qnp1` log qq, n{pρε2q
(

.
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Proof. Let ε ą 0 be non-negligible and suppose pf,Bq is a pointwise reduction from LWEn,q,χ to
LWRn,q,p which is pρ`ε, ρq´degenerate. LetD be the distribution on Znq which draws pa, bq „ ZnqˆZq,
computes pa1, b1q “ fpa, bq, and outputs a1. By definition, there exists T Ă Znq of density ρ such that
PrD

“

a1 P T
‰

ě ρ ` ε. Let S be the pathological p1 ´ 2´Ωpnq,mq´solver for LWRn,q,p which, on input
tpa1i, b

1
iqu

m
i“1 Ă Znq ˆ Zp, computes t :“ #ti : a1i P T u and outputs K if t ě

`

ρ ` ε{2
˘

m; otherwise
if t ă

`

ρ ` ε{2
˘

m, S outputs the unique s1 P Znq such that b1i “
X

xa1i, s
1y
T

p
for all i “ 1, . . . ,m (if

no such s1 exists or if more than one such s1 exists, S outputs K). Note that when S is fed with LWR
samples t “ ρm in expectation as the a1i „ Znq are uniform. By the Chernoff-Hoeffding inequality,
t ă

`

ρ ` ε{2
˘

m holds with probability 1 ´ 2´Ωpnq (since m ě n{pρε2q). As m ě nqp1 ` log qq,
with probability at least 1 ´ 2´Ωpnq, there exists exactly one s1 P Znq such that b1i “

X

xa1i, s
1y
T

p
for all

i “ 1, . . . ,m. Therefore, when S is fed with LWR samples it outputs the LWR secret s1 with high
probability.

On the other hand, when m LWE samples are chosen and S is fed with
 

fpai, biq
(

, t ě pρ ` εqm
in expectation, and so by the Chernoff-Hoeffding inequality, t ě

`

ρ ` ε{2
˘

m holds with probability
1 ´ 2´Ωpnq psince m ě n{pρε2q ě n{pρ ` εqq. Therefore, S outputs K with high probability when fed
with mapped LWE samples. As pf,Bq is a pointwise reduction from LWEn,q,χ to LWRn,q,p, B outputs
the LWE secret with non-negligible probability when fed with

`

tpai, biqu,K
˘

, where the pai, biq are
LWE samples and the K is the output of S on their images under f . Thus B solves LWEn,q,m,χ with
non-negligible probability.

4.2 Good LWE Secrets
We now identify a non-negligible subset G Ă Znq of good LWE secrets, where s P G guarantees some
good behavior from f when fed with samples from LWEn,q,s,χ.

The Secret Graph. The secret graph is a weighted complete bipartite graph whose left and right
vertex sets (X and Y , respectively) are both Znq , and where the weight of the edge ps, s1q P X ˆ Y

is pps,s1q :“ Prpa,bq„LWEs

“

b1 “ txa1, s1ysp
‰

, where pa1, b1q “ fpa, bq. For s P X and ε ą 0, we write
Yεpsq “ ts

1 P Y : pps,s1q ě 1´εu. Likewise, given s1 P Y and ε ą 0, Xεps
1q “ ts P X : pps,s1q ě 1´εu.

So intuitively, Yεpsq is the subset of s’s neighborhood which is connected to s by an edge with weight
at least 1´ ε; and similarly for Xεps

1q.

Parameters. In addition to the parameters mentioned above, the good secrets are defined in terms of
three non-negligible values δ, η, σ ą 0. The quantity δ is defined using the error loss function `err of the
pointwise reduction pf,Bq. Specifically, 2δ “ `errp1{3,mq where m “ 2np1` log qq{η, so that if S is a
`

1
3
,m

˘

´solver for LWRn,q,p, BS is a 2δ´solver for LWEn,q,χ. Given δ, we set σ “ δ{2nqp1` log qq and
η “ min

 

σ,
`

1{3nq
˘3(. The reader is encouraged on a first pass to just think of δ, η, σ all as arbitrarily

small, but non-negligible, quantities.

Definition 7 (Good LWE Secrets). With the above notation and conventions, we say that s P Znq is
good, and write s P G, if the following three conditions hold:

p1q |Yηpsq| “ 1; p2q |Yσpsq| ď 1; p3q |Xηps
1q| “ 1.

In point (3), s1 P Znq is the LWR secret for which Yηpsq “ ts1u.
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Note that Points (1) and (3) together establish that the edges in the secret graph with weight above 1´η
induce a matching between good LWE secrets and (a subset of) LWR secrets.

Claim 2. Suppose pf,Bq is a pointwise reduction from LWEn,q,χ to LWRn,q,p. Then either |G| ě δ ¨ qn,
or B is a pδ,mq´solver for LWEn,q,χ for m “ 2np1` log qq{η.

Proof. Let m “ np1 ` log qq{η, and let S be the pathological solver for LWRn,q,p which, on input
 

pa1i, b
1
iq
(m

i“1
, does the following:

(i) it looks at the first nqp1 ` log qq samples (this is less than m since η ď 1{q) and checks
whether there exist distinct s1, s2 P Znq such that

X

xa1i, s
1y
T

p
“ b1i “

X

xa1i, s
2y
T

p
holds for all

i “ 1, . . . , nqp1` log qq; if so, S outputs K;

(ii) S computes the unique s1 P Znq such that b1i “
X

xa1i, s
1y
T

p
holds for all i “ 1, . . . ,m, if no such s1

exists, S outputs K;

(iii) using the s1 P Znq just computed, S checks if #ts P Znq : |Yηpsq| “ 1 & pps,s1q ě 1´ ηu ě 2; if so
S outputs K;

(iv) if it has not already aborted, S outputs s1 P Znq recovered in Step (ii).

Assume |G| ă δ ¨ qn. We will prove the following two points.

1. if S is called on tpa1i, b
1
iqu „ LWRn,q,m,p, then S outputs the secret s1 with probability at least 1{3;

2. if S is called on tpa1i, b
1
iqu for tpai, biqu „ LWEn,q,m,χ and pa1i, b

1
iq “ fpai, biq, then S outputs K

with probability at least 1´ δ.

Just as in Claim 1, these two points suffice. Point 1 says that S is a
`

1
3
,m

˘

´solver for LWRn,q,m,p. As
pf,Bq is a pointwise reduction, with probability at least 2δ “ `errp1{3q over tpai, biqu „ LWEn,q,m,χ, B
outputs the LWE secret given tpai, biqu and S

`

tpa1i, b
1
iqu

˘

. By point 2, the probability that B recovers
the LWE secret without the second argument is at least δ. It remains to establish the two points.

Point 1´ S on LWR samples: If S is fed with LWR instances, then certainly there exists s1 P Znq such
that b1i “

X

xa1i, s
1y
T

p
for all i (namely, the LWR secret). So S will solve LWR in step (ii) and give correct

output as long as it does not abort in steps (i) or (iii). Just as in the proof of Claim 1, the probability
that S outputs K in Step (i) because it finds distinct s1 ‰ s2 such that

X

xa1i, s
1y
T

p
“ b1i “

X

xa1i, s
2y
T

p
for

i “ 1, . . . ,m is 2´Ωpnq. Moreover, note that

#
ts P Znq : |Yηpsq| “ 1 & pps,s1q ě 1´ ηu ě 2

holds for at most half of the s1 P Znq . Therefore S aborts given LWR samples with probability at most
1{2` 2´Ωpnq ď 2{3, and otherwise solves LWR.
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Point 2´ S on mapped LWE samples: If S is fed with mapped LWE instances, then some s „ Znq is
chosen, tpai, biqumi“1 „ LWEn,q,s,χ are drawn, and pa1i, b

1
iq “ fpai, biq are computed and fed to S. With

probability at least 1´ δ, s R G in which case one of the properties (1), (2) and (3) does not hold. If (1)
does not hold, then pps,s1q ă 1´ η for all s1 P Znq and so

Prtpai,biqumi“1„LWEn,q,s,χ

”

D s1 P Znq st b1i “
X

xa1i, s
1
y
T

p
@ i “ 1, . . . ,m

ı

ă qn ¨
`

1´ η
˘m
ď 2´n,

(since m “ np1` log qq{η) and so S outputs K in Step (ii) with high probability 1´ 2´n. On the other
hand, if (2) does not hold then there exist distinct s1, s2 P Znq such that pps,s1q, pps,s2q ě 1´ σ both hold.
In this case,

Prtpai,biqumi“1„LWEn,q,s,χ

”

X

xa1i, s
1
y
T

p
“ b1i “

X

xa1i, s
2
y
T

p
@ i

ı

ě 1´ 2nqp1` log qqσ ě 1´ δ,

(using σ ď δ{2nqp1 ` log qq) and so S outputs K in Step (i) with probability 1 ´ δ. Finally, suppose
that (1) and (2) both hold and that S does not abort in Steps (i) or (ii) but that (3) does not hold. Note
that |Xηps

1q| ě 1 since s P Xηps
1q, thus if (3) does not hold then it must be that |Xηps

1q| ě 2. In this
case S simply outputs K in Step (iii). So we have shown that when s R G, S outputs K with probability
at least 1´ δ, as desired.

4.3 Proof of Lemma 2
Claim 2 imposes quite a lot of structure on a pointwise reduction. We will refer to Claim 2 repeatedly
throughout the remainder of the paper. Additionally, we can already derive Lemma 2 as a corollary.

Lemma 2 (Restated). Assume pf,Bq is a pointwise reduction from LWEn,q,χ to LWRn,q,p. If there
exists s1 P Znq such that

Prpa,bq„ZnqˆZq

”

b1 “ txa1, s1ysp

ı

ě 1´ 2η,

where pa1, b1q “ fpa, bq, then B is a pδ,mq´solver for LWEn,q,χ for m “ np1` log qq{η.

Proof. Suppose there exists s1 P Znq such that Prpa,bq„ZnqˆZq
“

b1 “ txa1, s1ysp
‰

ě 1´ 2η, where pa1, b1q “
fpa, bq. Then by Corollary 1, Prpa,bq„LWEs

“

b1 “ txa1, s1ysp
‰

ě 1´ 2η´ q´n{4 ě 1´ 3η holds for all but
a q´Ωpnq´fraction of s P Znq . In other words, |Xηps

1q| ě p1´ q´Ωpnqq ¨ qn, so the degree of s1 is way too
high to have any neighbors in G. However, this means that G Ă Znq zXηps

1q, and so |G| ď q´Ωpnq ¨ qn

and so by Claim 2, B is a pδ,mq´solver for LWEn,q,χ.

4.4 Outline of the Proof of Lemma 1
At this point we have reduced our main result (Theorem 2) to proving Lemma 1; namely we must
design an algorithm which, given oracle access to LWEs for some uniform secret s „ Znq , reconstructs
the LWR secret s1 P Znq of the mapped LWE pairs. We have also already proved a key claim, Claim 2,
which specifies a notion of “good” behavior from an LWE secret s and proves that the set of good
secrets G Ă Znq comprises a non-negligible fraction of the entire space. Intuitively, s P G if there exists
a unique s1 P Znq such that

pps,s1q :“ Prpa,bq„LWEs

”

b1 “
X

xa1, s1y
T

p

ı

ě 1´ η,
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and, moreover, if this s1 is unique to s (i.e., so pps˚,s1q ă 1´η for all s˚ ‰ s). The algorithm of Lemma 1
will aim to recover s1 whenever s P G.

The bulk of the technical work of the remainder of the paper will go into proving the following
lemma. Recall the notation of Lemma 1: n, p, q P N are integers such that q is prime and q2{3`c ă
p ă q; ν “ νpnq ą 0 is non-negligible and f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction
from LWEn,q,χ to LWRn,q,p. Recall also that we inherited the non-negligible parameters δ, η, σ ą 0 from
Claim 2.

Lemma 3. Assume the above setup. There exists an efficient algorithm AAffRec which takes no input,
gets oracle access to f , and outputs a pair pH,Vq where H P Znˆnq and V Ă Znq is a constant
dimensional vector space such that with non-negligible probability (over the random coins of AAffRec)
the following holds:

Prpa,bq„ZnqˆZq

”

a1 P SpanpHaq `V
ı

ě 1´ τ,

where pa1, b1q “ fpa, bq and τ “ nq2η1{12t
?

178n, and t P N minimal such that t ě logqp1{δq`2

3c
holds.

As mentioned in Section 1.2, once we know that a1 P SpanpHaq `V holds with high probability, we
can recover s1 using a Goldreich-Levin-type argument. This part of our proof is in Section 5. Also as
mentioned in Section 1.2, the proof of Lemma 3 consists of two separate pieces. First, we show that f
passes a certain “property test” with high probability, then we show that any function which passes the
test must have good agreement with an affine function. See Section 6 for a detailed overview and the
formal proofs.

5 Recovering the LWR Secret via Goldreich-Levin Inversion
In this section we show how to use the Goldreich-Levin (GL) inversion technique [GL89] to recover
the LWR secret. We begin by recalling the parameters and notations which we will use in this section.

Notations. We have integers n, p, q P N such that q is prime and q2{3`c ă p ă q for some small
constant c ą 0. Additionally, f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction from LWEn,q,χ
to LWRn,q,p. We have non-negligible parameters δ, η, σ ą 0 from Claim 2, and a set of “good” LWE
secrets G Ă Znq from Section 4.2. Additionally, we have an additional non-negligible τ ą 0 and pH,Vq
where H P Znˆnq and V Ă Znq is a constant dimensional subspace such that

PpH,Vq :“ Prpa,bq„ZnqˆZq
“

a1 P SpanpHaq `V
‰

ě 1´ τ,

where pa1, b1q “ fpa, bq. For s P Znq and e P Zq, let Ps,epH,Vq :“ Pra„Znq
“

a1 P SpanpHaq`V
‰

, where
pa1, b1q “ fpa, xa, sy ` eq. It follows immediately from Corollary 1 that for at most a q´Ωpnq´fraction
of s P Znq , there exists an e P Zq such that Ps,epH,Vq ă 1´ 2τ . So let us remove all such s from G; G
will still comprise a non-negligible fraction of Znq . At this point what we will need from s P G is that
the following points both hold:

p1q D unique s1 P Znq st pps,s1q ě 1´ η; p2q Ps,epH,Vq ě 1´ 2τ @ e
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5.1 A Goldreich-Levin Theorem for LWE Samples
In this section, we state and prove a Goldreich-Levin-type theorem which will allow us to recover Hts1

given oracle access to LWEs for unknown s.

Lemma 4 (A Goldreich-Levin Theorem for LWE Samples). Let n, q P N be such that q “ polypnq is
prime, ζ P p0, 1q. For a function Pred : Znq ˆZq Ñ Zq, and quantities ps, e, s̄, γq P Znq ˆZq ˆZnq ˆZq,
let

Ps,eps̄, γq :“ Pra„Znq
“

Predpa, xa, sy`eq “ xa, s̄y`γ
‰

; Psps̄, γq :“ Prpa,bq„LWEs

“

Predpa, bq “ xa, s̄y`γ
‰

.

Then there exists a randomized algorithm Inv which takes tpai, biqumi“1 P pZnq ˆ Zqqm as input, out-
puts s̄˚ P Znq , runs in time polypn, q, 1{ζ,TPredq where TPred is the running time of Pred, and has the
following correctness guarantee.

‚ Correctness: Suppose that s, s̄ P Znq are such that both of the following hold:

¨ for all e P Zq such that Pr
“

χ “ e
‰

ě
4ζ

5qn2 , and non-zero γ P Z˚q , Ps,eps̄, 0q ě Ps,eps̄, γq´ζ;

¨ for all non-zero γ P Z˚q , Psps̄, 0q ě Psps̄, γq ` 10ζ .

Then

Prtpai,biqumi“1„LWEs,χ

“

Inv
`

tpai, biqu
˘

“ s̄
‰

ě
8ζ6

9n4q6
.

Remark. Intuitively, the requirement Psps̄, 0q ě Psps̄, γq`10ζ means that the most likely output of the
predictor on samples from LWEs is s̄. The additional requirement that Ps,eps̄, 0q ě Ps,eps̄, γq´ ζ means
that the predictor performs pretty well regardless of the LWE error. Note that the most likely output of
the “trivial” predictor Predpa, bq “ b is xa, sy (assuming e “ 0 is the most likely LWE error, which is
standard). However, as soon as e ‰ 0, the trivial predictor starts performing extremely badly, always
outputting the wrong value. Clearly if s could be recovered from the trivial predictor then LWE would
be efficiently solvable. Thus the requirement that the predictor perform well for all errors is a critical
hypothesis for the above lemma.

Proof. Let m “ n2{4ζ and k “ 1` rlogqp3mq{ζ
2qs; Inv works as follows.

Input: Inv gets input tpai, biqumi“1 P pZnq ˆ Zqqm and uses an algorithm for Pred as a subroutine.

Output: Inv outputs s̄˚ P Znq .

1. Choose x1, . . . ,xk „ Znq , g1, h1, . . . , gk, hk „ Zq. For all u “ pu1, . . . , ukq P Zkq , let

xu :“
k
ÿ

j“1

ujxj P Znq ; gu :“
k
ÿ

j“1

ujgj P Zq; and hu :“
k
ÿ

j“1

ujhj P Zq.

2. For all i “ 1, . . . ,m, do the following:

¨ for each β P Zq, compute p̂ipβq :“ Pru„Zkq zt0u

”

Predpai ` xu, bi ` guq ´ hu “ β
ı

;

¨ if there exists β P Zq such that p̂ipβq ě p̂ipβ
1q ` 3ζ for all β1 ‰ β, set wi “ β; otherwise

set wi “ K.
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3. Finally, let W “
 

i P t1, . . . ,mu : wi ‰ K
(

, and let ti1, . . . , inu Ă W be such that
tai1 , . . . , ainu is linearly independent (if no such subset exists, output the failure symbol K).
Let pA,wq P Znˆnq ˆ Znq be such that the t´th row (resp., coordinate) of A (resp., w) is ait
(resp., wit). Output s̄˚ “ A´1w P Znq .

It is clear that Inv runs in time polypn, q, 1{ζ,TPredq. Assume that s, s̄ P Znq are such that both
correctness hypotheses hold. We will show that Inv outputs s̄˚ “ s̄ with probability at least 1{2q2k.
Consider first the random choices pxj, gj, hjq „ Znq ˆ Zq ˆ Zq drawn during Step 1. Let us say that
these random choices are correct if:

gj “ xxj, sy and hj “ xxj, s̄y @ j “ 1, . . . , k.

Note these random choices are correct with probability q´2k. When the random choices are correct, we
have gu “ xxu, sy and hu “ xxu, s̄y for all u P Zkq . Consider now the values p̂ipβq for β P Zq and
i P t1, . . . ,mu computed in Step 2, and let us interpret the p̂ipβq as random variables over xj „ Znq .
Note that if the choices are correct, then pai ` xu, bi ` guq is a random LWEs pair with the same error
as pai, biq; thus the expectation of p̂ipxai, s̄y ` γq is Ps,eips̄, γq for all γ P Zq and i P t1, . . . ,mu, where
ei “ bi ´ xai, sy. We will prove a concentration bound using the pairwise independence of pxu,xu1q

for u ‰ u1 P Zkq which will guarantee that with probability at least 2{3 (conditioned on correctness),
ˇ

ˇp̂ipxai, s̄y ` γq ´ Ps,eips̄, γq
ˇ

ˇ ă ζ holds for all i “ 1, . . . ,m and γ P Zq. Let us first show how this
completes the analysis of Inv.

Assume that the error term ei is such that Pr
“

χ “ ei
‰

ě 1
5qm

; by the union bound the probability
that this holds for all i “ 1, . . . ,m is at least 4{5. The first observation is that for all i P t1, . . . ,mu and
non-zero γ P Z˚q , we have

p̂ipxai, s̄yq ą Ps,eips̄, 0q ´ ζ ě Ps,eips̄, γq ´ 2ζ ą p̂ipxai, s̄y ` γq ´ 3ζ.

This means that Step 2 never sets wi to be any value other than xai, s̄y. Likewise, we have the bound
Psps̄, 0q ´ Psps̄, γq ě 10ζ for non-zero γ P Z˚q means that Ps,eps̄, 0q ´ Ps,eps̄, γq ě 5ζ holds with
probability at least 5ζ over e „ χ. By Chernoff, the probability that Ps,eips̄, 0q ´ Ps,eips̄, γq ě 5ζ holds
for at least 4ζm “ n2 of the input LWE pairs pai, biq is 1 ´ 2´Ωpnq. The probability that n2 random
vectors in Znq span a proper subspace is at most q´Ωpnq; thus with probability at least 1 ´ 2´Ωpnq, there
exist n input samples pai1 , bi1q, . . . , pain , binq such that Span

`

tai1 , . . . , ainu
˘

“ Znq and such that each
error term e satisfies Ps,eps̄, 0q ´ Ps,eps̄, γq ě 5ζ for all non-zero γ P Z˚q . For each i P ti1, . . . , inu,

p̂ipxai, s̄yq ą Ps,eips̄, 0q ´ ζ ě Ps,eips̄, γq ` 4ζ ą p̂ipxai, sy ` γq ` 3ζ,

and so Inv sets wi “ xai, s̄y during Step 2. So we have shown that, conditioned on the random choices
in Step 1 being correct, Inv never sets wi equal to anything but xai, s̄y in Step 2, and furthermore, with
probability at least 4{5 ´ 2´Ωpnq ě 3{4, Inv sets wi “ xai, s̄y for at least n values of i P t1, . . . ,mu
such that the corresponding ai’s span Znq . Thus, once we show that

ˇ

ˇp̂ipxai, s̄y ` γq ´ Ps,eips̄, γq
ˇ

ˇ ă ζ
holds simultaneously for all i “ 1, . . . ,m and γ P Zq with probability at least 2{3, we will have shown
that Inv recovers s̄ with probability at least q´2k{2, as desired.

So fix an LWE sample pa, bq and γ P Zq, and let 11puq be the 0{1 random variable which outputs 1
if Predpa`xu, b`guq´hu “ xa, s̄y`γ and 0 otherwise. Let Q :“ Pr

“

|p̂pxa, s̄y`γq´Ps,eps̄, γq| ą ζ
‰
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be shorthand. We have

ζ2Q ď E
”

p̂pxa, s̄y ` γq2
ı

´ Ps,eps̄, γq
2

“
1

pqk ´ 1q2
¨

ÿ

u‰u1PZkq zt0u

E
“

11puq ¨ 11pu1q
‰

´ Ps,eps̄, γq
2
`

1

pqk ´ 1q

ď
1

pqk ´ 1q
,

and so Q ď 1
ζ2pqk´1q

ď 1
3mq

. So the concentration bound holds simultaneously for all i P t1, . . . ,mu
and γ P Zq with probability at least 2{3 by the union bound. The result follows.

5.2 The Natural Predictor
Let notations be as specified at the beginning of this section. So, f : Znq ˆ Zq Ñ Znq ˆ Zp is part of
a pointwise reduction, and pH,Vq are such that H P Znˆnq and V Ă Znq is a constant dimensional
vector space such that PpH,Vq ě 1 ´ τ . Let tv1, . . . ,vdu be a basis for V. Given such setup, we
now describe the “natural predictor”, which given samples pa, bq „ LWEs for sufficiently good s P G,
predicts the inner product xa,Hts1y well enough so that it is possible to use Lemma 4 to recover Hts1.

The Natural Predictor. The predictor function Pred : Znq ˆ Zq Ñ Zq works as follows.

• The natural predictor is parametrized by α1, . . . , αd P Zq.

• Given pa, bq P Znq ˆ Zq, Pred computes pa1, b1q “ fpa, bq; if a1 “ αHa ` v for α P Z˚q and
v “

řd
i“1 civi P V, then output α´1

`

x´
řd
i“1 ciαi

˘

where x „ Zq is random such that txsp “ b1.

• If a1 R SpanpHaq `V, output a random x „ Zq.

Note that whenever b1 “
X

xa1, s1y
T

p
and a1 “ αHta ` v both hold, b1 “

X

αxa,Hts1y ` xv, s1y
T

p

also holds; so when the natural predictor draws x, a random rounding preimage of b1 and outputs
α´1

`

x´
ř

i ciαi
˘

, it has probability roughly p{q " 1{q of outputting xa,Hts1y as long as αi “ xvi, s1y
for all i “ 1, . . . , d. The following claim proves that this predictor satisfies the hypotheses of Lemma 4,
and so can be used to recover Hts1.

Claim 3. Let notations be as above. Suppose that the natural predictor is fed with inputs from an
LWEs´oracle for some unknown s P G such that for all β P Zq, Pr

“

Ds “ β
‰

ě 1
q2

, where Ds is the
distribution which draws pa, bq „ LWEs such that a1 P SpanpHaq `V, and outputs xa,Hts1y. Assume
furthermore that the parameters of the predictor are αi “ xvi, s1y for all i “ 1, . . . , d. Then both of the
correctness hypotheses of Lemma 4 are satisfied for s̄ “ Hts1.

Proof. Fix ζ “ 1´2τ´q2η
11q3

. We must show two points:

¨ for all e P Zq with Pr
“

χ “ e
‰

ě
4ζ

5qn2 and all non-zero γ P Z˚q , Ps,epH
ts1, 0q ě Ps,epH

ts1, γq ´ ζ;

¨ for all non-zero γ P Z˚q , PspH
ts1, 0q ´ PspH

ts1, γq ě 10ζ;
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where Ps,epH
ts1, γq and PspH

ts1, γq are the notations from Lemma 4:

Ps,epH
ts1, γq :“ Pra„Znq

“

Predpa, xa, sy ` eq “ xa,Hts1y ` γ
‰

,

and PspH
ts1, γq is the same except the probability is over pa, bq „ LWEs. Let us simplify the shorthand

by writing P
p1q
e pγq and Pp1qpγq instead of Ps,epH

ts1, γq and PspH
ts1, γq. Note

Pp1qe pγq “
`

1´Ps,epH,Vq
˘

¨
1

q
`Pra„Znq

“

Predpa, xa, sy` eq “ xa,Hts1y` γ & a1 P SpanpHaq`V
‰

,

where pa1, b1q “ fpa, xa, sy ` eq. So if we shorthand the second term by P
p2q
e pγq, then we get that

P
p1q
e p0q ´ P

p1q
e pγq “ P

p2q
e p0q ´ P

p2q
e pγq. Now let

Pp3qe pγq :“ Pra„Znq
“

Predpa, xa, sy ` eq “ xa,Hts1y ` γ & b1 “
X

xa1, s1y
T

p
& a1 P SpanpHaq `V

‰

,

where pa1, b1q “ fpa, xa, sy`eq. If Pr
“

χ “ e
‰

ě
4ζ

5qn2 , Pp2q3 ´
5qn2η
4ζ

ď P
p3q
e pγq ď P

p2q
e pγq, since s P G and

so pps,s1q ě 1´η. Therefore, Pp2qe p0q´P
p2q
e pγq ě P

p3q
e p0q´P

p3q
e pγq´ζ , using η ď 4ζ2

5qn2 . To bound the Pp3q

terms, recall that when a1 “ αHa`v for v “
ř

i civi P V, Pred outputs α´1
`

x´
ř

i ciαi
˘

for a random
x „ Zq such that txsp “ b1. Therefore, when b1 “

X

xa1, s1y
T

p
“

X

αxa,Hts1y ` xv, s1y
T

p
, Pred outputs

xa,Hts1y with probability roughly p{q when
X

αpxa,Hts1y ` γq ` xv, s1y
T

p
“

X

αxa,Hts1y ` xv, s1y
T

p
,

and with probability 0 otherwise. It follows that Pp3qe p0q ´ P
p3q
e pγq is roughly

p

q
¨ Pra„Znq

”

X

αpxa,Hts1y ` γq ` xv, s1y
T

p
‰
X

αxa,Hts1y ` xv, s1y
T

p
& a1 P SpanpHaq `V

ı

ě 0.

Thus, Pep0q ě Pepγq ´ ζ for all non-zero γ P Z˚q , which establishes the first point.
For the second point, we can define Pp2qpγq,Pp3qpγq analogously to how we defined P

p2q
e pγq,P

p3q
e pγq,

respectively (except probability is over pa, bq „ LWEs), and we get Pp1qp0q ´ Pp1qpγq “ Pp2qp0q ´
Pp2qpγq ě Pp3qp0q ´ Pp3qpγq ´ η ě Pp3qp0q ´ Pp3qpγq ´ ζ . Now, let us write Pp3qpγq “

ř

βPZq Sβpγq

where each Sβpγq is the product of the following four terms:

• Prpa,bq„LWEs

“

a1 P SpanpHaq `V
‰

“: PspH,Vq;

• Prpa,bq„LWEs

“

xa,Hts1y “ β
ˇ

ˇa1 P SpanpHaq `V
‰

;

• Prpa,bq„LWEs

“

b1 “
X

xa1, s1y
T

p

ˇ

ˇxa,Hts1y “ β & a1 P SpanpHaq `V
‰

;

• Prpa,bq„LWEs

“

Predpa, bq “ xa,Hts1y`γ
ˇ

ˇb1 “
X

xa1, s1y
T

p
& xa,Hts1y “ β & a1 P SpanpHaq`V

‰

.

Let Qβpγq be shorthand for the fourth term; as noted above, Qβpγq is roughly equal to p
q
¨11pβ, γq where

11pβ, γq “ 1 if
X

αpβ ` γq `
ř

i ciαi
T

p
“

X

αβ `
ř

i ciαi
T

p
, and is zero otherwise. The second term is

Pr
“

Ds “ β
‰

, where Ds is the distribution defined in the claim statement. Finally, note that the third
term is at least 1´ q2η

PspH,Vq
. Thus, for non-zero γ P Z˚q ,

Pp3qp0q ´ Pp3qpγq ě

ˆ

PspH,Vq ´ q
2η

˙

¨
ÿ

βPZq

Pr
“

Ds “ β
‰

¨
`

Qβp0q ´ Qβpγq
˘

ě

ˆ

PspH,Vq

q2
´ η

˙

¨
ÿ

β:11pβ,γq“0

1

q
ě

ˆ

1´ 2τ ´ q2η

q3

˙

“ 11ζ,

where the second inequality on the second line holds since when γ ‰ 0 there exists at least one β such
that 11pβ, γq “ 0. Hence we have that Pp1qp0q ´ Pp1qpγq ě p1 ´ p2τ ` q2ηqq{q3 ´ ζ ě 10ζ , which
completes the proof of the second point.
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5.3 Proving Lemma 1 Assuming Lemma 3
Lemma 1 (Restated). Assume the notations described in the beginning of the section. So specifically,
f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction and pH,Vq are such that PpH,Vq ě 1 ´ τ .
Then there exists an algorithm which, given oracle access to an LWEs´oracle for a random s „ G,
outputs Hts1 with non-negligible probability over s „ G and the random coins.

Proof. By Claim 3 and Lemma 4, it suffices simply to show that for an overwhelming fraction of the
s P G have Pr

“

Ds “ β
‰

ě 1
q2

for all β P Zq where Ds is the distribution which draws pa, bq „ LWEs

such that a1 P SpanpHaq `V and outputs xa,Hts1y. Since PspH,Vq ě 1´ 2τ , Ds is within statistical
distance 2τ of the distribution D̂s which simply draws a „ Znq and outputs xa,Hts1y. For β P Zq,
define the sets:

Xβ :“
 

s P G : Pra„Znq rxa,H
ts1y “ βs ă q´2

(

; and Yβ :“
 

Hts1 : s P Xβ

(

,

and consider the distribution Dβ , which draws a „ Znq , s „ Xβ and outputs xa,Hts1y. We have

1

q
´

1

q2
´ 2τ ă ∆

`

Dβ,UnifpZqq
˘

ď qc∆
`

xUnifpZnq q,UnifpYβqy,UnifpZqq
˘

ď

c

q

4|Yβ|
.

The first inequality used the definition of Xβ; the second used that H has rank n´ c for some constant
c (since otherwise f would be degenerate), and that G induces a perfect matching between LWE secrets
and LWR secrets; and the last inequality is Fact 1. It follows that |Yβ| “ qOp1q, and thus so are |Xβ|,
and

Ť

βXβ . Therefore, Pr
“

Ds “ β
‰

ě 1
q2

holds for all β P Zq for an overwhelming fraction of the
s P G. Lemma 1 follows.

6 Proof of Lemma 3
Notation. Recall we have integers n, p, q P N such that q is prime and q2{3`c ă p ă q for some small
constant c ą 0. Additionally, f : Znq ˆ Zq Ñ Znq ˆ Zp is part of a pointwise reduction from LWEn,q,χ
to LWRn,q,p. Recall from Section 4.2, we have a set G Ă Znq of “good secrets”; this set has size at
least |G| ě δqn for non-negligible δ ą 0 and for each s P G there exists a unique s1 P Znq such that
pps,s1q ě 1 ´ η for non-negligible η ą 0. It was also shown in Claim 1 that for all subset S Ă Znq of
size |S| “ ρqn, and non-negligible ν ą 0, Prpa,bq„ZnqˆZq

“

a1 P S
‰

ď ρ ` ν. We have been calling this
the “non-degenerate” property of f ; this will play a major role in this section. Our goal in this section
is to algorithmically recover pH,Vq such that H P Znˆnq and V Ă Znq is a constant dimensional vector
subspace such that

PpH,Vq :“ Prpa,bq„ZnqˆZq
“

a1 P SpanpHaq `V
‰

ě 1´ τ,

where pa1, b1q “ fpa, bq, and τ “ nq2η1{12t
?

178n, where t P N is a new parameter; it is the minimal
integer such that t ě logqp1{δq`2

3c
holds. Note t “ Op1q.

The Function h. We introduce the function h : Znq Ñ Znq which is defined from f as follows. First,
if b P Zq, then define the function hb : Znq Ñ Znq by hbpaq “ a1 such that pa1, b1q “ fpa, bq. If a „ Znq ,
then hpaq chooses b „ Zq and outputs hbpaq P Znq . However, if a1, . . . , an „ Znq , and α1, . . . , αn P Zq,
then we define h

´

ř

i

αiai

¯

“ hř
i
αibi

´

ř

i

αiai

¯

, where each bi P Zq is the randomness chosen in the
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computation of hpaiq. In this section, it will be considerably simpler to work with h rather than f .
The non-degeneracy property framed in terms of h asserts that for all S Ă Znq of size |S| “ ρqn, and
non-negligible ν ą 0, Pra„Zq

“

hpaq P S
‰

ď ρ` ν.

6.1 Proof Overview
We first provide a brief high-level overview of the proof of Lemma 3. We prove Lemma 3 in two parts.
First, we show there exists an efficiently computable subspace V Ă Znq of constant dimension such that

Pra1,a2„Znq
pα1,α2q„Z2

q

s.t. pα1,α2q‰p0,0q

”

hpα1a1 ` α2a2q P Span
`

thpa1q, hpa2qu
˘

`V
ı

ě 1´ 2
?
ν,

for a non-negligible quantity ν “ νpnq. Next, we prove an affine linearity testing theorem to show there
exists an efficiently computable matrix H P Znˆnq such that P

`

H,V
˘

ě 1´ τ , as desired.

6.1.1 Part I: h Passes an Affine Linearity Test with High Probability

Towards proving the first point, we consider the experiment which, for all i P rts:

1. Chooses ai,0, ai,1 „ Znq , αi,0, αi,1 „ Zq;

2. Sets ai,2 “ α0a0 ` α1a1 P Znq ;

3. Computes a1i,j “ hpai,jq, @j P t0, 1, 2u;

and then outputs ta1i,juiPrts,
jPt0,1,2u

Ă Znq . Suppose that d :“ dim
´

Span
`

ta1i,juiPrts,
jPt0,1,2u

˘

¯

“ 3t. For ease

of presentation, suppose furthermore that dim
´

Span
`

tai,juiPrts,
jPt0,1u

˘

¯

“ 2t. Since tpai,j, bi,jquiPrts
jPt0,1u

is statistically close to 2t LWEs samples, for some s P Znq , by the correctness of f it follows that f
generates 3t LWRs1 samples from the 2t LWEs samples, where s1 P Znq is the unique right neighbor of s
in G. But, letting ei,j P Zq be the LWE error term of each sample pai,j, bi,jq pi P rts, j P t0, 1uq, observe
that

#
 

s P Znq : bi,j ´ ei,j “ xai,j, sy P Zq @i P rts, j P t0, 1u
(

#
!

s1 P Znq : b1i,j “
X

xai,j, s1y
T

p
P Zp @i P rts, j P t0, 1, 2u

) ě
qn´2t

pq{pq3tqn´3t
“
p3t

q2t
ě q3ct ą 1,

hence at least two distinct good LWE secrets in G must map to the same right-vertex s1, contradicting
the definition of G. Hence d ă 3t.

In reality, our full proof actually shows that d ă 3t with probability at least 1´ νt over our experi-
ment. A routine counting argument then shows Dr P t0, 1, . . . , t´ 1u such that

1´ ν ď Pr

„

dim
´

Span
`

ta1i,0, a
1
i,1, a

1
i,2uiďr`1

˘

¯

ă 3pr ` 1q

ˇ

ˇ

ˇ

ˇ

dim
´

Span
`

ta1i,0, a
1
i,1, a

1
i,2uiďr

˘

¯

“ 3r



ď Pr
”

a1r`1,0 P V
ı

` Pr
”

a1r`1,1 P Span
`

ta1r`1,0u
˘

`V
ı

` Pr
”

a1r`1,2 P Span
`

ta1r`1,0, a
1
r`1,1u

˘

`V
ı

ď 2ν ` q´Ωpnq ` Pr
”

a1r`1,2 P Span
`

ta1r`1,0, a
1
r`1,1u

˘

`V
ı

,
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where the probabilities are all over the randomness of our experiment, V “ Span
`

ta1i,0, a
1
i,1, a

1
i,2uiďr

˘

,
and the last inequality follows from the non-degeneracy of h. Hence

Pr
”

a1r`1,2 P Span
`

ta1r`1,0, a
1
r`1,1u

˘

`V
ı

ě 1´ 4ν,

which implies that with probability at least 1´ 2
?
ν over V it holds that

Pra1,a2„Znq
pα1,α2qPZ2

q

s.t. pα1,α2q‰p0,0q

”

hpα1a1 ` α2a2q P Span
`

hpa1q, hpa2q
˘

`V
ı

ě 1´ 2
?
ν.

Our algorithm then simply chooses r˚ „ t0, 1, . . . , t ´ 1u as a guess for r, repeats our experiment
substituting r˚ for t, and outputs V :“ Span

`

ta1i,0, a
1
i,1, a

1
i,2uiďr˚

˘

. See Section 6.2 for the full proof.

6.1.2 Part II: Recovering H via an Affine Linearity Testing Theorem

In Part I of this proof overview, we showed that the function h satisfies a type of affine linearity test.
Specifically, we showed there exists an efficiently computable subspace V Ă Znq of constant dimension
such that

Pra1,a2„Znq
pα1,α2q„Z2

q

s.t. pα1,α2q‰p0,0q

”

hpα1a1 ` α2a2q P Span
`

thpa1q, hpa2qu `V
˘

ı

ě 1´ 2
?
ν. (4)

Now, we outline an affine linearity testing theorem which concludes there exists an efficiently com-
putable matrix H P Znˆnq such that

Pra„Znq
“

hpaq P Span
`

tHau
˘

`V
‰

ě 1´ τ.

The high-level idea is that we compute a random basis ta1, . . . , anu Ă Znq of Znq , and then compute
ta11, . . . , a

1
nu Ă Znq that

Prα„Znq

«

h
´

n
ÿ

i“1

αiai

¯

P Span

ˆ

!

n
ÿ

i“1

αia
1
i

)

˙

`V

ff

ě 1´ τ.

Then, we construct an algorithm which simply computes the matrices A,A1 P Znˆnq where the ith

column of A presp., A1q is ai presp., a1iq, and outputs the matrix H “ A1A´1 P Znˆnq .
For the purpose of this proof overview, we assume that the hypothesis (4) of the affine linearity holds

with probability 1, and that V “ t0u. Let ta1, . . . , anu Ă Znq is a basis for Znq . We additionally assume
that thpa1q, . . . , hpanqu Ă Znq is linearly independent. Finally, for simplicity, here we’ll actually show
there exists ta11, a

1
2, a

1
3u Ă Znq such that @pα1, α2, α3q P

`

Z2 ˆ Zq ˆ Zq
˘H

tp0, 0, 0qu,

hpα1a1 ` α2a2 ` α3a3q P Span
`

tα1a
1
1 ` α2a

1
2 ` α3a

1
3u
˘

.

Our techniques follow those in the proof of a major result in algebraic geometry called the Fundamen-
tal Theorem of Projective Geometry [Art57]. As we will see, our argument assumes a polynomially
bounded number of events, each of which in reality occurs with high probability. So, in our full proof,
we can assume all of these events hold simultaneously, allowing us to adapt these techniques while ap-
plying the union bound to obtain the conclusion with probability 1 ´ τ . For the full proof, see Section
6.3.
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We begin by setting a11 “ hpa1q P Znq . Observe that since hpa1`a2q P Span
`

ta11, hpa2qu
˘

, then we
can define a12 P Znq such that hpa1 ` a2q P Span

`

ta11 ` a12u
˘

pa12 is well-defined since thpa1q, hpa2qu

are linearly independentq. We similarly define a13 P Znq such that hpa1 ` a3q P Span
`

ta11 ` a13u
˘

. Note
that ta11, a

1
2, a

1
3u Ă Znq are linearly independent. Now, for each i P t2, 3u, we can similarly define a map

πi : Zq Ñ Zq by πipαq “ β P Zq such that hpa1 ` αaiq P Span
`

ta11 ` βa1iu
˘

. Observe that πip0q “ 0
and πip1q “ 1. Moreover, if α2, α3 P Zq, then by rewriting a1 ` α2a2 ` α3a3 “ pa1 ` α2a2q ` α3a3 “

pa1 ` α3a3q ` α2a2 P Znq , we see that

hpa1 ` α2a2 ` α3a3q P Span
`

ta11 ` π2pα2qa
1
2, a

1
3u
˘

X Span
`

ta11 ` π3pα3qa
1
3, a

1
2u
˘

“ Span
`

ta11 ` π2pα2qa
1
2 ` π3pα3qa

1
3u
˘

.

Next, let pα2, α3q P Z2
qztp0, 0qu, and let x “ α2a2 ` α3a3 P Znq . We’ll show that hpxq P

Span
`

tπ2pα2qa
1
2 ` π3pα3qa

1
3u
˘

. Note that we have hpxq P Span
`

ta12, a
1
3u
˘

. On the other hand,
we can write x “ pa1 ` α2a2 ` α3a3q ´ a1, hence hpxq P Span

`

thpa1 ` α2a2 ` α3a3q, a
1
1u
˘

Ă

Span
`

ta11 ` π2pα2qa
1
2 ` π3pα3qa

1
3, a

1
1u
˘

. So, we have

hpxq P Span
`

ta12, a
1
3u
˘

X Span
`

ta11 ` π2pα2qa
1
2 ` π3pα3qa

1
3, a

1
1u
˘

“ Span
`

tπ2pα2qa
1
2 ` π3pα3qa

1
3u
˘

.

Finally, we show that each map πi is actually the identity map on Zq, which completes the proof.
Consider the map π2 pa similar symmetric argument holds for π3q. We proceed by induction on α P Zq.
The base cases in which α P t0, 1u follow from the above discussion. Suppose that π2pα´ 1q “ α´ 1.
Let x “ a1`αa2`a3 P Znq . We can first write x “ pa1`π2pαqa2q`a3 P Znq , hence hpxq P Span

`

ta11`

π2pαqa
1
2, a

1
3u
˘

, so Dpβ1, β2q P Z2
q such that hpxq “ β1pa

1
1 ` π2pαqa

1
2q ` β2a

1
3 P Znq . On the other hand,

we can write also write x “ pa1`pα´1qa2q`pa2`a3q, hence hpxq P Span
`

ta11`pα´1qa12, a
1
2`a13u

˘

,
where we have used the induction hypothesis, the conclusion of the previous paragraph, and the base
case. So, Dpγ1, γ2q P Z2

q such that hpxq “ γ1pa
1
1 ` pα ´ 1qa12q ` γ2pa

1
2 ` a3q P Znq . Finally, we can

write x “ pa1 ` a3q ` α2a2 P Znq , and so hpxq P Span
`

ta11 ` a13, a
1
2u
˘

. Then Dpδ1, δ2q P Z2
q such that

hpxq “ δ1pa
1
1 ` a13q ` δ2a2 P Znq . By equating these three representations of hpxq, and by the linear

independence of ta11, a
1
2, a

1
3u, it follows that γ1pα ´ 1q ` γ2 “ β1π2pαq, γ1 “ β1, and γ2 “ δ1 “ γ1.

Hence γ1α “ γ1π2pαq, and so α “ π2pαq when γ1 ‰ 0. Indeed, it can be shown that γ1 ‰ 0 (with
overwhelming probability) since h is non-degenerate.

6.2 Recovering V

The Algorithm to Recover V. Let notations be as above. We recover V as follows.

1. Initialize V “ t0u; choose r „ t1, . . . , tu; for i “ 1, . . . , r, do the following:

¨ choose ai,0, ai,1 „ Znq and pαi,0, αi,1q „ Z2
qztp0, 0qu;

¨ compute a1i,j “ hpai,jq for j “ 0, 1, 2, where ai,2 “ αi,0ai,0 ` αi,1ai,1;

¨ update V :“ V ` Span
`

ta1i,0, a
1
i,1, a

1
i,2u

˘

.

2. Output V.
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Claim 4. Let Dr denote the random procedure used to generate the vectors
 

a1i,0, a
1
i,1, a

1
i,2ui“1,...,r.

Suppose the function h : Znq Ñ Znq is such that PrDt
“

dim Span
`

ta1i,jui,j
˘

“ 3t
‰

ă η1{3. Then with
non-negligible probability, the vector space V output above satisfies PpVq ě 1´ 4η1{6t, where

PpVq :“ Pr a1,a2„Znq
pα1,α2q„Z2

qztp0,0qu

”

hpα1a1 ` α2a2q P Span
`

thpa1q, hpa2qu
˘

`V
ı

.

Proof. Let ν ą 0 be such that ν3t “ η. Consider an execution of Dt; for i “ 0, . . . , t, let Vi denote the
vector space V after the i´th iteration, and let di “ dimpViq. We are given that Pr

“

dt “ 3t
‰

ă νt; let
r P t0, 1, . . . , t´ 1u be maximal such that Pr

“

dr “ 3r
‰

ě νr. We have

νr`1 ą Pr
“

dr`1 “ 3pr ` 1q
‰

“ Pr
“

dr`1 “ 3pr ` 1q
ˇ

ˇdr “ 3r
‰

¨ Pr
“

dr “ 3r
‰

ě Pr
“

dr`1 “ 3pr ` 1q
ˇ

ˇdr “ 3r
‰

¨ νr,

and so Pr
“

dr`1 ă 3pr`1q
ˇ

ˇdr “ 3r
‰

ě 1´ν. Let a0, a1 P Znq and pα0, α1q P Z2
qztp0, 0qu be the vectors

and scalars drawn during the pr ` 1q´th round of Dt. Note if dr`1 ă 3pr ` 1q then it must be that at
least one of the following occurs:

p1q a10 P Vr; p2q a11 P Vr ` Spanpa10q; p3q a12 P Vr ` Span
`

ta10, a
1
1u
˘

.

By non-degeneracy, the first two points happen with probability at most ν ` q´Ωpnq. Thus, the third
point holds with probability at least 1´3ν´ q´Ωpnq ě 1´4ν, and so it holds with probability 1´2

?
ν

over Vr that

PpVrq “ Pr a0,a1„Znq
pα0,α1q„Z2

qztp0,0qu

”

hpα0a0 ` α1a1q P Span
`

thpa0q, hpa1qu
˘

`Vr

ı

ě 1´ 2
?
ν.

The probability that the above algorithm chooses this r is 1{t. The claim follows.

Claim 5. Let notations be as above. Then PrDt
“

dimpVq “ 3t
‰

ă η1{3.

Remark. This is the only place in the paper where we need to use the assumption that q2{3`c ă p ă q.

Proof. Let D be the distribution which runs the same random procedure as in Dt except which also
outputs the tai,ju, and additionally which outputs the tbi,ju and tb1i,ju used to compute h. So specifically,
D outputs

!

pai,j, bi,jq, pa
1
i,j, b

1
i,jq

)

i“1,...,t
j“0,1,2

Ă
`

Znq ˆ Zq
˘3
ˆ
`

Znq ˆ Zp
˘3

where for all i “ 1, . . . , t:

‚ pai,0, bi,0q, pai,1, bi,1q „ Znq ˆ Zq;

‚ pαi,0, αi,1q „ Z2
qztp0, 0qu and pai,2, bi,2q “ pαi,0ai,0 ` αi,1ai,1, αi,0bi,0 ` αi,1bi,1q;

‚ pa1i,j, b
1
i,jq “ fpai,j, bi,jq.

Consider a draw
`

tpai,j, bi,jqu, tpa
1
i,j, b

1
i,jqu

˘

„ D, let d :“ dim
`

Span
`

ta1i,ju
˘˘

, and let S, S 1 Ă Znq be
the following subsets of LWE and LWR secrets:

S :“
 

s P G : bi,j “ xai,j, sy @ i, j
(

; and S 1 :“
 

s1 P Znq : b1i,j “
X

xa1i,j, s
1
y
T

p
@ i, j

(

.

Consider the following three events:
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‚ E1: d “ 3t;

‚ E2: |S| ě q´2t´1 ¨ |G|;

‚ E3: Prs„S
“

s1 P S 1
‰

ě 1´
?

3tqη, where s1 P Znq is the unique LWR secret st pps,s1q ě 1´ η.

Note that all three events cannot occur simultaneously. Indeed, the events E2 and E3 together imply
that #ts P S : s1 P S 1u ě p1 ´

?
3tqηq ¨ q´2t´1 ¨ |G| ě 1

2
¨ q´2t´1 ¨ |G|, while E1 implies that

|S 1| “
`

q{p
˘3t
¨ q´3t ¨ qn “ p´3t ¨ qn. If all three hold then

#ts P S : s1 P S 1u

|S 1|
ě
q´2t´1 ¨ δ

2 ¨ p´3t
ą
q3tc´1 ¨ δ

2
ą 1,

which violates property 3 of G since it means some s1 P S 1 has #ts P S : pps,s1q ě 1 ´ ηu ě 2.
We finish by showing that both E2 and E3 occur with high probability. Specifically, we show that
PrD

“

E2 & E3

‰

ą 1 ´ η1{3. Since all three events cannot occur simultaneously, PrD
“

E1

‰

ă η1{3 must
hold. So, Points 1 and 2 below complete the proof.

Claim 6. PrD
“

E2

‰

ą 1´ q´n{3.

Proof. Recall E2 is the event that |S| ě q´2t´1 ¨ |G|. In this proof, it will be more convenient to label
the 2t pairs in Znq ˆ Zq drawn during D as pa1, b1q, . . . , pa2t, b2tq, rather than pai,j, bi,jq, i “ 1, . . . , t
and j “ 0, 1. Given a draw tpai, biqu2ti“1 during D, let Gr “ ts P G : bi “ xai, sy @ i “ 1, . . . , ru. So
G “ G0 and S “ G2t. We have

PrD
“

E2

‰

“ PrD

”

|S| ě q´2t´1 ¨ |G|
ı

ě PrD

”

|Gr| ě q´1´1{2t ¨ |Gr´1| @ r “ 1, . . . , 2t
ı

“

2t
ź

r“1

PrD

”

|Gr| ě q´1´1{2t ¨ |Gr´1|
ˇ

ˇ

ˇ
|Gi| ě q´1´1{2t ¨ |Gi´1| @ i “ 1, . . . , r ´ 1

ı

.

We will show that for all r “ 1, . . . , 2t, as long as |Gr´1| ě q´r ¨ |G|, then

Prpa,bq„ZnqˆZq

”

Prs„Gr´1

“

b “ xa, sy
‰

ě q´1´1{2t
ı

ě 1´ q´n{2 (5)

holds. This proves the claim as it gives PrD
“

E2

‰

ě
`

1 ´ q´n{2
˘2t
ą 1 ´ q´n{3, so it remains to prove

(5). For b P Zq, let
Xb :“

 

a P Znq : Prs„Gr´1rxa, sy “ bs ă q´1´1{2t
(

.

Clearly ∆
`

xXb,Gr´1y,UnifpZqq
˘

ą q´1 ¨ p1´ q´1{2tq ě q´2. Therefore, by Fact 1,

|Xb| ď
qn`1

|Gr´1| ¨ q´4
ď

qn`5

q´r ¨ |G|
ď
qn`5`2t

δ ¨ qn
“ q2t`5 ¨ δ´1.

We have

Prpa,bq„ZnqˆZq

”

Prs„Gr´1

“

b “ xa, sy
‰

ă q´1´1{2t
ı

ď Pra„Znq

”

D b P Zq st a P Xb

ı

ď q2t`6 ¨ δ´1 ¨ q´n ă q´n{2,

proving (5).
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Claim 7. PrD
“

E3

‰

ě 1´
?

3tqη.

Proof. Recall E3 is the event that Prs„S
“

s1 P S 1
‰

ě 1 ´
?

3tqη, where s1 P Znq is the unique s1 P Znq
such that pps,s1q ě 1 ´ η. We prove PrD,s„S

“

s1 P S 1
‰

ě 1 ´ 3tqη; the claim then follows by averaging.
Note that Prpa,bq„LWEs

“

b1 “
X

xa1, s1y
T

p

ˇ

ˇb “ xa, sy
‰

ě 1 ´ qη, since χ outputs e “ 0 with probability at
least 1{q. It follows that

PrD,s„S
“

s1 P S 1
‰

“ PrD,s„G

”

b1i,j “
X

xa1i,j, s
1
y
T

p
@ i, j

ˇ

ˇ

ˇ
bi,j “ xai,j, sy @ i, j

ı

“ Prs„G,tpai,j ,bi,jqu„LWEs

”

b1i,j “
X

xa1i,j, s
1
y
T

p
@ i, j

ˇ

ˇ

ˇ
bi,j “ xai,j, sy @ i, j

ı

ě 1´ 3tqη,

by the union bound.

6.3 Recovering H.
In the previous section we showed how to recover a constant dimensional subspace V Ă Znq such that
PpVq ě 1 ´ 4γ, where γ “ η1{6t. Here, we show how to use h such that PpVq ě 1 ´ 4γ holds to
recover H P Znˆnq such that PpH,Vq ě 1´ τ holds where τ “ nq2

?
178nγ. This completes the proof

of Lemma 3, and thus also the proof of Theorem 2. Rather than directly recovering H P Znˆnq , our
algorithm will recover vectors tai, a1iu

n
i“1 Ă Znq such that taiui is linearly independent and such that

Prα1,...,αn„Zq

”

hpα1a1 ` ¨ ¨ ¨ ` αnanq P Spanpα1a
1
1 ` ¨ ¨ ¨ ` αna

1
nq `V

ı

ě 1´ τ. (6)

Given such tai, a1iui, we let H P Znˆnq be the linear map which sends ai to a1i for all i “ 1, . . . , n;
PpH,Vq ě 1´ τ follows from (6).

The Algorithm to Recover tai, a1iui. Let notations be as above. We recover tai, a1iui as follows.

1. Choose a1, . . . , an „ Znq such that ta1, . . . , anu is linearly independent.

2. For i “ 1, . . . , n, set a1i “ λihpaiq P Znq for scalars tλiuni“1 computed as follows:

¨ set λ1 “ 1;

¨ for i ě 2, let λi P Zq be the unique scalar such that hpa1 ` aiq P Span
`

a11 ` λihpaiq
˘

`V;
if no such λi exists, or if more than one such λi exists, halt and give no output.

3. Output tai, a1iu
n
i“1.

Note that hpa1 ` aiq P Span
`

ta11, hpaiqu
˘

` V holds for all i P t2, . . . , nu with probability at least
1 ´ 4pn ´ 1qq2γ, since PpVq ě 1 ´ 4γ. In this case, for all i, there exist scalars pβ1, βiq such that
hpa1 ` aiq P β1a

1
1 ` βihpaiq `V. If β1 “ 0 then hpa1 ` aiq P Span

`

hpaiq
˘

`V; this happens only
with negligible probability since h is non-degenerate. If β1 ‰ 0 then there exists some scalar λi P Zq
such that hpa1 ` aiq P Span

`

a11 ` λihpaiq
˘

`V. Note, it is only possible for there to exist two such
scalars, λi ‰ λ1i such that

hpa1 ` aiq P
´

Span
`

a11 ` λihpaiq
˘

`V
¯

X

´

Span
`

a11 ` λ
1
ihpaiq

˘

`V
¯

,
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if hpaiq P Spanpa11q `V. This also occurs with negligible probability since h is non-degenerate. Thus,
the above algorithm completes and gives output without aborting with probability at least 1 ´ pn{q `
4nq2γq.

Henceforth, if a1, . . . , an „ Znq , then we will implicitly condition on ta1, . . . , anu being linearly
independent and computing ta11, . . . , a

1
nu as above. Specifically, we’ll show that

Pra1,...,an„Znq
pα1,...,αnq„Znq zt0u

«

h
´

ÿ

i

αiai

¯

P Span

ˆ

!

ÿ

i

αia
1
i

)

˙

`V

ff

ě 1´ 178n3q4γ,

hence with non-negligible probability over a1, . . . , an „ Znq , it follows that ta1, . . . , anu is linearly
independent, our above algorithm outputs ta11, . . . , a

1
nu as desired, and (6) holds.

We’ll use induction on r P t3, . . . , nu to show that

Pr :“ Pra1,...,an„Znq
pα1,...,αnq„Zrqzt0u

«

h
´

r
ÿ

i“1

αiai

¯

P Span

ˆ

!

r
ÿ

i“1

αia
1
i

)

˙

`V

ff

ě 1´p80n2q4γ`89pr´3qn2q4γq,

hence Pn ě 1´178n3q4γ as desired. We begin with the following key technical claim, which is proved
in Section 6.4.

Claim 8. For all distinct i, j P t2, . . . , nu, and pα1, αi, αjq P Z3
qzt0u,

hpα1a1 ` αiai ` αjajq P Span
`

tα1a
1
1 ` αia

1
i ` αja

1
ju
˘

`V,

holds with probability at least 1´ 80n2q4γ over taiuni“1.

The base case of r “ 3 follows immediately from Claim 8. For the induction step, assume that
Pr´1 ě 80n2q4γ ` 89pr ´ 4qn2q4γ. Since the probability Pr over a1, . . . , an „ Znq , pα1, . . . , αnq „
Znq zt0u, we will assume WLOG that α1 ‰ 0. Observe that we can write z :“ hpα1a1 ` ¨ ¨ ¨ ` αrarq “

h
`

pα1a1`¨ ¨ ¨`αr´1ar´1q`αrar
˘

P Span
`

thpα1a1`¨ ¨ ¨`αr´1ar´1q, hparqu
˘

`V Ă Span
`

tα1a
1
1`

¨ ¨ ¨ ` αr´1a
1
r´1, a

1
ru
˘

` V, except with probability 4γ ` p80n2q4γ ` 89pr ´ 4qn2q4γq (here we have
invoked the induction hypothesis). On the other hand, we can write z “ h

`

pα1a1 ` αrarq ` pα2a2 `

¨ ¨ ¨ ` αr´1ar´1q
˘

P Span
`

thpα1a1 ` αrarq,yu
˘

` V Ă Span
`

tα1a
1
1 ` αra

1
r,yu

˘

` V, except with
probability 4γ ` 80n2q4γ, by Claim 8. Hence Dβ1, β2, β3, β4 P Zq,v1,v2 P V such that

β1pα1a
1
1 ` ¨ ¨ ¨ ` αr´1a

1
r´1q ` β2a

1
r ` v1 “ z “ β3pα1a

1
1 ` ara

1
rq ` β4y ` v2,

and since the distribution of y is independent of ta1, aru, it follows from the non-degeneracy of h that
with overwhelming probability β1α1 “ β3α1 and β2 “ β3αr. Since α1 ‰ 0 we thus have that β1 “ β3
and so β2 “ β1αr, hence z P Span

`

tα1a
1
1 ` ¨ ¨ ¨ ` αra

1
ru
˘

`V with probability 1´ p4γ ` p80n2q4γ `
89pr´ 4qn2q4γq ` 4γ ` 80n2q4γ ` neglpnqq ě 1´ p80n2q4γ ` 89pr´ 3qn2q4γq, which completes the
induction step.

6.4 Proof of Claim 8
Proof. We must show that for all distinct i, j P t2, . . . , nu and pα1, αi, αjq P Z3

qzt0u,

hpα1a1 ` αiai ` αjajq P Span
`

tα1a
1
1 ` αia

1
i ` αja

1
ju
˘

`V
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holds with good probability over taiu. We will build up to analyzing hpα1a1`αiai`αjajq. To start out,
we know that hpa1q “ a11 and hpa1`aiq “ a11`a1i for all i P t2, . . . , nu; these are due to the algorithm
specifications. So now consider hpa1`αiaiq for αi ‰ 0, 1. Note a1`αiai “ p1´αiqa1`αipa1`aiq,
and so

hpa1 ` αiaiq P Span
`

ta11, a
1
iu
˘

`V

holds for all i P t2, . . . , nu and αi P Zq with probability at least 1´4nqγ (since PpVq ě 1´4γ). Now,
if hpa1 ` αiaiq P Span

`

ta11, a
1
iu
˘

`V holds for all pi, αiq, then we can define maps πi : Zq Ñ Zq so
that hpa1 ` αiaiq P Span

`

a11 ` πipαiqa
1
i

˘

`V always holds. Note πip0q “ 0 and πip1q “ 1 for all i.
Fix i, j P t2, . . . , nu and pα1, αi, αjq P Z3

qzt0u. We’ll prove the following points, where all proba-
bilities are implicitly over taiu:

Point 1: hpαiaiq P Span
`

tαihpaiqu
˘

`V with probability 1´ 5γ.

Point 2: hpa1`αiai`αjajq P Span
`

ta11` πipαiqa
1
i` πjpαjqa

1
ju
˘

`V with probability 1´ 9γ.

Point 3: hpαiai ` αjajq P Span
`

tπipαiqa
1
i ` πjpαjqa

1
ju
˘

`V with probability 1´ 18γ.

Point 4: πi and πj are the identity maps with probability 1´ 62qγ.

Point 5: hpα1a1 ` αiai ` αjajq P Span
`

tα1a
1
1 ` αia

1
i ` αja

1
ju
˘

`V with probability 1´ 76qγ.

This will complete the proof of Claim 8, since by Point 5 and the union bound it then holds with
probability 1´ p4nqγ ` 76n2q4γq ě 1´ 80n2q4γ that hpα1a1`αiai`αjajq P Span

`

tα1a
1
1`αia

1
i`

αja
1
ju
˘

`V @i, j P t2, . . . , nu, pα1, αi, αjq P Z3
qzt0u.

Point 1. Note αiai “ ´a1`pa1`αiaiq, and so hpαiaiq P Span
`

ta11, a
1
iu
˘

`V holds with probability
1´ 4γ. This means that either

hpαiaiq P Span
`

ta1iu
˘

`V; or a11 P Span
` 

hpαiaiq, a
1
i

(˘

`V.

The latter occurs only with negligible probability since h is non-degenerate. Hence
hpαiaiq P Span

`

tαihpaiqu
˘

`V with probability 1´ 5γ.

Point 2. Note αjaj ` pa1 ` αiaiq “ a1 ` αiai ` αjaj “ αiai ` pa1 ` αjajq, and so

hpa1 ` αiai ` αjajq P

ˆ

Span
`

ta1i, a
1
1 ` πjpαjqa

1
ju
˘

`V

˙

X

ˆ

Span
`

ta1j, a
1
1 ` πipαiqa

1
iu
˘

`V

˙

holds with probability 1´ 8γ. So DA,B,A1, B1 P Zq such that

Aa1i `B ¨
`

a11 ` πjpαjqa
1
j

˘

P A1a1j `B
1
¨ pa11 ` πipαiqa

1
i

˘

`V.

As we have seen a few times by now, either B “ B1 or else a11 P Span
`

ta1i, a
1
ju
˘

` V and the latter
happens with negligible probability by non-degeneracy. Therefore, B “ B1 except with negligible
probability. Similarly, A “ πipαiqB, and so hpa1`αiai`αjajq P Spanpa11`πipαiqa

1
i`πjpαjqa

1
jq`V

holds with probability at least 1´ 9γ.

27



Point 3. Note hpαiai ` αjajq P Span
`

ta1i, a
1
ju
˘

`V with probability 1 ´ 4γ. Additionally, we can
write αiai ` αjaj “ ´a1 ` pa1 ` αiai ` αjajq and so

hpαiai ` αjajq P Span
`

ta11, a
1
1 ` πipαiqa

1
i ` πjpαjqa

1
ju
˘

`V

holds with probability 1 ´ p4γ ` 9γq “ 1 ´ 13γ by Point 2. Thus, with probability at least 1 ´ 17γ,
there exist scalars A,B,A1, B1 P Zq such that

Aa1i `Ba1j “ A1a11 `B
1
pa11 ` πipαiqa

1
i ` πjpαjqa

1
jq.

By non-degeneracy, A1 “ ´B1, A “ B1πipαiq, and B “ B1πjpαjq hold except with negligible proba-
bility. So hpαiai ` αjajq P Span

`

tπipαiqa
1
i ` πjpαjqa

1
ju
˘

`V holds with probability 1´ 18γ.

Point 4. We first prove that πipαq “ α, @α P Zq, by induction on α P Zq. We have already seen that
πip0q “ 0 and πip1q “ 1. So assume πipα ´ 1q “ α ´ 1, and write a1 ` αai ` aj in three different
ways:

pa1 ` aiq ` ppα ´ 1qai ` ajq “ aj ` pa1 ` αaiq “ pa1 ` ajq ` αai.

By applying the union bound over three invocations of PpVq ě 1 ´ 4γ and Point 3, we have that with
probability 1´ 30γ, hpa1 ` αai ` ajq is contained in:

ˆ

Span
`

ta11 ` a1i, pα ´ 1qa1i ` a1ju
˘

X Span
`

ta1j, a
1
1 ` πipαqa

1
iu
˘

X Span
`

ta11 ` a1j, a
1
iu
˘

˙

`V,

in which case DA,B,A1, B1, A2, B2 P Zq such that hpa1 ` αai ` ajq is equal to

Apa11 ` a1iq `Bppα ´ 1qa1i ` a1jq “ A1a1j `B
1
pa11 ` πipαqa

1
iq “ A2pa11 ` a1jq `B

2a1i.

Solving for a11 gives A2 “ B1 “ A. Solving for a1j gives A2 “ A1 “ B. In particular, A “ B “ B1.
Solving for a1i gives πipαq “ α, as desired. We incurred a loss of 30γ ` neglpnq ď 31γ to take a
single step in the induction. Therefore, πipαq “ α, @α P Zq, with probability at least 1´ 31qγ, and the
conclusion follows from the union bound.

Point 5. We may assume that α1 ‰ 0 since the case in which α1 “ 0 is handled by Points 3 and 4.
By writing

x :“ α1a1 ` αiai ` αjaj “ α1pa1 ` α
´1
1 αiai ` α

´1
1 αjajq

and applying Points 1, 2, and 4, we see that with probability at least 1´p5γ` 9γ` 62qγq ě 1´ 76qγ,

hpxq P Span
`

α1hpa1 ` α
´1
1 αiai ` α

´1
1 αjajq

˘

`V Ă Span
`

α1pa
1
1 ` α

´1
1 αia

1
i ` α

´1
1 αja

1
jq
˘

`V

“ Span
`

α1a
1
1 ` αia

1
i ` αja

1
j

˘

`V.
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