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This paper studies Byzantine reliable broadcast (BRB) under asynchronous networks, and improves the state-of-the-art protocols from

the following aspects. Near-optimal communication cost:We propose two new BRB protocols for 𝑛 nodes and input message𝑀 that has

communication cost𝑂(𝑛 |𝑀 |+𝑛2
log𝑛), which is near-optimal due to the lower bound of Ω(𝑛 |𝑀 |+𝑛2

). The first RBC protocol assumes

threshold signature but is easy to understand, while the second RBC protocol is error-free but less intuitive. Improved computation:We

propose a new construction that improves the computation cost of the state-of-the-art BRB by avoiding the expensive online error

correction on the input message, while achieving the same communication cost. Balanced communication:We propose a technique

named balanced multicast that can balance the communication cost for BRB protocols where the broadcaster needs to multicast the

message𝑀 while other nodes only needs to multicast coded fragments of size𝑂( |𝑀 |/𝑛 + log𝑛). The balanced multicast technique can

be applied to many existing BRB protocols as well as all our new constructions in this paper, and can make every node incur about the

same communication cost. Finally, we present a lower bound to show the near optimality of our protocol in terms of communication

cost at each node.

1 INTRODUCTION

Reliable broadcast is a fundamental primitive in distributed computing [14], and has many applications such as fault-

tolerant consensus and replication [24, 26, 27, 33, 35, 37, 40], secure multiparty computation [38, 50], verifiable secret

sharing [21], and distributed key generation [2, 22, 36]. The goal of reliable broadcast is to have a designated broadcaster

send its input message and to have all nodes output the same message.

In this paper, we assume Byzantine faults that may deviate arbitrarily from the protocols. The problem is hence

referred to us Byzantine Reliable Broadcast (BRB). We study BRB in asynchronous networks.

Existing works on BRB. The first BRB protocol due to Bracha [14] has a total communication cost of 𝑂(𝑛2 |𝑀 |),
where 𝑛 is the number of protocol nodes and |𝑀 | is the size of the broadcaster’s message in bits. The BRB protocol of

Bracha [14] is error-free, which means the adversary has unbounded computational power and the protocol always

achieves the guarantees in every possible execution. Two decades later, it is improved by Cachin and Tessaro [16]

to 𝑂(𝑛 |𝑀 |+𝜅𝑛2
log𝑛), assuming a computationally bounded adversary that cannot break a collision resistant hash

function of output size 𝑂(𝜅). Later, Patra [42] proposed an error-free BRB protocol with improved total communication
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cost 𝑂(𝑛 |𝑀 |+𝑛4
log𝑛) and has 11 rounds. In all of these BRB protocols, every node, including the broadcaster, incurs

the same asymptotic communication cost. Here on, we say such a BRB protocol has a balanced communication cost.

Very recently, several efforts [5, 21, 41] further improve the communication cost of the BRB protocols. The state-of-

the-art cryptographically secure asynchronous BRB protocol is due to Das, Xiang, and Ren [21], which has a total

communication cost of𝑂(𝑛 |𝑀 |+𝜅𝑛2
), incurs 4 rounds and requires collision resistant hash functions. The state-of-the-art

error-free asynchronous BRB protocol [41] has a total communication cost of𝑂(𝑛 |𝑀 |+𝑛3
log𝑛) and incurs 7 rounds. We

provide a detailed comparison in Table 1 and discuss other related work in detail in §8.

Limitations of the state-of-the-art BRB protocols. However, despite all the improvements made by the above

efforts, the state-of-the-art BRB protocols still have the several limitations.

Gap on the communication cost. As shown in [41], a straightforward communication complexity lower bound for

BRB is Ω(𝑛 |𝑀 |+𝑛2
), since all𝑂(𝑛) honest nodes eventually need to receive𝑀 , and even single-bit BRB incurs Ω(𝑛2

) [23].

However, the BRB protocol of Das, Xiang, and Ren [21] still has cost𝑂(𝑛 |𝑀 |+𝜅𝑛2
), which has a𝑂(𝜅) gap from the lower

bound. The state-of-the-art error-free BRB protocol [41] has cost𝑂(𝑛 |𝑀 |+𝑛3
log𝑛), a gap of𝑂(𝑛 log𝑛) from the optimal.

Hence, a natural question is, can we further reduce the communication complexity of the BRB towards its optimality?

Unbalanced communication cost. Asmentioned earlier, the BRB protocols like Bracha [14] and Cachin and Tessaro [16]

have balanced communication cost, meaning every node, including the broadcaster, incurs the same asymptotic cost.

However, the the state-of-the-art BRB protocols [21, 41] have unbalanced communication cost. In both protocols, the

communication cost of the broadcaster is approximately 𝑛 times higher than that of other nodes, leading to a bottleneck

at the broadcaster. It is because the broadcaster in these protocols needs to send the input message𝑀 to all nodes, while

other node only needs to exchange the encoded piece of the message which has size 𝑂(|𝑀 |/𝑛 + log𝑛). In practice, such

unbalanced construction may introduce performance bottlenecks in the system, given that BRB serves as a fundamental

primitive in many applications. Therefore, an important question is whether we can design a BRB protocol that achieves

balanced and near-optimal communication cost for every node?

Inefficiency in the computation. Another limitation of the BRB protocol due to Das, Xiang, and Ren [21] is the

computation inefficiency caused by the online error correction (OEC) algorithm [7]. OEC is a decoding algorithm for

error correcting codes (ECC) such as Reed-Solomon codes [45], where the original message can be decoded even if some

of the coded fragments are corrupted. Roughly speaking, the OEC will decode up to 𝑡 times where 𝑡 is the threshold of

Byzantine faults, for a set of enough coded fragments each time when the set grows. Das, Xiang, and Ren [21] cannot

avoid such a computation since in their BRB protocol, there is no proofs attached to the coded fragments for validity

checks. In contrast, the protocol of Cachin and Tessaro [16] does not require OEC as their protocol attaches the Merkle

proof for each fragments. As a result, Cachin and Tessaro [16] can use erasure code and only need to perform the

decoding once, thus incurs a decoding computation cost at least𝑂(𝑛) times cheaper than Das, Xiang, and Ren [21]. Thus,

an interesting question is whether we can improve the computation cost of Das, Xiang, and Ren [21] while preserving

the same communication cost?

Our contributions.We present several BRB protocol constructions that resolve the existing limitations and answer

the above questions affirmatively. In summary, this paper has the following contributions.

Balanced multicast (§3). We first present a technique that can balance the communication cost of any BRB protocols,

where the broadcaster needs to multicast the message 𝑀 resulting in unbalanced 𝑂(𝑛 |𝑀 |) communication at the
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broadcaster. Our balanced multicast requires two asynchronous rounds, achieves the same property as the vanilla

multicast, but additionally guarantees that all the nodes incur the same cost of 𝑂(|𝑀 |+𝑛 log𝑛). The main technique

to achieve balanced communication cost is to use an additional round of interaction between nodes to help them

reconstruct the input message of the broadcaster without having the broadcaster to directly send the input to all

nodes. As a result, existing unbalanced communication BRB protocols [21, 41] can be made balanced by replacing

the multicast of𝑀 with our balanced multicast in a black-box manner. We also apply the same technique to all BRB

protocols proposed in this paper to make them balanced.

BRB protocol with improved computation (§4). We propose a computationally efficient BRB protocol that reduces the

computation of [21], while keeping the same communication complexity𝑂(𝑛 |𝑀 |+𝜅𝑛2
). The main idea of the construction

is to replace error correcting codes with erasure codes as much as possible. We perform erasure coding on the bulk

data 𝑀 , and then apply error correction only to the vector of hashes of those fragments (of length 𝜅𝑛). To agree on

the hash vector, all honest nodes will execute Bracha-style BRB on the hash of the hash vector, and perform OEC to

reconstruct the vector. Asymptotically, when the size of the message is larger than 𝑂(𝜅𝑛), the above technique reduces

the computation cost at each node for decoding from 𝑂̃(𝑛 |𝑀 |) to 𝑂̃(|𝑀 |+𝜅𝑛2
), where 𝑂̃(·) hides poly-logarithmic terms.

Additionally, erasure coding is concretely more efficient than error correction because optimized implementations use a

static field size for all 𝑛 [43] and they operate using only fast xor and shift operations [30].

BRB protocols with near-optimal communication (§5, §6). We further reduce the communication complexity gap

between the lower and upper bound for BRB, by constructing two protocols that have near-optimal communication

cost. Our first BRB protocol is called SigBRB, which is inspired by Das, Xiang, and Ren [21], and further reduces the

cost to 𝑂(𝑛 |𝑀 |+𝜅𝑛 + 𝑛2
log𝑛) with threshold signature. Since usually we can assume 𝑛 = 𝑝𝑜𝑙𝑦(𝜅), the 𝑂(𝜅𝑛) term can

be neglected and thus the cost is only 𝑂(log𝑛) from the lower bound. SigBRB breaks the 𝑂(𝜅𝑛2
) cost barrier of [21]

by replacing its (quadratic) Bracha-style reliable broadcast on hash with a (linear) consistent broadcast on threshold

signatures. A novel amplification step is also introduced to ensure the correctness after such modification. Moreover, our

SigBRB protocol is intuitive and easy to understand. Our second BRB protocol is error-free, and has total communication

cost to𝑂(𝑛 |𝑀 |+𝑛2
log𝑛), compared to𝑂(𝑛 |𝑀 |+𝑛3

log𝑛) communication of current art [41]. Our error-free BRB protocol

builds on top of the recent synchronous error-free Byzantine agreement (BA) protocol of Chen [19]. We make several

subtle and important modifications to their BA protocol to accommodate asynchrony (see §6). The error-free protocol

has clear advantages in terms of communication cost, cryptographic and setup assumptions, but is less intuitive and

require more rounds than SigBRB, and much harder to analyze compared to the first protocol SigBRB.

Lower bound. Another contribution of this paper is a lower bound result (§7). We prove that for any deterministic

BRB protocol, each node incurs a communication cost of Ω(|𝑀 |+𝑛). Hence, our SigBRB and EFBRB (also BalSigBRB and

BalEFBRB) have near-optimal communication costs – only an factor of 𝑂(log𝑛) gap from the lower bounds.

Paper organization. The rest of the paper is organized as follows. In §2 we provide the necessary background. In §3 we

discuss our balanced multicast protocol where the multicaster incurs the same bandwidth cost as other nodes. In §4 we

describe our computationally improved BRB protocol. In §5 and §6, we describe our BRB protocols with near-optimal

communication complexity, one assuming threshold signature and one is error-free, respectively. In §7 we show lower

bounds on the communication cost of BRB. We discuss related work in §8 and conclude in §10.
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Table 1. Comparison with existing BRB protocols. The computation cost measures the coding and crytographic operations, and 𝑂̃(·)
hides the poly-logarithmic terms (more details in §2.4). The following acronyms are used in the table; q-SDH: q-Strong Diffie-Hellman,
DBDH: Decisional Bilinear Diffie-Hellman. ∗The protocol of [1] is statistically secure with probability 1 − 𝜖 .

Scheme

Communication Cost Computation Cost

Rounds

Cryptographic

Setup

Broadcaster Other node Total Per-node Assumption

Bracha [14] 𝑂(𝑛 |𝑀 |) 𝑂(𝑛 |𝑀 |) 𝑂(𝑛2 |𝑀 |) 0 4 None (error-free) None

Patra [42] 𝑂(𝑛 |𝑀 |+𝑛3
log𝑛) 𝑂( |𝑀 |+𝑛3

log𝑛) 𝑂(𝑛 |𝑀 |+𝑛4
log𝑛) 𝑂̃( |𝑀 |) 11 None (error-free) None

Nayak et al. [41] 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) 𝑂( |𝑀 |+𝑛2

log𝑛) 𝑂(𝑛 |𝑀 |+𝑛3
log𝑛) 𝑂̃( |𝑀 |) 7 None (error-free) None

Abraham-Asharov [1]
∗ 𝑂( |𝑀 |+𝑛 log𝑛) 𝑂( |𝑀 |+𝑛 log(𝑛3/𝜖)) 𝑂(𝑛 |𝑀 |+𝑛2

log(𝑛3/𝜖)) 𝑂̃(𝑛 |𝑀 |) 7 None (statistical) None

EFBRB (§6) 𝑂(𝑛 |𝑀 |+𝑛 log𝑛) 𝑂( |𝑀 |+𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) 𝑂̃(𝑛 |𝑀 |) 9 None (error-free) None

BalEFBRB (§6) 𝑂( |𝑀 |+𝑛 log𝑛) 𝑂( |𝑀 |+𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) 𝑂̃(𝑛 |𝑀 |) 10 None (error-free) None

Cachin-Tessaro [16] 𝑂( |𝑀 |+𝜅𝑛 log𝑛) 𝑂( |𝑀 |+𝜅𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+𝜅𝑛2
log𝑛) 𝑂̃( |𝑀 |+𝜅𝑛) 4 Hash None

Das et al. [21] 𝑂(𝑛 |𝑀 |+𝜅𝑛) 𝑂( |𝑀 |+𝜅𝑛) 𝑂(𝑛 |𝑀 |+𝜅𝑛2
) 𝑂̃(𝑛 |𝑀 |) 4 Hash None

CCBRB (§4) 𝑂( |𝑀 |+𝜅𝑛2
) 𝑂( |𝑀 |+𝜅𝑛) 𝑂(𝑛 |𝑀 |+𝜅𝑛2

) 𝑂̃( |𝑀 |+𝜅𝑛2
) 4 Hash None

BalCCBRB (§4) 𝑂( |𝑀 |+𝜅𝑛) 𝑂( |𝑀 |+𝜅𝑛) 𝑂(𝑛 |𝑀 |+𝜅𝑛2
) 𝑂̃( |𝑀 |+𝜅𝑛2

) 5 Hash None

Nayak et al. [41] 𝑂(𝑛 |𝑀 |+𝜅𝑛) 𝑂( |𝑀 |+𝜅𝑛) 𝑂(𝑛 |𝑀 |+𝜅𝑛2
) 𝑂̃( |𝑀 |) 7 𝑞-SDH+DBDH Trusted

SigBRB (§5) 𝑂(𝑛 |𝑀 |+𝜅𝑛 + 𝑛 log𝑛) 𝑂( |𝑀 |+𝜅 + 𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+𝜅𝑛 + 𝑛2
log𝑛) 𝑂̃(𝑛 |𝑀 |) 7 Threshold Sig Trusted

BalSigBRB (§5) 𝑂( |𝑀 |+𝜅𝑛 + 𝑛 log𝑛) 𝑂( |𝑀 |+𝜅 + 𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+𝜅𝑛 + 𝑛2
log𝑛) 𝑂̃(𝑛 |𝑀 |) 8 Threshold Sig Trusted

Lower bound Ω( |𝑀 |+𝑛) Ω( |𝑀 |+𝑛) Ω(𝑛 |𝑀 |+𝑛2
) — 2 [3] — —

2 PRELIMINARIES

2.1 System Model

We consider a network of 𝑛 nodes where every pair of nodes is connected via a pairwise authenticated channel. We

consider the presence of a malicious adversary A that can corrupt up to 𝑡 nodes in the network. The corrupted (faulty)

nodes can behave arbitrarily, and we call a node honest (correct) if it remains non-faulty for the entire protocol execution.

We assume the network is asynchronous, i.e., A can arbitrarily delay any message but must eventually deliver all

messages sent between honest nodes. A protocol is error-free if it is secure against any computationally unbounded

adversary in all executions.

We use |𝑆 | to denote the size of a set 𝑆 . For any integer 𝑎, we use [𝑎] to denote the set {1, 2, . . . , 𝑎}. We use 𝜅 to denote

the size of the output of the collision-resistant hash function. Naturally, we assume that 𝜅 > log𝑛.

Rounds and phases. Under asynchrony, the network delay is unbounded. Therefore, to measure the latency of asyn-

chronous protocols, we use the standard notion of asynchronous rounds [17], where a protocol runs in 𝑅 asynchronous

rounds if its running time is at most 𝑅 times the maximum message delay between honest parties during the execution.

We also use the notion of phases for ease of description, where a phase consists of a fixed number of rounds. When

describing some of our protocols, we may divide a protocol into several phases, each of which has several rounds.

Identifying protocol instances.We assume each protocol instance is associated with a unique tag 𝑖𝑑 . For some of

our simpler protocols, when there is no ambiguity, we may simply drop the tag 𝑖𝑑 . Moreover, to help readers better

understand some of our protocols, we may provide a unique round name (e.g., BCB-send, disperse).

2.2 Problem Formulations

Definition 1 (Reliable Broadcast [14]). A protocol for a set of nodes {1, . . . , 𝑛}, where a designated broadcaster holds

an input𝑀 , is a reliable broadcast protocol, if the following properties hold

• Agreement: If an honest node outputs a message𝑀 ′ and another honest node outputs𝑀 ′′, then𝑀 ′ = 𝑀 ′′.

• Validity: If the broadcaster is honest, all honest nodes eventually output the message𝑀 .
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• Totality: If an honest node outputs a message, then every honest node eventually outputs a message.

2.3 Primitives

Erasure Code and Error Correcting Code. State of the art BRB protocols use erasure codes or error correcting codes.

Both can encode the data block into fragments. Erasure codes tolerate erasures (unavailable fragments), while error

correction codes tolerate errors (incorrect/corrupt fragments). In general, error correcting codes have more restricted

syntax and more expensive operations.

An (𝑚,𝑛) erasure coding scheme over an alphabetM is a pair of algorithms (ECEnc, ECDec), whereM denotes the

alphabet for a single fragment, ECEnc :Mm →Mn
and ECDec :Mm →Mm

. The ECEnc algorithm takes as input a

data block, consisting of𝑚 data fragments, and outputs 𝑛 > 𝑚 coded fragments. The ECDec algorithm takes as input

any𝑚-size subset of coded fragments and outputs the original data block containing𝑚 data fragments. Namely, if

[𝑑1, . . . , 𝑑𝑛]← ECEnc(M), then ECDec(di1 , . . . , dim ) = M for any distinct 𝑖1, . . . , 𝑖𝑚 ∈ [1..𝑛].

An (𝑚,𝑛) error correcting coding scheme is a pair of algorithms (ECCEnc, ECCDec). Let ECCEnc(𝑀,𝑚,𝑘) denote

the encoding scheme. ECCEnc(𝑀,𝑚,𝑘) takes as input a message𝑀 consisting of 𝑘 symbols, treats it as a polynomial

of degree 𝑘 − 1 and outputs𝑚 evaluations of the corresponding polynomial. Let ECCDec(𝑘, 𝑟,𝑇 ) denote the decoding

scheme. ECCDec takes as input a set of symbols 𝑇 (some of which may be incorrect), and outputs a degree 𝑘 − 1

polynomial, i.e., 𝑘 symbols, by correcting up to 𝑟 errors (incorrect symbols) in 𝑇 . It is well-known that ECCDec can

correct up to 𝑟 errors in 𝑇 and output the original message provided that |𝑇 |≥ 𝑘 + 2𝑟 [39].

For concreteness, we will use the standard Reed-Solomon (RS) error correcting codes [45], and zigzag or Cauchy RS

erasure codes [30, 44]. Concrete instantiations of RS codes include the Berlekamp-Welch algorithm [49] and the Gao

algorithm [29]. Both codes can be implemented over a Galois field 𝐺𝐹 (2
𝑤

), where erasure codes require only linear

(xor) operations and RS codes also require multiplication tables [43].

Note that for efficiency reasons it is better to work in smaller fields (where 𝑎 is small). For a message𝑀 with |𝑀 |
denoting the number of bits of𝑀 , if |𝑀 |> 𝑚𝑎, then𝑀 is broken into |𝑀 |/(𝑚𝑎) polynomials, each of which has degree

𝑚 − 1. A fragment 𝑖 is then the set of all polynomial evaluations at 𝑖 , i.e., 𝑑𝑖 = 𝑓1(𝑖) . . . 𝑓 |𝑀 |/𝑚𝑎(𝑖).

Online Error Correction. All of our BRB protocols use the Online-Error-Correction (OEC) protocol introduced by

Ben-Or, Canetti, and Goldreich [7]. The OEC takes a set𝑇 consisting of tuples ( 𝑗, 𝑎 𝑗 ) where 𝑗 is an index 𝑗 ∈ [𝑛] and 𝑎 𝑗 is

a fragment of a Reed-Solomon codeword. The OEC algorithm then tries to decode a message𝑀 such that Reed-Solomon

encoding of𝑀 matches with at least 2𝑡 + 1 elements in 𝑇 . More specifically, the OEC algorithm performs up to 𝑡 trials

of reconstruction, and during the 𝑟 -th trial, it uses 2𝑡 + 𝑟 + 1 elements in 𝑇 to decode. If the reconstructed message𝑀 ′

whose encoding matches with at least 2𝑡 + 1 tuples in𝑇 , the OEC algorithm successfully outputs the message; otherwise,

it waits for one more fragment and tries again. We summarize the OEC algorithm in Algorithm 1. The OEC algorithm

is error-free and information-theoretically secure against any adversary that corrupts up to 𝑡 fragments among a total

of 𝑛 ≥ 3𝑡 + 1 fragments.

Asynchronous data dissemination. Das, Xiang, and Ren [21] propose asynchronous data dissemination (ADD) which

allow 𝑡 + 1 correct nodes to disseminate a message to all correct nodes in an asynchronous network, where 𝑡 is the upper

bound on the number of faulty nodes in the system. The ADD construction introduced by Das, Xiang, and Ren has two

rounds. In the first round, all nodes holding𝑀 send coded fragments to all nodes; in the second round, upon receiving

𝑡 + 1 matching fragments 𝑑𝑖 , a node 𝑖 fixes its fragment as 𝑑𝑖 and broadcasts 𝑑𝑖 . Then nodes wait to receive fragments
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Algorithm 1 Information Theoretic Online Error-correcting (IT-OEC) protocol

1: Input: 𝑇 // 𝑇 consisting of tuples ( 𝑗, 𝑎 𝑗 ) where 𝑗 ∈ [𝑛] and 𝑎 𝑗 is a fragment
2: for 0 ≤ 𝑟 ≤ 𝑡 do // online Error Correction
3: Wait till |𝑇 |≥ 2𝑡 + 𝑟 + 1

4: Let𝑀 := ECCDec(𝑡 + 1, 𝑟 ,𝑇 )

5: Let 𝑇 ′ := ECCEnc(𝑀,𝑚, 𝑡 + 1)

6: if 2𝑡 + 1 fragments in 𝑇 ′ match with 𝑇 then
7: return𝑀

and use OEC algorithm to decode the original block𝑀 . The above ADD construction is information-theoretic and does

not use any cryptographic tools.

We next analyze the communication cost of their ADD protocol. Let |𝑀 | be the size of the message 𝑀 . Also,

Reed-Solomon code require a field size of at least 𝑛, so each fragment has at least log𝑛 bits. This implies, each data

fragment is 𝑂(max{|𝑀 |/𝑛, log𝑛}) bits, so an all-to-all exchange of the fragments results in 𝑂(𝑛2 ·max{|𝑀 |/𝑛, log𝑛}) =

𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) communication cost. Therefore, the total communication cost is 𝑂(𝑛 |𝑀 |+𝑛2

log𝑛).
∗

Collision-resistant Hash Function.We use a cryptographic collision-resistant hash function hash, which guarantees

that a computationally bounded adversary cannot come up with two inputs that hash to the same value, except for a

negligible probability.

Signatures, threshold signatures, and multi-signatures.We use a conventional signature scheme consisting of

three algorithms (siggen, sigsign, sigverify). siggen outputs a pair of public/secret keys (𝑝𝑘, 𝑠𝑘). A signature signing

algorithm sigsign takes as input a message𝑀 and a private key 𝑠𝑘 and outputs a signature 𝜎 . A signature verification

algorithm sigverify takes as input 𝑝𝑘 , a message𝑀 , and a signature 𝜎 , and outputs a bit. We require the conventional

unforgeability property for signatures.

A (ℓ, 𝑛) threshold signature scheme [8, 47] consists of the following algorithms (tgen, tsign, shareverify, tcombine,

tverfiy). tgen outputs a system public key known to anyone and a vector of 𝑛 private keys. A partial signature signing

algorithm tsign takes as input a message 𝑀 and a private key 𝑠𝑘𝑖 and outputs a partial signature 𝜎𝑖 . A combining

algorithm tcombine takes as input 𝑝𝑘 , a message𝑀 , and a set of ℓ valid partial signatures, and outputs a signature 𝜎 . A

signature verification algorithm tverify takes as input 𝑝𝑘 , a message𝑀 , and a signature 𝜎 , and outputs a bit. We require

the conventional robustness and unforgeability properties for threshold signatures.

We simply omit the public keys, private keys, and key generation algorithms when no ambiguity arises. We may

leave the verification of partial signatures and threshold signatures implicit when describing algorithms.

Multi-signature scheme [8, 11, 13] allows everyone to aggregate 𝑛 signatures on the same message into one signature

for the message. Given 𝑛 signatures 𝛿𝑖 = 𝑠𝑖𝑔𝑠𝑖𝑔𝑛(𝑠𝑘𝑖 , 𝑀) on the same message𝑀 with public keys 𝑝𝑘𝑖 for 𝑖 ∈ [1..𝑛], a

multi-signature scheme can multi-aggregate the 𝑛 signatures into a single signature 𝛿 , where |𝛿 |= |𝛿𝑖 |. The aggregated
signature 𝛿 can be publicly verified using a verification function multi-verify(𝑝𝑘1, .., 𝑝𝑘𝑛, 𝛿, 𝑀, 𝐿), where 𝐿 is the list of 𝑛

signers with public keys 𝑝𝑘𝑖 .

Note, above, we use 𝜎 and 𝛿 for threshold signatures and multi-signatures, respectively.

∗
The original ADD paper by Das, Xiang, and Ren [21] overlooked the Reed-Solomon fragment size and incorrectly claimed the communication cost

as𝑂(𝑛 |𝑀 |+𝑛2
).
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Consistent broadcast.We review the definition of Byzantine consistent broadcast (BCB). Put it simply, consistent

broadcast is reliable broadcast without the totality requirement. A protocol for a set of nodes {1, . . . , 𝑛}, where a

designated broadcaster holds an input𝑀 , is a consistent broadcast protocol, if the following properties hold

• Agreement: If an honest node outputs a message𝑀 ′ and another honest node outputs𝑀 ′′, then𝑀 ′ = 𝑀 ′′.

• Validity: If the broadcaster is honest, all honest nodes eventually output the message𝑀 .

2.4 Metrics

Measurement of communication.We will measure the standard communication cost, defined as follows.

Definition 2 (Communication Cost). The (total) communication cost of a protocol measures the total number of bits

sent by all honest nodes during the execution of the protocol.

In addition to the standard communication cost above which measures the total cost of a protocol, we also measure

the cost for each honest protocol node, as the per-node communication cost defined below.

Definition 3 (Per-node Communication Cost). The communication cost of any honest protocol node 𝑝 running a

protocol measures the number of bits sent by 𝑝 , and the number of bits 𝑝 received from any other honest node, during

the execution of the protocol. We say the protocol has per-node communication cost of 𝐶 , if every honest node has

communication cost at most 𝐶 .

For instance, in the BRB protocol of Das, Xiang and Ren [21], the broadcaster incurs cost 𝑂(𝑛 |𝑀 |) and any other

node incurs cost 𝑂(|𝑀 |+𝜅𝑛), therefore the per-node communication cost of the protocol is 𝑂(𝑛 |𝑀 |). Note that the total
communication cost of a protocol equals the sum of communication costs of all honest nodes.

Definition 4 (Balanced Communication). We say a protocol has balanced communication, if the per-node communica-

tion cost is 𝑂(𝐶/𝑛) where 𝐶 is the total communication cost of the protocol; otherwise, the protocol is unbalanced.

For instance, in the BRB protocol of Das, Xiang and Ren [21] has unbalanced communication cost, since the per-node

communication cost of the protocol is 𝑂(𝑛 |𝑀 |) and the total communication cost of the protocol is 𝑂(𝑛 |𝑀 |+𝜅𝑛2
). In

contrast, using our balancing technique presented in §3, the per-node communication cost of [21] can be made balanced

as 𝑂(|𝑀 |+𝜅𝑛).

Measurement of computation. In this paper, we will focus on the cost of coding operations and cryptographic

operations when measuring the computation cost of our protocols. For the schemes defined in the previous section, we

will list their costs as follows. We will use 𝑂̃(·) to hide the poly-logarithmic terms in the complexity.

• For both erasure codes and error correcting codes, encoding or decoding of a message𝑀 costs 𝑂̃(|𝑀 |) each time. As

mentioned, erasure codes will be concretely more efficient than error correcting codes but we do not distinguish

them to keep things simple.

• For crytographic hash function, computing the hash for message𝑀 costs 𝑂̃(|𝑀 |).
• For signatures, each signing or verification operation for message𝑀 costs 𝑂̃(|𝑀 |).

3 BALANCING COMMUNICATION

In this section, we discuss a technique named balanced multicast that can compile an unbalanced BRB protocol where

the broadcaster incurs higher communication cost than rest of the nodes, into a balanced one where every node incurs
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Algorithm 2 Balanced Multicast (BalMC)

1: // the broadcaster node invokes BalMC(M)
2: input𝑀
3: Let [𝑚1,𝑚2, . . . ,𝑚𝑛] := ECCEnc(𝑀,𝑛, 𝑡 + 1)

4: send ⟨PROPOSE,𝑚 𝑗 ⟩ to node 𝑗 for each 𝑗 ∈ [𝑛]

// each node 𝑖
5: Let𝑀 := ⊥, 𝑇 := {}
6: upon receiving the first ⟨PROPOSE,𝑚𝑖 ⟩ from the broadcaster do
7: send ⟨SHARE,𝑚𝑖 ⟩ to all nodes

8: upon receiving the first ⟨SHARE,𝑚∗
𝑗
⟩ from any node 𝑗 do

9: 𝑇 := 𝑇 ∪ {( 𝑗,𝑚∗
𝑗
)}

10: Run IT-OEC on the set 𝑇

11: Let𝑀 ′ be the output of IT-OEC(𝑇 )

12: output𝑀 ′ and return

the same asymptotic cost. For instance, in the BRB protocols of [21, 41, 42], the broadcaster incurs cost of at least

𝑂(𝑛 |𝑀 |) due to sending the entire input message to all the nodes, and such cost can be made balanced through our

technique. We first define balanced multicast as follows. Intuitively, it implements the standard multicast with balanced

cost among all honest nodes.

Definition 5 (Multicast). A protocol for a set of nodes {1, . . . , 𝑛}, where a designated broadcaster holds an input𝑀 , is

a multicast protocol, if the following property holds

• Validity: If the broadcaster is honest, all honest nodes eventually output the message𝑀 .

The balanced multicast further guarantees balanced communication cost: all honest nodes incur the same worst-case

communication complexity asymptotically.

Challenges and our approaches. The state-of-the-art BRB protocol of Das, Xiang, and Ren [21] crucially uses the fact

that the broadcaster sends its input message to all nodes at the start of the protocol. In their protocol, roughly speaking,

nodes run Bracha’s BRB on the hash digest of their message received from the broadcaster, and only exchange coded

fragments of the message to reduce the communication cost to 𝑂(𝑛 |𝑀 |+𝜅𝑛2
). To ensure correctness, a node should BRB

the digest and exchange the coded fragments of the same message. It is straightforward in the protocol of Das, Xiang,

and Ren [21] since nodes directly receive the message from the broadcaster, which however incurs a cost of 𝑂(𝑛 |𝑀 |)
at the broadcaster. To reduce the cost, a natural idea would be let the broadcaster only send coded fragments of its

message. Then, some kinds of proofs would be necessary to convince the nodes that the coded fragments are consistent

with each other, otherwise the nodes can no longer run the erasure decoding protocol to recover the message. In fact,

Cachin and Tessaro [16] obviates the need for the broadcaster to send its input to all via this approach. Specifically, the

broadcaster encodes its input using an Erasure Code, computes a Merkle tree on the encoded fragments, and to each

node, sends one encoded fragment and the corresponding Merkle path. A consequence of using a Merkle tree is that

the resulting protocol has a communication cost of 𝑂(𝑛 |𝑀 |+𝜅𝑛2
log𝑛), since the size of the Merkle path is 𝑂(𝜅 log𝑛)

and there are all-to-all message exchanges with Merkle path attached. Similarly, Alhaddad et al. [5] uses a trusted

setup-based constant size polynomial commitment scheme where the proof has size 𝑂(𝜅) instead of the Merkle tree, to

design a balanced BRB with a total communication cost of 𝑂(𝑛 |𝑀 |+𝜅𝑛2
). Omitting the Merkle tree or the polynomial
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commitment in a naive manner introduces the challenge that we can no longer run the erasure decoding protocol used

by [5, 16] as there does not exist a way to distinguish an incorrect fragment from a correct one.

Our observation is that there is a simple way to balance the cost without attaching proofs with the coded fragments.

The idea is to add one more communication round for the nodes to exchange their fragments received from the

broadcaster and try Information-Theoretic Online Error Correction (IT-OEC) to reconstruct the broadcaster’s message.

If the broadcaster is honest, then IT-OEC can always recover the broadcaster’s message. In the case of a malicious

broadcaster, an honest node may not recover the message from IT-OEC. However, this is okay as the rest of our protocol

guarantees that if any honest node output for the BRB, then there are enough honest nodes holding correct fragments

that will send the fragments to all nodes for reconstruction. This simple idea turns out to be very useful, as we can

abstract it as the balanced multicast primitive and apply it to many existing unbalanced BRB protocols [41, 42] and all

protocols in this paper for balancing their cost.

Protocol description. In order to reduce the cost of the broadcaster node, our protocol BalMC first lets the broadcaster

encode its message𝑀 into 𝑛 fragments using a (𝑛, 𝑡 + 1) Reed-Solomon code (line 3) and only send the 𝑖-th fragment to

node 𝑖 . In particular, let [𝑚1,𝑚2, . . . ,𝑚𝑛] = ECCEnc(𝑀,𝑛, 𝑡 ) be the RS encoding of𝑀 . Then, to node 𝑖 , the broadcaster

sends the message ⟨PROPOSE,𝑚𝑖 ⟩ (line 4). Note that due to properties RS code, each fragment has size |𝑀 |/(𝑡 + 1), and

therefore the cost of the broadcaster is reduced to 𝑂(𝑛 · (|𝑀 |/(𝑡 + 1))) = 𝑂(|𝑀 |).
Next, each node 𝑖 upon receiving the ⟨PROPOSE,𝑚𝑖 ⟩ message from the broadcaster sends the ⟨SHARE,𝑚𝑖 ⟩ to all nodes

(line 6-7). When a node receives a SHARE message from other nodes, it adds the corresponding fragment to the set 𝑇 .

Once enough fragments are collected, nodes use the Online Error Correcting (OEC) algorithm (line 10) to decode the

message. As described in 2, intuitively, the OEC algorithm performs up to 𝑡 trials of reconstruction, and during the 𝑟 -th

trial, a node uses 2𝑡 + 𝑟 + 1 fragments to decode. If the reconstructed message𝑀 ′ has the matches with at least 2𝑡 + 1

tuples in 𝑇 , a node successfully reconstructs the message; otherwise, it waits for one more fragment and tries again.

Applications. We can directly apply balanced multicast to existing unbalanced BRB protocols, such as [21, 41, 42]. As

a concrete example, we will explain BalBRB, which is the BRB protocol of [21] after applying BalMC. In the first step

of [21], the broadcaster sends 𝑀 to all nodes, which is replaced by all nodes invoke BalMC(𝑀) with the broadcaster

inputting𝑀 . Then, when a node outputs𝑀 from BalMC, it invokes the steps as receiving𝑀 from the broadcaster in [21].

In this way, we balance the communication of [21] while keeping all its properties. It is also possible to apply balanced

multicast to other fault-tolerant distributed protocols, for balancing the communication at the cost of adding one extra

round of communication.

3.1 Analysis

Theorem 1 (Validity). If the broadcaster node is honest, then all honest nodes eventually output the message𝑀 .

Proof. When the broadcaster is honest and has input𝑀 , it sends the correct fragments to all nodes. Then, all honest

nodes send the SHARE messages with the correct fragments. Thus, after receiving all SHARE message from honest nodes,

any honest node can reconstruct𝑀 due to OEC. □

Theorem 2 (Performance). Algorithm 2 solves balanced multicast with per-node communication cost of 𝑂(|𝑀 |+𝑛 log𝑛),

and per-node computation cost of 𝑂̃(𝑛 |𝑀 |).

Proof. In algorithm 2 the broadcaster sends a single PROPOSE to all other nodes. Moreover, each honest node sends

a single SHARE message. Each message is𝑂(max(|𝑀 |/𝑛, log𝑛)) bits long, since |𝑚𝑖 |= max(|𝑀 |/(𝑡 + 1), log𝑛). Hence, each
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node incurs a per-node communication cost of 𝑂(|𝑀 |+𝑛 log𝑛). Since each node invokes online error correction which

will decode up to 𝑡 times in the worst case, each node incurs a computation cost of 𝑂̃(𝑛 |𝑀 |). □

4 CROSS-CHECKSUM BRB: REDUCING THE COST OF ERROR CORRECTION

In this section, we introduce a new reliable broadcast construction that improves computation for large messages of

size |𝑀 |≥ 𝑂(𝜅𝑛), while maintaining its near-optimal communication complexity. This new construction, CCBRB, is

compatible with our balancing technique from §3 at the cost of one extra round of communication. Also, here on we

will refer to the BRB construction from Das, Xiang and Ren [21] as DXR BRB.

4.1 Improving computation vs. DXR BRB

An open problem left by Das, Xiang, and Ren in DXR BRB is related to the computational inefficiency problem of

Reed-Solomon (RS) error-correcting codes (ECC) and the online error correction (OEC) algorithm. Specifically, in DXR

BRB, each node needs to repeatedly run the OEC algorithm on the entire message. As we illustrate below, this results in

large computation overhead when the messages are large.

Although not specified in [21], a natural way to implement ECC for a large message𝑀 , i.e., |𝑀 |> 𝑎(𝑡 + 1) bits, while

ensuring that the field size 𝑎 is independent of |𝑀 |, is to split𝑀 into
|𝑀 |

𝑎(𝑡+1)
polynomials. Then, each fragment 𝑖 would

then be the concatenation of the evaluation of those polynomials at the same point 𝑖 . However, such an approach is

expensive for ECC. For a single polynomial of degree 𝑛, the standard error-correcting decoding algorithm has a run

time complexity of 𝑂̃(𝑎𝑛) [29] for each one of the
|𝑀 |

𝑎(𝑡+1)
polynomials. The run time becomes even more expensive when

running OEC because then the ECC needs to repeated up to 𝑡 times. This would bring the total run time complexity to

𝑂̃(
𝑎𝑛2 |𝑀 |
𝑎(𝑡+1)

) = 𝑂̃(𝑛 |𝑀 |). Note that OEC for a vector of small-sized messages outputs a result only if OEC is successful for

each small-sized message.

In contrast, applying OEC only to the hash of the vector of messages brings down the OEC run time complexity from

𝑂̃(𝑛 |𝑀 |) to 𝑂̃(𝜅𝑛2
). Also, using erasure coding on𝑀 incurs a cost of O(M) [30, 43]; it is faster than ECC as described in

§1.

4.2 Cross-Checksum BRB

The idea of Cross-Checksum BRB is to limit the online error correcting to the cross checksum and not the message

itself. The message itself would be encoded using erasure code rather than error correcting code. The BRB construction

requires only 3 steps. It shares the structure of Bracha’s broadcast and "combines" both approaches of DXR BRB [21]

and Cachin-Tessaro BRB [16]. At a high level, the protocol uses the cross checksum of Cachin-Tessaro BRB [16] to send

fragments of a message𝑚 (SEND phase and ECHO phase) but use the DXR BRB [21] approach to send fragments of the

cross checksum itself (in the ECHO and READY phases). This approach will:

• avoid running ECC or OEC on the whole message𝑀 (like what DXR BRB [21] does), and

• avoid sending the whole cross checksum in the ECHO phase (like what Cachin-Tessaro BRB [16] does), otherwise we

would obtain higher than 𝜅𝑛2
communication.

We use erasure coding to deal with bulk data, and use inefficient OEC only for 𝑛 hashes. The minimized use of OEC and

ECC makes DXR BRB practical for large-size messages.

We describe the pseudocode of CCBRB in Algorithm 4.3. Our BRB protocol, CCBRB, uses both standard erasure coding

(ECEnc, ECDec) and Reed-Solomon ECC (ECCEnc, ECCDec). We also define a hash function: 𝐻 : {0, 1}∗ → {0, 1}𝜅 .
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Algorithm 3 CCBRB using hash functions with identifier 𝑖𝑑 and sender 𝑠 . Code shown for node 𝑖 .

1: Initialization
2: 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎 ← ⊥ //dictionary (𝑖𝑑, 𝑐) ↦→ list of fragments 𝑑 𝑗
3: 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 ← ⊥ //dictionary (𝑖𝑑, 𝑐) ↦→ list of fragments 𝜋 𝑗
4: 𝑒 ← 0 //number of errors to be corrected by the online error code

5: input𝑀 //SEND round
6: 𝒅 ← ECEnc (M), 𝐷 ← [𝐻 (𝑑1), . . . , 𝐻 (𝑑𝑛)]

7: for 1 ≤ 𝑗 ≤ 𝑛, send ⟨𝑖𝑑, SEND, 𝑑 𝑗 , 𝐷⟩ to 𝑗

8: upon receiving ⟨𝑖𝑑, SEND, 𝐷, 𝑑𝑖 ⟩ from 𝑠 for first time do //ECHO round
9: if 𝐻 (𝑑𝑖 ) = 𝐷𝑖 then
10: 𝑐 ← 𝐻 (𝐷), 𝝅 ← ECCEnc (𝐷)

11: send ⟨𝑖𝑑, ECHO, (𝑑𝑖 , 𝜋 𝑗 , 𝑐)⟩ to node 𝑗

12: upon receiving ⟨𝑖𝑑, ECHO, (𝑑 𝑗 , 𝜋𝑖 , 𝑐)⟩ from node 𝑗 for first time do // READY round
13: 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎[(𝑖𝑑, 𝑐)]← 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠[(𝑖𝑑, 𝑐)] ∪ [𝑑 𝑗 ]

14: if (not yet sent a READY message and received 2𝑡 + 1 ⟨ECHO⟩ messages with the same id, 𝑐 and same 𝜋𝑖 )

15: send ⟨𝑖𝑑, READY, 𝑐, 𝜋𝑖 ⟩ to all nodes

16: upon receiving ⟨𝑖𝑑, READY, 𝑐, 𝜋 𝑗 ⟩ from node 𝑗 for the first time do //verification

17: 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 [(𝑖𝑑, 𝑐)]← 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 [(𝑖𝑑, 𝑐)] ∪ [𝜋 𝑗 ]

18: if (not yet sent ⟨𝑖𝑑, READY, 𝑐⟩ and received 𝑡 + 1 ⟨READY⟩ messages with the same 𝑐) then
19: wait for 𝑡 + 1 ⟨ECHO⟩ messages with the same 𝑐 and 𝜋𝑖
20: send ⟨𝑖𝑑, READY, 𝑐, 𝜋𝑖 ⟩ to all nodes

21: if 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 [(𝑖𝑑, 𝑐)] ≥ 2𝑡 + 1 then //online error correcting code to reconstruct 𝐷

22: 𝐷 ′ ← ECCDec(𝑡 + 1, 𝑒, 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡ℎ𝑎𝑠ℎ𝑒𝑠 [𝑖𝑑, 𝑐])

23: if 𝐻 (𝐷 ′) = 𝑐 then
24: wait for t+1 ⟨ECHO⟩ message where 𝐻 (𝑑 𝑗 ) ∈ 𝐷 ′ and filter 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎[(𝑖𝑑, 𝑐)] accordingly

25: 𝑀 ← ECDec(fragmentsdata[(id, c)]) //reconstruct𝑀 from the fragments that are contained in 𝐷 ′

26: 𝒅 ′ ← ECEnc(M)

27: if 𝐷 ′ = 𝐻 (𝑑 ′
1
), . . . , 𝐻 (𝑑 ′𝑛) then

28: output𝑀 and return
29: else output ⊥
30: else 𝑒 → 𝑒 + 1 //increase the number of errors to align with the online error correcting code procedure

We initialize CCBRB by creating two empty dictionaries called 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎 and 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 for each

node 𝑖 . Here, 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑑𝑎𝑡𝑎 maps each 𝑖𝑑 tag and 𝑐 to possible data fragments for some message 𝑀 . Additionally,

𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠ℎ𝑎𝑠ℎ𝑒𝑠 maps each 𝑖𝑑 tag message of a message 𝑀 and 𝑐 to possible fragments of the list of hashes of all 𝑛

fragment of that message𝑀 . Then, CCBRB proceeds as follows.

• SEND phase: The sender 𝑠 encodes the messages𝑀 into 𝑛 fragments using an erasure code (𝑡 + 1, 𝑛). Each fragment is

of size
|𝑀 |
𝑡+1

. The dealer then hashes each fragment and create 𝐷 , a list of 𝑛 hashes each of size 𝑘 . The dealer then

sends each node 𝑗 a SEND message containing the fragment 𝑑 𝑗 and the list of hashes 𝐷 .

• ECHO phase: Upon receiving a SEND message, each node 𝑖 verifies the fragment 𝑑𝑖 by checking that 𝐻 (𝑑𝑖 ) is equal to

the 𝑖𝑡ℎ hash in the cross checksum 𝐷 . If the check succeeds then: node 𝑖 uses ECC to encode 𝐷 into 𝑛 fragments (each

of size 𝑘) and stores them in the list 𝝅 . Then 𝑖 sends an ECHO message containing the data fragment 𝑑𝑖 , fragment 𝜋 𝑗

(the 𝑗𝑡ℎ fragment of 𝝅 ), and 𝑐 = 𝐻 (𝐷) to every node 𝑗 .
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• READY phase: Each node stores the fragments it received in the ECHO messages. A node 𝑖 broadcasts a READY message

containing 𝑐 and 𝜋𝑖 in two cases:

(1) Node 𝑖 receives 2𝑡 + 1 ECHO messages with the same 𝑐 and 𝜋𝑖 .

(2) Node 𝑖 receives 𝑡 + 1 READY messages with the same 𝑐 and has not sent a READY message. In this case, 𝑖 waits for

𝑡 + 1 ECHO with the same 𝑐 and 𝜋𝑖 and then sends a READY message.

Upon receiving 𝑛 − 𝑡 READY messages with the same 𝑐 , each node starts decoding. In particular, 𝑖 first decodes the coded

fragments of hashes using the ECCDecfunction and outputs 𝐷 ′. It then compares 𝐻 (𝐷 ′) with 𝑐 , the value it receives

from 2𝑡 + 1 READY messages. If 𝐻 (𝐷 ′) = 𝑐 , 𝑖 waits for at least 𝑡 + 1 ECHO messages such that for each coded fragment 𝑑 𝑗

included in an ECHO message, 𝐻 (𝑑 𝑗 ) ∈ 𝐷 ′. Then 𝑖 decodes the fragments and outputs𝑀 . Finally, 𝑖 further encodes𝑀

and calculates the list of hashes for the coded fragments. If the list of hashes are consistent with the hashes of the coded

fragments, 𝑖 outputs𝑀 . Otherwise, 𝑖 outputs ⊥.

Theorem 3. CCBRB (Algorithm 4.3) is a secure BRB protocol.

Proof. Validity. If a correct sender 𝑠 runs broadcast for id 𝑖𝑑 and a message𝑀 then all correct nodes will pass the

check 𝐻 (𝑑 𝑗 ) = 𝐷 𝑗 and have a valid data fragment of𝑀 (𝑑 𝑗 = ECEnc(M)[j]) because of the correctness property of the

hash function and the encoding algorithm. Hence, every correct node 𝑖 will echo to node 𝑗 a valid data fragment 𝑑𝑖 of

𝑀 , its own cross checksum fragment 𝜋 𝑗 of 𝐷 , 𝑐 = 𝐻 (𝐷), and 𝑖𝑑 . Therefore, all correct nodes will receive at least 2𝑡 + 1

ECHO messages with a data fragment and the same 𝑐 , 𝑖𝑑 and consistent cross checksum fragments. Thus, every correct

node 𝑖 will receive at least 𝑡 + 1 valid data fragments of𝑀 whose hashes are contained in 𝐷 . After that, every correct

node 𝑖 will send a READY message with 𝑐 , 𝑖𝑑 and 𝜋𝑖 . Accordingly, every correct node will eventually receive collectively

at least 2𝑡 + 1 READY messages with the same 𝑐 , 𝑖𝑑 but 2𝑡 + 1 distinct cross checksum fragments of 𝐷 , and decodes the

fragments to 𝐷 . Even if some READY messages with invalid cross checksum fragments of 𝐷 were received, the node can

detect this by virtue of the correctness of the online error correcting code algorithm 𝑂𝐸𝐶 (since the maximum number

of faulty READY messages is 𝑡 ). Hence, every correct node will be able to reconstruct 𝐷 and by consequence𝑀 .𝑀 can

be decoded because every correct node has at least 𝑡 + 1 data fragments whose hashes are contained in 𝐷 and because

of the collision resistance of the hash function.

Agreement and Totality. Agreement and totality follow immediately from Lemmas 1-3 below. □

Lemma 1. If a correct node 𝑖 outputs𝑀 with 𝑖𝑑 associated with a cross checksum 𝐷 and a hash 𝑐 such that 𝑐 = 𝐻 (𝐷), then

every correct node 𝑖 will eventually receive at least 𝑡 + 1 ECHO messages with the same 𝑖𝑑 , 𝑐 and 𝜋𝑖 . Additionally, each of

these 𝑡 + 1 ECHO messages will contain a distinct data fragment 𝑑 𝑗 whose hash is in the cross checksum (𝐻 (𝑑 𝑗 ) ∈ 𝐷). Finally,

𝜋𝑖 is a valid fragment of 𝐷 ; that is, 𝜋𝑖 = ECCEnc(𝐷)[𝑖].

Proof. If a correct node outputs 𝑀 with 𝑖𝑑 , then it must have received 2𝑡 + 1 READY messages with the same 𝑖𝑑 and 𝑐 .

Therefore, 𝑡 + 1 of those READY messages must have been sent by correct nodes. Hence, there is at least one correct node

𝑖 that received 2𝑡 + 1 ECHO messages with the same 𝑖𝑑 , 𝑐 and 𝜋𝑖 . Since 𝑡 is the total number of faulty nodes then at least

𝑡 + 1 nodes received a SEND message from the sender with 𝑖𝑑 containing a fragment such that the hash is contained in

the cross checksum. Therefore, every correct node 𝑗 will eventually receive at least 𝑡 + 1 ECHO messages with the same

𝑖𝑑 , 𝑐 and 𝜋 𝑗 each containing a data fragment whose hash is in the cross checksum. Finally, correct nodes who generate

the hash 𝑐 for their ECHOmessages must have received 𝐷 in their SENDmessage (unless the sender 𝑠 has broken collision

resistance of the hash function), and therefore they will generate 𝜋𝑖 consistent with 𝐷 . □
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Lemma 2. If a correct node 𝑖 outputs𝑀 with 𝑖𝑑 associated with a cross checksum 𝐷 and a hash 𝑐 such that 𝑐 = 𝐻 (𝐷), then

every correct node will eventually be able to reconstruct 𝐷 .

Proof. As stated above, if node 𝑖 outputs 𝑀 then with 𝑖𝑑 , then it must have received at least 𝑡 + 1 READY messages

with the same 𝑐 and 𝑖𝑑 from correct nodes (possibly including node 𝑖 itself). Therefore, all other 𝑡 correct nodes will

receive at least 𝑡 + 1 READY messages with the same 𝑐 and 𝑖𝑑 . By Lemma 1, every correct node 𝑗 will eventually receive

𝑡 + 1 ECHO messages with the same 𝑐 and 𝑖𝑑 and valid 𝜋 𝑗 . Thus, they will be able to send their own READY messages

with valid 𝜋 𝑗 . As a result, at least 2𝑡 + 1 correct nodes will send READY messages with the same 𝑐 and 𝑖𝑑 as well as coded

fragments that are consistent with the encoding of 𝐷 . By the correctness of the 𝑂𝐸𝐶 algorithm, it follows that every

correct node will eventually reconstruct 𝐷 . □

Lemma 3. If a correct node 𝑖 outputs𝑀 with 𝑖𝑑 associated with a cross checksum 𝐷 and a hash 𝑐 such that 𝑐 = 𝐻 (𝐷), then

every correct node eventually outputs𝑀 associated with the same 𝑖𝑑 and 𝐷 .

Proof. By Lemma 2, every correct node will receive the same cross checksum 𝐷 . Hence, every correct node can

determine the validity of 𝐷 deterministically and reconstruct𝑀 accordingly. Then, either node 𝑖 will detect that the

cross checksum 𝐷 is a valid cross checksum consistent with some message𝑀 ̸= ⊥, or will detect that 𝐷 is an invalid

cross checksum and will r-deliver 𝑀 = ⊥. Either way, all other correct nodes will also detect 𝐷 to be valid or invalid

in the same way, due to the collision resistance of the hash function and the correctness of the encode and decode

algorithm and Lemma 1. □

Communication complexity. In the following analysis we will assume optimal resilience with 𝑛 = 3𝑡 + 1. The protocol

consists of three steps:

(1) SEND: 𝑝𝑠 sends one SEND message to all 𝑛 replicas. Each SEND message consists of the cross-checksum 𝐷 and

the fragment 𝑑𝑖 each of size 𝑛𝜅 and
|𝑀 |
𝑡+1

respectively. Thus, the total communication complexity for the SEND is

3|𝑀 |+𝜅𝑛2
.

(2) ECHO: Every correct replica 𝑝𝑖 sends one ECHO message to all 𝑛 replicas. Each ECHO message consists of the cross

checksum fragment 𝜋 𝑗 , the data fragment 𝑑 𝑗 and a hash 𝑐 where the size of the terms costs
𝑛𝜅
𝑡+1

,
|𝑀 |
𝑡+1

and 𝜅

respectively. Thus the total communication complexity for the ECHO is 3𝑛 |𝑀 |+4𝜅𝑛2
.

(3) READY: Every correct replica 𝑝𝑖 sends one READY message to all 𝑛 replicas. Each READY message consists of the

cross-checksum fragment 𝜋𝑖 and the hash 𝑐 respectively. Thus the total communication complexity is 4𝑘𝑛2
.

Hence the total communication complexity is: 3𝑛 |𝑀 |+9𝑛𝜅2
+ 3|𝑀 | or 𝑂(𝑛 |𝑀 |+𝑛𝜅2

)

4.3 Balanced Cross-Checksum BRB

The Cross-Checksum BRB discussed in algorithm is not balanced. The dealer has to send the whole cross-checksum 𝐷 to

all nodes. However, we can easily make the protocol balanced at the expense of adding one extra step of communication.

To do this, just like the BalMC algorithm introduced in algorithm 2, the dealer disperses the cross-checksum 𝐷 instead

of sending it in full as part of the ⟨𝑖𝑑, SEND, 𝑑 𝑗 , 𝐷⟩ message. This would effectively translate to the dealer sending to

node 𝑗 the ECC fragment 𝐷 𝑗 instead of 𝐷 along side each erasure fragment 𝑑 𝑗 . Following on with the BalMC algorithm,

an extra step has to be added here, where every node 𝑗 would send it’s own ECC fragment 𝐷 𝑗 to every other node.

Each node would then run the IT-OEC algorithm to reconstruct the vector 𝐷 . Once the vector 𝐷 is reconstructed, the

protocol continues in the same way as depicted in Algorithm 4.3.
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Fig. 1. A half-baked idea to reduce communication.

5 REDUCING COMMUNICATION USING THRESHOLD SIGNATURES

This section first describes SigBRB, a BRB protocol that uses threshold signatures to reduce communication. Then we

present BalSigBRB that uses the technique in §3 and achieves balanced communication. Both protocols work in the

trusted setup model, as threshold signatures require trusted setup. In applications where trusted setup is permitted (for

instance, all known asynchronous BFT protocols implemented using BRB), one can directly use SigBRB. In applications

where trusted setup is not allowed, one may run a distributed key generation (DKG) algorithm to generate the needed

public parameters [2, 22, 36].

5.1 Overview of SigBRB

A half-baked idea: breaking the symmetry for BRB design. Our first idea is to break the symmetry in designing

BRB protocols. Indeed, when designing efficient BRB protocols, one typically follows a symmetric design approach: in

the first round, the broadcaster sends some data (either the whole input message𝑀 or a coded fragment) to every node;

in the following rounds, nodes broadcast fragments and/or short cryptographic proofs to each other in order to achieve

agreement.

In our new design, we break BRB constructions into a linear communication phase and a broadcast phase. We use

cryptography (e.g., hashes) in the first linear communication phase, while the broadcast phase explicitly rules out using

any cryptographic tools (e.g., hashes, signatures).

Our starting protocol works as follows. In the first linear communication phase, the goal is to disperse the input to

ensure that 𝑡 + 1 correct nodes to have consistent data, a goal that consistent broadcast (BCB) [15, 46] or its information

dispersal version may achieve; in the second broadcast phase, the idea is to “amplify" consistent data from 𝑡 + 1 correct

nodes to all nodes, a goal that asynchronous data dissemination (ADD) [21] may achieve. Such a construction is depicted

in Figure 1. We use BCB and ADD in a black-box manner.

For the above construction, the first phase has𝑂(𝑛 |𝑀 |+𝜅𝑛) communication, while the second phase has𝑂(𝑛 |𝑀 |+𝑛2
log𝑛)

communication. Adding them together, we have a construction with 𝑂(𝑛 |𝑀 |+𝜅𝑛 + 𝑛2
log𝑛). Unfortunately, the con-

struction only achieves validity but not agreement. Indeed, it is easy to show that some correct nodes output message

𝑀 , while some other nodes do not output any message, violating agreement. Note that in this case not all correct nodes

start ADD.

As an example, a faulty sender may make only one correct node deliver the message in the BCB phase and enter the

second phase. All 𝑡 faulty nodes collude and disseminate correct fragments to 𝑡 + 1 correct nodes. Together with the

fragment from the correct node, each of the 𝑡 + 1 correct nodes receive 𝑡 + 1 matching fragments, share their fragments,
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Fig. 2. SigBRB workflow.

complete ADD, and deliver the corresponding message. The rest 𝑡 correct nodes, however, cannot deliver the message,

since they fail to start ADD.

Below, we outline how we solve the agreement problem, by providing an approach to handling the issue retroactively.

As shown in Figure 2), our main idea is to let the agreement issue occur and then fix it retroactively. We add one more

READY round after the ADD phase and ask nodes to output a message𝑀 only if it receives enough ⟨READY⟩ messages.

The most interesting part is that an amplification round is now introduced, going back to the very first round of the

broadcast phase, instead of the beginning of the same round. To our knowledge, our novel amplification technique is

in contrast to all other known amplification rounds ever used in BRB and even fault-tolerant distributed computing.

Strikingly, the READY round and the "unconventional" amplification round are all we need for a secure BRB construction.

5.2 The SigBRB Protocol

We show the workflow of SigBRB in Figure 2 and pseudocode in Algorithm 4. SigBRB consists of two phases: a linear

BCB phase and a broadcast phase.

BCB phase (Algorithm 4: line 5-17). This phase runs a standard BCB. In particular, the broadcaster node 𝑠 broadcasts a

message ⟨𝑖𝑑, BCB-SEND, 𝑀⟩. Upon receiving ⟨𝑖𝑑, BCB-SEND, 𝑀⟩, each node generates a partial signature 𝜎𝑖 and sends a

message ⟨𝑖𝑑, BCB-REP, 𝑀, 𝜎𝑖 ⟩ to node 𝑠 . If 𝑠 receives 𝑛 − 𝑡 partial signatures, it combines them into a threshold signature

𝜎 and broadcasts an ⟨𝑖𝑑, BCB-FINAL, 𝑀, 𝜎⟩ message to all nodes. Upon receiving an ⟨𝑖𝑑, BCB-FINAL, 𝑀, 𝜎⟩ message, each

node sets𝑚𝑠𝑔 as𝑀 and 𝑝𝑟𝑜𝑜 𝑓1 as 𝜎 and completes BCB.

Broadcast phase (Algorithm 4: line 18-39). The broadcast phase consists of three rounds: DISPERSE, RECONSTRUCT, and

READY. Upon the completion of BCB, each node 𝑖 encodes its𝑚𝑠𝑔 into coded fragments 𝒅. For each node 𝑗 , node 𝑖 sends

it an ⟨𝑖𝑑, DISPERSE, 𝑑 𝑗 ⟩ message. Upon receiving 𝑡 + 1 matching ⟨𝑖𝑑, DISPERSE, 𝑑∗
𝑖
⟩ messages, node 𝑖 fixes 𝑑∗

𝑖
and then

broadcasts a ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑖
⟩ message. Upon receiving at least 𝑛 − 𝑡 ⟨RECONSTRUCT⟩ messages, each node starts

to decode the message using OEC. This process may continue until OEC outputs a message𝑀 . A local parameter 𝑣𝑎𝑙 is

then set as𝑀 .

But this is not the last round of the SigBRB. When OEC outputs𝑀 , each node broadcasts an ⟨𝑖𝑑, READY⟩ message.

Furthermore, if node 𝑖 previously has not sent a ⟨DISPERSE⟩ message, it disperses the coded fragments, i.e, 𝑖 encodes𝑀

and sends node 𝑗 (for any 𝑗 ∈ {1, · · ·𝑛}) an ⟨𝑖𝑑, DISPERSE, 𝑑 𝑗 ⟩ message. Each node waits for 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ messages

and then delivers message 𝑣𝑎𝑙 (message output by OEC).

Discussion and communication complexity. The crucial round for SigBRB to achieve agreement is the amplification

round after message 𝑀 is output by OEC. In particular, if the OEC outputs 𝑀 and a node has not previously sent a

⟨DISPERSE⟩ message, the node encodes𝑀 and sends the coded fragments via a ⟨DISPERSE⟩ message to the nodes. If a
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Algorithm 4 SigBRB with identifier 𝑖𝑑 and sender 𝑠 . Code for node 𝑖 , 𝑖 ∈ [𝑛]

1: Initialization
2: (𝑝𝑘, 𝑠𝑘)← tgen (1

𝑘
) //threshold signature key generation; 𝑝𝑘 is the public key and 𝑠𝑘 is a vector of 𝑛 private keys

3: 𝑝𝑟𝑜𝑜 𝑓1 ← ⊥,𝑚𝑠𝑔← ⊥ //initialize the parameters

4: 𝑣𝑎𝑙 ← ⊥, 𝑝𝑠𝑒𝑡1 ← ∅,𝑇 ← ∅
5: input𝑀 //BCB-SEND round

6: 𝑚𝑠𝑔← 𝑀

7: broadcast ⟨𝑖𝑑, BCB-SEND, 𝑀⟩
8: upon receiving ⟨𝑖𝑑, BCB-SEND, 𝑀⟩ from 𝑠 do
9: 𝑚𝑠𝑔← 𝑀 , 𝜎𝑖 ← tsign (𝑖𝑑, 𝑀) //BCB-REP round
10: send ⟨𝑖𝑑, BCB-REP, 𝑀, 𝜎𝑖 ⟩ to 𝑠
11: upon receiving ⟨𝑖𝑑, BCB-REP, 𝑀, 𝜎 𝑗 ⟩ from 𝑗 and 𝑖 = 𝑠 do
12: if shareverify ((𝑖𝑑, 𝑀), 𝜎 𝑗 ) and𝑀 = 𝑚𝑠𝑔 then
13: add 𝜎 𝑗 to 𝑝𝑠𝑒𝑡1
14: if |𝑝𝑠𝑒𝑡1 |≥ 𝑛 − 𝑡 then //BCB-FINAL round
15: 𝜎 ← tcombine ((𝑖𝑑, 𝑀), 𝑝𝑠𝑒𝑡1)

16: broadcast ⟨𝑖𝑑, BCB-FINAL, 𝑀, 𝜎⟩
17: upon receiving ⟨𝑖𝑑, BCB-FINAL, 𝑀, 𝜎⟩ from 𝑠 do
18: if tverify ((𝑖𝑑, 𝑀), 𝜎) and𝑀 = 𝑚𝑠𝑔 then
19: 𝑝𝑟𝑜𝑜 𝑓1 ← 𝜎 //DISPERSE round
20: 𝒅 ← ECCEnc (𝑡 + 1, 𝑛,𝑚𝑠𝑔)

21: for 𝑗 ∈ {1, · · ·𝑛}
22: send ⟨𝑖𝑑, DISPERSE, 𝑑 𝑗 ⟩ to 𝑗

23: upon receiving 𝑡 + 1 matching ⟨𝑖𝑑, DISPERSE, 𝑑∗
𝑖
⟩ do

24: fix 𝑑∗
𝑖

25: broadcast ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑖
⟩ //RECONSTRUCT round

26: upon receiving ⟨𝑖𝑑, RECONSTRUCT, 𝑑 𝑗 ⟩ from 𝑗 do
27: add 𝑑 𝑗 to 𝑇

28: for 0 ≤ 𝑟 ≤ 𝑡 do
29: wait until |𝑇 |≥ 2𝑡 + 𝑟 + 1

30: if ECCDec (𝑡 + 1,𝑇 , 𝑟 ) = 𝑀 then
31: 𝑣𝑎𝑙 ← 𝑀

32: broadcast ⟨𝑖𝑑, READY⟩ //send ⟨READY⟩
33: if ⟨DISPERSE⟩ has not been sent

34: 𝒅 ← ECCEnc (𝑡 + 1, 𝑛, 𝑀) then
35: for 𝑗 ∈ {1, · · ·𝑛} //amplification

36: send ⟨𝑖𝑑, DISPERSE, 𝑑 𝑗 ⟩ to 𝑗

37: upon receiving 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ do //READY round
38: if 𝑣𝑎𝑙 ̸= ⊥ then
39: output 𝑣𝑎𝑙 and return

node outputs𝑀 , it has received 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ messages and at least 𝑡 + 1 correct nodes have completed the OEC.

These correct nodes will send their coded fragments via the ⟨DISPERSE⟩ message. Accordingly, it is guaranteed that all

correct nodes eventually decode𝑀 , broadcast the ⟨READY⟩ messages, and output𝑀 .

The consistency property of BCB guarantees that no correct nodes will broadcast inconsistent coded fragments, as

each node only disperses the coded fragments upon the completion of BCB. An adversary cannot force any correct
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nodes to receive 𝑡 + 1 matching but incorrect fragments in the DISPERSE round. Therefore, OEC can correct the errors

and ensure that all correct nodes output the same message𝑀 .

Let us analyze the communication complexity of SigBRB. First, the first linear BCB phase has 𝑂(𝑛 |𝑀 |+𝜅𝑛) com-

munication. The DISPERSE and RECONSTRUCT rounds both have 𝑂(|𝑀 |𝑛 + 𝑛2
log𝑛) communication. The READY phase

does not carry bulk data and has 𝑂(𝑛2
) communication only. Therefore, the communication complexity for SigBRB is

𝑂(𝑛 |𝑀 |+𝜅𝑛 + 𝑛2
log𝑛).

It is also easy to replace threshold signatures using aggregate signatures, so the resulting protocol maintains the

same complexity while working in the PKI model.

5.3 Analysis

Theorem 4. Assuming a secure threshold signature and authenticated channels, SigBRB satisfies validity, agreement, and

integrity.

Proof. We first provide the following three lemmas.

Lemma 4. If a correct node sends a ⟨DISPERSE⟩ message with fragments encoded from message𝑀 , at least one correct

node has completed BCB and received𝑀 from the sender.

Proof. Each correct node sends a ⟨DISPERSE⟩ message with fragments encoded from𝑀 for two cases: 1) It completes

BCB and receives 𝑀 from the sender; 2) It completes the RECONSTRUCT round and obtains 𝑀 . We show that in both

cases, at least one correct node has completed BCB and receives𝑀 from the sender. For the first case, trivial. For the

second case, if a correct node completes the RECONSTRUCT round, it must have received at least 𝑛 − 𝑡 RECONSTRUCT
messages, among which at least 𝑡 + 1 are sent by correct nodes. For any of the correct nodes, it must have also received

𝑡 + 1 matching ⟨DISPERSE⟩ messages. As there are at most 𝑡 faulty nodes, there must exist at least one correct node that

sends the ⟨DISPERSE⟩ message after it completes BCB and receives𝑀 . □

Lemma 5. If a correct node 𝑖 sends an ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗
𝑖
⟩ message and a correct node 𝑗 sends an ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗

𝑗
⟩

message, 𝑑∗
𝑖
and 𝑑∗

𝑗
are both encoded from the same message𝑀 .

Proof. Let 𝑑∗
𝑖
be a coded fragment encoded from message 𝑀 . If a correct node 𝑖 sends an ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗

𝑖
⟩

message, it must have received 𝑡 + 1 matching ⟨𝑖𝑑, DISPERSE, 𝑑∗
𝑖
⟩ messages, among which at least one is sent by a

correct node. Among them, at least one correct node has sent a ⟨DISPERSE⟩ message. According to Lemma 4, at least

one correct node completes BCB and receives message𝑀 from the sender.

Let 𝑑∗
𝑗
be a coded fragment encoded from message 𝑀 . If 𝑗 sends an ⟨𝑖𝑑, RECONSTRUCT, 𝑑∗

𝑗
⟩ message, according to

Lemma 4, at least one correct node completes BCB and receives message𝑀 . This violates the consistency property of

BCB. Thus, it holds𝑀 = 𝑀 . □

Lemma 6. If a correct node outputs𝑀 , the sender 𝑠 has previously broadcast𝑀 and at least one correct node has received

a valid threshold signature 𝑝𝑟𝑜𝑜 𝑓1 = 𝜎 .

Proof. If a correct node 𝑖 outputs𝑀 , it receives 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ messages. Furthermore, in the RECONSTRUCT round,

the OEC outputs a decoded message𝑀 . Accordingly, 𝑖 must have received at least 2𝑡 + 1 ⟨𝑖𝑑, RECONSTRUCT, 𝑑 𝑗 ⟩ messages,

among which at least 𝑡 + 1 are sent by correct nodes.
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According to Lemma 5, the 𝑡 + 1 correct nodes only send coded fragments encoded from the same message 𝑀 ′.

Therefore, the reconstructed 𝑡-degree polynomial for𝑀 must agree with 𝑡 + 1 fragments from correct nodes. It must

hold that𝑀 = 𝑀 ′.

If 𝑖 outputs 𝑀 , it has received at least 2𝑡 + 1 ⟨READY⟩ messages and also 2𝑡 + 1 ⟨RECONSTRUCT⟩ messages, among

which at least 𝑡 + 1 are sent by correct nodes. According to Lemma 4, at least one correct node has completed BCB and

received a valid threshold signature 𝑝𝑟𝑜𝑜 𝑓1 for𝑀 , and meanwhile the sender 𝑠 has sent𝑀 . □

In the following, we prove that SigBRB satisfies validity, agreement, and totality.

Validity. If a correct node 𝑠 inputs 𝑀 , all correct nodes complete BCB, according to the validity property of BCB.

Therefore, all correct nodes will send the ⟨DISPERSE⟩ messages for the same 𝑀 , receive 𝑡 + 1 matching ⟨DISPERSE⟩
messages, and broadcast the ⟨RECONSTRUCT⟩ messages. No correct node can receive 𝑡 + 1 matching ⟨𝑖𝑑, DISPERSE, 𝑑𝑖 ⟩
for𝑀 ′ ̸= 𝑀 . Each correct node will then send a ⟨𝑖𝑑, RECONSTRUCT, 𝑑𝑖 ⟩ messages such that 𝑑𝑖 is encoded from𝑀 . Thus,

all correct nodes will receive 2𝑡 + 1 ⟨RECONSTRUCT⟩ messages from all correct nodes, output some value and then send

the ⟨𝑖𝑑, READY⟩ messages. All correct nodes, including the sender, will then receive 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ messages and

output some message. Furthermore, as shown in Lemma 6, if any correct node outputs𝑀 ′ ̸= 𝑀 , 𝑠 has previously sent

𝑀 ′, contradicting the fact that 𝑠 is a correct node and inputs𝑀 . Therefore, all correct nodes will output the original

message𝑀 .

Agreement. If a correct node 𝑖 outputs𝑀 , according to Lemma 6, at least one correct node has completed BCB and

possessed a valid threshold signature for𝑀 . Furthermore, If 𝑗 outputs𝑀 ′, at least one correct node has completed BCB

and possessed a valid threshold signature for𝑀 ′. This violates the consistency property of BCB. Thus,𝑀 = 𝑀 ′.

Totality. If a correct node 𝑖 outputs a message, it has received 𝑛 − 𝑡 ⟨READY⟩ messages, among which at least 𝑡 + 1

are sent by correct nodes. The 𝑡 + 1 correct nodes must all output𝑀 by OEC, as proved in the first part. Furthermore,

for each of the 𝑡 + 1 correct nodes, if it has not previously sent a ⟨DISPERSE⟩ message, it will encode message𝑀 and

broadcast the ⟨DISPERSE⟩ messages according to our protocol. Therefore, each correct node eventually receives at least

𝑡 + 1 matching ⟨DISPERSE⟩ messages. Eventually, all correct nodes will receive at least 𝑛 − 𝑡 ⟨RECONSTRUCT⟩ messages.

According to Lemma 5, each correct node sends a fragment ⟨𝑖𝑑, RECONSTRUCT, 𝑑𝑖 ⟩ such that 𝑑𝑖 is encoded from the same

message𝑀 . Therefore, each correct node eventually outputs some message. Finally, each correct node will eventually

send an ⟨𝑖𝑑, READY⟩ message, receive 𝑛 − 𝑡 ⟨𝑖𝑑, READY⟩ messages, and output the value. □

5.4 BalSigBRB

It is easy to transform the SigBRB protocol to BalSigBRB achieving balanced communication by using the technique

used in §3. Doing so incurs an additional round of communication.

6 BALANCED ERROR-FREE BRB

In this section, we will introduce our BalEFBRB protocol, which is error-free, balanced and achieves near-optimal

communication cost. Our protocol is heavily inspired by the recent error-free synchronous Byzantine agreement

protocol named COOL [19]. We extend the COOL protocol [19] to obtain an error-free asynchronous BRB protocol

with per-node communication cost 𝑂(|𝑀 |+𝑛 log𝑛). We will first intuitively explain the modifications on top of COOL,

and then describe our BalEFBRB protocol in more detail. We make the following three major changes to obtain our

BalEFBRB protocol.
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(1) Triggering the next message upon receiving sufficient messages asynchronously, instead of receiving all messages from

the previous synchronous round. The COOL protocol is a synchronous protocol that proceeds in lock-step rounds,

so it contains several steps where nodes wait for all messages from the previous round before taking their next

step. For instance, a node will send an indicator message for 1 if it receives 𝑛 − 𝑡 1-indicators in the previous

round; otherwise it sends an indicator for 0. However, under asynchrony, the node cannot expect to receive all

messages, since a slow honest node is indistinguishable from a Byzantine node. Therefore, we need to change the

triggering event to receiving enough messages asynchronously. For instance, the above example is changed to the

following: a node sends 1-indicator upon receiving 𝑛 − 𝑡 1-indicators and sends 0-indicator upon receiving 𝑡 + 1

0-indicators. Since there are 𝑛 nodes in total and each node can send one indicator, the above two conditions will

not hold simultaneously. Moreover, if the original synchronous protocol relies on the fact that a node receives

enough indicators, then the new asynchronous protocol preserves the same property since the node only triggers

the message event after receiving enough indicators.

(2) Replacing the 1-bit asynchronous BA with 1-bit Bracha’s BRB. The COOL protocol uses a synchronous binary BA

protocol for all the nodes to agree on whether there are enough honest nodes holding the correct coded message

fragments in order to recover the message. Our BalEFBRB also requires a similar step under asynchrony. However,

we cannot use an asynchronous binary BA to construct an error-free BRB, because any asynchronous BA has to be

randomized due to the FLP impossibility result [28]. Instead, we use the 1-bit Bracha’s BRB [14], which is error-free,

as follows. When a node inputs 1 (or 0) to the synchronous BA in the COOL protocol, we let the node send an ECHO

message for 1 (or 0) in the 1-bit Bracha’s BRB. As a result, the 1-bit Bracha’s BRB guarantees agreement among the

nodes on whether they should reconstruct the message or simply output a default message ⊥. Moreover, as we will

explain in Lemma 7, if one honest node outputs 1 in the 1-bit Bracha’s BRB, then every honest node will be able to

reconstruct and output the same message.

(3) Balancing the broadcaster’s cost by the technique of §3. The BRB protocol obtained after the above two changes is still

not balanced, since the straightforward transformation from agreement to broadcast asks the broadcaster to send

the entire message in the first step of the protocol, leading to a cost of at least Ω(𝑛 |𝑀 |) at the broadcaster. Therefore,
we apply the technique of §3, which ensures that broadcaster incurs a communication cost of 𝑂(|𝑀 |+𝑛 log𝑛).

For brevity, we will only present the balanced version of our error-free BRB protocol BalEFBRB in the next section. The

unbalanced protocol EFBRB can be easily obtained by broadcaster using multicast instead of the balanced multicast for

sending its input message. The unbalanced protocol EFBRB has one less round, but the broadcaster incurs communication

cost 𝑂(𝑛 |𝑀 |+𝑛 log𝑛) instead of 𝑂(|𝑀 |+𝑛 log𝑛), compared with the balanced one.

6.1 Design of BalEFBRB

Our error-free BRB has five phases: phase 0 to 4. We summarize our protocol in Algorithm 5 and describe each phase in

detail.

Phase 0: The purpose of phase 0 is to let the broadcaster to send its proposal,𝑀 , to all nodes. As discussed in §3, if the

broadcaster sends its proposal directly to each node, the broadcaster would incur a communication cost of 𝑂(𝑛 |𝑀 |).
We adopt the approach we design in §3. More specifically, during phase 0, the broadcaster encodes𝑀 using a (𝑛, 𝑡 + 1)

Reed-Solomon code. Let [𝑚1,𝑚2, . . . ,𝑚𝑛] be the encoded fragments. The broadcaster then sends the 𝑖-th fragment𝑚𝑖

to node 𝑖 as ⟨PROPOSE,𝑚𝑖 ⟩ message. Each node 𝑖 , upon receiving ⟨PROPOSE,𝑚𝑖 ⟩ message from the broadcaster, sends
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Algorithm 5 BalEFBRB protocol, code for node 𝑖 , 𝑖 ∈ [𝑛]

PHASE 0:

1: // only broadcaster node
2: input𝑀
3: Let [𝑚1,𝑚2, . . . ,𝑚𝑛] := ECCEnc(𝑀,𝑛, 𝑡 + 1)

4: send ⟨PROPOSE,𝑚 𝑗 ⟩ to node 𝑗 for each 𝑗 ∈ [𝑛]

// each node 𝑖
5: Let𝑀 := ⊥
6: Initialize S1

0
, S1

1
, S2

0
, S2

1
, S3

0
, S3

1
, S4

0
, S4

1
to be ∅

7: upon receiving the first ⟨PROPOSE,𝑚𝑖 ⟩ from the broadcaster

do
8: send ⟨SHARE,𝑚𝑖 ⟩ to all nodes

9: For the first ⟨SHARE,𝑚∗
𝑗
⟩ received from node 𝑗 , add (𝑗,𝑚∗

𝑗
) to

𝑇 //𝑇 initialized as ∅
10: Perform IT-OEC for set𝑇 (Algorithm 1)

11: Let𝑀𝑖 be the returned value of IT-OEC

PHASE 1:

12: Let [𝑦
(𝑖)

1
, 𝑦

(𝑖)

2
, . . . , 𝑦

(𝑖)
𝑛 ] := ECCEnc(𝑀𝑖 , 𝑛, 𝑘)

13: send ⟨SYMBOLS, (𝑦(𝑖)

𝑗
, 𝑦

(𝑖)

𝑖
)⟩ to node 𝑗 , ∀𝑗 ∈ [𝑛]. // Ex-

change fragments

14: upon receiving ⟨SYMBOLS, (𝑦(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
)⟩ from node 𝑗 for the

first time do
15: if (𝑦

(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
) = (𝑦

(𝑖)

𝑖
, 𝑦

(𝑖)

𝑗
) then

16: Let S1

1
:= S1

1
∪ { 𝑗 }.

17: else
18: Let S1

0
:= S1

0
∪ { 𝑗 }.

19: upon |S1

1
|>= 𝑛 − 𝑡 do

20: set 𝑠1

𝑖
= 1, send ⟨𝑃1, 𝑠1

𝑖
⟩ to all.

21: upon |S1

0
|>= 𝑡 + 1 do

22: set 𝑠1

𝑖
= 0, send ⟨𝑃1, 𝑠1

𝑖
⟩ to all.

23: upon receiving ⟨𝑃1, 𝑠1

𝑗
⟩ from node 𝑗 for the first time do

24: if 𝑠1

𝑗
= 1 then

25: Wait till 𝑗 ∈ S1

0
∪ S1

1

26: if 𝑗 ∈ S1

1
then

27: Let S2

1
:= S2

1
∪ { 𝑗 }.

28: else
29: Let S2

0
= S2

0
∪ { 𝑗 }.

PHASE 2:

30: if 𝑠1

𝑖
= 1 then

31: upon |S2

1
|>= 𝑛 − 𝑡 do

32: set 𝑠2

𝑖
= 1, send ⟨𝑃2, 𝑠2

𝑖
⟩ to all.

33: upon |S2

0
|>= 𝑡 + 1 do

34: set 𝑠2

𝑖
= 0, send ⟨𝑃2, 𝑠2

𝑖
⟩ to all.

35: else
36: set 𝑠2

𝑖
= 0, send ⟨𝑃2, 𝑠2

𝑖
⟩ to all

37: upon receiving ⟨𝑃2, 𝑠2

𝑗
⟩ from node 𝑗 for the first time do

38: if 𝑠2

𝑗
= 1 then

39: Wait till 𝑗 ∈ S1

0
∪ S1

1

40: if 𝑗 ∈ S1

1
then

41: Let S3

1
:= S3

1
∪ { 𝑗 }.

42: else
43: Let S3

0
:= S3

0
∪ { 𝑗 }.

PHASE 3:

44: if 𝑠2

𝑖
= 1 then

45: upon |S3

1
|>= 𝑛 − 𝑡 do

46: set 𝑠3

𝑖
= 1, send ⟨𝑃3, 𝑠3

𝑖
⟩ to all.

47: upon |S3

0
|>= 𝑡 + 1 do

48: set 𝑠3

𝑖
= 0, send ⟨𝑃3, 𝑠3

𝑖
⟩ to all.

49: else
50: set 𝑠3

𝑖
= 0, send ⟨𝑃3, 𝑠3

𝑖
⟩ to all.

51: upon receiving ⟨𝑃3, 𝑠3

𝑗
⟩ from node 𝑗 for the first time do

52: if 𝑠3

𝑗
= 1 then

53: Let S4

1
:= S4

1
∪ { 𝑗 }.

54: else
55: Let S4

0
= S4

0
∪ { 𝑗 }.

56: upon |S4

1
|>= 𝑛 − 𝑡 do

57: send ⟨ECHO, 𝑠4

𝑖
= 1⟩ to all.

58: upon |S4

0
|>= 𝑡 + 1 do

59: send ⟨ECHO, 𝑠4

𝑖
= 0⟩ to all.

60: upon receiving 2𝑡 +1 ⟨ECHO, 𝑠 ⟩ for matching 𝑠 and not having

sent a READY message do
61: send ⟨READY, 𝑠 ⟩ to all

62: upon receiving 𝑡 +1 ⟨READY, 𝑠 ⟩ for matching 𝑠 and not having

sent a READY message do
63: send ⟨READY, 𝑠 ⟩ to all

64: upon receiving 2𝑡 + 1 ⟨READY, 𝑠 ⟩ for matching 𝑠 do
65: if 𝑠 = 0 then
66: output𝑀 = ⊥ and return
67: start PHASE 4

PHASE 4:

68: // only after executing line 67
69: Wait till receiving 𝑡 + 1 ⟨SYMBOLS, (𝑦(𝑗 )

𝑖
, ∗)⟩, ∀𝑗 ∈ S4

1
//

SYMBOLS messages from PHASE 1, and set S4

1
from PHASE

3
70: Let𝑚𝑖 := 𝑦

(𝑗 )

𝑖

71: send ⟨RECONSTRUCT,𝑚𝑖 ⟩ to all

72: For the first ⟨RECONSTRUCT,𝑚∗
𝑗
⟩ received from node 𝑗 , add

(𝑗,𝑚∗
𝑗
) to𝑇 //𝑇 initialized as ∅

73: Perform IT-OEC for set𝑇 (Algorithm 1)

74: Let𝑀𝑖 be the returned value of IT-OEC

75: output𝑀𝑖 and return.
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⟨SHARE,𝑚𝑖 ⟩ to all other nodes. Every node then performs information theoretic online error correction using the SHARE

messages to recover the potential proposal. Let𝑀𝑖 be the proposal node 𝑖 recovers at the end of phase 0.

Phase 1: During phase 1, each node first encode the proposal it recovered during phase 0 using a (𝑛, 𝑘) Reed-Solomon

code for 𝑘 = ⌊ 𝑡
5
⌋ + 1. Let [𝑦

(𝑖)

1
, 𝑦

(𝑖)

2
, . . . , 𝑦

(𝑖)
𝑛 ] := ECCEnc(𝑀𝑖 , 𝑛, 𝑘) be the output of the encoding procedure at node 𝑖

(line 11). Node 𝑖 then sends the ⟨SYMBOLS, 𝑦(𝑖)

𝑖
, 𝑦

(𝑖)

𝑗
⟩ to node 𝑗 for every 𝑗 ∈ [𝑛] (line 12). Also, node 𝑖 upon receiving

⟨SYMBOLS, 𝑦(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
⟩ from node 𝑗 adds node 𝑗 to the set S1

1
if (𝑦

(𝑖)

𝑖
, 𝑦

(𝑖)

𝑗
) = (𝑦

(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
) (line 15-16). Otherwise, node 𝑖 adds

𝑗 to the set S1

0
(line 18). Node 𝑖 then waits until either |S1

1
| is greater than or equal to 𝑛 − 𝑡 , or |S1

0
| is greater than

or equal to 𝑡 + 1. The event |S1

1
|≥ 𝑛 − 𝑡 implies that node 𝑖 received matching fragments from at least 𝑛 − 𝑡 nodes.

Alternatively, the event |S1

0
|≥ 𝑡 + 1 implies that node 𝑖 received non-matching fragment from at least 𝑡 + 1 nodes.

Upon |S1

1
|≥ 𝑛 − 𝑡 , node 𝑖 sends the message ⟨𝑃1, 𝑠1

𝑖
= 1⟩ to all nodes (line 19-20). Alternatively, if |S1

0
|≥ 𝑡 + 1, node

𝑖 sends the message ⟨𝑃1, 𝑠1

𝑖
= 0⟩ to all nodes (line 21-22). Finally, for every ⟨𝑃1, 𝑠1

𝑗
= 1⟩ message received from any

node 𝑗 , node 𝑖 adds node 𝑗 to the set S2

1
once it received 𝑗 ’s fragments in phase 1 and the fragments match (line 24-27).

Otherwise, node 𝑖 adds the senders of ⟨𝑃1, 0⟩ message to the set S2

0
(line 29). The reason for waiting to receive node

𝑗 ’s fragments in line 25 is that we do not want to add nodes with mismatched fragments in S2

1
, which is crucial for

Lemma 7 to hold. Note that it is still possible that an honest node 𝑗 whose fragments do not match node 𝑖 , i.e., 𝑗 ∈ S1

0
at

node 𝑖 , sends 𝑠2

𝑗
= 1. In our protocol node 𝑖 ignores all such messages (line 24-27).

Phase 2: During phase 2, if 𝑠1

𝑖
as calculated in phase 1 (line 19-22) is equal to 0, node 𝑖 sends the ⟨𝑃2, 𝑠2

𝑖
= 0⟩ to every node.

Otherwise, if 𝑠1

𝑖
is 1, then depending upon the size of S2

1
or S2

0
, node 𝑖 sends the following message. Upon |S2

1
|≥ 𝑛 − 𝑡 ,

node 𝑖 sends ⟨𝑃2, 𝑠2

𝑖
= 1⟩ to all nodes (line 31-32). Otherwise, upon |S2

0
|≥ 𝑡 + 1, node 𝑖 sends ⟨𝑃2, 𝑠2

𝑖
= 0⟩ to every node

(line 33-34). Also, similar to phase 1, for every ⟨𝑃2, 𝑠2

𝑗
= 1⟩ message received from any node 𝑗 , node 𝑖 adds node 𝑗 to

the set S3

1
once it received 𝑗 ’s fragments in phase 1 and the fragments match (Line 38-41). Otherwise, node 𝑖 adds the

senders of ⟨𝑃2, 0⟩ message to the set S3

0
(line 43).

Phase 3: The first part of phase 3 (line 44-55) is similar to phase 2 (line 30-43), except that any node 𝑗 that sends

⟨𝑃3, 𝑠3

𝑖
= 1⟩ is included in set S4

1
without the additional checks as in phase 1 and 2.

The remaining steps of phase 3 is analogous to running the 1-bit BRB protocol due to Bracha [14]. Specifically, upon

|S4

1
|≥ 𝑛 − 𝑡 , node 𝑖 sends ⟨ECHO, 𝑠4

𝑖
= 1⟩ to all nodes (line 56-57). Otherwise, if |S4

0
|≥ 𝑡 + 1, node 𝑖 sends ⟨ECHO, 𝑠4

𝑖
= 0⟩

to every node (line 58-59). Intuitively, the content of the ECHO message (1 or 0) from node 𝑖 denotes the opinion of node

𝑖 on whether every node should output𝑀 ′ ̸= ⊥ or𝑀 ′ = ⊥. Each node upon receiving 2𝑡 + 1 ⟨ECHO, 𝑠⟩ messages for a

matching 𝑠 , sends the ⟨READY, 𝑠⟩ message, if it have not sent it already (line 60-61). A node also sends the ⟨READY, 𝑠⟩
message upon receiving 𝑡 + 1 matching ⟨READY, 𝑠⟩ messages, if have not sent it already (line 62-63). Finally, upon

receiving 2𝑡 + 1 matching ⟨READY, 𝑠⟩, if 𝑠 = 0, node 𝑖 outputs ⊥ and returns (line 65-66). Otherwise, node 𝑖 proceeds to

phase 4 (line 67).

Phase 4: A node starts phase 4 only after receiving 2𝑡 + 1 ⟨READY, 1⟩ messages. During phase 4, each node waits for

𝑡 + 1 matching ⟨SYMBOLS, 𝑦(𝑗 )

𝑖
, ∗⟩ from nodes in S4

1
(line 69). Recall that ⟨SYMBOLS, 𝑦(𝑗 )

𝑖
, ∗⟩ are sent during phase 1. Let

𝑚𝑖 := 𝑦
(

𝑖
𝑗 ) be the fragment received in 𝑡 + 1 SYMBOLS messages with matching 𝑦

(

𝑖
𝑗 ) (line 70). Then, each node sends

the message ⟨RECONSTRUCT,𝑚𝑖 ⟩ to all nodes (line 71). Finally, each node uses the received RECONSTRUCT messages to

perform OEC and outputs the output of the OEC algorithm (line 72-75).
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6.2 Analysis

In this section we will analyze algorithm 5 and show that it implements an error-free BRB protocol for large messages

with communication cost of 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛) and tolerates up to 1/3-rd Byzantine nodes. Our proof directly uses

several Lemmas from [18] and we only provide the lemma statement for those lemmas. Some of the lemmas and their

proofs are deferred to Appendix A for brevity.

Lemma 7 (Key Lemma). When any honest node 𝑖 sends ⟨ECHO, 1⟩ at phase 3, all honest nodes in node 𝑖’s set S4

1
recovers

the same message at the end of phase 0.

Proof. The proof of this lemma follows directly from the proof of [18, Lemma 3] where we use our proof of Lemma 10

and 11. □

Theorem 5 (Totality and Agreement). Algorithm 5 guarantees the Totality and Agreement property.

Proof. Suppose an honest node outputs𝑀 ′, then it has received 2𝑡 + 1 ⟨READY, 𝑠⟩ messages for matching 𝑠 . Then

since at least 𝑡 + 1 messages above are from honest nodes, every honest node will eventually receive 𝑡 + 1 ⟨READY, 𝑠⟩
messages. Note that no honest node can send READY for any 𝑠 ′ ̸= 𝑠 , due to the quorum intersection of ECHO messages.

Thus all honest nodes will send ⟨READY, 𝑠⟩ and thus receive 2𝑡 + 1 ⟨READY, 𝑠⟩. If 𝑠 = 0, this implies that every honest will

output the default message𝑀 ′ = ⊥ and return. Otherwise, if 𝑠 = 1, each node will start phase 4. What remains to show

is that, during phase 4, each honest node will send a reconstruct message with a correct fragment of the encoding of a

unique message𝑀 ′ (line 71) after receiving 𝑡 + 1 matching SYMBOLS (line 69), and decode and output𝑀 ′ (line 72-75).

An honest node receiving 2𝑡 + 1 ⟨READY, 1⟩ implies that at least one honest node sent a ⟨ECHO, 1⟩ message. Without

loss of generality, let 𝑖 be the first node that sent an ⟨ECHO, 1⟩ message. Observe that node 𝑖 sends ⟨ECHO, 1⟩ only when

|S4

1
|≥ 𝑛 − 𝑡 at node 𝑖 . This means at least 𝑛 − 2𝑡 ≥ 𝑡 + 1 nodes in |S4

1
| are honest and each such node 𝑗 sent 𝑠3

𝑗
= 1 to all

nodes. Also, due to Lemma 7, for every pair of honest nodes, they have the same initial message at the end of phase 0,

i.e., 𝑗, ℓ ∈ S4

1
,𝑀𝑗 = 𝑀ℓ . Hence, every honest node 𝑖 will eventually will receive at least 𝑡 + 1 matching ⟨SYMBOLS, (𝑦(𝑗 )

𝑖
, ∗)⟩

messages from honest nodes in S4

1
. This implies, every honest node will send RECONSTRUCT message with correct

fragment, and due to properties of OEC, each honest will output the same message𝑀 ′. □

Theorem 6 (Validity). Algorithm 5 guarantees the Validity property.

Proof. When the broadcaster is honest and has input𝑀 , due to guarantees of OEC, during phase 0, every honest

node will eventually receive𝑀 , i.e.,𝑀𝑖 = 𝑀𝑗 = 𝑀 for all honest nodes 𝑖 and 𝑗 . Since, ECCEnc is a deterministic function,

for every pair of honest nodes 𝑖 and 𝑗 , the tuple of fragments will match, i.e., (𝑦
(𝑗 )

𝑖
, 𝑦

(𝑗 )

𝑗
) = (𝑦

(𝑖)

𝑖
, 𝑦

(𝑖)

𝑗
). Since there are at

least 𝑛 − 𝑡 honest nodes, eventually |S1

1
| will be greater than or equal to 𝑛 − 𝑡 at all honest nodes and every honest

node 𝑖 will send ⟨𝑃1, 𝑠2

𝑖
= 1⟩ to others. No honest node will send ⟨𝑃1, 𝑠2

𝑖
= 0⟩ since there are at most 𝑡 Byzantine nodes

who may send inconsistent fragments. A similar argument also implies that during phase 2 and 3, each honest node 𝑖

will send ⟨𝑃2, 𝑠3

𝑖
= 1⟩ and ⟨𝑃3, 𝑠3

𝑖
= 1⟩, respectively, to all other nodes. Hence, every honest node will eventually send

⟨ECHO, 1⟩ and ⟨READY, 1⟩ to others and all honest node will start to phase 4. Finally, during phase 4, every honest node

sends a valid coded fragment of𝑀 in RECONSTRUCT message. Thus, again due to guarantees of OEC, every honest node

will reconstruct the message𝑀 . □

Theorem 7 (Performance). For any message𝑀 of size |𝑀 |, the total communication cost of Algorithm 5 is𝑂(𝑛 |𝑀 |+𝑛2
log𝑛)

bits. Furthermore each node incurs a communication cost of 𝑂(|𝑀 |+𝑛 log𝑛).
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Proof. During phase 0, the broadcaster sends a fragment to each node, and each node gossips the fragment to every

other node. Note that in Reed-Solomon code, each fragment is of size max{|𝑀 |/𝑛, log𝑛} bits. Hence, the communication

cost of each node during phase 0 is at most 𝑂(|𝑀 |+𝑛 log𝑛). Hence, the total communication during phase 0 is at most

𝑂(𝑛 |𝑀 |+𝑛2
log𝑛). During phase 1, each node sends two fragments (line 12) and a single bit (line 19 and 22) to every

other node. Hence, by the same argument as above, the total communication cost of phase 1 is at most𝑂(𝑛 |𝑀 |+𝑛2
log𝑛).

A node only sends a single bit to other nodes during phase 2. Similarly, during phase 3, each node only sends 1-bit to

others and runs a 1-bit Bracha’s BRB protocol. Hence, the communication cost of phase 2 and phase 3 is 𝑂(𝑛2
). Finally,

during phase 4, each node sends a fragment to all other nodes, hence the per node and the total communication cost of

phase 4 is 𝑂(|𝑀 |+𝑛 log𝑛) and 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛), respectively.

Combining the above, the per node and the total communication cost of Algorithm 5 is𝑂(|𝑀 |+𝑛 log𝑛) and𝑂(𝑛 |𝑀 |+𝑛2
log𝑛),

respectively. □

7 LOWER BOUNDS

In this section, we prove a communication complexity lower bound for deterministic protocols that solve BRB, which

have been mentioned in Table 1. To strengthen the result, the lower bound is proven under synchrony. The lower bound

proof is inspired by [23].

For any deterministic BRB protocol with input 𝑀 that tolerates up to Θ(𝑛) Byzantine nodes, it is straightforward

to show a lower bound of Ω(𝑛 |𝑀 |+𝑛2
) [41] on the communication cost even under synchrony. The Ω(𝑛 |𝑀 |) part is

because 𝑂(𝑛) honest nodes need to receive the message when the protocol terminates, and the Ω(𝑛2
) part is due to the

classic Dolev-Reischuk lower bound [23]. Therefore, all our protocols SigBRB, BalSigBRB, EFBRB and BalEFBRB have

near-optimal communication cost.

Next, for any deterministic protocol that solves BRB under synchrony, we will show that Ω(|𝑀 |+𝑛) is a lower bound

on the communication cost of any protocol node including the broadcaster, which implies our BalSigBRB and BalEFBRB

has near-optimal per-node cost as well.

Theorem 8. In any deterministic protocol that solves BRB, for any honest node 𝑝 , there exists an execution in which 𝑝

incurs a communication cost of Ω(|𝑀 |+𝑛).

Proof. Wewill prove that for any deterministic BRB protocol, all honest nodes incur at least Ω(|𝑀 |+𝑛) communication

cost in at least one execution.

The argument for broadcaster is straightforward. First, the broadcaster needs to send at least Ω(|𝑀 |) bits for its input
message 𝑀 . Moreover, the broadcaster has to send messages to at least 𝑡 + 1 nodes, otherwise it is possible that no

honest node receives any information from the broadcaster, and the Validity property of BRB can be violated. Since

𝑡 = Θ(𝑛), we conclude that the broadcaster has to send Ω(|𝑀 |+𝑛) bits.

Consider any non-broadcaster honest node during any failure-free execution where the broadcaster has input 𝑀 .

This honest node needs to output𝑀 due to the Validity requirement, so at least Ω(|𝑀 |) bits need to be received.

Let 𝐶𝑝,𝐸 denote the number of messages an honest node 𝑝 sends to any node and receives from any honest node

during an execution 𝐸. We show that 𝐶𝑝,𝐸 ≥ 𝑡/2 + 1 for any honest node 𝑝 in at least one execution 𝐸. Otherwise,

suppose there exists a BRB protocol where an honest node 𝑞 has𝐶𝑞,𝐸 ≤ 𝑡/2 for any execution 𝐸. If 𝑞 receives no message

during the entire execution but other honest nodes output for BRB, due to Totality 𝑞 eventually outputs as well. Without

loss of generality, suppose 𝑞 outputs 0 in this case. Consider a failure-free execution 𝐸1 where the honest broadcaster

has input 1. By assumption, 𝐶𝑞,𝐸1 ≤ 𝑡/2. Let 𝑆 denote the set of nodes that 𝑞 receives messages from in 𝐸1. We have
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|𝑆 |≤ 𝑡/2. Consider execution 𝐸2 where the honest broadcaster has input 1, and 𝑞 is Byzantine and remains silent. Since

the broadcaster is honest and has input 1, by Validity, all honest nodes output 1 in 𝐸2. Then, we construct another

execution 𝐸3 same as 𝐸2 except that the nodes in 𝑆 are Byzantine and 𝑞 is now honest. The nodes in 𝑆 behave identically

as in 𝐸2, except that they send no message to 𝑞. By assumption, 𝐶𝑞,𝐸3 ≤ 𝑡/2. The adversary also corrupts the set of

nodes 𝑅 that 𝑞 sends messages to in 𝐸3. This is within the adversary’s corruption budget since |𝑆 ∪ 𝑅 |≤ |𝑆 |+|𝑅 |≤ 𝑡 . The

Byzantine nodes in 𝑅 behave identically as in 𝐸2. Since 𝑞 receives no message in 𝐸3, 𝑞 will output 0 in 𝐸3 by assumption.

Other honest nodes will output 1 in 𝐸3 since they cannot distinguish 𝐸2, 𝐸3. However, the Agreement property of BRB

is then violated. Therefore, we prove that 𝐶𝑝,𝐸 ≥ 𝑡/2 + 1 for any honest node 𝑝 in at least one execution 𝐸, which

implies the communication cost at any honest node for any BRB protocol is Ω(𝑛).

Therefore, in any deterministic protocol that solves BRB, for any honest node 𝑝 , there exists an execution in which 𝑝

incurs a communication cost of Ω(max{|𝑀 |, 𝑛}) = Ω(|𝑀 |+𝑛). □

8 RELATEDWORK

The problem of reliable broadcast (BRB) was introduced by Bracha [14]. In the same paper, Bracha provided an

error-free BRB protocol for a single bit with a communication cost of 𝑂(𝑛2
), thus 𝑂(𝑛2 |𝑀 |) for |𝑀 | bits using a naïve

approach. Almost two decades later, Cachin and Tessaro [16] improved the cost to 𝑂(𝑛 |𝑀 |+𝜅𝑛2
log𝑛) assuming a

collision-resistant hash function with 𝜅 being the output size of the hash. Hendricks et al. in [34] propose an alternate

BRB protocol with a communication cost of 𝑂(𝑛 |𝑀 |+𝜅𝑛3
) using a erasure coding scheme where each element of a

codeword can be verified for correctness. Assuming a trusted setup phase, hardness of 𝑞-SDH [9, 10] and Decisional

Bilinear Diffie-Hellman (DBDH) [12], Nayak et al. [41] reduced the communication cost to 𝑂(𝑛 |𝑀 |+𝜅𝑛2
).

Recently, Das et al. [21] presents a BRB protocol that has a communication cost to 𝑂(𝑛 |𝑀 |+𝜅𝑛2
) assuming only

collision-resistant hash function. However, their BRB protocol has two limitations: 1) For sufficiently large messages,

the protocol suffers from computational inefficiencies. 2) The broadcaster incurs a higher communication cost than the

non-broadcaster nodes. We address both of these concerns while still maintaining the same total communication cost

by introducing our two protocols CCBRB and BalCCBRB in §4. CCBRB is not balanced but offers better computational

cost for large messages, while BalCCBRB is balanced, but at the cost of one extra step of communication.

The original BRB protocol due to Bracha [14] is error-free, i.e., it does not require any cryptographic assumptions

and is secure against any computationally unbounded adversary in all executions. The error-free BRB protocol due

to Patra [42] achieves a total communication cost of 𝑂(𝑛 |𝑀 |+𝑛4
log𝑛), and it is later improved to 𝑂(𝑛 |𝑀 |+𝑛3

log𝑛) by

Nayak et al. [41]. The two protocols above are not balanced; the broadcaster has a cost roughly 𝑂(𝑛) higher than other

nodes.

Our error-free BRB builds upon the recent result on synchronous error-free Byzantine agreement due to Chen [19].

In particular, our observation is that, with appropriate changes, we can use Chen’s protocol to establish the initial

condition of the Asynchronous Data Dissemination (ADD) problem introduced by [21]. ADD is a protocol that efficiently

disseminates the message from a subset of honest node to all honest nodes in an asynchronous network. Note that,

Chen’s approach do not rely on any cryptographic assumption and incurs a communication cost of 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛).

Thus, by combining the modified Chen’s protocol along with our balancing technique from §3 and information theoretic

Asynchronous Data Dissemination protocol of [21], we get an information-theoretically secure BRB protocol with

near-optimal communication cost of 𝑂(𝑛 |𝑀 |+𝑛2
log𝑛).
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For SigBRB, we use Byzantine consistent broadcast (CBC) which may be viewed as BRB without the totality property.

The notion has been implicitly discussed in [14, 48] and more formally by Reiter [46] and Cachin, Kursawe, Petzold,

and Shoup (CKPS) [15]. The CBC construction is due to Cachin, Kursawe, Petzold, and Shoup [15].

BRB has also been explored in some extended settings, e.g., probabilistic BRB [32], BRBwith dynamicmembership [31].

Concurrent work. A concurrent and independent work of Abraham and Asharov [1] obtains asynchronous Byzantine

reliable broadcast with near-optimal communication cost of 𝑂(𝑛 |𝑀 |+𝑛2
log(𝑛3/𝜖)). Their protocol tolerates optimal

resilience 𝑡 < 𝑛/3 and is statistically secure with probability 1 − 𝜖 . The computational cost of their protocol is 𝑂̃(𝑛 |𝑀 |)
since they need online error correction on the input message. Their protocol has 7 round if made balanced using our

technique of §3, or 6 round without the balancing. Abraham and Asharov [1] also obtain similar results for synchronous

gradecast.

9 BRB VS. AVID

Asynchronous verifiable information dispersal (AVID), introduced by Cachin and Tessaro [16], is a primitive closely

related to BRB. The difference between these two primitives is that BRB requires that replicas store a full copy of

message, but AVID may only ask replicas to store erasure-coded fragments in a consistent manner. It is straightforward

to obtain a BRB protocol from an AVID, by all nodes invoking retrieval after the dispersal phase of AVID terminates.

The new techniques introduced in this paper apply to the problem of AVID as well. More specifically, the bal-

anced multicast from §3 and cross-checksum from §4 inspired us to design a new AVID protocol with near-optimal

communication cost. More details can be found in our PODC 2022 brief announcement [4].

10 CONCLUSION AND OPEN PROBLEMS

This paper investigates asynchronous Byzantine reliable broadcast, and make improvements over existing results in

terms of computation cost, and communication cost in total and per-node. An intriguing open problem is that, can

we simultaneously achieve improved computation cost and near-optimal communication cost? All our solutions with

near-optimal communication have expensive online error correction on the input message, and our computation efficient

protocol still has an 𝑂(𝜅) gap from the communication complexity lower bound. Another interesting open problem is

that, can we achieve optimal communication cost for Byzantine reliable broadcast? Our near-optimal solutions still

have an 𝑂(log𝑛) gap from the lower bound.
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A RE-PROVING LEMMAS

In this section we will re-prove some lemmas from [18] for our Key Lemma (Lemma 7). Our proofs basically follow the

original proof of [18], adapted to our asynchronous BRB protocol.

We will first restate the definitions introduced by Chen [18] in our protocol language.

Notation for groups of nodes. We divide the 𝑛-node network into group of nodes. The group definition is based on

the values of the messages recovered by nodes at the end of phase 0 and values of the success indicators {𝑠 𝑗
𝑖
}𝑛
𝑖=1

for

𝑗 = 1, 2, 3, 4. Let F be the group consisting of the indices of all of the dishonest nodes. Note that |F |≤ 𝑡 . We define the

following groups of honest nodes.

A𝑙 ≜{𝑖 : 𝑀𝑖 = 𝑀̄𝑙 , 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑙 ∈ [𝜂] (1)

A[1]

𝑙
≜{𝑖 : 𝑠1

𝑖 = 1, 𝑀𝑖 = 𝑀̄𝑙 , 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑙 ∈ [𝜂[1]
] (2)

A[2]

𝑙
≜{𝑖 : 𝑠2

𝑖 = 1, 𝑀𝑖 = 𝑀̄𝑙 , 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑙 ∈ [𝜂[2]
] (3)

A[3]

𝑙
≜{𝑖 : 𝑠3

𝑖 = 1, 𝑀𝑖 = 𝑀̄𝑙 , 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑙 ∈ [𝜂[3]
] (4)

for some different non-empty values 𝑀̄1, 𝑀̄2, · · · , 𝑀̄𝜂 and some non-negative integers 𝜂, 𝜂[1], 𝜂[2], 𝜂[3]
such that 𝜂[3] ≤

𝜂[2] ≤ 𝜂[1] ≤ 𝜂. The above definition implies that Group A𝑙 is a subset of honest nodes who recovered the same

message at the end of phase 0. A[1]

𝑙
is a subset of A𝑙 who have the same non-empty value of updated messages at

the end of phase 1. Note that at the end of phase 1, if the updated message of honest node 𝑖 is non-empty, then it

implies that its updated message remains the same as its message after phase 0. Moreover, 𝑠1

𝑖
= 1. Similarly, A[2]

𝑙

is a subset of A[1]

𝑙
who have the same non-empty value of updated messages at the end of Phase 2 for 𝑙 ∈ [𝜂[2]

],

while A[3]

𝑙
is a subset of A[2]

𝑙
who have the same non-empty value of updated messages at the end of Phase 3 for

𝑙 ∈ [𝜂[3]
]. In our setting, when 1 ≤ 𝜂[3] ≤ 𝜂[2] ≤ 𝜂[1] ≤ 𝜂, the sets A𝑙 ,A

[1]

𝑙1
,A[2]

𝑙2
,A[3]

𝑙3
are all non-empty for any

𝑙 ∈ [𝜂], 𝑙1 ∈ [𝜂[1]
], 𝑙2 ∈ [𝜂[2]

], 𝑙3 ∈ [𝜂[3]
]. Note that

∑𝜂

𝑙=1
|A𝑙 |+|F |= 𝑛.

Let B[𝑝]
defined as

B[𝑝] ≜{𝑖 : 𝑠
𝑝

𝑖
= 0, 𝑖 /∈ F , 𝑖 ∈ [𝑛]}, 𝑝 ∈ {1, 2, 3}. (5)

Based on our definitions, it holds true that

𝜂[𝑝]∑︁
𝑙=1

|A[𝑝]

𝑙
|+|B[𝑝] |+|F |= 𝑛, 𝑝 ∈ {1, 2, 3}. (6)

Throughout our analysis, for any message𝑀 , we use𝑀(·) = ECCEnc(𝑀,𝑛, 𝑘) to denote the Reed-Solomon encoding of

the message𝑀 . Moreover, we use𝑀(𝑖) to denote the 𝑖-th fragment of𝑀(·). For some 𝑖 ∈ A𝑙 , the equality of 𝑀̄𝑙 (𝑖) = 𝑀̄𝑗 (𝑖)

might be satisfied for some 𝑗 and 𝑙 . Thus, we further sub-divide the group A𝑙 the following (possibly overlapping)

sub-groups

A𝑙, 𝑗 ≜{𝑖 : 𝑖 ∈ A𝑙 , 𝑀̄𝑙 (𝑖) = 𝑀̄𝑗 (𝑖)}, 𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ [𝜂] (7)

A𝑙,𝑙 ≜A𝑙 \ {∪
𝜂

𝑗=1, 𝑗 ̸=𝑙A𝑙, 𝑗 }, 𝑙 ∈ [𝜂]. (8)
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Similarly, Group A[𝑝]

𝑙
can be further divided into some sub-groups defined as

A[𝑝]

𝑙, 𝑗
≜{𝑖 : 𝑖 ∈ A[𝑝]

𝑙
, 𝑀̄𝑙 (𝑖) = 𝑀̄𝑗 (𝑖)}, 𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ [𝜂[𝑝]

] (9)

A[𝑝]

𝑙,𝑙
≜A[𝑝]

𝑙
\ {∪𝜂

[𝑝]

𝑗=1, 𝑗 ̸=𝑙A
[𝑝]

𝑙, 𝑗
}, 𝑙 ∈ [𝜂[𝑝]

]. (10)

for 𝑝 ∈ {1, 2, 3}.

Notation for graphs. Chen [18] defines a graph 𝐺 = (P, E), where P consists of 𝑛 − 𝑡 vertices, i.e., P = [𝑛 − 𝑡], and E
is the set of edges. Let 𝑖∗ ∈ P, and let C ⊆ P \ {𝑖∗} be a of vertices with |C|≥ 𝑛 − 2𝑡 − 1, such that each vertex in C is

connected with at least 𝑛 − 2𝑡 edges and one of the edges is connected to vertex 𝑖∗. We count an edge connecting to

itself as an edge as well. For any pair of vertices 𝑖, 𝑗 ∈ P, we use 𝐸𝑖, 𝑗 = 1 (resp. 𝐸𝑖, 𝑗 = 0) to indicate that there is an edge

(resp. no edge) between vertex 𝑖 and vertex 𝑗 . In summary, in 𝐺 , for a given 𝑖∗ ∈ P = [𝑛 − 𝑡], the following properties
regarding the set 𝐶 holds.

𝐸𝑖,𝑖∗ = 1 ∀𝑖 ∈ C (11)∑︁
𝑗 ∈P

𝐸𝑖, 𝑗 ≥ 𝑛 − 2𝑡 ∀𝑖 ∈ C (12)

|C| ≥ 𝑛 − 2𝑡 − 1 (13)

For the graph𝐺 , let D ⊆ P denote the set of vertices such that each vertex in D is connected with at least 𝑘 vertices

in C, that is,

D ≜
{
𝑖 :

∑︁
𝑗 ∈C

𝐸𝑖, 𝑗 ≥ 𝑘, 𝑖 ∈ P \ {𝑖∗}
}

(14)

where 𝑘 is the Reed-Solomon encoding parameter. Then, the following lemma provides a result on bounding the size of

D.

Lemmas from [18]. Next we will provide Lemmas from [18] that we will directly use later for re-proving Lemmas for

our Algorithm 5.

Lemma 8. For A𝑙, 𝑗 and A
[1]

𝑙, 𝑗
defined in (7) and (9), and for 𝜂 ≥ 𝜂[1] ≥ 2, the following inequalities hold true

|A𝑙, 𝑗 |+|A 𝑗,𝑙 |<𝑘, ∀𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ [𝜂] (15)

|A[1]

𝑙, 𝑗
|+|A[1]

𝑗,𝑙
|<𝑘, ∀𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ [𝜂[1]

] (16)

where 𝑘 is the Reed-Solomon encoding parameter.

Proof. Refer to [18, Lemma 7] for proof. □

Lemma 9. For any graph𝐺 = (P, E) specified by (11)-(13) and for the set D ⊆ P defined by (14), and given 𝑛 ≥ 3𝑡 + 1, it

holds true that

|D| ≥ 𝑛 − 9𝑡/4 − 1. (17)

Proof. We refer the reader to [18, Lemma 8] for proof. □

Re-proving Lemmas from [18].We next argue that at the end of phase 2, if there exists 1 or more group of honest

nodes with different messages, then it must hold true that the initial size of each group must be at least 𝑛 − 9𝑡/4. More

formally,
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Lemma 10. When 𝜂[2] ≥ 1, it holds true that |A𝑙 |≥ 𝑛 − 9𝑡/4, for any 𝑙 ∈ [𝜂[2]
].

Proof. The proof consists of the following steps, which mostly follows the proof of [18, Lemma 9]:

• Step (a): Transform the network into a graph that is within the family of graphs satisfying (11)-(13) for a fixed 𝑖∗ in

A[2]

𝑙∗
and 𝑙∗ ∈ [𝜂[2]

].

• Step (b): Bound the size of a group of honest nodes, denoted byD ′ (with the same form as in (14)), using the result of

Lemma 9, i.e., |D ′ |≥ 𝑛 − 9𝑡/4 − 1.

• Step (c): Argue that every node in D ′ has the same initial message as node 𝑖∗.

• Step (d): Conclude from Step (c) that D ′ is a subset of A𝑙∗ , i.e., D ′ ∪ {𝑖∗} ⊆ A𝑙∗ and conclude that the size of A𝑙∗ is

bounded by the number determined in Step (b), i.e., |A𝑙∗ |≥ |D ′ |+1 ≥ 𝑛 − 9𝑡/4 − 1 + 1, for 𝑙∗ ∈ [𝜂[2]
].

Step (a): The first step of the proof is to transform the network into a graph that is within the family of graphs defined

above. We will consider the case of 𝜂[2] ≥ 1. Recall that, when 𝜂[2] ≥ 1, we have |A[2]

𝑙
|≥ 1 for any 𝑙 ∈ [𝜂[2]

]. Let us

consider a fixed 𝑖∗ for 𝑖∗ ∈ A[2]

𝑙∗
and 𝑙∗ ∈ [𝜂[2]

]. Note that,

𝑠2

𝑖∗ = 1⇒At node 𝑖∗, |S2

1
|≥ 𝑛 − 𝑡 (18)

⇒At node 𝑖∗, |S2

1
∩ {∪𝜂

[1]

𝑝=1
A[1]

𝑝 }|≥ 𝑛 − 2𝑡 (19)

⇒At node 𝑖∗, |S1

1
∩ {∪𝜂

[1]

𝑝=1
A[1]

𝑝 }|≥ 𝑛 − 2𝑡 (20)

the last implication follows from the fact that 𝑗 ∈ S2

1
⇒ 𝑗 ∈ S1

1
, ∀𝑗 ∈ ∪𝜂

[1]

𝑝=1
A[1]

𝑝 , which holds due to the check in line

25-26 in Algorithm 5.

Let C′ be defined as follows;

C′ ≜{S1

1
at node 𝑖∗ ∩ {∪𝜂

[1]

𝑝=1
A[1]

𝑝 }} \ {𝑖∗} ⇒ |C′ |≥ 𝑛 − 2𝑡 − 1 (21)

Moreover, since C′ is a subset of ∪𝜂
[1]

𝑝=1
A[1]

𝑝 , it implies

𝑠1

𝑗 = 1,∀𝑗 ∈ C′ ⇒At every node 𝑗 ∈ C′, |S1

1
|≥ 𝑛 − 𝑡 (22)

⇒At every node 𝑗 ∈ C′, |S1

1
∩ {∪𝜂

𝑙=1
A𝑙 }|≥ 𝑛 − 2𝑡 (23)

(24)

In other words, for any 𝑗 ∈ C′, node 𝑗 receives at least 𝑛 − 2𝑡 number of matched observations from honest nodes

during phase 1. Let us define a subset of {∪𝜂
𝑙=1
A𝑙 } \ {𝑖∗} of honest nodes as

D ′ ≜{𝑝 : 𝑝 received matching SYMBOLS message from (25)

at least 𝑘 nodes in C′ and 𝑝 ∈ {∪𝜂
𝑙=1
A𝑙 } \ {𝑖∗}} (26)

where 𝑘 is the Reed-Solomon encoding parameter.

Now we map the network into a graph by considering the honest nodes as the vertices and considering the link

indicators as edges. Let P ≜ ∪𝜂
𝑙=1
A𝑙 . Let E consists of 𝐸𝑖, 𝑗 for all 𝑖, 𝑗 ∈ P such that 𝐸𝑖, 𝑗 = 1 if 𝑖 ∈ S1

1
at node 𝑗 . Note

that 𝑖 ∈ S1

1
at node 𝑗 implies eventually 𝑗 ∈ S1

1
at node 𝑖 . Let 𝐺 = (P, E) be a graph, then C′ ⊆ P ′ \ {𝑖∗} be as defined

equation (21). It is easy to see that the graph 𝐺 falls into a family of graphs satisfying (11)-(13).

The step (b), (c), and (d) of our proof is identical to the proof of steps (b), (c), and (d) of [18, Lemma 9]. Thus we omit

them for brevity. □
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Next we provide a lemma that will be used later for the analysis of the proposed protocol.

Lemma 11. In algorithm 5 with 𝑛 ≥ 3𝑡 + 1, if 𝜂[1]
= 2 then it holds true that 𝜂[3] ≤ 1.

Proof. The proof mostly follows the proof of [18, Lemma 10]. Given 𝜂[1]
= 2, the definitions in (1)-(10) imply that

A[1]

1
={𝑖 : 𝑠1

𝑖 = 1, 𝑀𝑖 = 𝑀̄1, 𝑖 /∈ F , 𝑖 ∈ [𝑛]} (27)

A[1]

2
={𝑖 : 𝑠1

𝑖 = 1, 𝑀𝑖 = 𝑀̄2, 𝑖 /∈ F , 𝑖 ∈ [𝑛]} (28)

A[1]

1,2
={𝑖 : 𝑖 ∈ A[1]

1
, 𝑀̄1(𝑖) = 𝑀̄2(𝑖)} (29)

A[1]

1,1
=A[1]

1
\ A[1]

1,2
= {𝑖 : 𝑖 ∈ A[1]

1
, 𝑀̄1(𝑖) ̸= 𝑀̄2(𝑖)} (30)

A[1]

2,1
={𝑖 : 𝑖 ∈ A[1]

2
, 𝑀̄2(𝑖) = 𝑀̄1(𝑖)} (31)

A[1]

2,2
=A[1]

2
\ A[1]

2,1
= {𝑖 : 𝑖 ∈ A[1]

2
, 𝑀̄2(𝑖) ̸= 𝑀̄1(𝑖)} (32)

B[1]
={𝑖 : 𝑠1

𝑖 = 0, 𝑖 /∈ F , 𝑖 ∈ [𝑛]}

={𝑖 : 𝑖 ∈ [𝑛], 𝑖 /∈ F ∪ A[1]

1
∪ A[1]

2
}. (33)

In the following we will complete the proof by focusing on the following three cases

Case 1: |A[1]

1
|+|B[1] |≥𝑡 + 1 (34)

|A[1]

2
|+|B[1] |<𝑡 + 1 (35)

Case 2: |A[1]

1
|+|B[1] |<𝑡 + 1 (36)

|A[1]

2
|+|B[1] |≥𝑡 + 1 (37)

Case 3: |A[1]

1
|+|B[1] |≥𝑡 + 1 (38)

|A[1]

2
|+|B[1] |≥𝑡 + 1. (39)

Note that the following case

Case 4: |A[1]

1
|+|B[1] |<𝑡 + 1 (40)

|A[1]

2
|+|B[1] |<𝑡 + 1 (41)

does not exist. See [18] for its proof.

Case 1: Recall that in the first step of Phase 2, due to the check of line 25-26 in Algorithm 5, each node 𝑖 ∈ A2,2 with

𝑠1

𝑖
= 1 eventually adds a node 𝑗 to S2

0
for every 𝑗 ∈ S1

0
. Moreover, by definition eventually every node in B[1] ∪A1 will

be added to S1

0
at each node 𝑖 ∈ A2,2 because 𝑠1

𝑖
= 0, ∀𝑖 ∈ B[1]

and nodes A1 and A2,2 have mismatched fragments.

Since we assume in (34), that |A[1]

1
|+|B[1] |≥ 𝑡 + 1, it implies that eventually during Phase 2, every node 𝑖 ∈ A2,2 sets

𝑠2

𝑖 = 0, ∀𝑖 ∈ A[1]

2,2
(42)

With the outcome in (42) and after exchanging the success indicators, eventually, the set of A[1]

2,2
, as well as B[1]

,

will be in the list of S0 at each honest node. Note that a subset of A[1]

2,1
, i.e., A[1]

2,1
∩ {𝑝 : 𝑠2

𝑝 = 1}) may still be in list of

S2

1
. Below we will argue that the complete set of A[1]

2,1
will be in the list of S3

0
.
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During Phase 3, a node 𝑖 ∈ A2,1 and with 𝑠3

𝑖
= 1, eventually adds node 𝑗 to S3

0
for each 𝑗 ∈ A[1]

2,2
∪ B[1]

. This holds

due to the check in line 39-40 of Algorithm 5. It is also true that

𝑀̄𝑖 ( 𝑗 ) ̸= 𝑀̄𝑗 ( 𝑗 ), ∀𝑗 ∈ A[1]

1,1
, 𝑖 ∈ A[1]

2,1
(43)

Note that, the size of A[1]

1,1
∪ A[1]

2,2
∪ B[1]

can be bounded by

|A[1]

1,1
∪ A[1]

2,2
∪ B[1] |=|A[1]

1,1
|+|A[1]

2,2
|+|B[1] | (44)

=𝑛 − |F |−|A[1]

1,2
|−|A[1]

2,1
| (45)

≥𝑛 − |F |−(𝑘 − 1) (46)

≥2𝑡 + 1 − (𝑘 − 1) (47)

≥𝑡 + 1 (48)

where (44) uses the disjoint property between A[1]

1,1
, A[1]

2,2
and B[1]

; (45) is from (6) and the disjoint property between

A[1]

1,1
, A[1]

1,2
, A[1]

2,1
, A[1]

2,2
and B[1]

; (46) follows from Lemma 8, which implies that |A[1]

1,2
|+|A[1]

2,1
|< 𝑘 (or equivalently

|A[1]

1,2
|+|A[1]

2,1
|≤ 𝑘 − 1); (47) uses the condition that 𝑛 ≥ 3𝑡 + 1 and |F |= 𝑡 ; (48) results from the fact that 𝑡 ≥ 𝑘 − 1 based

on our design of 𝑘 . Hence, for every node 𝑖 ∈ A2,1, during phase 3, eventually |S3

0
|≥ 𝑡 + 1. Therefore, during phase 3,

the node 𝑖 updates its success indicator 𝑠3

𝑖
= 0. Since, A[1]

2,1
∩ {𝑝 : 𝑠2

𝑝 = 0} ⊆ S0, this implies that eventually A[1]

2
⊆ S3

0
.

Stating differently, at the end of Phase 3 of there exists at most 1 group of honest nodes, where the honest nodes within

this group have the same non-empty updated message (with success indicators as ones), and the honest nodes outside

this group have the same empty updated message (with success indicators as zeros), that is, 𝜂[3] ≤ 1, for Case 1.

Case 2: Due to the symmetry between Case 1 and Case 2, one can follow from the proof steps for Case 1 and interchange

the roles of Groups A1 and A2 (as well as the roles of Groups A[𝑝]

1
and A[𝑝]

2
accordingly for 𝑝 ∈ {1, 2, 3}), to show for

Case 2 that at the end of Phase 3 it is that A[1]

1
⊆ S0.

Case 3: Follows from the analysis of case 1 and the argument presented in [18]. □
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