
BarnOwl: Secure Comparisons using
Silent Pseudorandom Correlation

Generators

Sameer Wagh∗

Devron Corporation

swagh@alumni.princeton.edu

July 7, 2022

Abstract

Recent advances in function secret sharing (FSS) have led to new possibilities in multi-party computation
in the pre-processing model. Silent Pseudorandom Correlation Generators (Crypto ’19, CCS ’19, CCS ’19,
CCS ’20) have demonstrated the ability to generate large quantities of pre-processing material such as oblivious
transfers and Beaver triples through a non-interactive offline phase (with an initial set-up). However, there has
been limited protocols for pre-processing material such as doubly authenticated bits (daBits, IndoCrypt’19) and
extended doubly authenticated bits (edaBits, Crypto ’20) which are critical for state-of-the-art secure comparison
protocols over arithmetic secret sharing.

In this work, we propose new protocols in a 3-party computation model for these two cryptographic primitives
– daBits and edaBits. We explore how advances in silent PCGs can be used to construct efficient protocols for
daBits and edaBits. Our protocols are secure against a single corruption in both the semi-honest and malicious
security models. Our contributions can be summarized as follows:

(1) New constant round protocols for generating daBits and edaBits. We achieve this by constructing an efficient
3-party oblivious transfer protocol (using just 2 rounds of computation) and using it to build efficient
protocols for daBit and edaBit generation.

(2) We extend the above semi-honest protocol to achieve malicious security against an honest majority. We use
a standard cut-and-choose approach for this. This improves the round complexity of prior edaBit protocols
from O(log2 `) to a constant, where ` is the bit-length of the inputs.

(3) Finally, to understand when the above protocols provide concrete efficiency, we implement and benchmark
the performance of our protocols against state-of-the-art implementation of these primitives in MP-SDPZ.
Our protocols improve the throughput of daBit generation by up to 10× in the LAN setting and 5× in the
WAN setting. Comparing the performance of edaBit generation, our protocols achieve 4× higher throughput
in the LAN setting and 32× higher throughput in the WAN setting.

It is known that silent PCGs are compute intense and thus the performance of these new protocols can further
be improved using works such as CryptGPU (S&P ’21), Piranha (USENIX ’22) that significantly improve the
local computation in MPC protocols.

∗Work done, in part, while at UC Berkeley.

1

mailto:swagh@alumni.princeton.edu

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

1. Introduction

Multi-party computation (MPC) is the study of cryp-
tographic protocols which enable a set of non-colluding
parties to compute a function of their inputs without
revealing them. In two seminal works in the 1980s [1,2],
Andrew Yao first formalized the domain of secure com-
putation for a specific function computation – secure
comparison between two inputs. The problem came
to be known as Yao’s Millionaire problem and led to
a growing interest in the field of secure computation.
Another seminal work [3] demonstrated that two party
computation can be generalized to multi-party with ma-
licious adversaries (parties that can arbitrarily deviate
from the protocol specification). Overall, the theoreti-
cal foundations [4–7] of securely computing arbitrary
functions across various adversarial and computational
models have since been well understood.

Initially, MPC protocols were studied primarily for
their theoretical understanding. However, with reduc-
ing computational costs and algorithmic improvements,
interest in the practical performance of MPC protocols
has been growing. Starting with [8], there emerged a
long line of work in improving the concrete efficiency of
MPC protocols [9–13,13–23]. An important approach
in improving the overall performance of MPC protocols
has been to design protocols in the pre-processing model.
In the pre-processing model, computing a certain func-
tion on a specific input is split into two components
(1) an offline component that performs a similar or
related computation but on data that is independent
of that specific input and (2) an online component that
uses the result of such offline computation along with
the specific inputs to compute the function efficiently.
This approach has a number of benefits - (1) the offline
computation can be parallelized, (2) it can be produced
even before the actual data to be computed on is avail-
able, (3) it improves the overall performance of the
computation, and/or (4) it can be offloaded to external
agents. This idea dates back to the seminal work by
Beaver [24] where two inputs can be multiplied securely
by assuming access to a random pre-multiplied triple
of values. Since then, a number of works have focused
on improving the performance of MPC protocols using
this model [13–18,25].

Analogous to how Beaver triples are used for imple-
menting secure multiplications in the pre-processing
model, there are other primitives that have been useful
for converting other secure computation building blocks
into the pre-processing model. One notable example

is Oblivious Transfers (OT) [26], a primitive known
to be complete for MPC [27, 28]. Oblivious transfer
enables one party (called Receiver) to receive only a
single value among multiple values held by another
party (called Sender) without revealing the index of
the value. Advances in OTs have led to a primitive
known as OT Extensions that allows a few base OTs
(also know as seed OTs) to be expanded into a large
number of OTs [29–31] cheaply (using symmetric-key
primitives). More recently, a line of work has proposed
silent OT extensions [14,15] that can run the expansion
phase locally, i.e., non-interactively among the parties.

The problem of generating pre-processing material in
secure computation has been widely studied for build-
ing blocks such as multiplications, oblivious transfers.
However, there have been few works that focus on prim-
itives that are useful for secure comparisons. Part of
the reason is that comparison has a complex structure
and is not amenable to having simple correlated ran-
domness as pre-processing. Recently, a few primitives
have explored pre-processing tailored for secure compar-
isons. Rotaru and Wood [32] propose a primitive known
as doubly authenticated bit a.k.a. daBit that securely
generates a bit shared in two different forms of secret
sharing – arithmetic and Boolean. This primitive helps
in converting a secure comparison problem (where in-
puts are in arithmetic sharing) into a Boolean problem,
where the protocol for comparison is significantly more
efficient. Escudero et. al. [22] further improve upon
this and propose a primitive known as extended doubly
authenticated bit a.k.a. edaBit. This primitive securely
generates a random value (as arithmetic secret shares)
and its bit-decomposition (as Boolean shares) and thus,
further improves the performance of secure compari-
son protocols. However, despite these recent advances,
the overhead of these primitives is still a performance
bottleneck in applications of secure computation.

Our contributions. In this work, we propose novel
protocols for these two primitives – daBit and edaBit,
which enable state-of-the-art protocols for secure com-
parison in a pre-processing model. We focus on the
standard 3-party computation framework used in a
number of prior works [25, 33–36] and focus on arith-
metic circuits over rings, though the results extend to
prime fields. Our main contributions are:

New protocols for daBits, edaBits. We propose new
protocols for generating daBits and edaBits in a 3-party
computation model. Our protocol for edaBits achieves a
constant round complexity with high concrete efficiency.

2

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

Prior state-of-the-art works [22, 37] involve a round
complexity which is logarithmic in the bit length of
the data size. We make black-box use of silent OT
correlation generators to achieve these improved results.

Semi-honest and malicious security. We construct
protocols that are secure against a single corruption
in both the semi-honest and malicious setting . We use
standard cut-and-choose techniques for malicious ad-
versaries and construct an efficient verification scheme
for edaBits (used in the cut-and-choose).

Concrete efficiency. We implement our protocol and
demonstrate that it improves the throughput of daBit
generation by over 10× in the LAN setting and 5× in
the WAN setting. When comparing the performance
of edaBit generation, our protocols achieve 4× higher
throughput in the LAN setting and 32× higher through-
put in the WAN setting. Our gains largely stem from a
simple protocol construction, reduced round complexity,
and improvements in silent OT generation.

1.1. Applications of daBits, edaBits

daBits and edaBits are useful for generic secure com-
putation and are used in many secure computation
libraries and frameworks [25,37–40]. They are also be-
ing used in other privacy-preserving applications, and
we describe some concrete applications below.

Application for Secure Comparison. Secure com-
parison is an important primitive in secure multi-party
computation. State-of-the-art frameworks for secure
computation typically use a hybrid approach – using
a combination of arithmetic, Boolean, and garbled cir-
cuits for secure computation. Such frameworks require
efficient protocols for share conversion to convert be-
tween different representations. These conversion tech-
niques directly rely on the daBits and edaBits primitives
to convert between arithmetic and Boolean sharing. Ex-
amples of frameworks that use these primitives include
ABY [40], ABY3 [35], MP-SPDZ [41], Mystique [42],
Manticore [43]. Similarly, state-of-the-art comparison
protocols in the arithmetic blackbox model [22,23,44]
all use these primitives. Thus any improvement in
the performance of generating daBits, edaBits directly
improves the performance of these frameworks.

Application for Secure Federated Learning. Fed-
erated Learning (FL) is a machine learning technique
that enables a single entity to train a neural network
across multiple decentralized edge devices such that the

private data at each edge device stays local to the de-
vice. This is achieved by aggregating model gradients at
the centralized server. However, gradients are shown to
reveal information on the training data and thus secure
federated learning aims to hide these gradients using
multi-party computation. A Berkeley project (soon to
be published) observed that the use of secret sharing
and distributed trust can enable more efficient secure
federated learning systems.

Given that the gradients are now secret shared, an
important challenge is to ensure that the gradients are
bounded within a certain range. The first technique is
to receive data over smaller bit-lengths and then convert
that into a larger domain for aggregation using share
conversion in MPC. Any improvements in the genera-
tion of such correlated randomness directly improves
the performance of state-of-the-art secure FL protocols
such as Prio [45] and Prio+ [37]. The second technique
to ensure that is the use of zero-knowledge range proofs
and is used in a number of works [46]. There are also
works that use edaBits to improve the performance of
zero-knowledge proofs [42,47].

Other Applications. While the primitives of daBits
and edaBits are general and widely used in the above
applications, they are also used in a number of other
privacy-preserving applications such as decentralized
cryptocurrency exchanges [48], privacy-preserving ma-
chine learning [44, 49], and privacy-preserving math
libraries [50].

1.2. Technical Overview

We work in a 3-party setting with an honest majority
of corruption. At the heart of our construction is an
interplay between a 2-out-of-3 secret sharing and a 3-
out-of-3 secret sharing. The goal is to generate shares
in two different domains – arithmetic and Boolean. The
shares, both arithmetic and Boolean, of 0 and 1 can be
locally generated non-interactively and our main insight
is that the 2-out-of-3 shared Boolean values can simply
be used to “privately select” the appropriate arithmetic
share in a 3-way oblivious transfer.

Thus, our first building block is a 3-party oblivious
transfer functionality that generalizes the standard 2-
party OT functionality. In our formulation, each party
simultaneously acts as a sender as well as a receiver of an
oblivious transfer (OT). The functionality is presented
in Fig. 1. Each party Pi thus acts as an OT sender for
the party Pi+1 and as a receiver for party Pi−1 where
the indices are considered modulo 3.

3

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

F3OT and Malicious Security. We construct a proto-
col that securely emulates this 3-party OT functionality
F3OT. The parties use a random OT correlation (gen-
erated “silently”) to have the sender mask it’s inputs
and the receiver select the appropriate string. However,
this operation is performed cyclically, each party acts
as the receiver for strings held by the next party. This
structure ensures that the malicious party only receives
its outputs from the next party and thus allows a ma-
liciously corrupt party to introduce only two types of
errors. First, a malicious party can arbitrarily corrupt
the outputs of the “previous” party, and second, it
can provide inconsistent sharing (i.e., non-conforming
replicated secret sharing; refer to Section 3 for details
on consistency of sharing). Given the honest majority
of parties, we know that at least one party generates
the correct output. Combined with the redundancy of
replicated secret sharing, this allows us to construct
a maliciously secure protocol. We then use Π3OT to
construct a protocol for daBits as described below.

Constructing daBits from Π3OT. Note that it is
possible to non-interactively generate correlated ran-
domness in the above 3-party computation model, in
both the semi-honest and malicious adversarial models.
This is achieved by assuming access to pairwise shared
keys (refer to Section 3 for details). We focus on two
different types of correlated randomness, a 3-out-of-3
sharing and a 2-out-of-3 sharing. We then generate
a 3-out-of-3 arithmetic sharing of 0 and 1 (call these
x = 0 and y = 1 respectively) and a 2-out-of-3 Boolean
sharing of a random bit b. The main insight here is to
use F3OT and receive a 2-out-of-3 arithmetic sharing of
x if b = 0 and y if b = 1. In other words, we generate
a 2-out-of-3 arithmetic sharing of b. Combined with
the original 2-out-of-3 Boolean sharing of b, we have
successfully generated one daBit.

To extend this to be secure against a maliciously
corrupt adversary, we use two techniques. The first is
a hashing-based consistency check to ensure that the
generated correlated randomness is consistent. The
second technique is known as cut-and-choose [22,51,52]
in the literature and ensures correctness of a large
batch of generated correlated randomness. The central
is to generate many daBits (possibly with errors) and
perform the following steps:

(1) Shuffle the set of generated daBits.
(2) Open a few daBits and check for correctness.
(3) Add the remaining daBits into a number of bins.

In each bin, use all the daBits to verify the first
daBit without revealing.

Figure 1: 3-Party Oblivious Transfer Functionality. Note
that the output of the oblivious transfer is “clockwise”, i.e.,
each party sends to the “next” party and receives from the
“previous” party. Refer to Section 3 for details.

(4) Finally, if all checks succeed, output the first daBit
in each bin.

For the right parameters (such as those set in Steps 2
and 3 above), a combinatorial argument bounds the
probability of generating any incorrect daBit to a sta-
tistically low probability. Step 3 involves a crucial
verification routine ΠVerify described in Section 4.

Constructing edaBits from daBits. The final com-
ponent is the generation of edaBits using daBits. We
present two different approaches here. The first is to
use a näıve approach where multiple daBits are simply
locally combined to generate a single edaBit. This is
conceptually simple and thus requires only generating a
large number of daBits. This protocol is ideally suited
for the semi-honest adversarial model.

In the malicious adversarial model, the former ap-
proach requires generating maliciously secure daBits
and then locally combining them. The second approach
provides improved concrete efficiency for the generation
of edaBits. This approach generates semi-honest edaBits
(possibly with errors) using the semi-honest daBit gen-
eration routine which has much higher throughput than
malicious daBits. A cut-and-choose protocol is then run
over these semi-honest edaBits. This amortizes the cost
of the shuffle and reduces the size over which cut-and-
choose routines are run by a factor of 32− 64×. This
final component requires a verification routine which
can verify one edaBit using another without opening.
This is ΠVerify2 and is described in Section 6.1.

4

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

2. Preliminaries

This section summarizes the existing work on secure
comparison protocols in the pre-processing model and
PCG constructions we use in our protocols.

2.1. Secure Comparison Protocols &
Primitives

The problem of secure comparison has been studied for
almost as long as the field of secure computation it-
self. The primitive, that securely compares two or more
inputs, is fundamental to almost all of modern day com-
puting. First stated as the Yao’s millionaires’ problem
in a seminal work by Andrew Yao [1,2], research on this
problem has made tremendous progress [8–12,21–23].

In the pre-processing model, the online protocol for
computing secure comparisons has been nearly the same.
More specifically, the online protocols all use either
Boolean computation using a variant of a ripple carry
adder (RCA) or use a truncation protocol that “divides”
a secret with a power of 2 [11,22,23,35,39,41]. Either of
these approaches require round complexity logarithmic
in the bit-size and is nearly optimal.

Definition of daBits: In an attempt to improve per-
formance using a pre-processing model, Rotaru and
Wood [32] recently proposed a primitive known as daBit.
This provides an efficient solution to the problem of
generating random bits (used for comparisons but also
for other secure computation primitives). A daBit is a
doubly authenticated bit:

daBit := [b]2` , [b]2 such that b ∈ {0, 1} (1)

Note that here, the [·]· notation is used oblivious to
the underlying adversarial model. In the case of hon-
est majority corruption models, this simply refers to
arithmetic shares of the secret. In the case of dis-
honest majority MPC where this primitive was first
introduced [32], [·]· refers to the additive sharing of
the value and it’s MAC. This primitive improved the
performance of “inter-conversion” between arithmetic
secret sharing and Boolean secret sharing, consequently
improving the performance of secure comparisons. [32]
used a cut-and-choose technique from literature [51,52]
to generate many daBit with good concrete efficiency.

Definition of edaBits: Further improving upon [32],
Escudero et. al. [22] proposed a primitive known as
edaBit (extended doubly authenticated bit) that gener-
ates shares of a random value and it’s bit decomposition.

More formally, an edaBit is:

edaBit := [b]2` , [b0]2 , · · · , [b` − 1]2

such that b ≡
`−1∑
i=0

bi2
i and bi

$←− {0, 1}
(2)

Once again, the notation [·]· is oblivious to the adver-
sarial model and will refer to simple arithmetic shares
for honest majority corruption models. In the case
of dishonest majority [22], it will refer to arithmetic
shares of the secret as well as it’s MAC. Note that it
is easy to generate an edaBit using `-daBits by simply
locally combining them. However, [22] demonstrated
that it is possible to generate large number of edaBit
with better efficiency than generating more daBits. It
is important to note that for generating edaBits, the
protocols that require the least amount of run-time use
O(log2 `) rounds of communication for generating this
pre-processing material (my using secure adder circuits).
In this work, we showcase a constant round protocol for
generating edaBits that achieves lower run-time costs
than prior state-of-the-art protocols.

Note that while the primitives daBit and edaBits
were initially proposed in the dishonest majority set-
ting, the primitives themselves are more general and
can be considered in other adversarial models such as
honest majority. For instance, [37] uses edaBits in a
semi-honest setting for applications to secure federated
learning. Note that when we compare the performance
of prior state-of-the-art in Section 5, we benchmark
the implementation with the same adversarial model
as ours.

2.2. Silent OT Extensions

In our work, we make black-box use of silent OT ex-
tensions (in our implementation, we use a PCG-based
construction for silent OT extensions [15]). Such OT
correlations are generated in batches – a small amount
of interactive work is performed to generate keys which
are then expanded into a large batch of OT correlations.
The idea, as outlined in the previous section, is divided
into two components:

(1) Generation: The Gen algorithm takes the security
parameter as input and generates two keys (k0, k1).

(2) Expansion: Given the keys generated by the Gen
algorithm, the Expand algorithm outputs a vector
of OT correlations, i.e., (w0[i], w1[i]) at the sender
and (u[i], v[i]) where i ∈ [n] and v[i] = wu[i][i].

5

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

OT correlation functionality

Parameters: 1λ, `, n ∈ N
(1) For i ∈ [n], generate random values w0[i], w1[i] ∈ F2`

and random bits u[i] ∈ F2. Define v[i] as

v[i] =

{
w0[i] if u[i] = 0

w1[i] if u[i] = 1

(2) Send (w0[i], w1[i]) for i ∈ [n] to the sender.
(3) Send (u[i], v[i]) for i ∈ [n] to the receiver.

Figure 2: Functionality for OT correlation generation.

3-Party Oblivious Transfer Functionality F3OT

F3OT runs with parties P0, P1, P2 and an adversary S and
proceeds as follows:

(1) F3OT receives (s0
i , s

1
i , bi) from party Pi for i ∈ {0, 1, 2}

(2) F3OT sends party Pi the value sbii−1 for i ∈ {0, 1, 2}

Figure 3: 3-party oblivious transfer functionality descrip-
tion.

This is captured by the functionality specified in Fig. 2.
The protocols for securely emulating the above func-
tionality is presented in Appendix A using the silent
OT extension protocols from [15]. It is important to
note that we make black-box use of the above func-
tionality. Thus, our protocol can directly benefit from
any improvement to the underlying silent OT exten-
sion protocol used to emulate this functionality. For
instance, recent work [53] reduces the computational
costs by 19× compared to [15] and these improvements
will similarly affect the performance of our protocols.

3. Semi-honest Secure Protocol

In this section, we present protocols that are secure
against a semi-honest adversary. In Section 4, we show
how to extend these protocols to be maliciously se-
cure. We argue for the security in the Arithmetic Black
Box model FABB (see for instance [22,32, 54]), an ideal
functionality based on the UC paradigm [55].

Notation. We use a replicated secret sharing scheme,
used in a number of prior works sharing this adversarial
model [25, 35, 56, 57], as the basis for our protocols.

Thus each data value x is secret shared with party Pi
holding the pair of values (xi+1, xi+2) for i ∈ {0, 1, 2}
such that:

x ≡ x0 + x1 + x2 (mod 2`)

We use the notation x.first to denote the first compo-
nent of the share on any given party, i.e., to denote
xi+1 if called on party Pi (and x.second respectively to
denote the second component). We use the terms next
party and previous party in reference to a given party
Pi to denote the party Pi+1, Pi−1 respectively. These
implicitly assume that the indices are taken modulo
3, thus party Pi−1 when i = 0 is P2 and Pi+1 when
i = 2 is P0. We also refer to rounds as clockwise when
each party Pi sends data to the next party and counter-
clockwise when each party sends data to the previous
party. Let F1

cr and F2
cr be the correlated randomness

generation functionalities as given below:

(1) F1
cr generates random values α0, α1, α2 where Pi

gets αi such that α0 + α1 + α2 ≡ 0 (mod 2`)
(2) F2

cr generates random values α0, α1, α2 where Pi
gets (αi+1, αi+2) such that α0 + α1 + α2 ≡ 0
(mod 2`)

For more details on securely emulating these functionali-
ties, refer to Protocol 2.5 and Functionality 2.6 from [57].
Note that both these functionalities can be implemented
without interaction assuming pairwise randomness and
can be trivially extended to generate correlated ran-
domness (of either type of sharing) for any given public
value (not just zero).

We use pairwise PCGs for OT correlation set-up
once during an initialization phase, i.e., PCG set-up
is run once between each pair of parties such that
the next party is always the Receiver of the OT and
the previous party is the Sender1. We use the nota-
tion kPi→Pi+1

, kPi+1←Pi to denote the PCG keys at the
Pi (the Sender) and Pi+1 (the Receiver) respectively2.
Note that these keys enable the two parties, to non-
interactively generate an OT correlation – one sender
party generating (w0, w1) ∈ F`2 × F`2 and the receiver
party generating (u, v) ∈ F2 × F`2 such that v = wu (cf
Section 2.2 for details). Before we present our semi-
honest protocol for daBit generation, we introduce a
3-Party Oblivious Transfer (3OT) building block.

1Note that for each pair of parties, there is a unique party
that is next for the other party and similarly for previous.

2The first subscript denotes which party holds the key, the
arrow denotes it’s role as a Sender/Receiver, and the second
subscript indicates the other party in this pairwise OT correlation.

6

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

3-Party Oblivious Transfer Protocol Π3OT

Inputs: Parties Pi for i ∈ {0, 1, 2} each hold values
s0
i , s

1
i ∈ Z2` . Furthermore, each party also holds a bit

bi ∈ {0, 1}.
Outputs: Each party Pi receives an output sbii−1

Common Randomness: For each i ∈ {0, 1, 2},
parties Pi, Pi+1 hold OT Extension PCG keys where
Pi acts as the Sender and Pi+1 as the Receiver viz.,
kPi→Pi+1 , kPi+1←Pi respectively. Note that Step 1 of the
protocol produces a large batch of OT correlations which
are amortized across a batch of Π3OT computation.

Protocol: For each i ∈ {0, 1, 2}, parties Pi and Pi+1 run
the following protocol pairwise:

(1) Run ΠExpand with the following set-up:

(a) Pi+1 on inputs σ = 0, kσ = kPi+1←Pi to get
output (u, v).

(b) Pi on inputs σ = 1, kσ = kPi→Pi+1 to get output
(w0, w1).

(2) Pi+1 sends the bit d = bi+1 ⊕ u to Pi.
(3) Pi sends (V 0, V 1) = (s0

i +wd, s
1
i +w1−d) to Pi+1 and

Pi+1 outputs V bi+1 − v ∈ Z2` . Here F`2 elements are
interpret as Z2` for the addition and subtraction.

Figure 4: Protocol for secure 3-party oblivious transfer.

3.1. 3-Party Oblivious Transfer

In a 3-party oblivious transfer primitive, each party
simultaneously acts as a Sender and a Receiver. Each
party holds a choice bit bi which will be used to select
one of two messages (s0i−1, s

1
i−1) held by the previous

party. The functionality is described in Fig. 3 and
the protocol securely emulating this functionality is
described in Fig. 4.

Construction. In a one time set-up, we run three
PCGs for OT correlations, once between each pair of
parties. For i ∈ {0, 1, 2}, when the protocol is run
between Pi, Pi+1, Pi is the OT Sender and Pi+1 is the
Receiver. Thus each party Pi holds two keys, once as a
Sender kPi→Pi+1 and once as a Receiver kPi←Pi−1 . The
protocol follows the simple structure of emulating an
oblivious transfer using random oblivious transfer [31].
The Receivers mask their bit using the pre-processing
oblivious transfer and send it to the Senders. The
Senders masks it’s values s0i , s

1
i with the pre-processing

oblivious transfer strings, in an order that depends
on the masked bit revealed to it. This ensures that
the Receiver can only unmask one of the two strings

depending on it’s secret bit. Note that recent PCG
constructions [14,15,58,59] all operate in batches and
we account for this overhead in Section 5.

Correctness of Π3OT. The correctness follows from
the following series of equations:

V bi+1 − v = s
bi+1

i + wbi+1⊕d − wu
= s

bi+1

i + wu − wu
= s

bi+1

i

(3)

Where the first equations follows from the observations
that wu = v (from the correctness of the OT Exten-
sions of Expand sub-routine) and V b can be succinctly
written as sbi + wb⊕d. Thus, the output of party Pi+1

is s
bi+1

i as expected.

Security of Π3OT. The security of the protocol can be
stated in the following theorem:

Theorem 3.1. Protocol Π3OT (Fig. 4) securely eval-
uates functionality F3OT (Fig. 3) with abort in the
FPPRF−GGM-Hybrid model in the presence of one ma-
liciously corrupt party (FPPRF−GGM and constructions
are defined Appendix A).

Proof. Here we use the notation xi,j to denote a value
sent from party i→ j. Let us assume without loss of
generality that party P0 is corrupt. We know that Π3OT

runs over 2 rounds, the first round involves a counter-
clockwise sending of the bits d (Step (2) of Fig. 4) and
the second round involves a clockwise sending of the
values (V 0, V 1) (Step (3) of Fig. 4). Thus, the entire
transcript of party P0 is as follows: In round one, it
receives one bit d0,1 from party P1 and sends a bit d0,2
to party P2. Similarly, in the second round, P0 receives
two values (V 0

0,2, V
1
0,2) from party P2 and sends two

values (V 0
0,1, V

1
0,1). Thus, we construct the simulator S

as follows:

(1) Simulator generates a random bit d0,1 and sends it
to P0. Simultaneously, the simulator receives the
bit d0,2 from party P0 and extracts the input b0 =
d0,2⊕u where u can be generated using simulation
access to FPPRF−GGM. Given that distributions of d
are uniform over Z2, this perfectly simulates round
1 for the adversary.

(2) To simulate the second round, simulator generates
the values (V 0

0,2, V
1
0,2) honestly and sends them to

P0. It also receives two values (V 0
0,1, V

1
0,1) from

P0 and extracts the values s00, s
1
0 using simulation

access to FPPRF−GGM. It forwards these values to

7

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

the functionality F3OT and the honest parties re-
ceive their output. Note that the distribution of
V 0
0,2, V

1
0,2 is uniformly random over Z2` and thus

perfectly simulates the second round to the adver-
sary.

The final check is that the honest parties receive outputs
consistent with the functionality which holds because
of the simulation extraction.

Semi-honest daBit Generation Πsh:daBit

Inputs: Number N of daBits to be generated. Auxiliary
parameters B,C.
Outputs: Parties share replicated secret sharings of a
random bit b, i.e., [b]2 , [b]2` .

Protocol: All parties have access to functionality F3OT.

(1) Generate Random Sharings: Here parties locally gen-
erate random secret shares required for Step (2).

(a) Locally generate 3-out-of-3 shares of 0 and 1
in Z2` viz., (x0, x1, x2) and (y0, y1, y2) respec-
tively, where Pi holds share ∗i for i ∈ {0, 1, 2}
and ∗ ∈ {x, y}.

(b) Locally generate replicated secret sharing of a
random bit [b]2 and 3-out-of-3 sharing of [α]2`
where α = 0 and Pi holds the shares (bi+1, bi+2)
and αi.

(2) Oblivious Transfer: Here, parties get 2-out-of-3 arith-
metic sharings of the value b. Each party Pi computes
the following:

(a) If bi+1 ⊕ bi+2 = 0 set s0 ← xi and s1 ← yi
(b) If bi+1 ⊕ bi+2 = 1 set s0 ← yi and s1 ← xi
(c) Parties run Π3OT with each party Pi calling the

functionality inputs s0, s1 (when acting as the
Sender) and bi+2 (when acting as the Receiver).
The output received by Pi is stored as Bi−1

(= Bi+2).
(d) For each i ∈ {0, 1, 2}, party Pi computes ci+2 ≡

Bi+2 + αi (mod 2`) and sets it as c.second).
Furthermore, it sends this value ci+2 to party
Pi+1. Finally, each party sets the received value
as c.first.

Figure 5: Protocol for semi-honest secure daBit genera-
tion.

Complexity of Π3OT. The protocol runs in 2 rounds,
the first round involving a single bit of communication
and the second round involving a single element of Z2`

per party. Thus the total communication overhead of
this protocol is (` + 1)-bits per party, split over two
rounds.

3.2. Semi-honest daBit Generation

We present an extremely simple protocol for daBit using
the above described 3-party OT primitive. The protocol
is described in Fig. 5.

Construction. The protocol is conceptually very sim-
ple, parties start with 3-out-of-3 secret sharing of 0
and 1. These serve as the arithmetic shares. Further-
more, they also hold a 2-out-of-3 secret sharing of a
bit b which will serve as the selector bit. The central
idea of the construction is to use the bit to select the
appropriate sharing of either 0 or 1 (using the 3-party
OT primitive) using the shares of the selection bit b.
Note that we already have access to a 2-out-of-3 secret
sharing of the bit. Thus we only need to generate a
2-out-of-3 arithmetic secret sharing of the same bit.
Our protocol achieves this by having the parties use
the selector bit to select shares of 0 or 1 and then use
a re-sharing protocol to get a 2-out-of-3 secret sharing
of the same bit b but as arithmetic shares.

More concretely, each party sets its string inputs
s0i , s

1
i to be their own share of 0 or 1, depending on

the value of the bit bi+1 ⊕ bi+2. In other words, if
bi+1 ⊕ bi+2 = 0, then the parties set sdi to be the
their own arithmetic share of d for d ∈ {0, 1}. The
correctness of Π3OT ensures that all parties receive the
share corresponding to the value bi ⊕ bi+1 ⊕ bi+2. Note
that this simple construction uses only 3 fixed rounds
and is highly parallelizable.

Correctness of Πsh:daBit. Correctness follows easily
from the following series of observations. First, each
OT sends a share ∗i where i ∈ {0, 1, 2} and ∗ ∈ {x, y}.
Second, given the ordering of s0, s1 set by each party,
the output of each call to FOT is the same for each party
and is perfectly correlated with the value bi ⊕ bi+1 ⊕
bi+2 = b. Third, considering the boundary conditions,
we see that if b = 0 then ∗ = x and if b = 1 then
∗ = y. Finally, given each party sends its shares to the
other two parties, at the end of the oblivious transfers,
each party has 2-out-of-3 shares of either 0 or 1 (x or y
depending on the bit b). More succintly, at the end of
step 2(c), party Pi’s output is given by:

Output = s
bi+2

i−1

= [bi+2 ⊕ bi−1+1 ⊕ bi−1+2]Z
2`

= [bi ⊕ bi+1 ⊕ bi+2]Z
2`

= [b]Z
2`

(4)

where the second step follows from the fact that the con-
ditions on step 2(a), 2(b), sd holds arithmetic shares of
d = bi+1⊕bi+2. Finally, matching indices, it follows that

8

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

the parties get shares corresponding from the inputs
held by the previous party and thus Output := Bi+2.

Security of Πsh:daBit. The security of Πsh:daBit can be
easily proved in a hybrid model that assume access F3OT

as well as two ideal functionalities that non-interactively
generate 3-out-of-3 and 2-out-of-3 secret sharings of a
constant, viz., F1

cr, F2
cr respectively (refer to [57] for

a formal treatment). The security of Πsh:daBit can be
stated as:

Theorem 3.2. Πsh:daBit securely generates a daBit in
the (F3OT, F1

cr, F2
cr)-hybrid model with abort in the

presence of one semi-honest corruption (Functionalities
defined in Fig. 3 and Fig. 12).

Proof. Once again, let us assume without loss of
generality that P0 is the corrupt party. The simulator
runs an internal copy of the protocol making use of
F3OT. The input generation can be replaced by calls
to the the functionalities F1

cr and F2
cr. The simulator,

who controls F3OT can then extract the input b1 ⊕ b2
provided by the adversary which can be fed into the
ideal functionality. In both the worlds, the transcripts
ci+2 are uniformly distributed in Z2` and subject to
the output constraint of F3OT. This establishes the
indistinguishability of the transcripts as well as the
output.

Complexity of Πsh:daBit. The semi-honest protocol
runs in 3 rounds – two rounds used by Π3OT and a
round used by the resharing. The resharing involves
communication of a single element of Z2` per party.
Thus the total communication overhead of this protocol
is (2`+ 1)-bits per party, split over three rounds.

4. Maliciously Secure Protocol

In this section, we extend the semi-honest protocol
to be secure against malicious corruptions. We use a
technique from literature known as cut-and-choose [51,
52] that is used to detect malicious behaviour with high
statistical probability. While our work is follows the
argument from [57], we note that improved cut-and-
choose bounds such as those in [60] can reduce the
overhead of achieving malicious security.

Construction. Our construction relies on the two key
insights – the structure of the semi-honest protocol
and the fact that there are two honest parties. The
latter is exploited by ensuring that the protocols run
in the same direction (clockwise). In other words, the

construction ensures that the outputs of party Pi+1 are
controlled/influenced by party Pi but not by Pi+2. This
ensures that at least one honest party generates the
right output. Note that the semi-honest protocol does
not guarantee consistency of the shares nor correctness
of the daBits under malicious corruptions.

To address the final issue, since each individual daBit
can be incorrect, we use a standard cut-and-choose tech-
nique from literature to generate many correct daBits
with high confidence. The idea is to generate many
such daBits, randomly shuffle them, open first few val-
ues to check for correctness. If they are all correct, the
remaining values are put into a number of buckets and
within each bucket, the first value is used to verify the
remaining values. The parameters (C := how many
daBits are opened and B := the bucketing size) are set
so that such a protocol when successfully completed
ensures all daBits are correct with high probability.

The protocol is formally described in Fig. 6. The first
part of the protocol is to simply generate M = (NB+C)
daBits using the semi-honest protocol Πsh:daBit, for given
parameters B,C and where N is the number of daBits
desired. Then, the parties run a verification to check
the consistency of their shares. This can be done using
a collision resistant hash function. The semi-honestly
generated daBits are then shuffled using a permuta-
tion functionality Fperm (described in Appendix C.2).
The shuffle can be efficiently performed in MPC by
generating the seed within the MPC and then using
a pseudorandom generator. The first C daBits are
opened and checked for correctness and the remaining
are grouped into N bins with B daBits per bin. The
first daBit in each bin is verified using every other daBit
in the bin using the subroutine Πverify. If these complete
successfully, output the first daBit of each bin.

Correctness of Πmal:daBit. The correctness of Πmal:daBit

follows from the correctness of Πsh:daBit. Before we prove
the security of the protocol, we prove a lemma for Πverify

used for verifying one daBit using another.

Lemma 4.1. If [b]2 and [c]2` is a valid daBit pair (i.e.,
both sharings are consistent and b = c) and [b′]2 and
[c′]2` are consistent shares, with b′ 6= c′, then all honest
parties output ⊥ in ΠVerify.

Proof. We begin by observing that b, b′, c, c′ are all
consistent shares. Thus, b, b′ are shares of some bits, c
is an arithmetic share of the same bit b, and c′ is an
arithmetic share of some value ∈ Z2` . For a given value
of the bit c, we note that the function fc : Z2` → Z2`

given by fc(c
′) = c+ c′ − 2 · c · c′ forms is a bijection.

9

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

Malicious daBits Generation Πmal:daBit

Input: Number N of daBits to be generated. Auxiliary
parameters B,C.
Output: Parties share replicated secret sharings of a
random bit b, i.e., [b]2 , [b]2` .
Protocol:

(1) Generate Random Sharings: Here parties locally gen-
erate random sharings of 0 and 1.

(a) Locally generate 3-out-of-3 shares of 0 and 1
in Z2` viz., (x0, x1, x2) and (y0, y1, y2) respec-
tively, where Pi holds share ∗i for i ∈ {0, 1, 2}
and ∗ ∈ {x, y}. (The parties call F1

cr on inputs
0, 1 respectively)

(b) Locally generate replicated secret sharing of a
random bit [b]2 and 3-out-of-3 sharing of [α]2`
where α = 0 and where Pi holds the share
(bi+1, bi+2) and αi. (The parties call F2

cr and
F1

cr respectively)

(2) Oblivious Transfer: Here, parties get 2-out-of-3 arith-
metic sharings of the value b. Each party Pi computes
the following:

(a) If bi+1 ⊕ bi+2 = 0 set s0 ← xi and s1 ← yi
(b) If bi+1 ⊕ bi+2 = 1 set s0 ← yi and s1 ← xi
(c) Parties run Π3OT with each party Pi calling the

functionality inputs s0, s1 (when participating
as the Sender) and bi+2 (when participating as
the Receiver). The output received by Pi is
stored as Bi−1 (= Bi+2).

(d) For each i ∈ {0, 1, 2}, party Pi computes ci+2 ≡
Bi+2 + αi (mod 2`) and sets it as c.second).
Furthermore, it sends this value ci+2 to party
Pi+1. Finally, each party sets the received value
as c.first.

(3) Consistency check: Let M = NB + C. Steps (1)-
(2) are repeated M times to generate a vector D of
size M . The parties then generate two hash values,
the first on all the c.first and the second on all the
c.second values. The parties commit and verify these
values are consistent.

(4) Cut and Choose: Finally, the parties run the cut-
and-choose protocol to produce N correct daBits.

(a) Call Fperm on the vector D i.e., on the vector of
shares

{
(
[
bi
]
2
,
[
ci
]
2`

)
}

for i ∈ {1, 2, · · · ,M}.
(b) Open the first C values of the vector M . If any

of the reconstructions fail or if bi 6= ci, send
abort to the other parties and output ⊥.

(c) Remove the first C values from the vector D
and divide the rest of the shares into N buckets
of size B.

(d) For each bucket, verify the correctness of the
first element (shares of bi, ci) using all the other
daBits in that bucket by running the subroutine
ΠVerify.

(e) If all verifications succeed and no party outputs
abort, output the first daBit from each bucket.

Figure 6: Protocol for maliciously secure daBit generation.

In fact, it is an involution which can be seen from:

fc(fc(c
′)) = fc(c+ c′ − 2 · c · c′)

= c+ (c+ c′ − 2 · c · c′)
− 2 · c · (c+ c′ − 2 · c · c′)

= (2c− 2c2) + c′ − 4c′(−c+ c2) = c′

(5)

Where the last equation uses the fact that c ∈ {0, 1}.
Thus, there exists a unique value of c′ that satisfies
fc(c

′) = b⊕b′. However, we know that b′ ∈ Z2` satisfies
fc(b

′) = b⊕ b′ as c = b. Hence, the check ensures that
either the honest parties abort in the multiplication in
Πverify or b′ = c′. This completes the proof.

Note that Step (2)(d) ensures that c forms consistent
shares of some value in Z2` . We will use this along with
the cut and choose technique to ensure that c forms
a consistent share of b or the honest parties abort the
protocol in some intermediate stage.

Security of Πmal:daBit. The security of Πmal:daBit can
be formally stated as follows:

Theorem 4.2. Let B = C = 3 and let N ≥ 2secs/2 for
some statistical security paramter secs. Then, Πmal:daBit

securely generates a N daBits in the (F3OT, Fperm, F1
cr,

F2
cr)-hybrid model, with statistical security 2−secs in the

presence of one malicious corruption.

The simulator for this follows the same lines as the
simulator for the semi-honest case. Crucially, the Simu-
lator S sends continue to the ideal functionality only if
the semi-honest protocol, i.e., Steps 1,2, and 3 succeed.
The only difference between the real execution and the
ideal execution is when the cut-and-choose protocol suc-
ceeds over incorrect inputs. Thus, the security reduces
to showing that the probability that an adversary can
cheat in the cut-and-choose game and evade detection is
bounded above by 2−secs . The analysis of this problem
is considered in [52] and improved in [51]. However, in
this work, we use the bounds from [57] which improve
upon both these works3. Below we prove this bound.

3Another recent work [60] improves these bounds further by
leveraging their application scenario.

10

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

Verifying one daBit using Another ΠVerify

Inputs: Parties hold one valid daBit pair [b]2 , [c]2` and
another pair [b′]2 , [c

′]2` .
Outputs: Parties output accept if [b′]2 , [c

′]2` is a valid
daBit pair and abort otherwise.

Protocol: The verification works as follows:

(1) Compute [d]2 = [b⊕ b′]2
(2) Compute [e]2` = [c⊕ c′]2` . Note that this is com-

puted as the expression (c+ c′ − 2 · c · c′) over 2`.
(3) Open d and e. If d = e, output accept else output

abort.

Figure 7: Protocol for verifying one daBit using another
daBit without opening.

Proof. Given the consistency check in Step 3 of
Πmal:daBit, we know that the adversary can only force
the inputs to Step 4 (cut-and-choose section) to be
consistent sharings of non-conforming values, i.e., the
bit b and the value c do not agree. Thus, each daBit
can be tagged as bad if it is incorrect and good if it is
correct. We can then model the success probability of
the adversary by simply analyzing the probability as
a function of the number of bad daBits. Note that the
adversary succeeds only if the following two conditions
hold:

(1) No bad daBit is opened among the C opened.
(2) There is no mixed-binning, i.e., there is no bin with

both good and bad daBits.

where the probability is over the random permutation.
Here the first conditions leads to abort from the honest
parties and the second one holds because Πverify will
abort on any mixed-bin. Suppose that the adversary
corrupts T = B · t number of daBits4 where t ≥ 1.
Let E1 be the event that condition 1 holds and E2 the
event that condition 2 holds (here, the C daBits and
the binning is fixed after the permutation).

Pr[E1] =

(
M−T
C

)(
M
C

) (6)

The probability that all the T bad daBits fall into t bins
over a random permutation can be computed as follows:
we pick the t bins that contain all the bad daBits and
then look at the probability that the specific set of bad
daBits is chosen to fit into these bins. Thus, there are

4The second condition implies that T has to be a multiple of
B for the adversary to succeed.

(
N
t

)
ways to select the bad bins and the probability that

our exact set of bad daBits is chosen to fit in them is
just 1 in the total number of ways to select T objects
from NB objects. Thus, the probability of event E2
happening given event E1 has happened is5:

Pr[E2|E1] =

(
N
t

)(
NB
T

) (7)

Note that the success probability of our adversary is
exactly captured by the event E1 ∧ E2. Thus, we can
compute it as:

Pr[E2 ∧ E1] = Pr[E2|E1] · Pr[E1]

=

(
N
t

)(
M−T
C

)(
NB
T

)(
M
C

) =

(
N
t

)(
M
T

) (8)

Restricting the parameter regime to C ≥ B, we can
bound this probability by:

Pr[E2 ∧ E1] =

(
N
t

)(
M
T

) ≤ (
N
t

)(
NB+B
Bt

) (9)

Let us define the last expression by fN,B(t). We note
the following two properties of this function:

(1) If t ≤ bN/2e, then fN,B(t) ≥ fN,B(N − t).
(2) If t ≤ bN/2e, then fN,B(t− 1) ≥ fN,B(t)

To prove the first statement, we first note that if 2t =
N , then the statement holds trivially since both the
expressions are the same. Suppose 2t ≤ N−1. We note
that the numerators of the two function evaluations are
equal, i.e.,

(
N
t

)
=
(
N
N−t

)
. However, the denominator is

strictly larger in the second evaluation as:(
NB +B

B(N − t)

)
=

(
NB +B

BN −Bt

)
=

(
NB +B

NB +B − (BN −Bt)

)
=

(
NB +B

Bt+B

)
≥
(
NB +B

Bt

)
(10)

Where the second equality follows from the symmetry of
the binomial coefficients and the last expression follows

5Another way to see this is to pick t bins out of the N , permute
the T bad daBits in them and the (NB − T) good daBits in the
remaining bins and then divide this by the total number of ways
permuting NB daBits.

11

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

from the monotonicity of the binomial coefficients and
the fact that 2(Bt+B) ≤ (N − 1)B + 2B = NB +B.

To prove the second statement, we consider the fol-
lowing binomial identity relating adjacent coefficients:(

n

k

)
=
n+ 1− k

k

(
n

k − 1

)
(11)

We need to show that fN,B(t − 1)/fN,B(t) ≥ 1. Re-
peated use of the above identity in the expression leads
to:

fN,B(t− 1)

fN,B(t)
=

t

N + 1− t
·
(
NB+B
Bt

)(
NB+B
Bt−B

)
=

t

N + 1− t
· (NB +B + 1−Bt)

Bt
·

(NB +B + 2−Bt)
Bt− 1

· · · (NB +B +B −Bt)
(Bt−B + 1)

(12)

Here the second term (NB +B + 1−Bt)/Bt < (NB +
B − Bt)/Bt = (N + 1− t)/t and thus the product of
the first two terms is greater than 1. We argue that
each of the remaining fractions are also ≥ 1. Indeed,
for i ∈ {1, 2, · · · , B − 1},

NB +B + 1− (Bt− i)
Bt− i

≥ 1

⇐⇒ NB +B + 1− (Bt− i) ≥ Bt− i
⇐⇒ NB +B + 1 ≥ 2Bt− 2i

However, the maximum value of 2Bt−2i in the range for
t is (N−1)B−2. This proves the two claims. Combining
these two claims, we know that the maximum value of
fN,B(t) is at t = 1. Thus,

Pr[Adv. Success] = Pr[E2 ∧ E1]

≤ N ·
(
NB +B

B

)−1 (13)

Typical value of statistical security used in literature
is secs = 40. Setting B = 2, we get that the failure
probability scales roughly as O(1/N) and thus requires
large batches of about 240. Using B = 3, the adversarial
success probability is bounded above by 1/4N2. Thus,
setting B = 3, N ≥ 2secs/2 would suffice6.

Complexity of Πmal:daBit. The malicious protocol
build over the semi-honest protocol. We consider the

6The more exact expression would be N ≥ 2secs−2/2.

amortized cost to produce N daBits. The semi-honest
protocol runs over 3 rounds and uses M(2` + 1)-bits
of communication. Assuming the consistency check
is performed using a hash function over λ-bits, the
communication incurred for that is 3λ-bits per party
split over two rounds (commitment can be combined
into λ-bits and opening requires 2λ-bits). Furthermore,
the seed generation of the permutation also takes O(λ)-
bits of communication over two rounds. However, both
these costs are independent of N and hence will be
ignored in the estimates. Opening C daBits will require
(`+ 1)-bits per party and the verification is performed
using N(B− 1)(2`+ 2)-bits of communication over two
rounds (for all the bins).

Thus the total cost for the entire protocol is equal
to M(2` + 1) + O(λ) + N(B − 1)(4` + 4)-bits split
over 10 rounds. Substituting M = NB + C and using
N ≈ 220 (which gives 2−secs = 2−40) and B = C = 3,
we get the overall amortized communication complexity
of Πmal:daBit is roughly 14`+ 11. For values of ` used in
practice, 32 or 64-bits, this is roughly 32 and 64 Bytes
respectively (14 ring elements).

5. Evaluation

We evaluate the efficiency of our protocols in compar-
ison to the state of the art frameworks in both the
semi-honest and honest majority frameworks. More
specifically, we measure the time taken to generate a
million daBits and a million edaBits. We consider both
the semi-honest and malicious settings as well as both
the LAN and WAN network settings.

Experimental Set-up. We run over experiments over
set-up similar to a number of prior works [25, 34, 61].
Our machines use Intel(R) Xeon(R) CPU E5-2690 v3 @
2.60GHz processors with 32 cores. For the LAN setting,
our machines have a bandwidth of 10Gbps and have
an average RTT of 0.23ms. For the WAN setting, the
bandwidth is capped to 200Mbps with 80ms of RTT. We
set number of threads to 32 to parallelize our protocols
and set the parameters B = C = 3 for the cut-and-
choose. For comparison with prior work, we run the
state-of-the-art implementations over MP-SPDZ [38]
to run benchmark on the set-up as our work. Note
that we compare the protocols from MP-SDPZ with the
appropriate threat model (semi-honest/malicious and
honest majority corruption). Both our work and prior
work are full implementations of the primitives and not
microbenchmarks.

12

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

5.1. Protocols for daBit Generation

We evaluate the cost taken to generate a million daBits
using our protocol. These reuslts are presented in Ta-
bles 1, 2. For prior work, we benchmark the generation
of daBit generation from the state-of-the-art implemen-
tation of [32] from [41] over the same set-up as our
work. We use the get dabit() function call run using
replicated-ring-party.x executable for the semi-honest
setting and malicious-rep-ring-party.x for the malicious
run. While our protocol requires slightly higher com-
munication in comparison to [32], we achieve about a
10× lower overhead and thus an 10× higher through-
put in the LAN setting. We can generate about 23
million daBits per second. In the WAN setting, this is
reduced to about 3 million daBits per second, about 5×
improvement over prior work.

When considering the malicious setting, our protocol
provides only marginally better throughput over LAN.
The reason is that our protocol requires an expensive
local computation – shuffling which forms the domi-
nant cost of the protocol. However, these improvements
are more pronounced when considering a network con-
strained environments such as WAN. In this setting,
our protocol achieves about 9× higher throughput in
comparison to prior art. These gains result from the
low round complexity of our protocol in comparison to
prior art.

Protocol
64-bit Semi-honest daBits

Time
(LAN)

Time
(WAN)

Comm.

This Work 0.0428 0.3435 16.125 MB
MP-SPDZ [38] 0.4277 16.4331 13.362 MB

Table 1: Time required (in seconds) for the generation of a
million daBits using the semi-honest protocol from Section 3.

.

Protocol
64-bit Maliciously secure daBits

Time
(LAN)

Time
(WAN)

Comm.

This Work 3.0164 9.361 518 MB
MP-SPDZ [38] 3.6698 78.1039 51.028 MB

Table 2: Time (in seconds) for the generation of a million
daBits using the maliciously secure protocol from Section 4.

.

5.2. Protocols for edaBit Generation

Similar to the comparison for daBit generations,
for prior work, we benchmark the generation of
edaBits using the state-of-the-art implementation
of [32] from [41] over the same set-up as our work.
We use the get edabit() function call run using
replicated-ring-party.x executable for the semi-honest
setting and malicious-rep-ring-party.x for the malicious
run. Our protocols when used for edaBit generation
provide more modest gains. This is because we use a
naive technique of combining multiple daBits to gener-
ate one edaBit that results in high round complexity
over a batch (refer to Section 6.1 for improved con-
crete efficiency). Table 3 shows the performance of our
semi-honest edaBit generation in comparison to [22]
while Table 4 in the malicious setting. Note that these
timings are for 64-bit data types.

Protocol
64-bit Semi-honest edaBits

Time
(LAN)

Time
(WAN)

Comm.

This Work 1.63658 10.9521 1032 MB
MP-SPDZ [38] 5.91341 355.628 45.487 MB

Table 3: Time required (in seconds) for the generation
of a million edaBits using the semi-honest protocol from
Section 3.

Protocol
64-bit Maliciously secure edaBits

Time
(LAN)

Time
(WAN)

Comm.

This Work 193.0505 599.042 33.152 GB
MP-SPDZ [38] 48.2178 971.121 820.97 MB

Table 4: Time (in seconds) for the generation of a million
edaBits using the maliciously secure protocol from Section 4.

In semi-honest security, our protocols achieve about
4× higher throughput in the LAN setting which im-
proves to about 32× in the WAN setting. We can
thus produce about 100k edaBits per seconds. How-
ever, when considering the malicious setting, we note
that [22] outperforms our protocols in the LAN setting.
The reason for this is that in our protocol, we have to
generate maliciously secure daBits and then simply lo-
cally combine them. The reason for this is the difficulty
of constructing a ΠVerify protocol (similar to the one in
Fig. 7) for verifying one edaBit using another without

13

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

opening. Such a protocol can be constructed using an
n-bit adder protocol and we present more details in
Section 6. Such protocols will require round complexity
proportional to logarithm of the bit length but will yield
much higher throughput as this would require generat-
ing only semi-honest daBits. In the WAN setting, our
maliciously secure protocols already outperform prior
art due to the low round complexity.

5.3. Other Experimentals

We also run experiments to benchmark the performance
of our protocol when considering smaller data types
such as 32-bit values, when considering a more opti-
mized malicious edaBit generation protocol (described
in Section 6), and the key generation costs.

32-bit data-types. While it is common to use 64-bit
data-types for secure computation, in some applications,
it is sufficient to use 32-bit data-types [25]. Thus, we
also benchmark our protocols for generation of 32-bit
daBit and edaBit. We note that communication over-
head is simply proportional to the bit-size and thus
reduces by a factor of 2 for daBit generation and 4× for
edaBits (due to the quadratic dependence of the bit-size
`). When implemented, semi-honest daBit generation
throughput increases by 1.89× while the throughput of
edaBit generation improves by 3.78× and can generate
over 1.38 million edaBits per second. In the WAN set-
ting, the throughput of daBits improves by 1.32× and
that of edaBits improves by 2.64×. These results are
summarized in Table 5.

Protocol
32-bit Semi-honest generation

Time
(LAN)

Time
(WAN)

Comm.

daBits 0.0225 0.2595 8.0625 MB
edaBits 0.7216 8.304832 258 MB

Table 5: Time required (in seconds) and communication
for the generation of a million daBits and edaBits for 32-bit
data-types using the semi-honest protocol from Section 3.

Efficient Malicious edaBits. As described in Sec-
tion 6, a more concretely efficient protocol for malicious
edaBit generation can be obtained by applying the cut-
and-choose techniques directly over semi-honest edaBits.
The procedure to generate such edaBits is very similar
to that described in Fig. 6 except with the difference
that semi-honest daBits will be generated to obtain a

semi-honest edaBits and then the cut-and-choose sub-
routine will guarantee correctness with high probability.

More specifically, to generate N maliciously secure
edaBits, we first generate (3N + 3)` semi-honest daBits,
locally combine them to form (3N + 3) semi-honest
edaBits. We then run the cut-and-choose protocol using
the ΠVerify2 routine (refer to Fig. 8) to verify the first
edaBit in each bucket against the rest. In terms of
concrete efficiency, this brings down the overhead of
edaBit generation from 193.05 seconds to 12.11 seconds
in the LAN setting and from 599.04 seconds to 106.07
seconds in the WAN setting.

Key generation costs. We also run other microbench-
marks to measure the performance of our protocols.
The cost of producing all the silent OT extension keys
required for a million daBits is 0.416 seconds for the
semi-honest case and the 1.248 seconds for the mali-
cious case. Furthermore, note that is a batched cost
and thus is generated one-time.

6. Discussion

In this section, we describe how the concrete efficiency
of the malicious edaBit generation protocol can be im-
proved, extension of the protocols to secure computation
over fields, as well as some open questions in this space.

6.1. Improved Malicious edaBit Genera-
tion

The protocol for maliciously secure edaBit generation
presented in Section 4 follows a simple structure – to
generate N edaBits of a given bit-length `, generate
`N maliciously secure daBits and then simply locally
combine them. As each maliciously secure daBit is
expensive to generate, we can improve the concrete
efficiency at the cost of an increased round complexity.

The challenge of deferring the cut-and-choose is that
for such an approach, we would require a protocol to
verify one edaBit using another edaBit without opening.
While there is a simple 2 round protocol for a similar
problem for daBits, the simplest construction for edaBits
uses round complexity proportional to logarithm of the
bit length. Such a protocol is defined in Fig. 8. The pro-
tocol uses an n-bit adder subroutine using only Boolean
shares which can be highly efficient (refer to [22,41] for
a description of these primitives). The benefit of such
an approach is that semi-honest edaBits (using semi-
honest daBits) can be generated with about two orders

14

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

of magnitude higher throughput which further amor-
tizes the expensive computational cost shuffling which
is a dominant cost in the cut-and-choose approach.

6.2. Extension to Prime Moduli

Different MPC frameworks and protocols require dif-
ferent representations of the function computation and
operate over different datatypes. When MPC protocols
are implemented, the actual values to be computed
upon can be integers or floating-point values (converted
into fixed-point values) and are thus assumed to lie
within some integer range [−2k−1, · · · , 2k−1]. However,
the choice of the modulus is an important consideration.
These values can be operated on as values in a group
ZM = {0, 1, 2, · · · ,M − 1} and all computation is per-
formed as group operations. When the modulus M = 2`

is a power of 2, where the resulting group is a ring. Com-
putations over Z2` win in their handling of overflow in
modular arithmetic. Thus a number of recent state-of-
the-art MPC frameworks focus on the advancing the
MPC protocol design in this setting [22,33,35,62,63].

Verifying one edaBit using Another ΠVerify2

Inputs: Parties hold [x]2` , [x0]2 , · · · , [x`−1]2, a valid
edaBit and a set of shares [y]2` , [y0]2 , · · · , [y`−1]2.
Outputs: Parties output accept if
[y]2` , [y0]2 , · · · , [y`−1]2 is a valid edaBit and abort
otherwise.

Protocol: The verification works as follows:

(1) The parties invoke FABB to compute
nBitADD(x0, · · ·x`−1; y0, · · · , y`−1) and obtain
`-bits [z]2 , · · · [z`−1]2 (ignoring the carry bit).

(2) Call ConvertB2A from FABB to convert [zi]2 → [wi]2` .
(3) Parties open

a =

`−1∑
i=0

2i [wi]2`

and b ≡ x+ y (mod 2`). If a = b, output accept else
output abort.

Figure 8: Protocol for verifying one edaBit using another
edaBit without opening.

On the contrary, when the modulus M is a prime,
the resulting group is a field and thus enjoys stronger
properties such as the existence of inverse or high proba-
bility detection of malicious behaviour (proportional to
the field size). The protocols presented in Section 3, 4
can both be extended to work over fields. The protocols

only require a way to generate random shares of 0,1
over fields and protocols for functionalities F1

cr and F2
cr

are easy to extend to fields. In the case of edaBit gener-
ation, a small caveat exists that the space of elements
in the field (say Zp) is smaller than the space of dlog pe
bits. However, contrary to the approach of [22], this is
not an issue in our construction as many daBits [b]p , [b]2
can be locally combined to generate a correct edaBit.
The maliciously secure protocol with higher concrete
efficiency (described in Section 6.1) is used, then the
protocol requires that the circuit for addition, i.e., the
n-bit adder used in the protocol be performed modulo
p.

6.3. Limitations and Open Questions

While our protocols increase the through of daBit and
edaBit generation by about an order of magnitude, they
incur a higher communication overhead. Furthermore,
in our protocol, edaBits are generated naively – by
combining daBits equal to the bit-length of the data
types. This is known to be sub-optimal as shown in [22].
However, given the construction of our protocol, it is
non-trivial to combine the insights of [22] to produce
edaBits more efficiently while achieving this constant
round complexity.

An important open question is to see if the tech-
niques from [22] be used to improve the performance of
edaBit generation. In particular, can we do better than
generating bit-size number of daBits for each edaBit?
Another interesting open question is to consider extend-
ing these techniques to 2PC or general nPC settings –
these protocols crucially rely on the properties of repli-
cated secret sharing in a 3-party computation model.
It is also unclear if these constructions can be extended
to dishonest majority adversarial models.

7. Related Work

There has been a lot of progress in recent years in effi-
cient secure computation protocols in the pre-processing
model. Below we describe some of the recent works
relevant to our contributions.

PCG constructions. Pseudorandom Correlation
Generators (PCGs) allow generation of correlated ran-
domness using short seeds. Oblivious Transfers and OT
Extensions are a common type of correlation that has
been widely studied. Recent advances [14, 15, 58, 59]
have provided constructions for efficient “silent” OT

15

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

extensions. Other works such as [60,64,65] also focus on
efficient generation of VOLE correlations or OT correla-
tions with low interaction. These advances build upon
seminal works in function secret sharing [66–68]. A num-
ber of other works use the advances in FSS schemes to
construct improved MPC protocols [69–72]. The tech-
niques from this work can improve other applications
limited by the performance of cryptography [73–76].
Being compute dominated, all these works can further
benefit from hardware acceleration implementation plat-
forms such as Piranha [77] and CryptGPU [78].

Secure comparison. A number of works study
the generation of bits in arithmetic secret sharing, a
primitive which is a critical component of many MPC
frameworks [13,62,79]. These primitives form the basis
of most pre-processing required for secure comparisons.
The notion of doubly authenticated bits aka daBits was
proposed in a seminal work by Rotaru and Wood [32].
This idea was extended to maBits in [80] which provid-
ing sharing across different frameworks. These works
allow efficient share conversions as described in [81].
More recently, the daBit primitive was extended to
extended doubly authenticated bits aka edaBit in [22].

Efficient comparison protocols have been studied al-
most since the inception of the field of secure compu-
tation. Recent comparison protocols in the 2-party
setting include [21, 82, 83], and in more general n-party
setting [9–12]. Works such as [25, 33, 84] propose se-
cure comparison protocols in fixed 3PC/2PC models.
More recently, Makri et. al. [23] propose highly efficient
comparison protocols in general n-party model in the
arithmetic black box model. Their work builds upon
the edaBit primitive and currently forms the state-of-
the-art online protocol for general n-party computation.

Other frameworks. A number of recent works have
considered the 3-party computation model for secure
computation. The seminal works [56,57] proposed proto-
cols for semi-honest and malicious adversaries that have
been the foundation for a number of follow-up works.
Works such as [25,33] provide more efficient comparison
protocols. Another suit of works also improve the effi-
ciency of protocols using hybrid conversions [34, 35, 85].
A few frameworks consider a 4-party set-up and achieve
stronger properties such as guaranteed output delivery
or fairness [44,61,85].

Other frameworks such as CryptFlow, Crypt-
Flow2 [84, 86] improve upon prior work in adversar-
ial model and performance. Recent work SIRNN [50]

focuses on providing a mathematical library for com-
monly used functions in secure computation. Fantas-
ticFour [44] provides a new approach for achieving
malicious security in a 4PC setting. ABY [40] was
a framework in the 2PC setting that provided effi-
cient conversions between arithmetic, Boolean, Yao’s
GC representations enabling efficient hybrid protocols.
ABY3 [35] provided extensions of this idea to the 3PC
setting and more recently ABY2.0 [87] provides further
improvements in the 2PC setting. Another work [36]
studies applications of PPML to quantized neural net-
works. Another work [18] improve function dependent
pre-processing and improves upon the SPDZ line of
work [13,79].

8. Conclusion

We propose new protocols for generating daBits and
edaBits in the 3-party computation model. These build
upon a 3-party oblivious transfer functionality and en-
joy a constant round complexity using advances in
silent pseudorandom correlation generators. Our imple-
mentation shows that these new protocols improve the
state-of-the-art by an order of magnitude.

References

[1] A. Yao, “Protocols for Secure Computations,” in Foun-
dations of Computer Science (FOCS), 1982.

[2] A. C. Yao, “How to generate and exchange secrets (ex-
tended abstract),” in IEEE Symposium on Foundations
of Computer Science (FOCS), 1986.

[3] O. Goldreich, S. Micali, and A. Wigderson, “How to
play any mental game or a completeness theorem for
protocols with honest majority,” in ACM Symposium
on Theory of Computing (STOC), 1987.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Com-
pleteness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract),” in ACM
Symposium on Theory of Computing (STOC), 1988.

[5] D. Chaum, C. Crépeau, and I. Damg̊ard, “Multiparty
unconditionally secure protocols (extended abstract),”
in ACM STOC, 1988.

[6] Z. Galil, S. Haber, and M. Yung, “Cryptographic com-
putation: Secure faut-tolerant protocols and the public-
key model,” in Advances in Cryptology—CRYPTO,
1987.

[7] D. Chaum, I. Damg̊ard, and J. van de Graaf, “Multi-
party computations ensuring privacy of each party’s

16

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

input and correctness of the result,” in Advances in
Cryptology—CRYPTO, 1987.

[8] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay
– A secure two-party computation system,” in USENIX
Security Symposium (USENIX), 2004.

[9] I. Damg̊ard, M. Fitzi, E. Kiltz, J. B. Nielsen, and
T. Toft, “Unconditionally Secure Constant-Rounds
Multi-Party Computation for Equality, Comparison,
Bits and Exponentiation,” in Theory of Cryptography
Conference (TCC). Springer, 2006, pp. 285–304.

[10] T. Nishide and K. Ohta, “Multiparty Computation
for Interval, Equality, and Comparison without Bit-
Decomposition Protocol,” in International Workshop
on Public Key Cryptography. Springer, 2007, pp. 343–
360.

[11] O. Catrina and S. De Hoogh, “Improved primitives for
secure multiparty integer computation,” in Security
and Cryptography for Networks, 2010.

[12] H. Lipmaa and T. Toft, “Secure Equality and Greater-
Than Tests with Sublinear Online Complexity,” in
International Colloquium on Automata, Languages, and
Programming. Springer, 2013, pp. 645–656.

[13] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias,
“Multiparty Computation from Somewhat Homomor-
phic Encryption,” in Annual Cryptology Conference.
Springer, 2012, pp. 643–662.

[14] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl,
and P. Scholl, “Efficient pseudorandom correlation gen-
erators: Silent ot extension and more,” in Advances in
Cryptology—CRYPTO, 2019, pp. 489–518.

[15] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl,
P. Rindal, and P. Scholl, “Efficient two-round ot exten-
sion and silent non-interactive secure computation,” in
ACM Conference on Computer and Communications
Security (CCS), 2019, pp. 291–308.

[16] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa, “Delphi: A cryptographic inference service
for neural networks,” in USENIX Security Symposium
(USENIX), 2020.

[17] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“GAZELLE: A Low Latency Framework for Secure Neu-
ral Network Inference,” in USENIX Security Sympo-
sium (USENIX), 2018, pp. 1651–1669.

[18] A. B. Efraim, M. Nielsen, and E. Omri, “Turbospeedz:
Double your online spdz! improving spdz using function
dependent preprocessing,” in Applied Cryptography and
Network Security (ACNS), 2019.

[19] S. Wagh, “New Directions in Efficient Privacy Preserv-
ing Machine Learning,” Ph.D. dissertation, Princeton
University, 2020.

[20] H. Chen, M. Kim, I. Razenshteyn, D. Rotaru, Y. Song,
and S. Wagh, “Maliciously Secure Matrix Multiplica-
tion with Applications to Private Deep Learning,” in
Advances in Cryptology—ASIACRYPT, 2020.

[21] G. Couteau, “New Protocols for Secure Equality Test
and Comparison,” in Applied Cryptography and Net-
work Security (ACNS), 2018.

[22] D. Escudero, S. Ghosh, M. Keller, R. Rachuri,
and P. Scholl, “Improved Primitives for MPC over
Mixed Arithmetic-Binary Circuits,” in Advances in
Cryptology—CRYPTO, 2020.

[23] E. Makri, D. Rotaru, F. Vercauteren, and S. Wagh,
“Rabbit: Efficient Comparison for Secure Multi-Party
Computation,” in Financial Cryptography and Data
Security (FC), 2021.

[24] D. Beaver, “Efficient multiparty protocols using circuit
randomization,” in Annual International Cryptology
Conference. Springer, 1991, pp. 420–432.

[25] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz,
P. Mittal, and T. Rabin, “FALCON: Honest-Majority
Maliciously Secure Framework for Private Deep Learn-
ing,” in Privacy Enhancing Technologies Symposium
(PETS), 2021.

[26] M. O. Rabin, “How to exchange secrets with oblivious
transfer,” Harvard University Technical Report. http:
//eprint.iacr.org/2005/187.

[27] J. Killian, “Founding crytpography on oblivious trans-
fer,” in ACM Symposium on Theory of Computing
(STOC), 1988.

[28] Y. Ishai, M. Prabhakaran, and A. Sahai, “Founding
cryptography on oblivious transfer – efficiently,” in
Advances in Cryptology—CRYPTO, 2008.

[29] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Ex-
tending oblivious transfers efficiently,” in Advances in
Cryptology—CRYPTO, D. Boneh, Ed., 2003.

[30] V. Kolesnikov and R. Kumaresan, “Improved ot ex-
tension for transferring short secrets,” in Advances in
Cryptology—CRYPTO, R. Canetti and J. A. Garay,
Eds., 2013.

[31] M. Keller, E. Orsini, and P. Scholl, “Actively secure
ot extension with optimal overhead,” in Advances in
Cryptology—CRYPTO, 2015.

[32] D. Rotaru and T. Wood, “Marbled Circuits: Mixing
Arithmetic and Boolean Circuits with Active Security,”
in International Conference on Cryptology in India.
Springer, 2019, pp. 227–249.

[33] S. Wagh, D. Gupta, and N. Chandran, “SecureNN:
3-Party Secure Computation for Neural Network Train-
ing,” in Privacy Enhancing Technologies Symposium
(PETS), 2019.

17

http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

[34] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh,
“Astra: High throughput 3pc over rings with application
to secure prediction,” in ACM SIGSAC Conference on
Cloud Computing Security Workshop, 2019.

[35] P. Mohassel and P. Rindal, “ABY3: A mixed protocol
framework for machine learning,” in ACM Conference
on Computer and Communications Security (CCS),
2018.

[36] D. Escudero, A. Dalskov, and M. Keller, “Secure eval-
uation of quantized neural networks,” in Privacy En-
hancing Technologies Symposium (PETS), 2020.

[37] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and
A. Polychroniadou, “Prio+: Privacy preserving aggre-
gate statistics via boolean shares,” https://eprint.iacr.
org/2021/576, 2021.

[38] Data61, “MP-SPDZ: Versatile Framework for Multi-
party Computation,” https://github.com/data61/
MP-SPDZ, 2019.

[39] A. Aly, M. Keller, E. Orsini, D. Rotaru, P. Scholl, N. P.
Smart, and T. Wood, “SCALE-MAMBA v1.2: Docu-
mentation,” https://homes.esat.kuleuven.be/∼nsmart/
SCALE/Documentation.pdf, 2018.

[40] D. Demmler, T. Schneider, and M. Zohner, “ABY - A
Framework for Efficient Mixed-Protocol Secure Two-
Party Computation,” in Symposium on Network and
Distributed System Security (NDSS), 2015.

[41] M. Keller, “MP-SPDZ: A Versatile Framework for
Multi-Party Computation,” in ACM Conference on
Computer and Communications Security (CCS), 2020.

[42] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mys-
tique: Efficient conversions for zero-knowledge proofs
with applications to machine learning,” in USENIX
Security Symposium (USENIX), 2021.

[43] S. Carpov, K. Deforth, N. Gama, M. Georgieva,
D. Jetchev, J. Katz, I. Leontiadis, M. Mohammadi,
A. Sae-Tang, and M. Vuille, “Manticore: Efficient
framework for scalable secure multiparty computa-
tion protocols,” Cryptology ePrint Archive, Report
2021/200, 2021, https://eprint.iacr.org/2021/200.

[44] A. Dalskov, D. Escudero, and M. Keller, “Fantastic
four: Honest-majority four-party secure computation
with malicious security,” in USENIX Security Sympo-
sium (USENIX), 2021.

[45] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, ro-
bust, and scalable computation of aggregate statistics,”
in USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

[46] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille,
and G. Maxwell, “Bulletproofs: Short proofs for confi-
dential transactions and more,” in IEEE Symposium
on Security and Privacy (S&P), 2018.

[47] C. Baum, L. Braun, A. Munch-Hansen, and P. Scholl,
“Appenzeller to brie: Efficient zero-knowledge proofs for
mixed-mode arithmetic and Z2k ,” 2021, https://eprint.
iacr.org/2021/750.

[48] C. Baum, B. David, and T. Frederiksen, “P2dex:
Privacy-preserving decentralized cryptocurrency ex-
change,” in Applied Cryptography and Network Security
(ACNS), 2021.

[49] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, “Pri-
vately evaluating decision trees and random forests,” in
Privacy Enhancing Technologies Symposium (PETS),
2016.

[50] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta,
R. Sharma, N. Chandran, and A. Rastogi, “Sirnn: A
math library for secure rnn inference,” in IEEE Sym-
posium on Security and Privacy (S&P), 2021.

[51] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S.
Burra, “A new approach to practical active-secure
two-party computation,” in Advances in Cryptology—
CRYPTO, R. Safavi-Naini and R. Canetti, Eds., 2012.

[52] S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt,
C. Orlandi, E. Orsini, P. Scholl, and N. P. Smart,
“High performance multi-party computation for binary
circuits based on oblivious transfer,” IACR Cryptology
ePrint Archive, 2015, https://eprint.iacr.org/2015/472.

[53] G. Couteau, P. Rindal, and S. Raghuraman, “Sil-
ver: Silent vole and oblivious transfer from hardness
of decoding structured ldpc codes,” in Advances in
Cryptology—CRYPTO, 2021.

[54] I. Damg̊ard and J. B. Nielsen, “Universally compos-
able efficient multiparty computation from threshold
homomorphic encryption,” in Advances in Cryptology—
CRYPTO. Springer, 2003, pp. 247–264.

[55] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in IEEE Sym-
posium on Foundations of Computer Science (FOCS),
2001.

[56] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and
K. Ohara, “High-throughput semi-honest secure three-
party computation with an honest majority,” in ACM
Conference on Computer and Communications Security
(CCS), 2016.

[57] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein,
“High-throughput secure three-party computation for
malicious adversaries and an honest majority,” in Ad-
vances in Cryptology—EUROCRYPT, 2017.

[58] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang,
“Ferret: Fast Extension for coRRElated oT with small
communication,” in ACM Conference on Computer and
Communications Security (CCS), 2020, pp. 1607–1626.

18

https://eprint.iacr.org/2021/576
https://eprint.iacr.org/2021/576
https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://eprint.iacr.org/2021/200
https://eprint.iacr.org/2021/750
https://eprint.iacr.org/2021/750
https://eprint.iacr.org/2015/472

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

[59] P. Schoppmann, A. Gascón, L. Reichert, and
M. Raykova, “Distributed vector-ole: improved con-
structions and implementation,” in ACM Conference
on Computer and Communications Security (CCS),
2019.

[60] C. Weng, K. Yang, J. Katz, and X. Wang, “Wolver-
ine: Fast, Scalable, and Communication-Efficient Zero-
Knowledge Proofs for Boolean and Arithmetic Circuits,”
in IEEE Symposium on Security and Privacy (S&P),
2021.

[61] M. Byali, H. Chaudhari, A. Patra, and A. Suresh,
“FLASH: Fast and robust framework for privacy-
preserving machine learning,” in Privacy Enhancing
Technologies Symposium (PETS), 2020.

[62] R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and
C. Xing, “SPDZ2k: Efficient MPC mod 2k for Dishon-
est Majority,” in Advances in Cryptology—CRYPTO,
2018.

[63] P. Mohassel and Y. Zhang, “SecureML: A System
for Scalable Privacy-Preserving Machine Learning,” in
IEEE Symposium on Security and Privacy (S&P), 2017.

[64] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl,
and P. Scholl, “Correlated pseudorandom functions
from variable-density lpn,” in IEEE Symposium on
Foundations of Computer Science (FOCS), 2020.

[65] ——, “Efficient pseudorandom correlation generators
from ring-lpn,” in Advances in Cryptology—CRYPTO,
2020.

[66] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret
sharing,” in Advances in Cryptology—EUROCRYPT,
2015.

[67] ——, “Function secret sharing: Improvements and
extensions,” in ACM Conference on Computer and
Communications Security (CCS), 2016.

[68] J. Doerner and abhi shelat, “Scaling oram for secure
computation,” in ACM Conference on Computer and
Communications Security (CCS), 2017.

[69] E. Boyle, N. Gilboa, and Y. Ishai, “Secure computa-
tion with preprocessing via function secret sharing,” in
Theory of Cryptography Conference (TCC), 2019.

[70] E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai, “Com-
pressing vector ole,” in ACM Conference on Computer
and Communications Security (CCS), 2018.

[71] E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai,
N. Kumar, and M. Rathee, “Function secret sharing
for mixed-mode and fixed-point secure computation,”
in Advances in Cryptology—EUROCRYPT, 2021.

[72] T. Ryffel, P. Tholoniat, D. Pointcheval, and F. Bach,
“Ariann: Low-interaction privacy-preserving deep learn-
ing via function secret sharing,” in Privacy Enhancing
Technologies Symposium (PETS), 2022.

[73] S. Wagh, X. He, A. Machanavajjhala, and P. Mittal,
“DP-Cryptography: marrying differential privacy and
cryptography in emerging applications,” 2020.

[74] S. Wagh, P. Cuff, and P. Mittal, “Differentially private
oblivious RAM,” in Privacy Enhancing Technologies
Symposium (PETS), 2018.

[75] M. Costa, L. Esswood, O. Ohrimenko, F. Schuster,
and S. Wagh, “The Pyramid scheme: Oblivious RAM
for trusted processors,” in Tech Report, 2017, https:
//arxiv.org/abs/1712.07882.

[76] D. M. Sommer, L. Song, S. Wagh, and P. Mittal, “To-
wards probabilistic verification of machine unlearning,”
in Under submission, 2020.

[77] J.-L. Watson, S. Wagh, and R. Ada Popa, “Piranha: A
GPU Platform for Secure Computation,” in USENIX
Security Symposium (USENIX), 2022.

[78] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu:
Fast privacy-preserving machine learning on the GPU,”
in IEEE Symposium on Security and Privacy (S&P),
2021.

[79] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl,
and N. P. Smart, “Practical Covertly Secure MPC
for Dishonest Majority–or: Breaking the SPDZ Lim-
its,” in European Symposium on Research in Computer
Security. Springer, 2013, pp. 1–18.

[80] D. Rotaru, N. P. Smart, T. Tanguy, F. Vercauteren,
and T. Wood, “Actively Secure Setup for SPDZ,”
Cryptology ePrint Archive, Report 2019/1300, 2019,
https://eprint.iacr.org/2019/1300.

[81] A. Aly, E. Orsini, D. Rotaru, N. P. Smart, and T. Wood,
“Zaphod: Efficiently combining lsss and garbled circuits
in scale,” in ACM Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, 2019.

[82] T. Toft, “Sub-Linear, Secure Comparison with Two
Non-Colluding Parties,” in International Workshop on
Public Key Cryptography. Springer, 2011, pp. 174–191.

[83] C.-H. Yu and B.-Y. Yang, “Probabilistically Correct Se-
cure Arithmetic Computation for Modular Conversion,
Zero Test, Comparison, MOD and Exponentiation,” in
International Conference on Security and Cryptography
for Networks. Springer, 2012, pp. 426–444.

[84] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Ras-
togi, and R. Sharma, “Cryptflow: Secure tensorflow
inference,” in IEEE Symposium on Security and Pri-
vacy (S&P), 2020.

[85] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “Swift:
Super-fast and robust privacy-preserving machine learn-
ing,” in USENIX Security Symposium (USENIX), 2021.

[86] D. Rathee, M. Rathee, N. Kumar, N. Chandran,
D. Gupta, A. Rastogi, and R. Sharma, “Cryptflow2:
Practical 2-party secure inference,” in ACM Conference

19

https://arxiv.org/abs/1712.07882
https://arxiv.org/abs/1712.07882
https://eprint.iacr.org/2019/1300

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

on Computer and Communications Security (CCS),
2020.

[87] A. Patra, T. Schneider, A. Suresh, and H. Yalame,
“ABY2.0: Improved Mixed-Protocol Secure Two-
Party Computation,” in USENIX Security Symposium
(USENIX), 2021.

[88] O. Goldreich, S. Goldwasser, and S. Micali, “How
to construct random functions,” Journal of the ACM
(JACM), 1986.

[89] D. Boneh and B. Waters, “Constrained pseudoran-
dom functions and their applications,” in Advances in
Cryptology—ASIACRYPT, 2013.

[90] E. Boyle, S. Goldwasser, and I. Ivan, “Functional sig-
natures and pseudorandom functions,” in Public Key
Cryptography (PKC), 2014.

A. Silent OT Correlations

Here we describe the protocol used to silently generate
OT correlations in detail. We make black-box use of
this functionality to generate OT correlations between
parties. It is sufficient for the protocols proposed in
this work to note that two parties can non-interactively
call the protocol ΠExpand to expand the OT correlation
seeds to produce a large number (say 107) of OTs.

(1) Key generation phase: The Gen algorithm takes
the security parameter as input and generates two
keys (k0, k1). The protocol used to compute these
keys inside 2PC is given in Fig. 10.

(2) Expansion phase: Given the key kσ for party σ
(σ = 0 is the OT receiver and σ = 1 is the OT
sender), the Expand algorithm outputs a vector of
OT correlations corresponding to the sender/re-
ceiver role. The protocol used to compute these
keys inside 2PC is given in Fig. 11.

Gen uses FOT which can emulated using any 2-round
semi-honest OT protocol [15,29,31]. Each pair of parties
run the above routine to generate a large batch of OT
correlations (refer to Sec. 3 for details). During the 3-
party oblivious transfer routine, the parties run ΠExpand

to receive this batch of OT correlations. In this section,
we present the details of the Gen and Expand routine
for completeness and refer the reader to [15] for further
details.

Notation. We use [n] to denote the set {1, 2, · · · , n}
for a given positive integer n, boldface letters such as
x,y to denote vectors, and use y[i] to denote the ith

component of a vector y. αi is used to denote the
ith bit of a value α. Let t,N = 2k, n = N/s, ` be

parameters of the protocols, where t ≈ 120 for the dual-
LPN assumption, N ≈ 107, s is a small constant such
as 2, and ` is the modulus of the secret sharing scheme,
set to 32 or 64.

The protocols use t-puncturable pseudorandom func-
tion (t-PPRF) that contains three algorithms – KeyGen,
Puncture, and Eval. PPRF can be constructed from
any length-doubling pseudorandom generator using
the GGM tree-based construction [88–90]. The tree-
evaluation takes a key k and point x (size of the tree
is n = log |x|), sets k0 ←− k and performs the the fol-
lowing evaluation iteratively: for i = 1 to n, compute
(ki0, k

i
1)←− G(ki−1) and set ki ←− kixi where xi is the ith

bit of x. The procedure outputs kn.

(1) KeyGen samples a random key from the key space.
(2) Puncture takes a key k and point x, performs the

above procedure and sets k{x} = {ki1−xi}i for
i ∈ [n]. This protocol is presented in Fig. 10.

(3) Eval on input a punctured key k{x} and a point x’
outputs if x = x′. Otherwise, k{x} is parsed as
{ki1−xi}i and start the iterative process at ki1−xi
such that x′i = 1− xi

For the LPN assumption, the t evaluations are XORed
to give secret shared vectors or can be concatenate them
with the regular LPN assumption. The two parties run
an interactive protocol ΠGen that makes use of any OT
protocol [15,29,31] over a small number t of GGM trees.
These tree evaluations can then be used to combined
to satisfy the LPN assumption thus giving the parties
secret shares of punctured pseudorandom function. The
parties can non-interactively expand these keys using
the ΠExpand protocol to generate a large batch of OT
correlations. Finally, we make black box use of such
a functionality to generate OT correlations that form
the basis of our 3-party OT protocol Π3OT. The ideal
functionality FPPRF−GGM is given in Fig. 9.

Ideal Functionality FPPRF−GGM

Input: Sender inputs β ∈ F`2 and a PPRF key
kpprf ∈ {0, 1}λ. Receiver inputs α ∈ {0, 1}`.

Functionality:

(1) Compute k∗pprf = PPRF.Puncture(kpprf , α)
(2) Send k∗pprf and t = β−PPRF.Eval(kpprf , α) to Receiver.

Figure 9: Ideal functionality for distributing PRG correla-
tion.

20

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

Seed Generation for OT Correlations ΠGen

Input: Party P0 (receiver) starts with a weight t vector
e ∈ FN2 . Let S be the location of the t non-zero indices
i.e., S = {α1, · · · , αt}. Party P1 (sender) starts with
a random value x ∈ F2` and t-PPRF keys {kpprf [i]} for
i ∈ [t].
Output: Party P0 (receiver) outputs the key k0 =
({k∗pprf [i]}i, S, {zi}i) for i ∈ [t]. Party P1 (sender) out-
puts the key k1 = ({kpprf [i]}i, x) for i ∈ [t].
Parameters: N = 2k, ` ∈ N and PPRF is a puncturable
PRF with domain [N] and range F2` constructed from
the length doubling PRG G : {0, 1}λ → {0, 1}2λ and a
second PRG G′ : {0, 1}λ → (F2`)

2 for the last level of
the GGM tree.

Protocol:

(1) Sender picks b
$←− Ft2` and send c = x − b to the

receiver.
(2) Run t-independent Puncture sub-routines for the t

inputs αi ∈ [N] and b[i], kpprf [i] for i ∈ [t]. Receiver
receives output (k∗pprf [i], yi) for i ∈ [t]

(3) Sender outputs ({kpprf [i]}i, x)
(4) For i ∈ [t] receiver computes zi ←− yi + ci.
(5) Receiver outputs ({k∗pprf [i]}i, S, {zi}i).

Puncture: Sub-routine used in the protocol. Sender in-
puts value b ∈ F2` and a seed kpprf while receiver inputs
a location α ∈ [N].

(1) Sender and Receiver execute ` calls in parallel to
FOT, where for i = 1 to `-1:

• Receiver uses as input the choice bit αi (ith bit
of α)

• Sender uses computes the 2i partial evaluations
at level i of the GGM tree defined by seed kpprf ,
denoted by si0, · · · , si2i-1 and uses the following
input to the OT:

tiL =
⊕

j∈[0,2i-1)

si2j and tiR =
⊕

j∈[0,2i-1)

si2j+1

For the last OT:

• Receiver uses as input the choice bit α`
• Sender uses computes the 2` evaluations of the

GGM tree defined by seed kpprf , denoted by
si0, · · · , si2`-1 and uses the following input to
the OT:

t`L =

2`-1∑
j=0

si2j and t`R =

2`-1∑
j=0

si2j+1

(2) In parallel to the OT calls, Sender sends
c = b− (t`L + t`R) to the receiver.

Receiver computes it’s output as follows:

(1) Let t1 be the Receiver’s output in the first OT. Define
s1
ᾱ1

= t1

(2) For i = 2, ..., `-1

• Compute (si2j , s
i
2j+1) = G(si-1j) for j ∈

[0, · · · , 2i-1), j 6= α1, · · · , αi-1
• Let ti be the output from the ith OT.
• Define α∗i = α1, · · · , αi-1, ᾱi. Compute

siα∗
i

= ti
⊕

j∈[0,2i-1),j 6=α∗
i

si2j+ᾱi

(3) Compute (s`2j , s
`
2j+1) = G′(s`-1j) for j ∈

[0, · · · , 2`-1), j 6= α1, · · · , α`-1. Receive c from the
Sender and compute

y = c+ t` +

2`-1∑
j=0,j 6=α

si2j+α`

(4) Receiver outputs the punctured key k∗pprf = {siα∗
i
}i∈[`]

and the final correction word y.

Figure 10: Protocol to run Gen phase of OT Correlations.

B. PCG Constructions

A Pseudorandom Correlation Generator (PCG) allows
two (or more) parties to securely generate a large num-
ber of correlated randomness using short correlated
seeds but only using local computation (thus requir-
ing no interaction). Recently, a number of works have
proposed novel constructions of PCGs for Oblivious
Transfers [14,15,58,59]. All these approaches rely on
variants of the Learning Parity with Noise assumption
(LPN) and advances in Function Secret Sharing (FSS),
particularly schemes for Distributed Point Functions
(DPF).

An FSS scheme allows multiple parties (saym parties)
to additively split a function f → f1, f2, · · · , fm such
that (1) each function is succinct (2) each strict subset
of {f1, · · · , fm} hides f and (3) f ≡ f1 + f2 + · · ·+ fm
(equal at each point). A DPF scheme is one where the
function f is a point function, i.e., is non-zero at exactly
one input value. A closely related yet simpler primi-
tive is a Puncturable Pseudorandom Function (PPRF)
which is a PRF that allows evaluation at all points in
the domain except at one point. The constructions

21

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

OT Correlation Expansion Protocol ΠExpand

Input: Party Pσ starts with key kσ – output of ΠGen.
Outputs: Party P0 (receiver) gets a vector of size n of
values (u, v) ∈ F2 × F2` and Party P1 (sender) gets a
vector of size n of values (w0, w1) ∈ F2` × F2` .
Parameters: n,N, ` ∈ N with N > n. Matrix
H ∈ FN×n2 and weight t error distribution over FN2 (i.e.,
contains t non-zero indices with value 1). PPRF is a
puncturable PRF with domain [N] and range F2` . And
Hash : {0, 1}λ × F2` → {0, 1}λ is a F2 correlation robust
hash function.

Receiver protocol: Party σ = 0 acts as the receiver
and runs the following protocols for extending OTs.

(1) Parse k0 = ({k∗pprf [i]}i, S, {zi}i) for i ∈ [t]
(2) Define the error vector e using S.
(3) For j ∈ [N] define the jth entry of v0 as

v0[j] =

{
zi if j = αi ∈ S
PPRF.Eval(k∗pprf [i], j) if j /∈ S

(14)
(4) Define (u,v′)←− (e ·H,−v0 ·H)
(5) For i ∈ [n], define v[i] = Hash(i, v′[i]).
(6) Output (u[i], v[i]) for i ∈ [n].

Sender protocol: Party σ = 1 acts as the sender and
runs the following protocols for extending OTs.

(1) Parse k1 = ({kpprf [i]}i, x) for i ∈ [t].
(2) Compute v1i ←− PPRF.FullEval(kpprf [i]) ∈ FN2` .
(3) Set v1 ←− ⊕iv1i and w′ ←− v1 ·H
(4) For i ∈ [n], set

w0[i]←− Hash(i, w′[i])

w1[i]←− Hash(i, w′[i]− x)
(15)

(5) Output (w0[i], w1[i]) for i ∈ [n].

Figure 11: Protocol for “silently” generating OT Correla-
tions.

differ slightly in their approach and underlying crypto-
graphic hardness assumption, here we will describe the
approach from [15]. With each batch, their approach
generates n set of correlated oblivious transfers (COT).
This is achieved by first generating N = 2n COTs with
very high concrete efficiency and then applying a linear
transformation to get n-pseudorandom COTs (this is
the cryptographic hardness assumption, known as Dual
LPN). Below we describe each step in more detail:

Multi-point Correlated Oblivious Transfer. In
this phase, the Sender and Receiver together compute

N -COTs
xs + xr = e ·∆ (16)

where the Sender gets xs ∈ FN2κ and ∆ ∈ F2κ and the
receiver gets xs ∈ FN2κ and e ∈ FN2 . The trick is that
the vector e is of low hamming weight, i.e., has only
t-non-zero indices where t is a small constant. Suppose
that e = e1 + e2 + · · ·+ et where each ei is a vector of
hamming weight one. Then Eq. 16 can be split into t
equations such that:

xs,i + xr,i = ei ·∆ (17)

Thus, viewing Eq. 17 as a DPF sharing, the entire set of
N -COTs can be generated using only t-calls to an FSS
scheme for DPFs. To further improve the performance,
DPFs can be reduced by PPRFs and using the fact
that the punctured location is known to the Receiver,
the Sender simply sends the punctured key along with
the “corrected” value at the punctured point.

Linear transformation. The second part of the con-
struction is to use a linear transformation H : FN → Fn
where H is a parity check matrix of a linear code for
which the LPN assumption holds. Each party locally
applies this transformation to their shares, i.e.,

ys = Hxs, yr = Hxr and e′ = He

⇒ ys + yr = e′ ·∆
(18)

where e′ is pseudorandom under the dual-LPN assump-
tion. Using further optimizations that allow sampling a
regular sparse noise vector e (where it is publicly known
that exactly one index is set in each N/t-sized interval),
the above construction allows generating n COTs using
O(tκ logN/t)-bits of communication.

Other constructions. Other constructions [58, 59]
use a slightly different approach. They rely on the
hardness of the LPN problem which changes the con-
struction in subtle but important ways. To generate
n-COTs, these approaches generate n-COTs xs, xr, e,∆
with sparse noise efficiently (similar to the multi-point
COT above with n instead of N). The sparsity of the
two approaches is slightly different (refer to [58, 59] for
details). The parties also generate k COTs ys, yr, e

′,∆
where k ≈

√
n. Finally, let G to be the generator ma-

trix of a linear code for which the LPN assumption
holds. Then, the n-COTs are output using the linear
transformations:

zs = xs +Gys, zr = yr +Gxr and e′′ = e+Ge′

⇒ zs + zr = e′′ ·∆
(19)

22

BarnOwl: Secure Comparisons using Silent Pseudorandom Correlation Generators

Note that the communication of this approach
O((t log n/t+ k)κ)-bits can be higher than that of the
Dual-LPN based construction but the latter allows us-
ing simpler linear codes.

C. Other Ideal Functionalities

We present ideal functionalities for a random shuffle
and the secure generation of correlated randomness.

C.1. Correlated Randomness - F1
cr/F2

cr

The ideal functionalities for the generation of corre-
lated randomness are presented in Fig. 12. Note that
these are straightforward generalizations of the Boolean
functionalities presented in [57].

C.2. Random Shuffle - Fperm

In our protocol, we require random permutation of an
array of elements (where each element is either a daBit
or edaBit). Fperm is an ideal functionality that receives
a vector v of length M from all the parties, chooses a
random permutation π over {1, 2, · · · ,M}, and returns
a vector v′ of the same length such that v′[i] = v[π(i)].

Note that because the permutation need not be secret
from the parties and hence can be locally computed,
such a functionality can be securely emulated by gener-
ating 128 random bits and then using a known PRG
to generate randomness locally. Refer to [57] for more
details.

Ideal Functionality F1
cr/F2

cr

Let F : {0, 1}κ × {0, 1}κ → D be a keyed function where
the domain D is either {0, 1} or Z2` . Upon invocation,
the adversary controlling party Pi chooses a pair of keys
k, k′ ∈ {0, 1}κ and sends them to F1

cr/F2
cr. Then:

Functionality F1
cr:

(1) Upon receiving input id from all parties, func-
tionality F1

cr computes αi = Fk(id) + F ′k(id) and
chooses random values αi−1, αi+1 ∈ {0, 1} under the
constraint that α0 + α1 + α2 = 0 where the addition
is done over D. F1

cr sends αj to Pj for every j.

Functionality F2
cr:

(1) Upon receiving input id from all parties, functionality
F2

cr computes αi = Fk(id) αi−1 = F ′k(id) and chooses
a random value αi+1 ∈ D. F2

cr sends (αj−1, αj to Pj
for every j.

Figure 12: Ideal functionality correlated randomness.

23

	Introduction
	Applications of daBits, edaBits
	Technical Overview

	Preliminaries
	Secure Comparison Protocols & Primitives
	Silent OT Extensions

	Semi-honest Secure Protocol
	3-Party Oblivious Transfer
	Semi-honest daBit Generation

	Maliciously Secure Protocol
	Evaluation
	Protocols for daBit Generation
	Protocols for edaBit Generation
	Other Experimentals

	Discussion
	Improved Malicious edaBit Generation
	Extension to Prime Moduli
	Limitations and Open Questions

	Related Work
	Conclusion
	Silent OT Correlations
	PCG Constructions
	Other Ideal Functionalities
	Correlated Randomness - F1cr/F2cr
	Random Shuffle - Fperm

