
EZEE

Epoch Parallel Zero Knowledge for ANSI C

Yibin Yang, yyang811@gatech.edu
David Heath, heath.davidanthony@gatech.edu
Vladimir Kolesnikov, kolesnikov@gatech.edu

David Devecsery, ddevec@fb.com

Abstract

Recent work has produced interactive Zero Knowledge (ZK) proof sys-
tems that can express proofs as arbitrary C programs (Heath et al., 2021,
henceforth referred to as ZEE); these programs can be executed by a
simulated ZK processor that runs in the 10KHz range.

In this work, we demonstrate that such proof systems are amenable to
high degrees of parallelism. Our epoch parallelism-based approach allows
the prover and verifier to divide the ZK proof into pieces such that each
piece can be executed on a different machine. These proof snippets can
then be glued together, and the glued parallel proofs are equivalent to the
original sequential proof.

We implemented and we experimentally evaluate an epoch parallel
version of the ZEE proof system. By running the prover and verifier each
across 31 2-core machines, we achieve a ZK processor that runs at up to
394KHz. This allowed us to run a benchmark involving the Linux program
bzip2, which would have required at least 11 days with the former ZEE
system, in only 8.5 hours.

1 Introduction

Zero knowledge (ZK) proofs (ZKPs) allow a prover P to demonstrate to a ver-
ifier V the truth of some statement, while revealing nothing additional. In
particular, P’s witness, which might be sensitive, remains hidden from V. ZK is
a powerful cryptographic primitive that enables numerous useful applications.
As one simple example, prior work has shown that ZK can be used to allow P
to prove to V the existence of a bug in a public program without leaking the
source of the bug [HK20b].

For some time, cryptographers have known techniques for proving arbitrary
statements in ZK. However, until relatively recently such statements needed to
be encoded as Boolean or arithmetic circuits, and so it was difficult for non-
experts to use this powerful technology. Moreover, näıve program-to-circuit
unrolling is inefficient for many programs.

1



Recent work shows that it is practical to construct efficient ZK proof systems
that operate over RAM programs rather than circuits [HK20a, HYDK21]. By
choosing the RAM program to be a general purpose CPU and by implementing
a compiler, it is now possible to encode arbitrary ZK proofs as ordinary ANSI-C
programs [HYDK21]. These works present low-level Zero-Knowledge machine
(ZKM) emulators, capable of running a complete instruction set in zero knowl-
edge. Proof statements are input as C programs, compiled into the instructions
of the ZKM, and then run on the ZKM. With these advances, implementing a
ZK proof is as easy as writing a C program, practically opening ZK proofs to
many new applications.

Despite advances in performance, state-of-the-art ZK processors run millions
of times slower than commodity processors, executing instructions in only the
low KHz range. Furthermore, given the inherent cryptographic overhead of ZK,
it is unlikely that ZK machines will approach the performance of modern CPUs
in the foreseeable future. A program that may modestly take a few seconds on
a commodity processor may not complete in months when run in ZK. This high
latency means that many ZK applications remain impractical.

In this work, we build a ZK system that greatly reduces proof latency by
introducing a high degree of parallelism without needing to change the proof
statement. Our epoch parallelism technique splits a logically sequential proof
into different epochs. Each epoch, which can be thought of as a subsequence
of instructions run during the program execution, can be handled by a pair of
worker machines, one owned by P and one by V. Because the epochs run in
parallel, we decrease the proof latency by a factor up to the degree of available
parallelism. The technique does incur a slightly larger proof, since P must
additionally prove that the epochs are consistent, but this cost is low compared
to the size of the overall proof.

1.1 Our Contributions

In this work we:

• Build on ‘ZK for Everything and Everyone’ (ZEE ) [HYDK21] by design-
ing, implementing, and evaluating Epoch ZEE (EZEE ), a secure epoch
parallel ZK proof system. We show that EZEE can execute off-the-shelf
ANSI C programs inside ZK while utilizing epoch parallelism. We used
EZEE to execute in ZK the Linux programs sed (proving it has a bug) and
bzip2 (from the industry standard SPEC2006 benchmark suite [Hen06],
proving it terminates normally). In our experiments, we show that EZEE
runs at up to 394KHz. This clockrate is bounded by the available par-
allelism, not by a limitation of the technique. With more processors, we
estimate that EZEE can run at up to 1.8MHz (see Section 8).

• Provide a template that explains how ZK protocols can be transformed
into epoch parallel ZK protocols. Formally, we specify an interface that
we call the PIM (proof interface machine). We show that ZK machines
that meet the PIM interface allow a general program transformation that

2



introduces epoch parallelism. We believe PIM would also be useful in
future ZKP parallelization work.

2 Related Work

Zero Knowledge Machines We present a ZK proof system in the RAM
model of computation. This direction is relatively unexplored; we review the
few works in the area.

The first such works built on succinct non-interactive ZK (NIZK) proof en-
gines [BCTV14b, BCTV14a, BCG+13]. Although these works achieve highly
desirable non-interactivity, they do not scale to machines powerful enough to
handle large proofs. E.g., such machines only run in the 1Hz range. Build-
ing substantially more powerful NIZK machines remains an interesting research
direction.

Recently, [HK20a] and subsequently [HYDK21] constructed far more efficient
ZK RAM machines based on an interactive proof system. While both P and V
must be online for the proof, the RAM machine runs thousands of times faster
and can support a main memory with megabytes of RAM. Our work builds
directly on the proof system of [HYDK21], ‘ZK for Everything and Everyone’,
which we call ZEE , so we discuss the details of their system as background in
Section 3.

By implementing epoch parallelism, we build a ZKP system with lower proof
latency than the above systems.

[FKL+21] proposed a new efficient constant-overhead ZK RAM. It is con-
cretely efficient and improves both in speed and supported RAM size over [HK20a]
and [HYDK21]. While our epoch-parallel system builds on ZEE and Bub-
bleRAM [HK20a], it should be possible to integrate their improved RAM into
our epoch parallel approach. We leave this integration as future research; the
focus of this work is exploring ZK parallelization.

Fast Interactive ZK Protocols A number of works investigate gate-by-gate
interactive ZK protocols. Such works are interesting because they (1) achieve
low proof latency and (2) can scale to large proof statements.

Our work builds on the information theoretic MAC (IT-MAC) based ZK
proof system of [HK20a] and [HYDK21]. This proof system is based on the
Garbled Circuit-based ZK paradigm (GC-ZK) initiated by [JKO13] and contin-
ued by [FNO15,KP17,HK20b]. We view GC-ZK and IT-MACs as background
to our work (see Section 3). Note that we favor the protocol of [HYDK21]
over the following discussed works because the authors provide a hand tuned
CPU. E.g., they provide an ALU that was specifically designed with costs of
the underlying ZK protocol in mind.

Mac’n’Cheese [BMRS20] is a recent ZK proof system that builds gate-by-
gate interactive proofs on top of vector oblivious linear evaluation (VOLE).
Their work also incorporates the recent stacked garbling technique [HK20b] to
achieve efficient disjunctive proof statements.

3



Like [HK20a], Wolverine [WYKW21a] also builds on IT-MACs, but does
so using a custom protocol rather than using the GC-ZK protocol of [JKO13].
Wolverine, which like Mac’n’Cheese is based on VOLE, is superceded by Quick-
silver [YSWW20] (discussed shortly).

Line-Point ZK [DIO20] greatly simplified the handling of VOLE-based IT-
MAC multiplication.

Quicksilver [YSWW20] combines Wolverine with Line-Point ZK to achieve
an extremely communication-efficient ZK protocol. The authors argue that
Quicksilver is communication optimal for the gate-by-gate paradigm, since each
of their field multiplication gates requires only the transmission of one field
element and one VOLE correlation (of course, approaches that do not operate
gate-by-gate can achieve much lower communication, i.e. sublinear ZK).

Detailed comparison between Quicksilver and the protocol of [HYDK21] is
not available. Nevertheless, Quicksilver [YSWW20] now appears to be the state-
of-the-art protocol for gate-by-gate interactive ZK, particularly for low band-
width networks. However, the system has not yet been applied to the RAM
model of computation, so we favor the protocol of [HYDK21] which comes
with a hand tuned CPU. Also, it is not clear that Quicksilver greatly outper-
forms the [HYDK21] protocol on fast networks, because the latter is based on
OT instead of the more expensive VOLE. We view building a tuned CPU for
Quicksilver and then applying epoch parallelism as important future work.

Non-interactive and Succinct ZK Many recent ZK works emphasize small
proofs and/or non-interactivity, e.g. [GKR08,IKOS07,GMO16,CDG+17,AHIV17,
KKW18,GGPR13,PHGR13,BCG+13,CFH+15,Gro16,BFH+20,BCR+19]. NIZK
parallelization (of computation) has also been explored, e.g. [EFKP20,WZC+18].
While NIZK work has achieved very impressive results in terms of non-interactive
proofs of smaller statements, such proof systems do not yet match the scale and
low latency of the above interactive proof systems.

Epoch Parallelism Epoch parallelism is a technique that predicts future
states of an execution and then uses those predicted states to parallelize that
future execution. It has been used previously, typically for speculative acceler-
ation [ZS02,NVCF08,VLW+12,SKW+10], in which the system predicts future
behaviors of the system, and then speculatively runs that future execution using
those predictions. These speculative executions are often run in parallel, in what
is known as an epoch-parallel phase. If the predictions are correct, the system
can remove bottlenecks such as I/O or heavy-weight computation. However, if
the predictions are inaccurate, the system must roll-back and discard the work
done during epoch-parallel execution.

Others have also used this technique with deterministic computation to help
accelerate dynamic analyses [WDC+13, QDCF16]. Here the initial prediction
step is on a deterministic computation, so the epoch generation is not speculative
and will not roll-back. However, the predictor to generate the epoch’s state
is less expensive than the epoch execution, allowing for parallelization of the

4



analysis code.
Our work demonstrates the natural compatibility of ZK proofs and epoch

parallelism. By running the proof locally, P can easily predict with perfect
precision future program states. Then, the slow-running portion of the ZK
proof can be parallelized to a very high degree.

3 Preliminaries

Traditionally, cryptographers encoded ZK proofs as Boolean or arithmetic cir-
cuits. While circuits are theoretically convenient and are suitable for small
proofs, it is difficult to express complex systems as simple circuits. Recent work
shows that the state-of-the-art in ZK now suffices to support efficient CPU-
emulation based proof systems [HK20a, HYDK21]. We build our epoch paral-
lelism system on one such recent work, that allows ZK proofs to be encoded as
ANSI C programs [HYDK21].

Thus, we briefly review their system and the cryptographic foundations on
which it lies. From here on, we refer to this base system as ZEE .

3.1 Garbled Circuit Based ZK

[JKO13] were the first to achieve practical ZK proofs of arbitrary statements.
The [JKO13] protocol builds efficient ZK on top of a simple semi-honest garbled
circuit (GC) protocol. Here, V instantiates the GC generator and constructs
a garbling of the proof statement encoded as a Boolean circuit. V sends this
garbling to P. Additionally, V conveys to P via oblivious transfer (OT) GC
input labels that together encode P’s witness. P then evaluates the garbled
circuit gate by gate under encryption until finally obtaining a single output label;
if this label encodes a logical one, then the proof succeeds. The authenticity
property of GC ensures that even a malicious P cannot forge a convincing
output label unless she has a valid witness. Thus, this technique elegantly and
straightforwardly ensures that P cannot forge a proof.

Protecting against a malicious V is harder: V can, in particular, send an
ill constructed circuit garbling that leaks part of P’s witness and violates ZK
security. [JKO13] guard against this by adding a simple commitment step: once
P computes her GC output label, she does not directly send it to V, but rather
commits to it. Then, V sends to P a single PRG seed that was used to derive
all garbling randomness. This seed allows P to replay V’s actions when garbling
the circuit and to check that all messages from V were properly constructed.
Only once this check succeeds does P open her commitment.

While [JKO13] were the first to achieve efficient and arbitrary ZK, a cascade
of research produced new ZK techniques, particularly in the space of succinct
non-interactive ZK. Even so, the GC-ZK paradigm remains interesting because
of its attractive performance characteristics: its communication and computa-
tion for both P and V scale linearly in the proof statement size with low con-
stants. Moreover, thanks to OT extension [IKNP03, YWL+20], a proof can be

5



completed using only a small number of public key operations1; the remainder
of the protocol requires only simple and highly efficient symmetric key oper-
ations. Finally, the GC-ZK paradigm places very low memory constraints on
P, which for many other protocols becomes a bottleneck (see e.g. discussion
in [YSWW20]).

Our construction can be categorized as a GC-ZK technique. While we build
on more recent arithmetic techniques (see next), the ZEE arithmetic technique
that we build on is formalized in the GC-ZK framework proposed by [JKO13]
and updated by [FNO15]. Moreover, the top-level protocol that hosts our im-
plementation was formalized by [JKO13].

3.2 Arithmetic GC-ZK via IT-MACs

Earlier GC-ZK techniques, e.g. [JKO13,HK20b], worked directly with Boolean
garbled circuits. These techniques were based on the classic GC technique of
encoding Boolean functions as encrypted truth tables: given input labels, P de-
crypts the corresponding output label. To protect against a cheating P, these
techniques needed long labels: label length was proportional to the computa-
tional security parameter (e.g. 128 bits). Moreover, each label could only hold
one semantic bit.

More recently, [HK20a] updated the GC-ZK technique by showing that it is
possible to replace GC labels by simple information theoretic message authenti-
cation codes (IT-MACs). These IT-MACs are both shorter (e.g. 40 bits), since
they are proportional only to the statistical security parameter, and also can
hold a semantic arithmetic value with length equal to the length of the IT-MAC.

While our epoch parallelism technique is relatively agnostic to the low level
details of the underlying protocol, ultimately we use the IT-MAC based ZEE
protocol of [HYDK21]. Thus we briefly review the IT-MAC technique.

In the protocol, P and V hold IT-MACs that each encode a value in a field
Zp for a suitably large prime p (we choose p = 240−87, the largest 40 bit prime).
An IT-MAC consists of two shares, one held by V and one by P. We denote the
IT-MAC that encodes x ∈ Zp by writing JxK. This IT-MAC is a pair of values:

JxK , 〈X,x∆−X〉 where X ∈$ Zp

where V holds the left hand element and P holds the right hand element. Here,
∆ is a global uniform non-zero value drawn by V at the start of the protocol
and is unknown to P.

Crucially, an IT-MAC is unforgeable: given x∆ − X, P cannot reliably
construct y∆−X for y 6= x. She can do so only by guessing ∆, which succeeds
with probability 1

p−1 .
At the same time, the parties can operate on IT-MACs. First, IT-MACs

are additively homomorphic, as JxK + JyK = Jx + yK (where the sum of two IT-
MACs is defined to be the pointwise sum of their two parts). Second, [HK20a]

1The number of required base oblivious transfers, which require public-key cryptography,
scale only with the security parameter.

6



showed that it is easy to multiply a vector of IT-MACs by a secret bit b ∈ {0, 1}
chosen by P via a single oblivious transfer. These two operations suffice to
implement arbitrary arithmetic circuits. Thus these two operations, combined
with the unforgeability property of the IT-MACs, mean that these primitives
can implement arbitrary ZK proofs.

3.3 The ZEE Proof System

Based on IT-MAC ZK algebra (Section 3.2), [HYDK21] developed a full ZKP
system, ZEE , that handles proofs expressed as ANSI C programs. Our core
contribution is that we convert ZEE to an epoch parallel proof system that we
call EZEE (Epoch parallel ZEE ). We briefly explain the relevant parts of the
ZEE approach.

[HYDK21] breaks the problem of proving statements written as C programs
into two parts:

• The C program is compiled to a custom instruction set architecture (ISA)
via a custom compiler. The ISA is relatively typical, with the notable
inclusion of a distinguished QED instruction; if the program executes
QED , then the proof accepts. The programmer writes ordinary C code
to express their proof, while placing QED behind appropriate program
conditions.

• The ZEE ISA is executed by a custom ZK implementation built on top
of IT-MAC algebra. This implementation handles programs instruction
by instruction, and includes many optimizations, such as an improved ZK
RAM, called BubbleCache. Each program instruction is handled by an
arithmetic circuit.

Following the notation of [HYDK21], we refer to the ISA as the ZEE architecture
and to the implementation as the ZEE microarchitecture. Our approach uses
the ZEE microarchitecture’s instruction circuit directly. However, rather than
running the entire program in sequence, we split the program into epochs and
run a smaller sequence of instructions on each of a number of machines.

3.4 Notation and Security Model

• P is the prover. We refer to P by she/her.

• V is the verifier. We refer to V by he/him.

• [n] denotes the sequence of integers 0...n− 1.

• ρ is the statistical security parameter, e.g. 40.

• κ is the computational security parameter, e.g. 128.

• Zp is the field of integers modulo prime p.

7



We clarify our considered security model. Our protocol involves an arbitrar-
ily large number of communicating machines, some controlled by P and some by
V. However, we view all of P machines as part of the prover P (symmetrically
for V). That is, although there are a large number of machines involved, there
are still only two parties. Our protocol is secure against a malicious adversary
that corrupts one of the two parties.

4 Technical Overview

In this section we present our approach with sufficient detail to understand our
contribution.

To reiterate, the core idea of the ZEE proof system (Section 3.3, [HYDK21])
is to handle a proof expressed as a ISA program one instruction at a time.
Each instruction is handled by an arithmetic circuit expressed using the IT-
MAC-based ZK proof algebra of [HK20a]. ZEE then sequentially executes each
program instruction and, at the end of the execution, outputs one if and only
if the CPU is in a distinguished QED state.

Our approach leverages this same idea, except that we execute portions of
the program in parallel across worker node machines. Our EZEE proof system
(Epoch parallel ZEE ) parallelizes the proof execution in three steps:

1. The EZEE prover P runs a non-cryptographic, cleartext version of the
ZEE architecture using her witness. This cleartext version runs the ZEE
instructions, but does not provide any cryptographic guarantees or com-
municate with the verifier V. As P runs this cleartext execution, she pe-
riodically records snapshots of the simulated CPU state. These snapshots
include the state of RAM, registers, and the program counter. Although
this cleartext execution of the proof runs sequentially, it does not use
cryptography and hence completes quickly.

2. Once all snapshots are recorded, P distributes the snapshots amongst
a number of worker nodes. V similarly initializes corresponding worker
nodes, and the two sets of nodes are grouped into pairs. Each pair of
nodes then starts from the snapshot state and performs a ZK proof that
guarantees to V the correct execution of all proof program instructions
leading to the next snapshot. We refer to this partial proof as an epoch.

3. The parties then glue the epochs together. Specifically, P proves in ZK
that for each epoch i, the ending CPU state matches the starting snapshot
for epoch i+ 1.

Once all epochs are completed and glued, the proof is finished. We show that this
proof succeeds if and only if the original, sequential proof would have succeeded.
Crucially, all subproofs in step (2) can be run in parallel, and hence the latency
to finish the overall proof is greatly decreased.

Our presentation proceeds as follows:

8



• Observe that the above high level strategy is relatively agnostic of the
details of the ZEE architecture: we simply need that it is possible to exe-
cute an instruction and to glue epochs together. Since these requirements
are quite general, Section 5 begins by capturing the requirements formally
through an abstraction we call a Proof Interface Machine (PIM ). The
simple yet key result is that, given a PIM , it is possible to rewrite the
execution of a program into an equivalent epoch parallel version.

• With PIM defined, Section 6 presents a system design that describes how
P and V can run a PIM -based ZK protocol across a cluster of machines.
This design focuses on systems aspects of our parallelization of ZEE , and
is not yet crypto-formal, since we do not yet specify the precise protocol
run between the workers.

• In Section 7, we show that ZEE can be expressed as a PIM and then plug
the resulting definition into our system design. We call the resulting proof
system EZEE (Epoch parallel ZEE ). We explain protocol-specific details
that must be handled and give protocol-specific improvements to the glue
step of epoch parallelism.

• Finally, Section 8 describes our C/C++ implementation and evaluates its
performance when running C programs inside ZK.

5 Proof Interface Machine

ZKP protocols that handle arbitrary statements usually encode such statements
as circuits; at the lowest level, our protocol (and the ZEE protocol we build
on) is the same. To achieve a high degree of parallelism, our goal is to take as
input a size O(n) circuit and transform it into e new circuits of size O(n/e).
Each of these e circuits proves correctness of a portion (epoch) of the total proof
execution. While we must additionally prove that the initial and final states of
the e epochs are related, it is our intent that the epochs will be run in parallel.
Thus, the total proof latency is greatly decreased.

In this section, we introduce the necessary formalisms to facilitate and for-
mally discuss this circuit transformation. Since we focus on CPU emulation,
we choose a CPU instruction as a unit of proof progress. We find it convenient
to represent the process of proving as the execution of a state machine, whose
states correspond to proof states, and whose transition function specifies how
CPU instructions update the proof state.

Following [HYDK21], we separate the specification of the state machine (ar-
chitecture, including ISA spec, plaintext state, etc.) from its implementation
(microarchitecture, including ISA and RAM implementation, encoded state,
etc.). Thus our state machine definition includes corresponding architectural
and microarchitectural parts. The microarchitecural components, both func-
tions and state, denoted by a bar, will be operated on by the underlying ZK
protocol.

9



Definition 1 (PIM ). A proof interface machine (PIM) consists of a space of
architectural states State, a space of microarchitectural (encoded) states State,
a space of inputs Σ, and seven procedures (procedures annotated with a bar are
microarchitectural):

T : (Σ× State)→ State

accept : State → {0, 1}
extract : State → State

T : ((n ∈ N)× Σn × State)→ State

accept : State → {0, 1}
embed : State → State

match : (State × State)→ {0, 1}

subject to the following three requirements:

∀w ∈ Σn,

extract ◦ T (n,w, ·) ◦ embed = T n(w, ·)
∀ σ ∈ State,

accept(σ)⇔ accept(extract(σ))

∀ σ0, σ1 ∈ State,

match(σ0, σ1)⇔ extract(σ0) = extract(σ1)

where T n(w, ·) denotes the function that applies T n times by passing the ith
character from w to the ith call to T .

We explain this definition informally. First, the functions T and accept
specify the architecture: T specifies how the state transitions (e.g., T might
handle a single processor cycle), while accept queries if the machine has reached
an accepting state. In the context of ZK, providing inputs to the PIM such
that accept outputs one means that the inputs together constitute a convincing
witness.

The functions T and accept specify the corresponding microarchitecture.
Note that, while T specifies only a single step, T simultaneously captures n steps
of the state machine. This difference is needed because in ZK it is often useful
for P to look ahead at her witness to improve efficiency. Thus, we group n steps
together such that this lookahead is formally possible in the microarchitecture.

To enforce that the architecture and microarchitecture appropriately cor-
respond, we introduce extract and embed , which map between the two kinds
of states. The PIM coherence conditions force correspondence: starting from
corresponding input states, then taking n steps in both the architecture and
microarchitecture results in corresponding output states. Moreover, the mi-
croarchitecture accepts if and only if the architecture accepts.

Note that we consider embed to be a microarchitectural function, because
embed is needed to set up initial proof states inside the ZK protocol.

10



The procedure match is needed for epoch parallelism: we need a procedure
that allows V to check that the output state of one epoch matches the input
state to the subsequent epoch. Note that this cannot be achieved by a simple
equality check, because the two states might be different; we only insist that the
two microarchitectural states correspond (via extract) to the same architectural
state.

Our epoch parallelism technique relies on the following simple observation.
Let k, e be two natural numbers and let n , k · e. Here, e denotes a number of
epochs and k denotes the number of steps performed per epoch. Let w0, ..., we−1
denote e length-k strings that together concatenate to w and let σ0 be an initial
state. Note the following trivial fact:

accept(T n(w, σ0))⇔∧
i∈[e]

T k (wi, σi) = σi+1

 ∧ accept(σe)

 (1)

where each σi is the initial state of epoch i and σe is the final state. That is, to
compute the final state T n(σ0), we can appropriately compute the T k transition
e times.

By Equation (1) and Definition 1, the following simple yet crucial lemma
holds:

Lemma 1 (Epoch Parallelism). Let n, e, k be natural numbers such that k · e =
n. For all PIM s, the following fact holds: Let σ0 ∈ State be an initial PIM
architectural state, let w ∈ Σn be a witness, and let wi∈[e] ∈ Σk be e chunks of
w (which together concatenate to w). Then:

accept(T n(w, σ0))⇔∧
i∈[e]

match
(
T (k,wi, σi) , σi+1

) ∧ accept(σe)


where for each i < e, σi+1 , T k(wi, σi) and where for each i < e σi ,
embed(σi).

In other words, during the proof we need not compute the circuit T (n,w, σ0)
but rather can compute e simpler subcircuits T (k,wi, σi). Each of these sub-
circuits does not depend on the output of any other, and so all e subcircuits
can be executed in parallel. We break dependencies between these subcircuits
by allowing the circuit to take as input intermediate machine states (via calls
to embed). Once the subcircuits have finished, we can complete the proof by
demonstrating that the intermediate states between epochs are related by calls
to match: this call ensures that a cheating P cannot substitute some invalid
state into the middle of the proof execution.

Note that PIM does not guarantee security properties of the resulting par-
allelized system; this must be proven separately. For simplicity of notation, in

11



Equation (1) and Lemma 1, we divide the computation into equal sized epochs;
our formalisms trivially generalize to epochs of different sizes.

Applicability of PIM . PIM is not an attempt to build a general compiler
that transforms an arbitrary ZK proof system into an epoch parallel ZK proof
system. Instead, PIM formalizes a program transformation that introduces
parallelism to proof statements; the underlying ZK protocol must leverage the
introduced parallelism to improve performance. Proof systems that allow for
parallel proofs of conjunctive statements can take advantage of the PIM. The
ZEE proof system [HYDK21] implements PIM interface and can take advantage
of conjunctive statements; we prove that the EZEE , an epoch-parallel version
of ZEE , is a secure ZKP system. A general “parallelizing ZKP compiler” would
require designing a crypto API, which underlying ZKP systems would need to
satisfy. We believe this is a well-motivated significant separate undertaking.

6 System Design

In Section 5, we described a class of state machines that can be used to encode
ZK proof statements and, crucially, we gave Lemma 1 which proves that such
state machines can be parallelized. In this section, we use the PIM definition
(Definition 1) to design a high level system on which parallel interactive ZK
proofs can execute. Our design allows us to scale interactive ZK to clusters of
machines.

Note that the given design is not yet crypto-formal, since we do not at this
point give a particular ZK protocol. In Section 7 we plug the ZEE IT-MAC-
based ZK protocol into our design, resulting in a secure ZKP system. While
we do not prove a general statement for plugging in different interactive ZK
protocols, we view the PIM and our system design as a template for design of
parallel interactive ZK protocols.

In our design, both P and V instantiate one distinguished main node and a
number of worker nodes. We refer to the P main node as Pmain and to the V
main node as Vmain. We refer to the ith P worker node (resp. V worker node) as
Pi (resp. Vi). Figure 1 depicts the high level interaction between these nodes.
The roles of these components are as follows:

• Pmain uses the PIM definition’s transition function T to compute in clear-
text the entire proof. As it runs, it periodically takes snapshots of the
current state σi. Additionally, it records portions of its witness wi. Note
that, in general, taking a snapshot or recording the witness in a real system
such as ours, is intricate; for example, recording the witness may involve
capturing arbitrary interactions between a C program and the surround-
ing operating system. In general, recording the witness involves building
a full non-determinism log (i.e. the extended witness) for the execution
of the proof program. Pmain sends σi and wi to a worker node Pi.

• Workers Pi and Vi together run an epoch of the program. Specifically,
they consider a circuit that they together run inside the ZK protocol. The

12



P0 P1 P2

V0 V1 V2

Pmain

Vmain

σ0, w0 σ1, w1 σ2, w2

σ0 σ1 σ2 σ3

T T T

σ1 σ2

match(σ′
1, σ1)

σ1 σ2

match(σ′
2, σ2) accept(σ′

3)
σ0 σ′

1

T
σ1 σ′

2

T
σ2 σ′

3

T

Figure 1: Our epoch parallel system design for three epochs. Pmain first runs
the proof locally by repeatedly calling T ; as she runs, Pmain records snapshots
of the proof state σi and of portions of her witness wi. Pmain sends σi and parts
of her witness wi to the prover workers Pi. The prover worker Pi and verifier
worker Vi then execute a ZK proof that demonstrates that (1) embedding σi
to σi via a call to embed , then running T results in an embedded state σ′i+1

and (2) the embedded state σi+1 (shares of which are sent back from the next
workers) matches the ending state σ′i+1 via a call to match. The final pair of
workers instead call accept to check if the final proof state is accepting. Each Vi
messages Vmain, indicating if its epoch succeeded or not. If all epochs succeed,
Vmain accepts the proof.

13



circuit performs the following actions: (1) take as input an intermediate
state σi via a call to embed , yielding encoded state σi, (2) apply the
transition function T to map σi to a new state σ′i+1, (3) if the considered

epoch is not the last one, check match(σ
′

i+1, σi+1) = 1 indicating that
the ending state is equal to the starting state sent back from the next
pair of workers, and (4) if the considered epoch is the last one, check

accept(σ
′

i+1) = 1 indicating that the final proof state is accepting.

• Vmain waits to receive an accepting message from each worker Vi. If each
verifier worker accepts, Vmain accepts the overall proof statement as true.

We note that when plugging in a specific ZK protocol, Pmain and Vmain

can be leveraged to help coordinate the workers. This coordination can help
deal with protocol-specific details. Looking forward, when we instantiate our
system design in Section 7 with the protocol of [JKO13] (see Section 3.1), we
use the main nodes to coordinate the required commitments and transmission
of V randomness.

The execution of this system can be broken down into three stages: epoch
generation, epoch parallel computation, and epoch verification. We next discuss
these three stages in detail and explain the informal ZK protocol requirements
needed to support each stage, with respect to both correctness and efficiency.

6.1 Epoch Generation

Recall that Pmain first generates epochs by repeatedly calling T . We refer to
this process as epoch generation. To guarantee a correct and efficient system,
epoch generation should meet several informal requirements:

• Cheap To Generate - Epoch generation occurs before any paralleliza-
tion, running sequentially through the entire proof program. Thus, it is
crucial that epoch generation completes quickly. I.e., running T in cleart-
ext should be much (preferably orders of magnitude) faster than running
T inside the ZK protocol. Otherwise, proof latency will be constrained by
the epoch generation step.

• Deterministic - Epochs must be deterministic. The system requires
that, upon re-execution in the epoch parallel phase, each epoch reaches its
predicted final state. This allows epochs to be glued together in the epoch
verification phase. Therefore, the PIM microarchitecture must perfectly
implement its corresponding architecture. Any deviation between the two
will cause proofs to erroneously fail.

To ensure epochs are deterministic, the system can record an epoch as a
tuple of (1) a starting state, and (2) a non-determinism log. This requires
the system to identify all non-determinism. I.e., the PIM must formalize
all non-determinism as part of the witness w.

14



• Equal Sized - Epochs should be of roughly equal size. The entire proof
cannot complete until each epoch finishes. If epochs are not of similar
size, then any long-running epoch will become the bottleneck.

For security, too, it is crucial that the size and other attributes of epochs
(e.g., precisely the work performed) are independent of the witness, and
hence of the proof execution flow. This is needed for simulation of the
view of V in proving the ZK property. See Section 7.4.1 for discussion
how using BubbleCache, the ZEE ORAM implementation, which allows
cache misses, may be insecure in EZEE , and our resolution.

6.2 Epoch Parallel Computation

Once epochs have been generated, the system uses the ZKP protocol to ensure
that each epoch is valid. This stage is the most computationally intensive por-
tion of the system, as it executes the heavy work of actually performing the
majority of the ZK computation: T . However, as the system has divided the
computation into independent epochs, this work can be done in an embarrass-
ingly parallel fashion. Namely, the system distributes epochs to arbitrarily large
numbers of processors, even up to a cluster scale.

6.3 Epoch Verification

Once the system has proven that each epoch is valid, it then proves that, when
combined, the epochs form a complete proof. This composition is achieved by
calls to match. Note that even these calls to match can be parallelized, since
pairs of workers Pi and Vi calls match, not Pmain and Vmain. After calling
embed , a pair of workers immediately sends the encoded state back to their
predecessors; thus match can be called as soon as the call to T is completed.

7 The EZEE Epoch Parallel Proof System

Section 5 introduced a formal framework for expressing epoch parallel ZK proofs,
and Section 6 sketched a systems level design for running such ZK proofs across
clusters of machines. However, as argued in Section 6, we could not directly
prove the security of this design with respect to an arbitrary protocol. In this
section, we formally instantiate our design with the ZEE protocol (see Sec-
tion 3.3) and clarify interesting points that arise. We call the instantiated ZK
protocol EZEE . Figure 2 illustrates many details of the EZEE protocol.

We begin by formally defining the ZEE PIM and the instantiated epoch
parallel ZK protocol EZEE . The remainder of this section is dedicated explain-
ing these constructions; Appendix A sketches a proof that EZEE is a secure
ZKP system.

Recall from Section 5 that, to use our system, we must define seven proce-
dures corresponding to the PIM definition. For ZEE , most of these definitions

15



Pmain

P0 P1

V0 V1

Vmain

Cleartext

∆ ∆

I0 I1

(a)

Pmain

P0 P1

V0 V1

Vmain

Jσ1K

Jσ1K

∗ ∗

(b)

Checkpoint 0

Pmain

P0 P1

V0 V1

Vmain

C0 C1

∗ ∗

∗ ∗

(c)

Checkpoint 1

Pmain

P0 P1

V0 V1

Vmain

∆ ∆

Check Check

Check

∗ ∗

(d)

Checkpoint 2

Pmain

P0 P1

V0 V1

Vmain

∗ ∗

Open Open

Check Check

(e)

Figure 2: A two epoch EZEE execution. (a) Pmain first executes the program
in cleartext and collects the initial information I0 and I1 for both epochs. This
information is sent to the prover workers Pi. Vmain generates the global IT-MAC
secret ∆ and distributes it to each verifier worker Vi. (b) Each pair of workers Pi
and Vi begin a ZK proof starting from Pi’s initial state Ii. P1/V1 transmit their
encoded initial state Jσ1K to P0/V0. Both pairs of workers execute their epoch
in ZK until reaching the shared final states Jσ′1K and Jσ′2K . While the epoch 1
workers prove that the pc terminated at QED (i.e. accept(σ′2) = 1), the epoch 0
workers prove in ZK that match(σ′1, σ1) = 1. After computing its output value,
each Pi sends a signal to Pmain and waits. (c) Once each Pi has indicated it
has finished computing its part of the circuit (Checkpoint 0, Section 7.1), Pmain

instructs each worker Pi to commit to her proof output value. Each worker Pi
sends a commitment Ci to Vi. After receiving the commitment, each Vi sends
a signal to Vmain and waits. (c) After each Vi receives a commitment from Pi
(Checkpoint 1), Vmain instructs each Vi to share its randomness, including the
global secret ∆i, with Pi. Pi then checks Vi did not cheat by replaying all of Vi’s
actions and checking that Vi’s messages were well-formed. Pi forwards the result
of this check and ∆i to Pmain, then waits. Pmain ensures that no Vi cheated.
(Checkpoint 2) (c) Finally, Pmain instructs each Pi to open its commitment. If
each Vi successfully verifies the commitment, V is convinced that the overall
proof is valid.

16



are inherited directly from [HYDK21], but embed and match remain to be de-
fined. ZEE did not directly define these two procedures because they were not
needed for a “single epoch” proof execution.

Construction 1 (ZEE PIM ). The ZEE construction [HYDK21] implements
the PIM interface (Definition 1) as follows:

• State is the space of ZEE architectural states. It includes a program
counter, a program memory, a small registry, and a large main memory.
Each memory is represented as a simple array of 32-bit values.

• State is the space of ZEE microarchitecural states. It contains the same
elements as the architectural states, but the representation is different.
First, all values are elements in Zp for prime p rather than 32-bit val-
ues. Second, each memory is represented by a construction called Bub-
bleRAM2 [HK20a] which maintains the memory in a permuted order (in
practice, the permutation order is known to P and unknown to V).

• T is defined by the ZEE ISA and handles the execution of a single ZEE
instruction as defined in [HYDK21]. I.e., T reads an instruction from
memory and performs the corresponding state update, e.g. reading/writing
to main memory, performing arithmetic, or jumping to a new program
location. Note, if the architecture is in the distinguished QED state, then
T is a no-op: the architecture waits in this state until accept is called.

• accept is defined with respect to ZEE’s distinguished QED instruction:
accept reads a final instruction from memory and checks if its op-code is
QED. If so, accept outputs one; else it outputs zero.

• T and accept are the corresponding microarchitectural implementations of
T and accept. This handling is defined in [HYDK21].

• embed and match are defined in Section 7.2.

• extract maps a ZEE microarchitectural state to a corresponding architec-
tural state by reading entries from the microarchitectural memories and
writing these values into a fresh architectural state. The key detail is that
extract removes the permutation implied by BubbleRAM and writes the
values into a simple array.

The fact that these definitions satisfy the PIM coherence conditions follows
from the completeness of the ZEE microarchitecture and from discussion about
embed and match in Section 7.2.

We use Construction 1 to instantiate an epoch parallel ZK protocol:

2Technically, ZEE , as presented in [HYDK21], uses an improvement to BubbleRAM called
BubbleCache. However, for our purposes we use BubbleRAM. We discuss this point at greater
length in Section 7.4.1.

17



Construction 2 (EZEE Proof System). The EZEE proof system is the GC-ZK
protocol [JKO13] instantiated with the ZEE PIM (Construction 1). The EZEE
proof system takes as input a ZEE program. It applies Lemma 1 to transform
the input program into an epoch parallel program. In the protocol, both P and
V dispatch epochs to a set of workers. These workers pairwise execute their
epoch as described in Section 7.1. Crucially, the workers execute their epochs
in parallel. EZEE also dispatches more than one epoch to each worker (see
Section 7.4.2); in this case, the workers execute their epochs sequentially. At
certain steps of the protocol, P and V implement proof checkpoints (Section 7.1):
i.e., they ensure that no worker proceeds to the next protocol step until each
worker finishes the current step.

We prove the following theorem, which proves that Construction 1 is a secure
ZKP system, in Appendix A.

Theorem 1 (EZEE Security). Assuming a collision resistant hash function,
that the prime modulus p > 237, and that blog pc ≥ ρ, Construction 2 is a
sound (with soundness error 2−ρ) and complete malicious-verifier Zero Knowl-
edge proof system that proves arbitrary ZK relations expressed as ZEE pro-
grams [HYDK21] in the OT-hybrid model.

7.1 EZEE Protocol Checkpoints

Recall from Section 3 that the ZEE protocol of [HYDK21] is a GC-ZK-based
protocol [JKO13]. We plug this protocol into the system design described in
Section 6. We approach parallelism carefully, as subtle issues can emerge with
parallel composition of standalone-secure protocols.

Our basic technique for ensuring security is to synchronize the workers’ mes-
sages by introducing checkpoints: once a worker finishes a protocol step, it waits
for its peers to catch up before proceeding. This ensures that we adhere to the
ZEE message flow and the [JKO13] framework, as discussed next and in our
proof of security. Serializing message flow allows for a trivial security reduction
to [JKO13]. Indeed, the only step of the protocol that is run in parallel is
the OT execution. We handle the security issues arising from parallelization
by using a UC-secure [Can01] OT protocol (Ferret OT [YWL+20] was proved
UC-secure by [WYKW21b]).

There are three checkpoints in EZEE .
Checkpoint 0: OT checkpoint. In GC-ZK, after performing all OTs, the

prover commits to her GC output label. Our first checkpoint preserves the
ordering of messages in the GC-ZK protocol by ensuring that all (concurrently
executed) OTs are completed before any worker commits to its output label.

Here and in other checkpoints Pmain orchestrates the synchronization. In our
presentation, workers Pi send the commitments (resp. other messages) directly
to Vi. One can think about them as being routed through Pmain for even more
explicit view of serialization.

Checkpoint 1: commitment checkpoint. In GC-ZK, V sends to P all gar-
bling randomness after P commits her GC output label. Similarly, in EZEE ,

18



each verifier worker send its randomness to its corresponding prover worker.
Crucially, no verifier worker sends its randomness until all prover commitments
are received. Without enforcing this, P learns V’s global secret ∆ for IT-MACs
in advance, allowing P to forge proof values.

Checkpoint 2: replay checkpoint. In GC-ZK, P must replay V’s actions
to ensure that all messages were properly constructed. Only once this check
succeeds does P open her commitment. Similarly, in EZEE , a prover worker
can only open its commitment once every prover worker finishes checking its
epoch. As an additional detail, our P must make sure that each prover worker
receives the same global IT-MAC secret ∆. This ensures that V cannot cheat
during the match step of the proof.

7.2 EZEE ’s embed and match Procedures

EZEE ’s embed procedure is straightforward: it takes as input an architectural
state σ and constructs a microarchitectural state σ by choosing BubbleRAM
permutations in any arbitrary manner; we later refine this choice of permutation.

match(σ, σ′) checks that, if we account for the BubbleRAM permutations π
and π′ applied to the states, then the resulting values are equal. That is, match
is defined as follows:

match(σ, σ′) , (π′ ◦ π−1)(σ)
?
= σ′

where π is the BubbleRAM permutation of σ and π′ is the BubbleRAM permu-
tation of σ′.

In order to build our protocol, P and V workers must implement both embed
and match as part of a secure ZK protocol. For example, embed uses OTs to
allow P to select IT-MACs corresponding a particular input state under a partic-
ular permutation. Thus, the implementation of these procedures is potentially
expensive. We introduce a simple trick that makes the implementation of match
more efficient.

Our trick is based on the fact that for epoch parallelism (Lemma 1), we
only call match in the case where one of the inputs is a freshly embedded input
state. Thus, we adjust the definition of embed such that the permutation used
to initialize BubbleRAM is chosen uniformly. This, in particular, ensures that
in all cases where we call match, the composed permutation π′ ◦ π−1 is also
uniform. Because of this, we need not compute the permutation π′ ◦ π−1 inside
the ZK circuit. Rather, P can securely reveal this uniform permutation to V
without leaking any information. The two parties now locally permute their
IT-MAC shares, achieving the permutation with essentially no cryptographic
overhead. This saves significantly, since permuting inside a circuit requires a
Waksman permutation network [Wak68], which, to permute n values, requires
O(n log n) gates (and hence O(n log n) OTs in the ZEE protocol).

19



7.3 EZEE ’s Main Nodes

As discussed in Section 6, EZEE must fully specify the four types of nodes.
While prover worker and verifier worker essentially execute the ZEE PIM (with
adjustments mentioned throughout this section), Pmain and Vmain must be spec-
ified.

7.3.1 EZEE ’s Pmain

Recall from Section 6 that the epochs should be cheap to generate, deterministic
and equal sized. Pmain achieves these goals as follows.

Per our system design, Pmain executes in cleartext the entire proof. This
cleartext emulator does not model any cryptographic primitives used by ZEE ,
such as BubbleRAM. This fact is important, since the cleartext execution should
finish as quickly as possible. A simple experiment shows that a more complex
cleartext emulator that also models BubbleRAM is about 300× slower than our
faster emulator that does not model BubbleRAM. This emulator can be seen
as a traditional CPU. As it runs, the emulator takes snapshots of intermediate
states σi and calculates the number of needed program instructions.

Recall that Pmain must also send to each worker Pi its partial witness wi. In
ZEE , P’s entire witness is captured via calls to a distinguished INPUT instruc-
tion. As Pmain’s cleartext emulator runs, it captures the witness by recording
a log of all INPUT instruction results. Note that the INPUT instruction is the
only non-deterministic instruction in ZEE ’s ISA. The partial witness wi can be
viewed as a non-determinism log, ensuring that each epoch is deterministic.

Once each epoch is generated, Pmain passes the required information Ii to
the corresponding prover worker Pi. Besides σi and wi, Ii also includes the
number of instructions to be executed in this epoch, and includes two random
seeds used to generate two uniform BubbleRAM permutations πi and πi+1 as
discussed in Section 7.2. Once Pi receives Ii, the worker pair can immediately
begin executing its epoch.
Pmain is also responsible for enforcing Checkpoints 0 and 2. This is simple;

e.g, for Checkpoint 2, each prover worker Pi sends a bit indicating whether all
messages from Vi were properly constructed. It also sends the global secret ∆i

provided by Vi. Pmain then checks that all received bits are one, and checks
that all values ∆i are equal. If so, it instructs every prover worker Pi to open
its commitment to Vi.

7.3.2 EZEE ’s Vmain

EZEE ’s Vmain is responsible for ensuring that each verifier worker Vi is convinced
of the validity of epoch i such that all subproofs can be stitched into a complete
proof. Vmain also distributes the global secret ∆ to each verifier worker Vi.
Vmain is responsible for enforcing Checkpoint 1. That is, each verifier worker

Vi sends a signal to Vmain once it receives a commitment from Pi. Only once all
such signals are received, does Vmain instruct each Vi to send its randomness to

20



Pi. This ensures that all commitments are received before revealing any of V’s
secret randomness.

7.4 Additional Modifications

7.4.1 Potential Leakage due to BubbleCache

By default, ZEE uses BubbleCache [HYDK21] as its ZK RAM. BubbleCache
improves RAM performance by allowing for cache misses. Whenever a cache
miss occurs, ZEE simply executes no-op instructions, allowing BubbleCache
to catch up. Thus, in ZEE equipped with BubbleCache, it is likely that the
number of instructions will differ from the number of needed processor cycles.

In EZEE , Pmain runs its cleartext emulator without modelling the ZK RAM
(see Section 7.3.1), and epochs generated by Pmain contain equal numbers of
instructions. However, because of the cache miss feature of BubbleCache, two
epochs with same number of instructions may require different numbers of cy-
cles. In other words, if EZEE ’s workers use ZEE with BubbleCache and each
worker executes the same number of instructions, V is able to learn the cache
miss rate distribution across epochs, which is not possible in ZEE without epoch
parallelism, cannot be simulated and is not secure.

Therefore, we replace BubbleCache by its predecessor BubbleRAM. Bub-
bleRAM does not allow cache misses, so the number of instructions matches
precisely the number of needed processor cycles. Even in extreme scenarios
BubbleRAM, as compared to BubbleCache, reduces ZEE cycle performance by
at most around 30% [HYDK21]. Moreover, any such overhead is fully paral-
lelized in our system.

7.4.2 Reducing Memory Consumption

The ZEE implementation consumes physical memory proportional to the num-
ber of executed instructions. Thus, for very long running proofs, physical mem-
ory becomes a serious concern. Our experiments show that ZEE ’s P and V
each require over 22GB of physical memory when executing 1 million instruc-
tions using a 222 word ZK RAM. Therefore, näıvely dividing a large execution
into epochs might still exhaust the available hardware resource.

Fortunately, our epoch parallelism technique solves this problem without
needing to significantly re-engineer ZEE . Our idea is to allocate more than one
epoch to a single hardware device. This device executes each of its epochs in
sequence. More specifically, given d devices, we execute on the ith device epochs
i, i + d, i + 2d, etc. Since each epoch runs only a portion of the program, the
workers only need enough memory for that portion. By increasing the number of
epochs, we decrease the size of program portions and reduce per-epoch memory
consumption.

This does not yet completely resolve the issue, since no epoch can proceed
past Checkpoint 1 until all epochs reach Checkpoint 1 (Section 7.1). However,
we ensure that the per-epoch amount of memory that must be stored across

21



Checkpoint 1 is small. Thus, each device runs each of its epochs up to Check-
point 1; when the checkpoint is reached, the device simply reuses its physical
memory to handle its next epoch.

Achieving constant storage across Checkpoint 1 is non-trivial. Specifically,
after Checkpoint 1, Pi must check that all messages received from Vi were
properly constructed (Section 3.1). Thus, näıvely, Pi must store all messages
received from Vi, which are together very large. This can be easily resolved by
computing a hash digest of all messages received from Vi. Upon receiving Vi’s
randomness, Pi reconstructs the messages, computes a new hash digest, and
checks it is equal to the stored constant size digest.

A more difficult problem is in ensuring that Vi’s randomness can be com-
pactly represented. ZEE uses the recent Ferret correlated OT protocol [YWL+20].
For each of her input bits b, correlated OT ensures that P receives either a uni-
form value X ∈ {0, 1}κ or X⊕R where R is a fixed global value. Crucially, each
value X is chosen by the OT protocol. Hence, P cannot locally expand each
value X starting from a compact PRG seed without replaying the OT protocol
in her head. We do not do this because the bottleneck in Ferret performance
is computation. We instead alter the OT protocol such that each value X can
be simply derived from a PRG seed. Specifically, when Ferret OT sends to P
Y ⊕ bR, V also sends X ⊕Y such that P can compute X ⊕ bR. Thus, P can re-
construct all OT values, and hence all messages, by expanding a constant sized
PRG seed. The technique does require added communication, but is needed to
allow for long running proofs.

By the above adjustments, each worker needs to store only a small constant
amount of information (specifically, digests and PRG seeds) across Checkpoint
1.

8 Evaluation

In this section, we describe our EZEE implementation and then we evaluate its
performance. Our evaluation focuses on EZEE ’s proof latency, i.e. the total
end-to-end proof runtime. We compare EZEE to the non-parallel ZEE proof
system, and we give cost breakdowns of the different EZEE components.

8.1 Implementation

We implemented EZEE in C/C++ based on ZEE . Prover and verifier workers
are implemented on top of ZEE ’s backend cryptographic ZK protocol. We
added around 800LOC to account for EZEE specific concerns, such as gluing
and checkpointing. Pmain and Vmain are implemented in around 1400LOC. We
used ZEE ’s frontend compiler and standard library to compile our benchmarks.

Data Availability. We plan to open-source this project to the community.

22



Benchmark # ZEE Instrs. Mem. Words ZEE Latency
sed bug 344,051 213 31.8s
bzip2, 8.1KB image 169,353,341 222 4h 20m*
bzip2, 278.5KB image 5,000,578,992 222 5d 8h 15m*
bzip2, 652.3KB image 11,859,715,862 222 12d 16h 12m*

Figure 3: Benchmark summary. Proof latency for the sed bug experiment were
obtained by running ZEE without epoch parallelism; proof latency for the bzip2
experiments (i.e. those marked with *) were estimated based on sed’s execution
speed because ZEE cannot run these long experiments.

Benchmark ZEE Adjusted Baseline EZEE Speedup EZEE CPU
Latency Latency Latency Clock Rate

sed bug 31.8s N/A 2.8s 11.4× 122.9KHz
bzip2, 8.1KB image 4h 20m* 3h 33m 28s 8m 20s 25.6× 338.4KHz
bzip2, 278.5KB image 5d 8h 15m* 4d 9h 58m 52s 3h 31m 15s 30.1× 394.5KHz
bzip2, 652.3KB image 12d 16h 12m* 10d 4h 46m 16s 8h 37m 9s 28.4× 382.2KHz

Figure 4: Experimental results. ZEE proof latency is explained in Figure 3.
Measurements for ZEE (i.e. those marked with *) were estimated based on sed
performance. The adjusted baseline system is explained in Section 8.3. We list
EZEE ’s total proof latency, its speedup over the adjusted baseline (except for
sed, which is instead compared to ZEE directly), and its clock rate.

8.2 Environment and Benchmarks

We evaluated EZEE on Cloudlab [DRM+19]. We used a network of c6525-25g
machines: 16-core AMD 7302P at 3.00GHz, 128GB ECC Memory, two dual-
port Mellanox ConnectX-5 25Gbps NIC, connected via a central Dell Z9332
switch and multiple Dell S5296F switches to form a star network. See [CLO]
for precise server and network specification.

Due to large number of Cloudlab users, we were only able to allocate 62 of
these nodes. These nodes were arranged as follows: 1 for Pmain, 1 for Vmain, 30
for prover workers Pi, and 30 for verifier workers Vi. Since one EZEE worker
requires significant physical memory, we used only two cores per machine. Thus
we can allocate a maximum of 60 worker cores such that each core has 64GB of
physical memory.

We evaluated our system with two Linux programs:
bzip2 is a benchmark in SPEC2006 [Hen06], an industry-standard, CPU-

intensive benchmark suite. We used bzip2 to compress three different-sized
images. Two are taken from the SPEC2006 input data set. We prove in ZK that
the program terminates normally. This benchmark, in part, demonstrates that
EZEE can achieve long running proofs that were previously impossible with the
unmodified ZEE system. For this benchmark, we instantiate a 222 word ZK
RAM.

23



sed 1.17 contains a segmentation fault bug listed in the Software-artifact
Infrastructure Repository (SIR) [DER05]. Specific inputs cause this version of
sed to invoke the standard function memmove to attempt to move −1 bytes
of memory, leading to a segmentation fault. [HYDK21] showed that ZEE can
prove the existence of this bug in ZK. We used EZEE to achieve the same proof
with lower proof latency. As per [HYDK21], we run this benchmark with a 213

word ZK RAM.
Figure 3 summarizes information about our benchmarks.

8.3 Baseline Evaluation

Ideally, we would use off-the-shelf ZEE as a point of comparison for our bench-
marks. Unfortunately, this is not possible because ZEE consumes physical mem-
ory proportional to the proof runtime. Thus, when we tried to use ZEE to
execute our long running bzip2 benchmarks, we exhausted all available physical
memory and were unable to complete the proof. We were able to fully execute
the much shorter sed benchmark. Figure 3 tabulates ZEE ’s sed performance
and uses this value to extrapolate bzip2 performance.

However, we still wish to have a point of comparison that is not based on
extrapolation. In Section 7.4.2, we explained that epochs can be used to help
reduce memory consumption. We build a non-parallel baseline system by in-
stantiating EZEE using only one worker pair. These two workers sequentially
execute each epoch and thus emulate an unmodified ZEE system that can handle
much longer proofs. To more closely capture the performance of the unmodified
ZEE system, we instantiate this baseline using BubbleCache rather than Bub-
bleRAM. Technically, this is not secure (see discussion in Section 7.4.1), but
ZEE can securely use BubbleCache, and we only want a performance estimate
for ZEE . Note, our parallel EZEE implementation uses BubbleRAM and is
secure.

We tabulate the performance of this adjusted baseline system in Figure 4.
Note that the adjusted baseline system incurs the glue overhead of EZEE (i.e.
calls to match, embed , and a cleartext emulator). Nevertheless and surpris-
ingly, the adjusted baseline outperforms the extrapolated performance of ZEE .
Performance is improved because ZEE performance was extrapolated from the
very short sed proof. Each epoch run by our adjusted baseline is significantly
longer than the entire sed proof (around six million instructions per epoch). As
proofs run longer, the ZEE architecture amortizes some costs, e.g. accesses to
BubbleCache.

8.4 End-to-end Proof Latency

We first evaluate our end-to-end proof latency when using the available 60 cores.
End-to-end latency is measured starting from Pmain’s initialization and ending
when Vmain accepts the proof. Figure 4 tabulates these experimental results. As
compared to our adjusted baseline, EZEE accelerates bzip2 by approximately
28×. The resulting CPU runs at up to 394KHz. Our improvement to sed is less

24



0

200

400

600

800

1000

1200

1400

1600

1800

15× 4 30× 2 60× 1

R
u

n
ti

m
e

(S
ec

o
n

d
s)

Number of Cores × Epochs/Core

Execution
RAM Setup

Glue
Cleartext

Figure 5: EZEE proof latency de-
composition for the bzip2 benchmark
when compressing an 8.1KB image.
Note that because this proof requires
large numbers of instructions, as we
decrease the number of cores, each
core is responsible for more epochs
(see Section 7.4.2).

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16 32 60

R
u

n
ti

m
e

(S
ec

o
n

d
s)

Number of Cores

Execution
RAM Setup

Glue
Cleartext

Figure 6: EZEE proof latency de-
composition for the sed benchmark.
Each core is responsible for only one
epoch.

impressive, since this proof is very short. Hence, the non-parallelizable costs of
our system begin to dominate and reduce our improvement. Nevertheless, we
still accelerate sed by about 11.4×.

We next evaluate how EZEE performance scales with the number of cores.
We ran the bzip2 benchmark to compress an 8.1KB image while varying the
number of utilized cores. Figure 7 plots performance. Recall that, as discussed
in Section 7.4.2, we use epochs to reduce memory consumption. For this bzip2
benchmark, we require 60 epochs to complete the proof without exhausting
memory. Thus, as we reduce the number of cores, we must assign more epochs
to each core. Some proof overhead increases proportionally with number of
epochs per core (see next).

8.5 Proof Latency Breakdown

Next, we break down the costs of our system to identify the proof latency bottle-
necks and the maximum possible performance. Although EZEE parallelizes the
most expensive proof steps, there are still sequential components that cannot
be avoided. We decompose proof latency into three major parts:

• Execution: Each pair of cores must finish its proof execution, i.e., T .
The incurred latency is proportional to the number of instructions that
each core pair executes.

• Glue (and RAM setup): Every worker pair must run embed and match
in ZK. Crucially, the call to embed involves initializing BubbleRAM with
a uniformly permuted RAM state (see Section 7.2), the most expensive

25



0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

R
u

n
ti

m
e

(S
ec

on
d
s)

Number of Cores

bzip2
ideal runtime

Figure 7: We used bzip2 to compress an 8.1KB image inside ZK and measured
proof latency as a function of the number of cores. For n cores, each core
runs 60

n epochs. Ideal runtime is derived from the adjusted baseline runtime
(Section 8.3).

portion of the glue step. The incurred latency is proportional to the
number of epochs that each core executes.

• Cleartext: EZEE ’s Pmain must finish epoch generation before the par-
allel parts of the protocol begin. The incurred latency scales with the total
proof runtime and with the number of epochs.

Figures 5 and 6 depict breakdowns of the above latency costs for different
numbers of cores and for (1) bzip2 with an 8.1KB image and (2) sed. Our plots
separate the cost to initialize BubbleRAM from other glue step costs.

These plots show how EZEE ’s latency decreases as more cores are added.
The expensive execution step is made fast with large numbers of cores. Indeed
for sed with 60 cores, glue, not execution, dominates in terms of latency. Given
more cores, we could further accelerate EZEE for the bzip2 benchmark: based
on the cost of glue, we calculate that the maximum possible clock rate for this
benchmark is ≈ 1.8MHz.

8.6 Network Traffic

Our cores communicate with one another through TCP/IP channels as imple-
mented by [WMK16]. Specifically, each prover worker Pi maintains channels
with Pmain, Pi+1 and Vi (and symmetrically for verifier worker Vi). We mea-
sured network traffic on these channels. Figure 8 tabulates the results. Unsur-
prisingly, traffic is light except between pairs of worker nodes. These workers
communicate via large numbers of oblivious transfers and hence consume sig-
nificant bandwidth.

26



Benchmark Pmain and Pi and Pi and Vi and Vmain and
Pi Pi+1 Vi Vi+1 Vi

sed 33.5KB 129KB 181MB 129KB 608B
bzip2 16.2MB 64.1MB 37.2GB 64.1MB 608B

Figure 8: Bandwidth consumption of different pairs of nodes.

Acknowledgment

This work was supported in part by NSF award #1909769, by a Cisco research
award, by Georgia Tech’s IISP cybersecurity seed funding (CSF) award. This
material is also based upon work supported in part by DARPA under Contract
No. HR001120C0087. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily
reflect the views of DARPA.

References

[AAC+17] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko,
Krzysztof Pietrzak, and Leonid Reyzin. Beyond hellman’s time-
memory trade-offs with applications to proofs of space. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part II, volume 10625 of LNCS, pages 357–379. Springer, Heidel-
berg, December 2017.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 90–108. Springer, Heidelberg, August 2013.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Trans-
parent succinct arguments for R1CS. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of
LNCS, pages 103–128. Springer, Heidelberg, May 2019.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves. In

27



Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer, Heidel-
berg, August 2014.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von neumann
architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 781–796. USENIX Association, August 2014.

[BFH+20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakr-
ishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang.
Ligero++: A new optimized sublinear IOP. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
20, pages 2025–2038. ACM Press, November 2020.

[BMRS20] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter
Scholl. Mac’n’cheese: Zero-knowledge proofs for arithmetic cir-
cuits with nested disjunctions. Cryptology ePrint Archive, Report
2020/1410, 2020. https://eprint.iacr.org/2020/1410.

[Can01] R. Canetti. Universally composable security: a new paradigm for
cryptographic protocols. Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, 2001.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825–1842. ACM Press, October / November 2017.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss,
Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Za-
hur. Geppetto: Versatile verifiable computation. In 2015 IEEE
Symposium on Security and Privacy, pages 253–270. IEEE Com-
puter Society Press, May 2015.

[CLO] CloudLab Documentation. http://docs.cloudlab.us/

hardware.html. Retrieved Sept. 20, 2021.

[DER05] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Sup-
porting controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical Software En-
gineering, 10(4):405–435, 2005.

[DIO20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-
point zero knowledge and its applications. Cryptology ePrint
Archive, Report 2020/1446, 2020. https://eprint.iacr.org/

2020/1446.

28



[DRM+19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David
Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn
Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX Annual
Technical Conference (ATC), pages 1–14, July 2019.

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael
Pass. Sparks: succinct parallelizable arguments of knowledge. In
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 707–737. Springer, 2020.

[FKL+21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostro-
vsky, Xiao Wang, and Chenkai Weng. Constant-overhead zero-
knowledge for ram programs. Cryptology ePrint Archive, Report
2021/979, 2021. https://ia.cr/2021/979.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Or-
landi. Privacy-free garbled circuits with applications to efficient
zero-knowledge. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 191–
219. Springer, Heidelberg, April 2015.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct NIZKs without
PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
Delegating computation: interactive proofs for muggles. In
Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC,
pages 113–122. ACM Press, May 2008.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

[Gro16] Jens Groth. On the size of pairing-based non-interactive argu-
ments. In Marc Fischlin and Jean-Sébastien Coron, editors, EU-
ROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

[Hen06] John L Henning. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

29



[HK20a] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-knowledge
processor with BubbleRAM. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 20, pages
2055–2074. ACM Press, November 2020.

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for dis-
junctive zero-knowledge proofs. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of
LNCS, pages 569–598. Springer, Heidelberg, May 2020.

[HYDK21] David Heath, Yibin Yang, David Devecsery, and Vladimir
Kolesnikov. Zero knowledge for everything and everyone: Fast
ZK processor with cached ORAM for ANSI C programs. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1538–
1556. IEEE, 2021.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Ex-
tending oblivious transfers efficiently. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer,
Heidelberg, August 2003.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM
Press, November 2013.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[KP17] Yashvanth Kondi and Arpita Patra. Privacy-free garbled circuits
for formulas: Size zero and information-theoretic. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, vol-
ume 10401 of LNCS, pages 188–222. Springer, Heidelberg, August
2017.

[NVCF08] Edmund B Nightingale, Kaushik Veeraraghavan, Peter M Chen,
and Jason Flinn. Rethink the sync. ACM Transactions on Com-
puter Systems (TOCS), 26(3):1–26, 2008.

30



[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation. In 2013 IEEE
Symposium on Security and Privacy, pages 238–252. IEEE Com-
puter Society Press, May 2013.

[QDCF16] Andrew Quinn, David Devecsery, Peter M Chen, and Jason
Flinn. Jetstream: Cluster-scale parallelization of information flow
queries. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 451–466, 2016.

[SKW+10] Martin Süßkraut, Thomas Knauth, Stefan Weigert, Ute Schif-
fel, Martin Meinhold, and Christof Fetzer. Prospect: A compiler
framework for speculative parallelization. In Proceedings of the
8th Annual IEEE/ACM International Symposium on Code gen-
eration and Optimization, pages 131–140, 2010.

[VLW+12] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M Chen, Jason Flinn, and Satish Narayanasamy.
Doubleplay: Parallelizing sequential logging and replay. ACM
Transactions on Computer Systems (TOCS), 30(1):1–24, 2012.

[Wak68] Abraham Waksman. A permutation network. J. ACM,
15(1):159–163, January 1968.

[WDC+13] Benjamin Wester, David Devecsery, Peter M Chen, Jason Flinn,
and Satish Narayanasamy. Parallelizing data race detection. ACM
SIGARCH computer architecture news, 41(1):27–38, 2013.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https://

github.com/emp-toolkit, 2016.

[WYKW21a] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In 42nd
IEEE Symposium on Security and Privacy, 2021.

[WYKW21b] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. 2021 IEEE
Symposium on Security and Privacy (SP), 2021.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada
Popa, and Ion Stoica. DIZK: A distributed zero knowledge proof
system. In 27th USENIX Security Symposium (USENIX Security
18), pages 675–692, 2018.

[YSWW20] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang.
Quicksilver: Efficient and affordable zero-knowledge proofs for cir-
cuits and polynomials over any field. Cryptology ePrint Archive,
Report 2021/076, 2020.

31



[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang. Ferret: Fast extension for correlated OT with small com-
munication. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 20, pages 1607–1626. ACM
Press, November 2020.

[ZS02] Craig Zilles and Gurindar Sohi. Master/slave speculative paral-
lelization. In 35th Annual IEEE/ACM International Symposium
on Microarchitecture, 2002.(MICRO-35). Proceedings., pages 85–
96. IEEE, 2002.

A EZEE Proof Sketch

We sketch a proof of Theorem 1:

Proof Sketch. Note, the assumption of a collision resistant hash function and
the requirement that p > 237 are inherited from ZEE security proof.

At a high level, our system simply implements a GC-ZK proof system, as
proved secure by [JKO13]. However, our system does introduce concurrent OTs
which must be properly handled.

We argue six main points:
First, we argue that we can apply our PIM circuit transformation to the

ZEE proof system. This fact follows directly from Lemma 1.
Second, note that our explicit checkpoints (Section 7.1) precisely preserve

the message ordering of the original ZEE protocol, except that the OTs are
executed concurrently by Pi−Vi pairs. Therefore, for now ignoring the parallel
execution of OTs, our protocol is clearly secure under the [JKO13] framework:
we simply run the ZEE protocol on a different – but equivalent – circuit.

Third, we show that it is safe to execute OTs concurrently in our protocol.
This follows from two points:

1. All OT inputs from both P and V are defined before the first OT is issued.

2. The chosen Ferret OT protocol [YWL+20,AAC+17] is UC-secure [Can01].

Fourth, notice that P can now see the output of some OTs (i.e. those OT
outputs corresponding to one epoch) before choosing her input for other OTs
(i.e. those OT inputs corresponding to another epoch). This does not help a
corrupt P in our protocol, since the received labels are all uniformly random
and independent from each other. (Recall that in the [JKO13] protocol, V does
open all such randomness, but this step is not done until all OTs are finished
– cf Checkpoints 0 and 1). We stress that for general protocols, e.g., where V’s
OT inputs may be related to each other, this may not be secure.

Fifth, note that interleaved with these OTs, P sends to V uniform permuta-
tions per our implementation of match (Section 7.2). That is, before performing
the OTs for a given epoch, Pi sends to Vi the permutation πi+1 ◦ π−1i . Simi-
larly to the above point, this extra message preserves ZK because the starting

32



permutation for epoch i+ 1 πi+1 is chosen uniformly, so the composed permu-
tation is also uniform and conveys no useful information to a corrupt V; it is
easily simulatable by a ZK simulator. Alternatively, we can view these uniform
permutations as part of the proved statement, established before the execution
of the protocol, and hence treated as public knowledge.

Sixth, we note that our breakdown of the computation into epochs is inde-
pendent of P’s witness, and hence can be easily simulated given the program
runtime. We recall that, as discussed in Section 7.4.1, this prevents us from
using BubbleCache [HYDK21].

Therefore, our EZEE protocol is secure by reduction to the [JKO13] proof
system.

EZEE is a secure ZKP protocol.

33


