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Abstract. In Private Information Retrieval (PIR), a client wishes to access an
index i from a public n-bit database without revealing any information about i.
Recently, a series of works starting with the seminal paper of Corrigan-Gibbs
and Kogan (EUROCRYPT 2020) considered PIR with client preprocessing and
no additional server storage. In this setting, we now have protocols that achieve
Õ(

√
n) (amortized) server time and Õ(1) (amortized) bandwidth in the two-

server model (Shi et al., CRYPTO 2021) as well as Õ(
√
n) server time and

Õ(
√
n) bandwidth in the single-server model (Corrigan-Gibbs et al., EURO-

CRYPT 2022). Given existing lower bounds, a single-server PIR scheme with
Õ(

√
n) (amortized) server time and Õ(1) (amortized) bandwidth is still feasible,

however, to date, no known protocol achieves such complexities. In this paper
we fill this gap by constructing the first single-server PIR scheme with Õ(

√
n)

(amortized) server time and Õ(1) (amortized) bandwidth. Our scheme achieves
near-optimal (optimal up to polylogarithmic factors) asymptotics in every rele-
vant dimension. Central to our approach is a new cryptographic primitive that
we call an adaptable pseudorandom set: With an adaptable pseudorandom set,
one can represent a large pseudorandom set with a succinct fixed-size key k,
and can both add to and remove from the set a constant number of elements by
manipulating the key k, while maintaining its concise description as well as its
pseudorandomness (under a certain security definition).

1 Introduction

In private information retrieval (PIR), a server holds a public database DB represented
as an n-bit string and a client wishes to retrieve DB[i] without revealing i to the server.
PIR has many applications in various systems with advanced privacy requirements [2,3,
28, 31, 37] and comprises a foundational computer science and cryptography problem,
with connections to primitives such as oblivious transfer [19] and locally-decodable
codes [29,39], among others. PIR can be naively realized by downloading the whole DB
for each query, which is prohibitive for large databases. PIR is classically considered
within the two-server model [11, 12, 14], where DB is replicated on two, non-colluding
servers. For the rest of the paper we use 1PIR to refer to single-server PIR [32] and
2PIR to refer to two-server PIR. Clearly, 1PIR is much more challenging than 2PIR,
but also more useful; it is hard to ensure two servers do not collude and remain both
synchronized and available in practice [6, 35].
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Sublinear time 2PIR. Preliminary PIR works [4, 13, 20–22, 25, 30, 32–34, 38] featured
linear server time and sublinear bandwidth. To reduce server time, several works [1,
5, 17, 18, 23, 28] proposed preprocessing PIR. These approaches require a prohibitive
amount of server storage due to large server-side data structures. Recently a new type
of preprocessing PIR with offline client-side preprocessing was proposed by Corrigan-
Gibbs and Kogan [16]. Introduced as 2PIR, their scheme has sublinear server time and
no additional server storage — the preprocessing phase outputs just a few bits to be
stored at the client, which is modeled as stateful. A simplified, stripped-down1 version
of their protocol, involving three parties, client, server1 and server2, is given below.

– Offline phase. client sends S1, . . . , S√
n to server1. Each Si is independent and

contains
√
n elements sampled uniformly from {0, . . . , n − 1} without replace-

ment. server1 returns database parities p1, . . . , p√n, where pi = ⊕j∈SiDB[j].
These database parities, along with the respective index sets, are then stored by
client locally.

– Online phase (query to index i). In Step 1, client finds a local set Sj that contains i
and sends S′

j = Sj \ {i} to server2. In Step 2, server2 returns parity p′j of S′
j , and

client computes DB[i] = pj ⊕ p′j . In Step 3, client generates a fresh random set
S∗
j that contains i, sends S∗

j \ {i} to server1, gets back its parity p∗j , and replaces
(Sj , pj) with (S∗

j , p
∗
j ⊕ DB[i]). (We note that this last step is crucially needed to

maintain the distribution of the sets at the client side and ensure security of future
queries.)

The complexities of the above protocol are linear (such as client storage and band-
width), but Corrigan-Gibbs and Kogan [16] achieved Õ(

√
n) time and communication

complexities by introducing the notion of pseudorandom sets: Instead of sending the
sets in plaintext, the client sends a Pseudorandom Permutation (PRP) key so that the
server can regenerate the sets as well as check membership efficiently. However, the
first step of the online phase above requires removing element i from the set Sj . This
cannot be done efficiently with a PRP key, so prior work sends Sj \ {i} in plaintext,
incurring O(

√
n log n) online bandwidth. In a followup work, Shi et al. [36] addressed

this issue. They use no PRPs and construct their sets via privately-puncturable pseudo-
random functions [7,10]. Their primitive allows element removal without key expansion
in the online phase, thus keeping a short set description, yielding Õ(1) bandwidth.

Compiling 2PIR into 1PIR. The original protocol by Corrigan-Gibbs and Kogan [16],
their follow-up work [31], as well as Shi et al.’s polylog bandwidth protocol [36], are
all 2PIR protocols. Corrigan-Gibbs et al. [15] showed how to port the 2PIR proto-
cols by Corrigan-Gibbs and Kogan [16, 31] into a 1PIR scheme with the same (amor-
tized2) Õ(

√
n) complexities. Their main technique, is to transform their initial 2PIR

scheme [15] into another 2PIR scheme that avoids communication with server1 in the

1 In particular, in Step 1 of the actual protocol’s online phase, the client sends Sj \ {i} with
probability 1−1/

√
n and Sj \{r}, for a random element r, with probability 1/

√
n, to ensure

no information is leaked about i. Also, ω(log λ) parallel executions are required to guaran-
tee overwhelming correctness in λ, to account for puncturing ’fails’ and when a set Sj that
contains i cannot be found.

2 Amortization is over
√
n queries.
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Table 1. Comparison with related work. Server time and bandwidth are amortized (indicated
with a ∗). All schemes presented have Õ(

√
n) client time, Õ(

√
n) client space and no additional

server space. The amortization kicks in after
√
n queries.

scheme model server time∗ bandwidth∗ assumption

[15] 1PIR Õ(
√
n) Õ(

√
n) LWE

[36] 2PIR Õ(
√
n) Õ(1) LWE

Theorem 52 1PIR Õ(
√
n) Õ(1) LWE

online phase. We call such a 2PIR protocol 2PIR+. Then, they use fully-homomorhpic
encryption (FHE) [24] to execute both offline and online phases on the same server,
yielding 1PIR. To build the crucial 2PIR+ protocol, they make two simple modifica-
tions of the high-level protocol presented before: (i) In the offline phase, instead of
preprocessing

√
n sets, they preprocess 2

√
n sets, where

√
n is the number of queries

they wish to support; (ii) In the final step of the online phase, instead of picking a fresh
random set S∗

j and then communicating with server1, they use a preprocessed set Sh

from above, avoiding communication with server1 in the online phase. Crucially, Sh

must then be updated to contain i, so that the primary sets maintain the same distribu-
tion after each query. After

√
n queries there are no more preprocessed sets left and the

offline phase is run again, maintaining the same amortized complexity.3

Based on the above, it seems that a natural approach to construct a sublinear-time,
polylog-bandwidth 1PIR scheme (which is the central contribution of this paper) would
be to apply the same trick of preprocessing an additional

√
n random sets to the Shi

et al. protocol [36]. But this strategy runs into a fundamental issue: We would have to
ensure that, in Step 3 of the online phase, when we use one of the preprocessed sets, Sh,
to replace the set that was just consumed to answer query i, the set key corresponding to
Sh would have to be updated to contain i. However, this is not supported in the current
construction of pseudorandom sets by Shi et al. [36]—one can only remove elements,
but not add. Our work capitalizes on this observation.

Technical highlight: Adaptable pseudorandom sets. A substantial part of our contri-
bution is to define and construct an adaptable pseudorandom set supporting both ele-
ment removal and addition. In fact, our technique can support addition and removal of
a logarithmic number of elements. At a high level, our primitive can be used as follows.
Key generation outputs a succinct key sk representing the set. Along with algorithms
for enumeration of sk and membership checking in sk, we define algorithms for re-
moving an element x from the set defined by sk and adding an element x into the set
defined by sk, both of which output the updated set’s new key sk′. We believe that this
primitive can also be of independent interest outside of PIR.

Our construction of adaptable PRSets is simple. First, we show how previous punc-
turable pseudorandomsets can be modified to support a single addition (instead of a
single removal). Then, we show that given both capabilities, one can compose pseudo-

3 We pick
√
n concretely for exposition. Looking ahead, our scheme achieves a same smooth

tradeoff where by preprocessing O(Q) sets achieves O(n/Q) amortized online time.
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random set keys to support any number of additions and removals. For the usecase of
PIR, it is sufficient to support exactly one removal and one addition, but the technique
can be extended further.
Our final 2PIR+ and 1PIR protocols. Armed with adaptable pseudorandom sets, a
high-level description of our new 2PIR+ scheme is as follows. Below, APRS denotes
“adaptable pseudorandom set”.

– Offline phase. client sends
√
n + Q APRS keys sk1, . . ., sk√n+Q to server1 and

server1 returns database parities p1, . . . , p√n+Q where pi = ⊕j∈ski
DB[j]. The

database parities are then stored locally by client, together with the respective
APRS keys.

– Online (query to index i). First, client finds APRS key skj that contains i, removes
i from skj and sends sk′j to server2. Then server2 returns parity p′j of sk′j , and
client computes DB[i] = pj ⊕ p′j . Finally, client adds i into key skh (for some
h >
√
n) and replaces (skj , pj) with (skh, ph ⊕ DB[i]).

The above 2PIR+ protocol requires more work to ensure a small probability of failure
and that the server’s view is uniform. Also, again, we can convert the above 2PIR+
protocol to 1PIR with sublinear complexities, using FHE [15]. Note that using FHE
naively for 1PIR would incur Õ(n) server time—thus combining FHE with our above
2PIR+ protocol yields a much better (sublinear) FHE-based 1PIR instantiation.
Our result and comparison with related work. As we discussed, if we require the
server time to be sublinear (with no additional storage), the most bandwidth-efficient
2PIR protocol is the one by Shi et al. [36]. However, the most efficient 1PIR construc-
tion, by Corrigan-Gibbs et al. [15], incurs bandwidth on the order of O(

√
n log n).

In this paper, we fill this gap. Our result (Theorem 52) provides the first 1PIR pro-
tocol with sublinear amortized server time and polylogarithmic amortized bandwidth.

We note that our scheme is optimal up to polylogarithmic factors in every relevant
dimension, given known lower bounds for client-dependent preprocessing PIR where
the server stores only the database [5, 15, 16]. For a comparison with prior sublinear-
server-time-no-additional-server-storage schemes, see Table 1.
Concurrent work. We note independently and concurrently, the notion of 1PIR with
polylogarithmic bandwidth and sublinear server time was studied by Zhou et al. [40].
Their work requires use of a privately programmable PRF, and the sets constructed
do not enjoy the same strong security properties as our adaptable pseudorandom sets.
Specifically, our adaptable sets are defined more generally. One can pick L = O(log(N))
(for sets of size N ) additions or removals to support when generating the set key, and
the set will support any number between 0 and L of adaptive additions/removals, main-
taining a concise description, and with each intermediate key satisfying our security
definitions. Our adaptable PRSets could therefore have more applications due to their
higher flexibility. With respect to the final PIR scheme, the asymptotics achieved in
their scheme are the same as the asymptotics achieved here in every dimension (what
we define as near-optimality).
Notation. We use the abbreviation PPT to refer to probabilistic polynomial time. Unless
otherwise noted, we define a negligible function negl(·) to be a function such that for
every polynomial p(·), negl(·) is less than 1/p(·). We fix λ ∈ N to be a security
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parameter. We will also use the notation 1z or 0z to represent 1 or 0 repeated z times.
For any vector or bitstring V , we index V using the notation V [i] to represent the i-th
element or i-th bit of V , indexed from 0. We will also use the notation V [i :] to denote
V from the i-th index onwards. We use x||y to denote the concatenation of bitsring x
and bitstring y. We use S ∼ D to denote that S is “sampled from distribution” D. We
use the notation [x, y] to represent the set {x, x+1, . . . , y− 1}. Finally, we use Õ(·) to
denote the big-O notation that ignores polylogarithmic terms and any polynomial terms
in the security parameter λ.

2 Background: PIR, Puncturable Functions and Puncturable Sets

We now introduce definitions for 2PIR. We consider 2PIR protocols where only one
server (the second one) participates in the online phase. We refer to these protocols
as 2PIR+. We also formally introduce privately-puncturable PRFs [7] and privately-
puncturable pseudorandom sets [16, 36], both crucial for our work. Moving forward,
“PRF” stands for “pseudorandom function” and “PRS” stands for “pseudorandom set”.

Definition 21 (2PIR+ scheme). A 2PIR+ scheme consists of three stateful algorithms
(server1, server2, client) with the following interactions.

– Offline: server1 and server2 receive the security parameter 1λ and an n-bit database
DB. client receives 1λ. client sends one message to server1 and server1 replies
with one message.

– Online: For any query x ∈ {0, . . . , n − 1}, client sends one message to server2
and server2 responds with one message. In the end, client outputs a bit b.

Definition 22 (2PIR+ correctness). A 2PIR+ scheme is correct if its honest execu-
tion, with any database DB ∈ {0, 1}n and any polynomial-sized sequence of queries
x1, . . . , xQ, returns DB[x1],. . . , DB[xQ] with probability 1− negl(λ).

Definition 23 (2PIR+ privacy). A 2PIR+ scheme (server1, server2, client) is private if
there exists a PPT simulator Sim, such that for any algorithm serv1, no PPT adversary
A can distinguish the experiments below with non-negligible probability.

– Expt0: client interacts with A who acts as server2 and server∗1 who acts as the
server1. At every step t, A chooses the query index xt, and client is invoked with
input xt as its query and outputs its query.

– Expt1: Sim interacts with A who acts as server2 and server∗1 who acts as the
server1. At every step t, A chooses the query index xt, and Sim is invoked with no
knowledge of xt and outputs a query.

We note that in the above definition our adversary A can deviate arbitrarily from
the protocol. Intuitively the privacy definition implies that queries made to server2 will
appear random to server2, assuming servers do not collude (as is the case in our model).
Also, note that the above definition only captures privacy for server2 since by Defini-
tion 21, server1 interacts with client before the query indices are picked.
Privately-puncturable PRFs. A puncturable PRF is a PRF F whose key k can be
punctured at some point x in the domain of the PRF, such that the output punctured key
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kx reveals nothing about Fk(x) [27]. A privately-puncturable PRF is a puncturable PRF
where the punctured key kx also reveals no information about the punctured point x (by
re-randomizing the output Fk(x)). Privately-puncturable PRFs can be constructed from
standard LWE (learning with errors assumption) [7, 8, 10] and can be implemented to
allow puncturing on m points at once [7]. We now give the formal definition.

Definition 24 (Privately-puncturable PRF [7]). A privately-puncturable PRF with do-
main {0, 1}∗ and range {0, 1} has four algorithms: (i) Gen(1λ, L,m) → sk: Outputs
secret key sk, given security parameter λ, input length L and number of points to be
punctured m; (ii) Eval(sk, x) → b: Outputs the evaluation bit b ∈ {0, 1}, given sk
and input x; (iii) Puncture(sk, P ) → skP : Outputs punctured key skP , given sk and
set P of m points for puncturing; (iv) PEval(skP , x) → b: Outputs the evaluation bit
b ∈ {0, 1}, given skP and x.

There are three properties we require from a privately-puncturable PRF: First, func-
tionality preservation, meaning that PEval(skP , x) equals Eval(sk, x) for all x /∈ P .
Second, pseudorandomness, meaning that the values Eval(sk, x) at x ∈ P , appear
pseudorandom to the adversary that has access to skP and oracle access to Eval(sk, ·)
(as long as the adversary cannot query Eval(sk, x) for x ∈ P , in which case it is trivial
to distinguish). Third, privacy with respect to puncturing, meaning that the punctured
key skP does not reveal anything about the set of points that was punctured. Formal
definitions are given in [7] (For convenience, we also include them in our auxiliary
material—see Definitions E2, E1, E3.)

It is important to note here that we will be using a privately-puncturable PRF with
a randomized puncturing algorithm. Although initial constructions were deterministic
[7], Canetti and Chen [10] show how to support randomized puncturing without extra
assumptions and negligible extra cost. Any of the constructions can be extended in the
manner shown in [10] to achieve a randomized puncturing. The randomization will be
important since our add functionality uses rejection sampling.
Privately-puncturable PRSs. A privately-puncturable PRS is a set that contains ele-
ments drawn from a given distribution Dn. (We define a Dn to be used in this work
in Section 3.) The set can be represented succinctly with a key sk. Informally, one can
“puncture” an element x, producing a new key that represents a set without x. Privately-
puncturable PRSs were first introduced by Corrigan-Gibbs and Kogan [16] and were
further optimized by Shi et al. [36]. The formal definition is as follows.

Definition 25 (Privately-puncturable PRS [16, 36]). A privately-puncturable PRS has
four algorithms: (i) Gen(1λ, n) → (msk, sk): Outputs a set key sk and a master key
msk, given security parameter λ and the set domain {0, . . . , n−1}; (ii) EnumSet(sk)→
S: Outputs set S given sk; (iii) InSet(sk, x) → b: Outputs a bit b denoting whether
x ∈ EnumSet(sk); (iv) Resample(msk, x) → skx: Outputs a secret key skx for a
set generated by sk, with x’s membership resampled.4

We require three properties from a privately-puncturable PRS: First, pseudorandom-
ness with respect to a distribution Dn, meaning that Gen(1λ, n) generates a key that

4 Previously this was called “puncture”. We rename it to “resample” for ease of understanding
and consistency with our work.
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represents a set whose distribution is indistinguishable from Dn. Second, functionality
preservation with respect to resampling, informally meaning that the set resulting from
resampling should be a subset of the original set. This means we can only resample
elements already in the set. Third, security in resampling, states that for any (msk, sk)
output by Gen(1λ, n), sk is computationally indistinguishable from a key sk′x where
(msk′, sk′) is a key output by calling Gen(1λ, n) until InSet(sk′, x) → 1 and sk′x is
the output of Resample(msk′, x). Formal definitions can be found in [16, 36]. (See
Definitions A3, A1, A2.)

Privately-puncturable PRSs from privately-puncturable PRFs. Shi et al. [36] con-
structed a privately-puncturable PRS from a privately-puncturable PRF. Let F be a
privately-puncturable PRF and let x ∈ {0, 1}logn be an element of the set domain.
We provide the intuition behind the construction. Consider that we require both con-
cise description and fast membership testing. One first approach to constructing a PRS
could be to define x ∈ S to be F.Eval(sk, x) equals 1. Resampling x would then be
equivalent to puncturing F ’s key at point x. Given x ∈ {0, 1}logn, this approach cre-
ates sets proportional to the size of n/2 in expectation, which is undesirable for our
application; we want sets of size approximately

√
n. To deal with this problem, one can

add additional constraints with respect to suffixes of x. In other words, define x ∈ S
iff F.Eval(sk, x[i :]) equals 1, for all i = [0, log n/2]. Recall x[i :] denotes the suffix
of bitstring x starting at position i. Puncturing in this case would require puncturing at
log n/2 points. While this approach generates sets of expected size

√
n, it introduces

too much dependency between elements in the set: Elements with shared suffixes are
very likely to be together in the set. To deal with this, Shi et al. [36] changed the con-
struction as follows. Let B be an integer greater than 0. Then, let z = 0B ||x. We say
that x ∈ S iff

F.Eval(sk, z[i :]) = 1, for all i = [0, log n/2 +B] .

For clarity we provide a small example here. Suppose n = 16 and that we want to
check the membership of element 7 for set S. First, we represent 7 with log 16 = 4 bits,
72 = 0111. Next, we append B = 4 zeros to the front of the bitstring, so that we have
the string 00000111. Now, we say that 7 ∈ S iff

F.Eval(sk, 00000111) = 1 ∧ F.Eval(sk, 0000111) = 1 ∧ F.Eval(sk, 000111) = 1

∧ F.Eval(sk, 00111) = 1 ∧ F.Eval(sk, 0111) = 1 ∧ F.Eval(sk, 111) = 1 .

Note that adding these B extra checks decreases dependency of set membership be-
tween elements proportional to 2B , since it adds bits unique to each element. As a trade-
off, it decreases the size of the set proportional to 2B . By picking B = ⌈2 log log n⌉,
we maintain the set size to be

√
n/ log2 n while having small dependency between

elements—which can be addressed. We give an overview of our remaining algorithms:

Set enumeration. Let m = logn/2 + B. Naively, set enumeration would take linear
time, since membership for each x ∈ {0, . . . , n − 1} must be checked. Shi et al. [36]
observed that due to the dependency introduced, the set can be enumerated in expected
time Õ(

√
n).
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Resampling. To resample an element x from the set S, we puncture the PRF key at the
m = log n/2 + 2 log log n points that determine x’s membership by running

skx ← F.Puncture(sk, {z[i :]}i=[0,m]) .

By the pseudorandomness of F , this will resample x’s membership in S and x will not
be in the set defined by skx with probability 1− 1/2m = 1− 1/

√
n log2 n. Clearly, we

do not remove elements from the set with overwhelming probability. Aside from that,
there is still dependency among elements, and puncturing x may also remove other
elements in S with some small probability. Shi et al. [36] resolve this by bounding
these probabilities to less than 1/2 and running λ parallel executions of the protocol
and taking a majority. Looking ahead, we will require this too.

Key generation. By Definition 25, key generation for a privately-puncturable PRS out-
puts two keys, key sk that represents the initial set and key msk that is used for punc-
turing. To output msk, we simply call F.Gen(1λ, L,m). To output sk, we pick a set
P of m “useless” strings of L = log n + B bits that start with the 1 bit and output a
second key sk ← F.Puncture(msk, P ). The reason for that is to ensure that resam-
pled keys are indisinguishable from freshly sampled keys as required by the “security
in resampling” property. Therefore we artificially puncture msk in a way that does not
affect the set of elements represented by it, yet we change its format to be the same as
a set key resampled at a given point.

Efficiency and security. To summarize, the scheme described above by Shi et al. [36]
has the following complexities: Algorithms Gen, InSet and Resample run in Õ(1)

time. All keys have Õ(1) size. Algorithm EnumSet runs in expected Õ(
√
n) time.

It satisfies Definitions A1 and A2 assumming privately-puncturable PRFs (that satisfy
Definitions E2, E1, E3).

3 Preliminary 2PIR+ Protocol

We first design a preliminary 2PIR+ protocol (Figure 1) that helps with the exposition
of our final protocol. In this preliminary 2PIR+ protocol the client has linear local stor-
age and the communication is amortized Õ(

√
n). Later, we will convert this 2PIR+

scheme into a space and communication-efficient 2PIR+ protocol (by using our PRS
primitive of Section 4) that will yield our final 1PIR scheme. Crucially, the analysis of
the preliminary protocol is almost the same as that of our final PIR protocol in Section 5.

Overview of our preliminary protocol. Our preliminary protocol works as follows.
During the preprocessing phase, the client constructs a collection T of ℓ =

√
n log3 n

“primary” sets and a collection Z of an additional
√
n “reserve” sets. All sets are sam-

pled from a fixed distribution Dn over the domain {0, . . . , n−1}. While we can use any
distribution for our preliminary protocol, we use a specific one that will serve the use of
PRSs in Section 5. Both T and Z are sent to server1 and client receives the hints back,
as explained in the introduction. Client stores locally the collections T and Z along with
the hints. This is the main difference with our final protocol, where we will be storing
keys instead of the sets themselves. To query an index x during the query phase, the
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client finds some Tj = (Sj , pj) in T such that that Sj contains x, “removes” x and
sends the new set to server2. Then server2 computes the parity of the new set and
sends the parity back, at which point the client can compute DB[x], by xoring server2’s
response with pj . As we will see, element removal in this context means resampling
the membership of x via a Resample algorithm introduced below. To ensure the set
distribution of T does not change across queries, our protocol has a refresh phase, where
element x is “added”, to the next available reserve set, via an Add algorithm introduced
below. The protocol allows for

√
n queries and achieves amortized sublinear server time

over these
√
n queries. After

√
n queries, we re-run the offline phase.

The above protocol can fail with constant probability, as we will analyze in Lemma 31
below. To avoid this, as we indicate at the top of Figure 1, we run log n log log n
parallel instances of the protocol and take the majority bit as the output answer. We
now continue with the detailed description of the building blocks (such as algorithms
Resample and Add) that our protocol uses.
Sampling distribution Dn. For our preliminary protocol we are using the same dis-
tribution as the one induced by the PRS construction by Shi et al. [36] described in
Section 2. This will help us seamlessly transition to our space-efficient protocol in Sec-
tion 5. To sample a set S with elements from the domain {0, . . . , n− 1} we define, for
all x ∈ {0, . . . , n− 1},

x ∈ S ⇔ RO(z[i :]) = 1 for all i ∈ [0,m] ,

where we recall that m = log n/2 + B,B = 2 log log n and z = 0B ||x. Also, RO :
{0, 1}∗ → {0, 1} denotes a random oracle. We use the random oracle for exposition
only—our final construction does not need one. Note for our preliminary protocol, the
adversary cannot call the RO function or otherwise all the sets would revealed. We also
define Dx

n to be a distribution where a set S is sampled from Dn until x ∈ S.
Functions with respect to Dn. We define two functions with respect to the distribution
Dn —these functions will be needed to describe our preliminary scheme. To define
these functions, we first introduce what it means for two elements to be related.

Definition 31. Function Related(x, y), where x, y ∈ {0, . . . , n − 1}, returns a bit
b ∈ {0, 1} where b = 1 (in which case we say that x is related to y) iff x and y share a
suffix of length > log n/2 in their binary representation.

For example Related(1000001, 1100001) = 1 and Related(1000001, 1101111) =
0. Equipped with this, we define our two functions.

– Resample(S, x) → S′: Given x ∈ S as input, define z = 0B ||x. We sample a
uniform bit for each suffix of z, z[i :], for i ∈ [0,m]. For each y ∈ S such that
Related(x, y) (including x), we check if any suffix of y was mapped to 0, and if
so, remove it from S and return this new set.

– Add(S, x) → S′: This function essentially “reprograms” the random oracle such
that RO(z[i :]) = 1 for all i ∈ [0,m], where z = 0B ||x. This may also affect
membership of other elements y ∈ {0, . . . , n − 1} that are not in S, but re-
lated to x with some probability. For us it will suffice that for most of executions,
Add(S, x) = S ∪ {x}. We bound the probability of this formally in Appendix B.
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• Run ω(log λ) instances of the protocol below.
• Output the majority bit maj in Step 4 of Query.
• Use maj as DB[x] in Step 2 of Refresh.
Offline phase: Preprocessing

1. client samples ℓ +
√
n sets from Dn, S1, . . . , Sℓ+

√
n , where ℓ =

√
n log3 n.

2. client sends sets S1, . . . , Sℓ+
√
n to server1 and server1 returns a set of bits

p1, . . . , pℓ+
√
n, where

pi = ⊕j∈Si
DB[j] .

3. client stores pairs of sets/hints

T = {Tj = (Sj , pj)} ,Z = {Zk = (Sk, pk)} ,

where j ∈ [ℓ] and k ∈ [ℓ+ 1, ℓ+
√
n].

Online phase: Query (input is index x ∈ {0, . . . , n− 1})

1. client finds the first Tj = (Sj , pj) in T such that x ∈ Sj . If such Tj is not found,
set j = |T|+ 1 and Tj = (Sj , pj) where Sj ∼ Dn and pj is uniform bit.

2. client sends S′ = Resample(Sj , x) to server2.
3. server2 returns r =

⊕
k∈S′ DB[k].

4. client computes DB[x] = r ⊕ pj .

Online phase: Refresh (executed when j ≤ |T|)

1. Let Z0 = (S0, p0) be the first item from Z.
2. Let S∗

0 = Add(S0, x), and

p∗0 = p0 ⊕ (DB[x] ∧ (x /∈ S0)) .

3. client sets Tj = (S∗
0 , p

∗
0), where Tj was consumed earlier, and removes Z0 from Z.

Fig. 1. Our preliminary 2PIR+ protocol. With n we denote the size of DB and [ℓ] = [1, ℓ].

Efficiency analysis. Our preliminary protocol in Figure 1 is inefficient: The online
server time is Õ(

√
n), client storage and computation is Õ(n) and bandwidth is Õ(

√
n).

It supports
√
n queries, after which we need to re-run the offline phase.

Correctness proof. As we mentioned before, our basic protocol without parallel in-
stances, has constant failure probability, less than 1/2. We prove this through Lemma 31.

Lemma 31 (Correctness of protocol with no repetitions). Consider the protocol of Fig-
ure 1 with no repetitions and fix a query xi. The probability that the returned bit DB[xi]
in Step 4 of Query is incorrect, assuming DB[xi−1] used in Step 2 of Refresh is cor-
rect with overwhelming probability, is less than 1/2.
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We give an overview of the intuition of the proof here and defer the full proof of
Lemma 31 to Appendix B. We distinguish two cases. For the first query x1, there are
three cases where our protocol can fail. The first failure occurs if we cannot find an
index j in T such that x ∈ Sj for Tj = (Sj , pj) (Step 1 of Query). We can bound
this failure by 1/n. The second failure occurs when our Resample function does not
remove x. This happens with probability 1/

√
n log2 n. The third failure case occurs

when we remove x, but also remove an element other than x within Resample. This
can bounded by 1/2 log n.

For every other query xi, i greater than 1, we must consider an additional failure
case which occurs when, in the Refresh phase, we add an element other than x within
Add—which we can also bound by 1/2 log n. Computing the final bound requires more
work. It requires showing that Refresh only incurs a very small additional error prob-
ability to subsequent queries, which can also be bounded at the query step. We argue
this formally in our proof of Theorem 31.
Amplifying correctness via repetition. To increase correctness of our scheme, we run k
parallel instances of our protocol and set the output bit in Step 3 of Query to equal
the majority of DB[x] over these k instance. We run Refresh with the correct DB[x]
computed in Query so that we can apply Lemma 31. Let C be the event, where, over
k instances of our preliminary PIR scheme, more than k

2 instances output the correct
DB[x]. Using a standard lower-tail Chernoff bound, we have that, if p > 1/2 is the
probability DB[x] is correct, C’s probability > 1− exp(− 1

2pk(p−
1
2 )

2) which is over-
whelming for k = ω(log n), satisfying Definition 22. The same technique is used in our
final PIR scheme.
Privacy proof. We now show that our preliminary PIR protocol satisfies privacy, per
Definition 23. Proving privacy relies on two properties we define below. Both proofs
are similar, so we provide only the proof of the less intuitive Property 2.
Property 1: Let S ∼ Dx

n and S′ ∼ Dn. Then Resample(S, x) and S′ are statistically
indistinguishable.
Property 2: Let S ∼ Dn and S′ ∼ Dx

n. Then Add(S, x) and S′ are statistically indistin-
guishable.

Lemma 32. Property 2 holds.

Proof. Consider the set S′ ∼ Dx
n and the set S′′ output as (i) S ∼ Dn; (ii) S′′ ←

Add(S, x). For an arbitrary y in the domain we show that Pr[y ∈ S′] = Pr[y ∈ S′′].
Recall m = 1/2 log n+B. We distinguish two cases.

1. y is not related to x.
– Computing Pr[y ∈ S′]. Let Fi be the event that set S′ is output in the i-th try,

where i = 1, 2, . . . ,∞. It is

Pr[y ∈ S′] =

∞∑
i=1

Pr[y ∈ S′|Fi] Pr[Fi] =
1

2m

∞∑
i=1

Pr[Fi] =
1

2m
.

In the above, Pr[y ∈ S′|Fi] = 1/2m since x being in S′ does not affect y’s
membership. Therefore for y to be a member, all m membership-test suffixes
of y must evaluate to 1 during the i-th try, hence the derived probability.
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– Computing Pr[y ∈ S′′]. Since adding x to S after S is sampled from Dn does
not affect y’s membership, it is Pr[y ∈ S′′] = 1/2m.

2. y is related to x. Assume there are k (out of m) shared membership-test suffixes of
x and y.

– Computing Pr[y ∈ S′]. Again, let Fi be the event that set S′ is output in the
i-th try, where i = 1, 2, . . . ,∞. It is

Pr[y ∈ S′] =

∞∑
i=1

Pr[y ∈ S′|Fi] Pr[Fi] =
1

2m−k

∞∑
i=1

Pr[Fi] =
1

2m−k
.

In the above, Pr[y ∈ S′|Fi] = 1/2m−k. This is because x being in S′ does
affect y’s membership. Therefore for y to be a member, all remaining m − k
membership-test suffixes of y must evaluate to 1 during the i-th try, hence the
derived probability.

– Computing Pr[y ∈ S′′]. Adding x to S after S is sampled from Dn sets k
membership-test suffixes of y to 1. Therefore for y to be a member of S′′,
the remaining membeship-test suffixes have to be set to 1 before x is added,
meaning Pr[y ∈ S′′] = 1/2m−k.

Therefore the distributions are identical.

Given these two properties, our proof sketch goes as follows. For the first query, we
pick an entry Tj = (Sj , pj) from T whose Sj contains the index x we want to query.
Since Sj is the first set in T to contain x, Sj ∼ Dx

n. By Property 1, since what server2
sees is S′ = Resample(Sj , x), S′ is indistinguishable from a random set drawn from
Dn, and therefore, the query reveals nothing about the query index x to server2.

For every other query, we argue that the Refresh step maintains the distribution of
T. Note that after a given set Sj is used, re-using it for the same query or a different
query could create privacy problems. That is why after each query, we must replace
Sj with an identically distributed set. By Property 2, Sj and Add(S0, x) are identically
distributed. Then, the swap maintains the distribution of sets in T and therefore the view
of server2 is also simulatable without x. These arguments form the crux of the proof of
Theorem 31; we provide the full proof in Appendix B.

Theorem 31 (Preliminary 2PIR+ protocol). The 2PIR+ scheme in Figure 1 is cor-
rect (per Definition 22) and private (per Definition 23) and has: (i) Õ(n) client storage
Õ(n) client time; (ii) Õ(

√
n) amortized server time and no additional server storage;

(iii) Õ(
√
n) amortized bandwidth.

4 Adaptable Pseudorandom Sets

In this section, we introduce the main primitive required for achieving our result, an
adaptable pseudorandom set. The main difference from a privately-puncturable PRS
introduced in Section 2 is the support for the “add” procedure, as well as any logarithmic
(in the set size) number of additions or removals, as opposed to a single removal. This
will eventually allow us to port the protocol from Section 3 into a 1PIR protocol that
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has much improved complexities, such as sublinear client storage and polylogarithmic
communication. We now give the formal definition and then we present a construction
that satisfies our definition.

Definition 41 (Adaptable PRS). An adaptable PRS has five algorithms: (i) Gen(1λ, n)→
(msk, sk): Outputs our set’s key sk and master key msk, given security parameter λ
and set domain {0, . . . , n − 1}; (ii) EnumSet(sk) → S: Outputs set S given sk; (iii)
InSet(sk, x)→ b: Outputs bit 1 iff x ∈ EnumSet(sk); (iv) Resample(msk, sk, x)→
skx: Outputs secret key skx that corresponds to an updated version of the set (initially
generated by sk) after element x is resampled; (v) Add(msk, sk, x) → skx: Outputs
secret key skx that corresponds to an updated version of the set (initially generated by
sk) after element x is added.

Note that our interface differs from privately-puncturable PRSs introduced in Sec-
tion 2 in that our resample and add operations are dependent on both msk and sk; we
will see why below.

Security definitions for adaptable PRSs. Our adaptable PRS must satisfy five defini-
tions. Three of them, functionality preservation with respect to resampling, pseudoran-
domness with respect to a distribution Dn and security in resampling are identical to the
equivalent definitions from privately-puncturable PRSs, namely Definitions A3, A1, A2
in Appendix A. We give two additional definitions in Appendix A (definitions A5
and A4) that relate to addition. First, functionality preservation with respect to addi-
tion, meaning that adding always yields a superset of the original set and can only
cause elements related to x (which are few) to be added to the set. Second, security in
addition, meaning that generating fresh keys until we find one where x belongs to the
set is equivalent to generating one fresh key and then adding x into it.

Intuition of our construction: Introduce an additional key. Our core idea is to use
two keys sk[0] and sk[1] and define the evaluation on the suffixes that determines mem-
bership as the XOR of F.Eval(sk[0], ·) and F.Eval(sk[1], ·). In this way, we can add
to one key, and resample the other, independently. Note that this idea can support any
fixed number of additions or resamplings (removals), by adding extra PRF keys. This
simple construction circumvents many problems related with trying to perform multiple
operations on the same key. Each key has one well defined operation. This also makes
showing security and privacy straight-forward to argue.

We present a summary of our construction below. The detailed implementation is in
Figure 3 in Appendix C.

Key generation. Let F be a privately-puncturable PRF. For key generation, we run
F.Gen twice, outputting msk[0] and msk[1]. After puncturing on m “useless” points
(for reasons we explained in Section 2), we output sk[0] and sk[1]. And finally we
output sk = (sk[0], sk[1]) and msk = (msk[0],msk[1]).

Set membership and enumeration. For each x ∈ {0, . . . , n− 1} we define

x ∈ S ⇔ F.Eval(sk[0], z[i :])⊕ F.Eval(sk[1], z[i :]) = 1 for all i ∈ [0,m] ,
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where we recall m = log n/2 + B,B = 2 log log n and z = 0B ||x. For enumeration,
we use the same algorithm as Shi et al. [36], with the difference that evaluation is done
as the XOR of two evaluations, as above.
Resampling. Resampling works exactly as resampling in privately-puncturable PRSs
(by calling F.Puncture) and uses, without loss of generality, msk[1] as input. The
output replaces only the second part of sk—thus we require sk as input so that we can
output the first part intact.
Addition. To add an element x, we call F.Puncture on input msk[0], and then check
x’s membership on the punctured key. If x was added, we output the punctured key,
else, we try puncturing from the master key again, until x is resampled into the set. This
is the reason why it is necessary to have a rerandomizable puncture operation. Naively,
this algorithm takes Õ(

√
n) time, but we show in the Appendix how to reduce this to

Õ(1) by leveraging the puncturable PRF used. Our final theorem is Theorem 41, and
the construction and proof can be found in Appendix C.

Theorem 41 (Adaptable PRS construction). Assuming LWE, the scheme in Fig-
ure 3 satisfies correctness, pseudorandomness with respect to Dn (Definition A1), func-
tionality preservation in resampling and addition (Definitions A3 and A5), security in
resampling and addition (Definitions A2 and A4), and has the following complexities:
(i) keys sk and msk have Õ(1) size; (ii) membership testing, resampling and addition
take Õ(1) time; (iii) enumeration takes Õ(

√
n) time.

5 More Efficient 2PIR+ and Near-Optimal 1PIR

We now use adaptable PRSs introduced in the previous section to build a more efficient
2PIR+ scheme (one with Õ(

√
n) client storage and Õ(1) communication complexity)

which can be compiled, using FHE, into a 1PIR scheme with the same complexities,
as we explained in the introduction. The main idea is to replace the actual sets, stored
by the client in their entirety in our preliminary protocol, with PRS keys that support
succinct representation, addition and removal. In particular, our proposed protocol in
Figure 2 is identical to our preliminary protocol in Figure 1 except for the following
main points: (i) In the offline phase, instead of sampling sets from Dn, we generate
keys (msk, sk) for adaptable PRSs that correspond to sets of the same distribution Dn.
(ii) In the online phase, we run Resample and Add defined in the adaptable PRS.
These have exactly the same effect in the output set, except the operations are done on
the set key not the set. (iii) We can check membership efficiently using InSet. We now
introduce Theorem 51.

Theorem 51 (Efficient 2PIR+ protocol). Assuming LWE, the 2PIR+ scheme in Fig-
ure 2 is correct (per Definition 22) and private (per Definition 23) and has: (i) Õ(

√
n)

client storage and Õ(
√
n) client time; (ii) Õ(

√
n) amortized server time and no addi-

tional server storage; (iii) Õ(1) amortized bandwidth.

Unlimited queries. Our scheme can handle
√
n queries but can be extended to un-

limited queries: We just rerun the offline phase after all secondary sets are used. This
maintains the complexities from Theorem 51.
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• Run ω(log λ) instances of the protocol below.
• Output the majority bit maj in Step 4 of Query.
• Use maj as DB[x] in Step 2 of Refresh.
Offline phase: Preprocessing

1. client generates ℓ +
√
n PRSet keys

(msk1, sk1), . . . , (mskℓ+
√
n, skℓ+

√
n)

with Gen(1λ, n), ℓ =
√
n log3 n.

2. client sends keys sk1, . . . , skℓ+
√
n to server1 and server1 returns a set of bits

p1, . . . , pℓ+
√
n, where

pi = ⊕j∈EnumSet(ski)DB[j] .

3. client stores pairs of keys/hints

T = {Tj = (mskj , skj , pj)} ,Z = {Zk = (mskk, skk, pk)} ,

where j ∈ [ℓ] and k ∈ [ℓ+ 1, ℓ+
√
n].

Online phase: Query (input is index x ∈ {0, n− 1})

1. client finds the first Tj = (mskj , skj , pj) in T such that InSet(skj , x) = 1.
If such Tj is not found, set j = |T| + 1 and Tj = (mskj , skj , pj) where
Gen(1λ, n)→ (mskj , skj) and pj is uniform bit.

2. client sends sk′ ← Resample(mskj , skj , x) to server2.
3. server2 returns r =

⊕
k∈EnumSet(sk′) DB[k].

4. client computes DB[x] = r ⊕ pj .

Online phase: Refresh (executed when j ≤ |T|)

1. Let Z0 = (msk0, sk0, p0) be the first item from Z.
2. Let (mskx0 , sk

∗
0)← Add(msk0, sk0, x) and

p∗0 = p0 ⊕ (DB[x] ∧ (¬InSet(x, sk0))) .

3. client sets Tj = (mskx0 , sk
∗
0 , p

∗
0), where Tj was consumed earlier, and removes

Z0 from Z.

Fig. 2. Our 2PIR+ for n-bit DB using adaptable PRS (Gen, EnumSet, InSet, Resample, Add).

Trade-offs in client space and server time. Our scheme enjoys a trade-off between
client space and server time. One can increase the number of elements of each PRSet
to n/Q. This would change the number of sets required for our scheme to Q, and
consequently our scheme would enjoy Q client space, at the expense of requiring n/Q
online server time. This tradeoff holds in the other direction as well (increasing client
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space reduces online server time). In any case, the product of client space and online
server time must equal n, as shown by Corrigan-Gibbs et al. in [16].
From 2PIR+ to 1 PIR with same complexities. As detailed in [15], we can port our
2PIR+ to 1PIR by merging server1 and server2 and executing the work of server1
using FHE. We require a symmetric key FHE scheme that is gate-by-gate [15], where
gate-by-gate means that encrypted evaluation runs in time Õ(|C|) for a circuit of size
|C|. As noted in [15], this is a property of standard FHE based on LWE [9, 26]. With
this, we can use a batch parity Boolean circuit C that, given a database of size n and l
lists of size m, C computes the parity of the lists in Õ(l ·m + n) time [15]. The last
consideration is how to perform the set evaluation under FHE. This can be done using
slight modifications to our evaluation algorithm and using oblivious sorting. We discuss
this further in Appendix D. Our main result, Theorem 52, is as follows.

Theorem 52 (Near-Optimal 1PIR protocol). Assuming LWE, there exists an 1PIR
scheme that is correct (per Definition 22) and private (per Definition 23) and has: (i)
Õ(
√
n) client storage and Õ(

√
n) client time; (ii) Õ(

√
n) amortized server time and

no additional server storage; (iii) Õ(1) amortized bandwidth.

Our proof for both theorems introduced are located in Appendix D, but follow
closely from our adaptable pseudorandom set properties and the proof from our pre-
liminary protocol, along with the tools introduced above.
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A Definitions

A.1 Additional Definitions for Adaptable PRSs

Our adaptable PRS primitive will satisfy the following definitions.

Definition A1 (Pseudorandomness with respect to some distribution Dn for private-
ly-puncturable PRSs [36]). A privately-puncturable PRS scheme (Gen, EnumSet, In-
Set, Resample) satisfies pseudorandomness with respect to some distribution Dn if
the distribution of EnumSet(sk), where sk is output by Gen(λ, n), is indistinguish-
able from a set sampled from Dn.

Definition A2 (Security in resampling for privately-puncturable PRSs [36]). A privately-
puncturable PRS scheme (Gen, EnumSet, InSet, Resample) satisfies security in re-
sampling if, for any x ∈ {1, . . . , n − 1}, the following two distributions are computa-
tionally indistinguishable.

– Run Gen(λ, n)→ (sk,msk), output sk.
– Run Gen(λ, n)→ (sk,msk) until InSet(sk, x)→ 1, output skx = Resample(msk, x).

Definition A3 (Functionality preservation in resampling for privately-puncturable PRSs
[36]). We say that a privately-puncturable PRS scheme (Gen, EnumSet, InSet, Re-
sample) satisfies functionality preservation in resampling with respect to a predicate
Related if, with probability 1 − negl(λ) for some negligible function negl(.), the
following holds. If Gen(1λ, n) → (sk,msk) and Resample(msk, x) → skx where
x ∈ InSet(sk) then

1. EnumSet(skx) ⊆ EnumSet(sk);
2. EnumSet(skx) runs in time no more than EnumSet(sk);
3. For any y ∈ EnumSet(sk)\EnumSet(skx), it must be that Related(x, y) = 1.

Definition A4 (Security in addition for adaptable PRSs). We say that an adaptable
PRS scheme (Gen, EnumSet, InSet, Resample, Add) satisfies security in addition
if, for any x ∈ {0, . . . , n − 1}, the following two distributions are computationally
indistinguishable.

– Run Gen(1λ, n) → (sk,msk) until InSet(sk, x) → 1. Let msk[0] = null and
output (msk, sk).

– Run Gen(1λ, n)→ (sk,msk). Output (mskx, skx)← Add(msk, sk, x).

Definition A5 (Functionality preservation in addition for adaptable PRS). We say that
an adaptable PRS scheme (Gen,EnumSet, InSet,Resample,Add) satisfies func-
tionality preservation in addition with respect to a predicate Related if, with prob-
ability 1 − negl(λ) for some negligible function negl(.), the following holds. If
Gen(1λ, n)→ (sk,msk) and Add(msk, sk, x)→ skx then

– EnumSet(sk) ⊆ EnumSet(skx);
– For all y ∈ EnumSet(skx) \ EnumSet(sk) it must be that Related(x, y) = 1.
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B Correctness Lemmata

See below the proof of Lemma 31. We then use it to prove Theorem 31.

Proof. Recall that we fix B = 2 log log n. As alluded to in Section 3, we can split our
failure probability in three cases:

– Case 1: xi is not in any primary set that was preprocessed.
– Case 2: The resampling does not remove xi.
– Case 3: Resampling removes more that just xi from the set.

Case 1: We first note that, from our distribution Dn, for any x ∈ {0, . . . , n − 1}, we
have that, for S ∼ Dn,

Pr[x ∈ S] =

(
1

2

) 1
2 logn+B

=
1√
n

(
1

2

)B

=
1

2B
√
n
.

Then note that the expected size of S is the sum of the probability of each element being
in the set, i.e.,

E [|S|] = E

[
n−1∑
x=0

1

2B
√
n

]
=

n−1∑
x=0

E
[

1

2B
√
n

]
=

√
n

2B
≤

√
n

(log n)2
.

We can conclude that the desired probability is

Pr[x /∈ ∪i∈[1,l]Si] =

(
1− 1√

n(log n)2

)√
n(logn)3

≤
(
1

e

)logn

≤ 1

n
,

where ℓ =
√
n log3 n and S1, . . . , Sℓ ∼ (Dn)

ℓ.
Case 2: Assuming there is a set S such that xi ∈ S, by construction of Resample,
it is easy to see that the probability that xi is not removed from S is equivalent to a
Bernoulli variable that is 1 with probability p = 1√

n·2B , since we toss 1/2 log n + B

coins, and x is not removed only if all of these coins evaluate to 1. Therefore

Pr[xi ∈ Resample(S, xi)] =
1√

n · 2B
≤ 1
√
n log2 n

.

Case 3: Note that for any k less than log n, there are exactly 2logn−k − 1, or less than
2logn−k strings in {0, 1}logn, that are different than x share a suffix of length ≥ k with
x. Note that since x is in the set, for any k, the probability that a string y that has a
common suffix of length exactly k with x is included in the set is the chance that its
initial B bits and its remaining bits not shared with x evaluate to 1, namely, for any k
less than log n and y = {0, 1}logn−k||x[log n− k :] we have that:

Pr[y ∈ S] =
1

2B2logn−k
.

Let Nk be the set of strings in the set that share a longest common suffix with x of
length k. Then, since we know that there are at most 2logn−k such strings, we can say
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that for any k, the expected size of Nk is

E [|Nk|] ≤ E

2log n−k∑
x=1

1

2B2logn−k

 =

2log n−k∑
x=1

E
[

1

2B2logn−k

]

= 2logn−k 1

2B2logn−k
=

1

2B
.

Then, for our construction, where we only check prefixes for k greater than (1/2) log n,
we can find that the sum of the expected size of Nk, for each such k is

E

 logn−1∑
k= 1

2 logn+1

|Nk|

 =

logn−1∑
k= 1

2 logn+1

E [|Nk|] ≤
(
1

2
log n− 1

)
1

2B

=
log n− 2

2(log n)2
≤ 1

2 log n
.

Clearly, we can bound the probability of removing an element along with xi by the
probability that there exists a related element to xi in the set, by previous discussion in
Section 3. Then, given each bound above, assuming that the previous query was correct
and that the refresh phase maintains the set distribution, we see that the probability that
the returned bit DB[xi] is incorrect for query step i is

Pr[DB[xi] is incorrect] ≤ 1

n
+

1
√
n log2 n

+
1

2 log n
≤ 3

2 log n
<

1

3
,

for n ≥ 32.

Now we introduce a new lemma that will help us prove Theorem 31. This lemma
will bound the probability that Add does not work as expected. The intuition here is that,
just like Resample can remove elements (already in the set) related to the resampled
element, Add can add elements (not in the set) related to the added element. Below, we
are bounding the number of elements that are not x and are expected to be added to the
set when we add x. As we explained in Section 3, this is a “failure case”, since it means
that our set will not be what we expect.

Lemma B1 (Adding related elements). For S ∼ Dn, and any x ∈ {0, . . . , n− 1}, the
related set Salmost,x is defined as

Salmost,x = {y | y ∈ Add(S, x) \ (S ∪ {x})} .

Then the expected size of Salmost,x is at most 1
2 logn .

Proof. Note that for any k less than log n, there are less than 2logn−k strings in {0, 1}logn

that share a suffix of length greater than or equal to k with x that do not equal x. The
probability that a string y that has a common suffix of exactly k with x is included in
Salmost,x is the chance that its initial B bits and its remaining bits not shared with x
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evaluate to 1. Namely, let us say that

Salmost,x =
⋃

Nk ,

for any k ∈ N that is less than log n and more than (1/2) log n. We define each Nk as

Nk = {y : y = {0, 1}logn−k||x[log n− k :]} .

Since this is the same size as the Nk in Case 3 of Lemma 31, and we are iterating over
the same k, the expected size of Salmost,x is

E [|Salmost,x|] ≤
1

2 log n
.

We are now equipped with all the tools we need to prove Theorem 31. We prove it
below:

Proof. We first prove privacy of the scheme, then proceed to prove correctness. The
asymptotics follow by construction and were argued in Section 3.
Privacy. Privacy for server1 is trivial. It only ever sees random sets generated com-
pletely independent of the queries and is not interacted with online. We present the
privacy proof for server2 below.

Privacy with respect to server2, as per our definition, must be argued by showing
there exists a stateful algorithm Sim that can run without knowledge of the query and
be indistinguishable from an honest execution of the protocol, from the view of any
PPT adversary A acting as server2 for any protocol server∗1 acting as server1. First,
we note that the execution of the protocol between client and server2 is independent of
client’s interaction with server1. client generates sets and queries server1 in the offline
phase for their parity. Although this affects correctness of each query, it does not affect
the message sent to server2 at each step of the online phase, since this is decided by
the sets, generated by client. Then, we can rewrite our security definition, equivalently,
disregarding client’s interactions with server1.

We want to show that for any query qt for t ∈ [1, Q], qt leaks no information about
the query index xt to server2, or that interactions between client and server2 can be
simulated with no knowledge of xt. To do this, we show, equivalently, that the following
two experiments are computationally indistinguishable.

– Expt0: Here, for each query index xt that client receives, client interacts with
server2 as in our PIR protocol.

– Expt1 In this experiment, for each query index xt that client receives, client ignores
xt, samples a fresh S ∼ Dn and sends S to server2.

First we define an intermediate experiment Expt∗1.

– Expt∗1 : For each query index xt that client receives, client samples S ∼ Dxt
n .

client sends S′ = Resample(S, xt) to the server2.
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By Property 1 defined in Section 3, S′ is computationally indistinguishable from a fresh
set sampled from Dn. Therefore, we have that Expt∗1 and Expt1 are indistinguishable.
Next, we define another intermediate experiment Expt∗0 to help in the proof.

– Expt∗0: Here, for each query index xt that client receives, client interacts with
server2 as in our PIR protocol, except that on the refresh phase after each query,
instead of picking a table entry Bk = (Sk, Pk) from our secondary sets and running
S′
k = Add(Sk, xt), we generate a new random set S ∼ Dxt

n and replace our used
set with sk instead.

First, we note that by Property 2 defined in Section 3, it follows directly that Expt0 and
Expt∗0 are computationally indistinguishable. Now, we continue to show that Expt∗0 and
Expt∗1 are computationally indistinguishable. At the beginning of the protocol, right
after the offline phase, the client has a set of |T | primary sets picked at random. For
the first query index, x1, we either pick an entry (Sj , pj) ∈ T from these random sets
where x1 ∈ Sj or, if the that fails, we run Sj ∼ Dx1

n .
Then, we send to server2 S′

j = Resample(Sj , x). Note that the second case is
trivially equivalent to generating a random set with x1 and resampling it at x1. But in
the first case, note that T holds a sets sampled from Dn in order. As a matter of fact,
looking at it in this way, Sj is the first output in a sequence of samplings that satisfies
the constraint of x being in the set. Then, if we consider just the executions from 1
to j, this means that picking Sj is equivalent to sampling from Dx1

n , by definition.
Then, by Property 1, it follows that the set that the server sees in the first query is
indistinguishable from a freshly sampled set.

It follows from above that for the first query, q1, Expt∗0 is indistinguishable from
Expt∗1. To show that this holds for all qt for t ∈ [1, Q] we show, by induction, that
after each query, we refresh our set table T to have the same distribution as initially.
Then, by the same arguments above, it will follow that every query qt in Expt∗0 is
indistinguishable from each query in Expt∗1.

Base Case. Initially, our table T is a set of |T | random sets sampled from Dn inde-
pendently from the queries, offline.

Inductive Step. After each query qt, the smallest table entry (Sj , pj) such that xt ∈
Sj is replaced with a set sampled from Dxt

n . Since the sets are identically distributed,
then it must be that the table of set keys T maintains the same distribution after each
query refresh.

Since our set distribution is unchanged across all queries, then using the same argu-
ment as for the first query, each query qt from client will be indistinguishable from a
freshly sampled set to server2. Then, we can say that Expt∗1 is indistinguishable from
Expt∗0. This concludes our proof for experiment indistinguishability. Since we have de-
fined a way to simulate our protocol without access to each xt, it follows that we satisfy
server2 privacy for any PPT non-uniform adversary A.

Correctness. To show correctness, we consider a slightly modified version of the
scheme: After the refresh phase has used the auxiliary set (Sj , pj), the client stores
(Sj , pj , zj), where zj is the element that was added to Sj as part of the protocol—for
the sets that have not been used, we simply set zj = null. Note that the rest of the
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scheme functions exactly as in Figure 1 and therefore never uses zj . It follows, then,
that the correctness of this modified scheme is exactly equivalent to the correctness
of the scheme we presented. Note that the query phase will fail to output the correct
bit only on the following four occasions: (Case 1). xi is not in any primary set that
was preprocessed. (Case 2). The resampling does not remove xi (Case 3). Resampling
removes more that just xi from the set. (Case 4). Parity is incorrect because Add added
a related element during the refresh phase.

Case 1: From the privacy proof above, we know that refreshing the sets maintains
the primary set distribution. Then, we can use the same argument as in Lemma 31 and
say that, for a query xi, for all i ∈ {1, . . . , Q}, we have:

Pr[xi /∈ ∪j∈[1,l]Sj ] =

(
1

e

)logn

≤ 1

n
.

Case 2: Since Resample is independent from the set (just tossing random coins), we
can again re-use the proof of Lemma 31 and say that, for any xi, for all i ∈ {1, .., Q},
we have:

Pr[xi ∈ Resample(S, xi)] ≤
1√

n(log n)2
.

Case 3: Case 3 requires us to look into our modified scheme. For the initial primary
sets, the probability of removing an element related to the query is exactly the same as
in Case 3 for our Lemma 31. However, for sets that were refreshed, we need to consider
the fact that these are not freshly sampled sets, in fact, they are sets that were sampled
and then had an Add operation performed on them. For a given query xi, let Sj be the
first set in T that contains xi. Let us denote PuncRel to be the event that we remove
more than just xi when resampling Sj on xi. We split the probability of PuncRel as

Pr[PuncRel] = Pr[PuncRel | Related(xi, zj) = 1 ∧ xi ̸= zj ]× Pr[Related(xi, zj) = 1 ∧ xi ̸= zj ]

∪ Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ]× Pr[Related(xi, zj) = 0 ∨ xi = zj ] .

The first term corresponds to the case where the added element in a previous refresh
phase, zj , is related to the current query element, xi. Note that if xi equals zj , we get
the same distribution as the initial Sj by Property 2 in Section 3. Then, we consider
only the case where zj does not equal xi. Note that we can bound

Pr[Related(xi, zj) = 1 ∧ xi ̸= zj ] ≤ Pr[Related(Sj , zj) = 1] ≤ 1

2 log n
.

Above, we use Related(Sj , zj) to denote the probability that there is any related
element to zj (not equal to zj) in Sj . We can bound this event by Lemma 31 (see Case
3). Then, we have

Pr[PuncRel | Related(xi, zj) = 1 ∧ xi ̸= zj ]×Pr[Related(xi, zj) = 1 ∧ xi ̸= zj ] ≤
1

2 log n
.
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For the second term of our initial equation, since Related(xi, zj) is 0 or xi equals
zj , note that our probability of resampling incorrectly is either independent of zj , since
zj does not share any prefix with xi and therefore the resampling cannot affect zj or
its related elements in any way, by definition; or it is identical to the probability of the
initial set, by Property 2. Therefore, we have that the probability of removing a related
element is at most the probability of removing a related element in the original set,
which by Lemma 31 is

Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ] ≤
1

2 log n
.

And, therefore, it follows that

Pr[PuncRel | Related(xi, zj) = 0 ∨ xi = zj ]× Pr[Related(xi, zj) = 0 ∨ xi = zj ] ≤
1

2 log n
.

Finally, we have that Pr[PuncRel] ≤ 1
2 logn + 1

2 logn ≤
1

logn .
Case 4: Lastly, we have the case that query xi is incorrect because the parity pj from the
set Sj where we found xi is incorrect. This will only happen when we added elements
related to zj when adding zj during the refresh phase. We denote this event AddRel.
By Lemma B1, we have that

Pr[AddRel] ≤ 1

2 log n
.

We can conclude that at each query xi, i ∈ {1, . . . , Q}, assuming the previous query
was correct, it follows that the probability of a query being incorrect, such that the
output of the query does not equal DB[xi], is:

Pr[incorrect query] ≤ 1

n
+

1
√
n log2 n

+
1

log n
+

1

2 log n
≤ 2

log n
≤ 1

3
for n > 405.

Because at each step we run a majority vote over ω(log n) parallel instances, we can
guarantee that, since our failure probability is less than 1

2 , each instance will get back
the correct DB[xi] with overwhelming probability.

C PRS Contructions and Proofs

This section presents a construction and proof for the Adaptable PRS, as introduced and
defined in Section 4. We present a construction of our Adaptable PRS in Figure 3. In
the proof, we use a function time: f(·) → N that takes in a function f(·) and output
the number of calls made in f(·) to any PRF function. We also prove Theorem 41 for
our construction in Figure 3. We prove Thorem 41 below:

Proof. We begin the proof by showing that our scheme in Figure 3 satisfies the defini-
tions in Appendix A. We then argue efficiencies.
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Let B = 2 log log n, m = 1
2 log n+B.

• Gen(1λ, n)→ (sk,msk) :

1. Let msk0 ← PRF.Gen(1λ, log n+B,m), msk1 ← PRF.Gen(1λ, log n+B,m).
2. Let P1, P2 be two sets of random

(
1
2 log n+B

)
strings in {0, 1}logn+B that start

with a 1-bit.
3. Let sk0 = PRF.Puncture(msk0, P1), sk1 = PRF.Puncture(msk1, P2).
4. output (sk,msk) = ((sk0, sk1), (msk0,msk1)).

• Eval(sk, x)→ b : % internal function used to simplify algorithms

1. Return PRF.PEval(sk[0], x)⊕ PRF.PEval(sk[1], x).

• EnumSet(sk)→ S :

1. Let Z 1
2 logn be all bit-strings in ℓ ∈ {0, 1} 1

2 logn such that Eval(sk, l) = 1.
2. Then, For i ∈ [ 12 log n+ 1, . . . , log n]:

(a) Set Zi+1 to be any string of the form b||ℓ where b ∈ {0, 1}, ℓ ∈ Zi and
Eval(sk, b||ℓ) = 1.

3. Return S =
{
ℓ : ℓ ∈ Zlogn ∧ Eval(sk, 0k||ℓ) = 1 for k ∈ [0, B]

}
.

• InSet(sk, x)→ b :

1. Let z = 0B ||x.
2. Output 1 if Eval(sk, z[i :]) = 1 for i ∈ [0,m], otherwise output 0.

• Resample(msk, sk, x)→ sk :

1. Let z = 0B ||x, Z = {z[i :]} for i ∈ [0,m].
2. Let skx = PRF.Puncture(msk[1], Z).
3. Return (sk[0], skx).

• Add(msk, sk, x)→ (msk, sk):

1. Write x ∈ {0, 1}logn as a binary string.
2. Define z = 0B ||x, Z = {z[i :]} for i ∈ [0,m].
3. While true: % puncture until we find skx such that Eval(sk, x) equals 1.

(a) Let skx = PRF.Puncture(msk[0], Z).
(b) If InSet((skx, sk[1]), x), break.

4. Output ((null,msk[1]), (skx, sk[1]))

Fig. 3. Our Adaptable PRS Implementation.
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Correctness and pseudorandomness with respect to Dn. Correctness follows from
our construction and functionality preservation of the underlying PRF. Pseudorandom-
ness follows from pseudorandomness of the underlying PRF (Definition E1). Both incur
a negligible probability of failure in λ, inherited from the underlying PRF.
Functionality preservation in resampling and addition. Assuming pseudorandomness
and functionality preservation of the underlying PRF (Definition E1 and Definition E2),
our PRS scheme satisfies the properties of Functionality Preservation in Addition.

For (sk,msk)← Gen(1λ, n) until InSet(sk, x), and skx ← Punc(msk, sk, x):

– From construction, EnumSet(skx) ⊆ EnumSet(sk), since puncturing strings that
evaluate to 1 can only reduce the size of the set (since we only resample elements
in the set).

– From the point above, and construction of our EnumSet, it follows that time(EnumSet(sk)) ≥
time(EnumSet(skx)).

– By construction of our resampling operation and Related function, it must be
that

y ∈ EnumSet(sk) \ EnumSet(skx)↔ Related(x, y) = 1.

Also, for any n, λ ∈ N, x ∈ {0, . . . , n − 1}, for (sk,msk) ← Gen(1λ, n), skx ←
Add(msk, sk, x) we note that:

– By construction, EnumSet(sk) ⊆ EnumSet(skx) since since we only ever make
0s into 1s.

– By the converse of same argument as Functionality Preservation in Resampling
above, it follows that

y ∈ EnumSet(skx) \ EnumSet(sk)↔ Related(x, y) = 1.

Therefore, our scheme satisfies Functionality preservation in resampling and addition.
Security in resampling. We show that our scheme satisfies Definition A2 below, as-
suming pseudorandomness and privacy w.r.t. puncturing of the underlying PRF (Defi-
nition E1 and Definition E3, respectively).

To aid in the proof, we define an intermediate experiment, Expt∗1, defined as:

– Expt∗1: Run Gen(λ, n)→ (sk,msk), and return skx ← Resample(msk, sk, x).

For each sk output by Gen, sk = (sk[0], sk[1]), two keys of m-puncturable PRFs.
First, we show indistinguishability between Expt∗1 and Expt0:

Assume that there exists a distinguisher D0 than can distinguish Expt∗1 and Expt0.
Let us say that D0 outputs 0 whenever it is on Expt0 and 1 when it is on Expt∗1. Then,
we can construct a D∗

0 with access to D0 that breaks the privacy w.r.t. puncturing of the
PRF (as in Definition E3) as follows, for any x ∈ {0, . . . , n− 1}:
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Let m = 1
2 log n+B, L = log n+B, z = 0B ||x.

D∗
0(m,L, z):

1. Define P0 = {z[i :]}i∈[0,m] and let P1, P2 be a set of m random points of
length L starting with a 1-bit.

2. Send P0, P1 to the privacy w.r.t. puncturing experiment and get back skPb

and oracle access to PRF.Eval(sk, ·).
3. Run PRF.Gen(1λ, L,m)→ sk, PRF.Puncture(sk, P2)→ skP2 .
4. Set secret key sk′ = (skP2 , skPb

).
5. Return D0(sk

′).
Note that in the case where b equals 0, the experiment is exactly equivalent to D0’s

view of Expt0, since sk′ is two random m-privately-puncturable PRF keys punctured
and m points starting with a 1-bit. Also, when b is 1, D0’s view is exactly equivalent to
Expt∗1, since we pass in two random m-privately-puncturable PRF keys, one punctured
at m points starting with a 1-bit, and the other at {z[i :]}i∈[0,m], with no constraints
on whether x was in the set before or after the puncturings. Then, since D0’s view is
exactly the same as its experiment, it will distinguish between both with non-negligible
probability, and whatever it outputs, by construction, will be the correct guess for b with
non-negligible probability.

Now we proceed to show that Expt∗1 and Expt1 are indistinguishable, assuming
pseudorandomness of the underlying PRF. Now, assume there exists a distinguisher D1

that can distinguish between Expt∗1 and Expt1 with non-negligible probability. Then,
we can construct a distinguisher D∗

1 that uses D1 to break the pseudorandomness of the
underlying PRF (as in Definition E1) as follows, for any x ∈ {0, . . . , n− 1}:

Let m = 1
2 log n+B, L = log n+B, z = 0B ||x.

D∗
1(m,L, z) :

1. Send P = {z[i :]}i∈[0,m] to the PRF pseudorandomness experiment, get
back skP and a set of m bits {Mi}i∈[0,m].

2. Let P1 be a set of m random bit strings of length L starting with a 1-
bit. Run PRF.Gen(1λ, L,m) → sk, PRF.Puncture(sk, P1) → skP1

. Let
sk′ = (skP1

, skP ).
3. If ∀i ∈ [0,m], PRF.PEval(skP1 , z[i :]) ⊕Mi = 1, output D1(sk

′), else
output a random bit.

Note that in the case D1’s view in the case where the evaluations as described above
all output 1 is exactly its view in distinguishing between our Expt1 and Expt∗1. With
probability 1

2 , it is given a punctured key where x was an element of the original set,
and with probability 1

2 it is given a punctured key where x was sampled at random.
Then, in this case, it will be able to distinguish between the two with non-negligible
by assumption, and therefore distinguish between the real and random experiment for
pseudorandomness of the PRF. Since the probability of having all the evaluations output
1 is non-negligible, then we break the pseudorandomness of the PRF. By contraposition,
then, assuming pseudorandomness of the PRF, it must be that Expt1 and Expt∗1 are
indistinguishable. This concludes our proof.
Security in addition. We now show that our scheme satisfies Definition A4, assuming
privacy w.r.t. puncturing of the underlying PRF (Definition E3). Assume there exists a
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distinguisher D that can distinguish between these two with non-negligible probability.
Then, we can construct a distinguisher D∗ that breaks privacy w.r.t. puncturing of the
PRF as follows, for any x ∈ {0, . . . , n− 1}:

Let m = 1
2 log n+B, L = log n+B, z = 0B ||x.

D∗(m,L, z) :

1. Define P0 = {z[i :]}i∈[0,m] and let P1, P2 be two sets of random m points
of length L starting with a 1-bit.

2. Send P0, P1, to the privacy w.r.t. puncturing experiment and get back skPb

and oracle access to PRF.Eval(sk, ·).
3. Run PRF.Gen(1λ, L,m)→ (msk, sk), PRF.Puncture(sk, P2)→ skP2 .
4. Set our secret key sk′ = (skPb

, skP2).
5. If InSet(sk′, x), output D(sk′), else output a random bit.

Consider the case where x ∈ EnumSet(sk′):

– If P0 was punctured, D’s view is exactly equivalent to Expt0 in his experiment,
since in Add we output a secret key sk = (sk[0], sk[1]) where sk[0] is punctured
at x, sk[1] is punctured at m random points starting with a 1, and InSet(sk, x)
returns true.

– If P1 was punctured, D’s view is exactly equivalent to Expt1 in his experiment, by
construction of Gen, P1 and P2, the sk outputted is equivalent to a key outputted
by Gen(1λ, n) where InSet(sk, x) returns true.

We conclude that, conditioned on InSet(skPb
, x) returning true, D’s view of the ex-

periment is exactly equivalent to the experiment from our Definition A4, and therefore
it will be able to distinguish between whether P0 and P1 was punctured with non-
negligible probability. If we fix a random sk[1], the probability:

Pr [InSet(sk′, x) = true] =
1√
n
> negl(n).

Then, the algorithm D∗ we constructed will break the privacy w.r.t. puncturing of
the PRF with non-negligible probability. By contraposition, assuming privacy w.r.t.
puncturing, skx and sk are computationally indistinguishable. Following almost ex-
actly the same argument as above, we can show that the tuples (skx[0],mskx[1]) and
(sk[0],msk[1]) are also indistinguishable. Also, in both tuples (mskx[1], skx[1]) and
(msk[1], sk[1]) the master key is just the unpunctured counterpart of the secret key.
Finally, mskx[0] = msk[0] = null. Then, since we have shown that assuming the
privacy w.r.t. puncturing property, the keys involved are pairwise indistinguishable, by
the transitive property, we see that assuming privacy w.r.t. puncturing, (mskx, skx)
and (msk, sk) are computationally indistinguishable and therefore, security in addition
holds.
Efficiencies. Efficiency for our Gen,InSet and Resample follow from the construction
and efficiencies for our underlying PRF. The two efficiencies which we will show are
EnumSet and Add.

Note that in EnumSet, the step 1 takes Õ(
√
n) time to evaluate every string of size

logn
2 , then, by pseudorandomness of the PRF, at each subsequent step we only ever keep
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√
n strings since half are eliminated. Since there are a logarithmic number of steps, we

can say that EnumSet runs in probabilistic Õ(
√
n) time.

For Add, by pseudorandomness of the PRF, our construction will take probabilistic
Õ(
√
n) time. (We can show that we can bound our scheme to have deterministic Õ(

√
n)

Add and EnumSet by incurring some small error probability that is dealt with through
the parallel instances. We can also reduce the time of Add to Õ(1) by exploring the
underlying PRF construction. This is not central to our approach, so it we provided it
as supplementary material Appendix E.2 to the interested reader.)

D Constructions and Proofs for Section 5

In this section, we give proof for our scheme presented in Figure 2. Then, we give a full
construction and proof for the 1PIR scheme from Theorem 52.

D.1 Proving Theorem 51

We introduce a small lemma that will aid us in our task. This lemma, intuitively, tells us
that our APRS’s Resample is exactly equivalent to our Resample operation defined
in Section 3 (incurring some negligible probability of failure), in other words, the new
evaluations of punctured points are pseudorandom and completely independent of the
previous evaluations before puncturing.

Lemma D1 (Randomness in resampling). In some distribution Dn, the following two
distributions are computationally indistinguishable for m = 1

2 log n + B and any x ∈
{0, . . . , n− 1}:

– Expt0: Run Gen(1λ, n)→ (sk,msk) until InSet(sk, x), run skx ←Resample(msk, sk, x),
Return the tuple (EnumSet(sk), x ∈ EnumSet(skx)).

– Expt1: Run Gen(1λ, n) → (sk,msk) until InSet(sk, x), sample some boolean b
from Bernoulli(ϕ) where ϕ = 2−m. Output the tuple (EnumSet(sk),Bernoulli(ϕ)).

Note that x ∈ EnumSet(sk) denotes a boolean denoting true or false for the expres-
sion.

Proof. Let us define an intermediary experiment to aid in the proof.

– Expt∗0: Run (sk,msk) ← Gen(1λ, n) once and let skx ← Add(msk, sk, x). Re-
turn the tuple (EnumSet(skx), x ∈ EnumSet(sk)).

Note that by our two security properties, it follows that Expt0 and Expt∗0 are indis-
tinguishable, since generating a key until finding one with x is equivalent to adding,
and sampling a key with x and resampling x is indistinguishable from sampling a fresh
key. Then, by pseudorandomness of the PRF, it follows that x ∈ EnumSet(sk) for a
fresh sk is indistinguishable from Bernoulli(ϕ) expect with negligible probability, and
by security in addition as we saw above generating a set key until we find one with x is
indistinguishable from generating a fresh key and adding x. Then, it follows that Expt1
and Expt∗0 are also indistinguishable, and this concludes our proof.
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Now, we have all the tools we need to prove Theorem 51. See the proof below:

Theorem 51 (Efficient 2PIR+ protocol). Assuming LWE, the 2PIR+ scheme in Fig-
ure 2 is correct (per Definition 22) and private (per Definition 23) and has: (i) Õ(

√
n)

client storage and Õ(
√
n) client time; (ii) Õ(

√
n) amortized server time and no addi-

tional server storage; (iii) Õ(1) amortized bandwidth.

Proof. We use an APRS scheme APRS = (Gen, EnumSet, InSet, Resample, Add)
that satisfies Theorem 41. Efficiencies follow from the protocol and from Theorem 41.
Privacy. Privacy for server1 is trivial. It only ever sees random sets generated com-
pletely independent of the queries and is not interacted with online. We present the
privacy proof for server2 below.

Privacy with respect to server2, as per our definition, must be argued by showing
there exists a stateful algorithm Sim that can run without knowledge of the query and
be indistinguishable from an honest execution of the protocol, from the view of any
PPT adversary A acting as server2 for any protocol server∗1 acting as server1. First,
we note that the execution of the protocol between client and server2 is independent of
client’s interaction with server1. client generates sets and queries server1 in the offline
phase for their parity. Although this affects correctness of each query, it does not affect
the message sent to server2 at each step of the online phase, since this is decided by
the sets, generated by client. Then, we can rewrite our security definition, equivalently,
disregarding client’s interactions with server1.

We want to show that for any query qt for t ∈ [1, Q], qt leaks no information about
the query index xt to server2, or that interactions between client and server2 can be
simulated with no knowledge of xt. To do this, we show, equivalently, that the following
two experiments are computationally indistinguishable. (Irrespective of the query index
xt, therefore, encompassing the adaptiveness required by the definition.)

– Expt0: Here, for each query index xt that client receives, client interacts with
server2 as in our PIR protocol.

– Expt1 In this experiment, for each query index xt that client receives, client ignores
xt, samples a fresh APRS key (sk,msk)← Gen(1λ, n) and sends sk to server2.

First we define an intermediate experiment Expt∗1.

– Expt∗1 : For each query index xt that client receives, client samples (sk,msk) ←
Gen(1λ, n) until InSet(sk, xt) = true and sends sk′ = Resample(msk, sk, xt)
to the server2.

Note that from our Security in Resampling property (Definition A2), it follows directly
that Expt∗1 and Expt1 are computationally indistinguishable. Next, we define another
intermediate experiment Expt∗0 to help in the proof.

– Expt∗0: Here, for each query index xt that client receives, client interacts with
server2 as in our PIR protocol, except for every set key tuple in T , msk[0], is
set to null offline. Upon generating new sets (when xt is not found), we also set
msk[0] to null.
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It is not hard to see that setting msk[0] to null for each set key tuple in T does not
change the server2’s view, since msk[0] is never used or seen by server2. Similarly,
when generating a set (for the case where xt) is not found, and after Add for the refresh,
msk[0] is not used, and therefore setting msk[0] to null in these cases is a local change
that cannot affect server2’s view of the queries. We therefore conclude that Expt0 and
Expt∗0 are statistically (and computationally) indistinguishable.

Next, we define our last hybrid experiment in our proof:

– Hyb: This experiment runs exactly like Expt∗0, except that on the refresh phase
after each query, instead of picking a table entry Bk = ((mskk, skk), pk) from our
secondary sets, running sk′ = Add(mskk, skk, xt), and replacing our set with
((mskk, sk

′), pk), we generate a new random set (msk, sk) ← Gen(1λ, n) until
InSet(msk, sk, xt) is true, set msk[0] = null, and replace our used set-parity
tuple with ((msk, sk), 0) instead.

Note that differentiating between Expt∗0 and Hyb is exactly breaking the Security in
Addition experiment (Definition A4). Then, by the security in addition, it follows that
Expt∗0 and Hyb are computationally indistinguishable from server2’s view.

Now, finally, must show that Hyb and Expt∗1 are computationally indistinguishable.
At the beginning of the protocol, on Hyb, right after the offline phase, the client has a
set of |T | (msk, sk) pairs, where mski[1] was set to null for every i ∈ {1, . . . , |T |}.
For the first query index, x1, we either pick an entry ((mskj , skj), pj) ∈ T from these
random sets where InSet(skj , x1) = true or, if the that fails, we set j = |T | + 1 and
run (mskj , skj)← Gen(1λ, n) until InSet(sk, x1). (Again, here we set mskj [1] to be
null as per Hyb’s experiment definition.)

Then, we send to server2 sk′ = Resample(mskj , skj , x1). Note that the sec-
ond case is trivially equivalent to generating a random set with x1 and resampling it
at x1. But in the first case, note that T holds a set of keys sampled with Gen in or-
der. As a matter of fact, looking at it in this way, skj is the first output in a sequence
of samplings that satisfies the constraint of x1 being in the set. Then, if we consider
just the executions from 1 to j, this means that picking skj is equivalent to running
(mskj , skj)← Gen(1λ, n) until we find skj such that InSet(skj , x1) = true, by def-
inition. Then, by Security in Resampling (Definition A2), it follows that the set that the
server sees in the first query is indistinguishable from a freshly sampled set.

It follows from above that for the first query, q1, Hyb is indistinguishable from
Expt∗1. To show that this holds for all qt for t ∈ [1, Q] we show, by induction, that after
each query, we refresh our set table T to have a distribution that is computationally in-
distinguishable from the distribution at the previous step. Then, by the same arguments
above, it will follow that every query qt in Hyb is computationally indistinguishable
from each Expt∗1 for every t ∈ [1, Q]. After Q queries, we re-run the offline phase with
independent randomness, so if we can show the inductive step, our proof holds for un-
limited queries. As previously, we will disregard the parities since they are exclusively
used locally.

Base Case. Initially, our table T is a set of |T | (msk, sk) pairs generated offline,
independently from the queries, with Gen(1λ, n) (and then setting msk[0] = null).

Inductive Step. After each query qt, the table entry ((mskj , skj)) for the small-
est j in |T | such that InSet(skj , xt) = true is replaced with a set generated as:
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(msk, sk) ← Gen(1λ, n) until InSet(sk, xt) = true (and again, as per Hyb’s def-
inition, setting msk[0] = null). Notice that these sets are generated in exactly the same
fashion. We can view the offline generation of sets 1 to j as sampling until we generate
a set that contains xt, which means that the keys (mskj , skj) generated offline and the
new keys (msksk) are generated in exactly the same fashion, and therefore statistically
(and computationally) indistinguishable. Then it must be that the table of set keys T
maintains the same distribution after we replace (mskj , skj) by the new (msk, sk).

We have shown the inductive step and therefore conclude that the distribution of
T is computationally indistinguishable across Q queries. Then, we can say that Expt∗1
is computationally indistinguishable from Hyb. This concludes our proof for experi-
ment indistinguishability. Since we have defined a protocol without access to each xt

(picked adaptively), and shown through a series of hybrid experiements that it is com-
putationally indistinguishable from running our real protocol defined in Figure 2 from
the server2’s view, it follows that we satisfy privacy for any PPT non-uniform adversary
A (as per Definition 23). We note that correctness follows very similarly from the proof
of Theorem 31, except our correctness loses a negligible factor of correctness from our
APRSs being computationally correct (inherited from the underlying ppPRF), and we
use the Randomness in Resampling property to show that our Resample maps exactly
as the computational counterpart of the Resample presented in Section 3.

D.2 Theorem 52

As mentioned in Section 5, in order to port our two-server PIR scheme in Figure 2 to
single server, we require three building blocks:

– Batch Parity Circuit. We will use a batch parity boolean circuit C. Given any
database of size n and l lists of size m, C computes the parity of the l lists in
Õ(l ∗m + n) time. A construction for such C was idealized and proved in [15] 5.
We used a slightly modified verysion of C, described below.

– A Circuit for EnumSet. Our EnumSet evaluation is in the RAM model. We must
show that it can be converted to the circuit model maintaining its time complexity,
so that it can be evaluated under FHE.

– Gate-by-gate FHE. We require the existence of a symmetric key FHE scheme
(Gen,Enc,Dec,Eval) that is gate-by-gate (as defined in [15]), where gate-by-gate
means Eval runs in time Õ(|C|) for a circuit of size |C|. As noted in [15], this is a
property of standard FHE schemes [9, 26].

To use this for our new PIR algorithm we require two adjustments:

1. We modify the EnumSet algorithm in Figure 3 to keep arrays instead of sets. The
first array is a tuple of all ℓ and their evaluation under sk. Subsequently, we define
Zi+1 keep the tuples of the string b||ℓ and the multiplication between Eval(sk, b||ℓ)
and the previous evaluation present in Zi, for all ℓ ∈ Zi. Finally, we obliviously sort
Zi+1 by the evaluation bit and keep only the first

√
nlog2(n) elements in the sorted

array. Note that:
5 This circuit does not have polylog depth and therefore we require a circular-security assump-

tion on FHE.
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(a) At each step, Zi will have
√
n log2(n) elements, so oblivious sorting runs in

O(
√
n log2(n)) time for each i and so the runtime of EnumSet is still Õ(

√
n).

The elements with evaluation ’1’ will move to Zi+1 exactly as in the original
algorithm.

(b) In the end, we output the array (with evaluation bits) and denote the element to
be in the set only if its final evaluation bit is 1. Note that while we will be able
to fully express shorter sets, some large sets might have incorrect memberships
due to elements in the set being chopped off at each step. By a Markov bound,
we will show that the probability that this happens is small (< 1/ log(n)) and
then deal with this through the parallel instantiations.

2. We modify the circuit by Corrigan-Gibbs et al. to enumerate our set through this
array of size n log2(n) and also multiply the database element by the evaluation
bit, to ensure that elements not in the set in the final array (with an evaluation bit of
0) do not affect the parity.

With this modified PRS enumeration algorithm and circuit C, along with the FHE
scheme introduced in 5 we finally construct our single server PIR scheme in Figure 4.
The EnumSet algorithm run under FHE in Figure 4 uses these modifications to run in
Õ(
√
n) time.

Online, we know that keys that enumerate sets larger than
√
n log2 n will have in-

correct queries. However, Lemma D2 bounds the probability of this happening to be
small.

Lemma D2 (Set Size Bound). Let LargeSet(·) be a function that takes in a key sk
and outputs 1 if for any i ∈ {0, . . . , log n/2} the set of candidate elements Zi for the
set defined by EnumSet(sk) contains more than

√
n log2 n elements, and 0 otherwise.

Then,

Pr [LargeSet (sk)] <
1

log n
.

Proof. At the initial step, we have that the expected number of elements in our list is√
n/2 (there are

√
n bitstrings of size log n/2. Furthermore, for each i, the expected

number of elements that we keep is also
√
n/2, since we double the amount of strings

in the previous step, but in expectation only keep half, by pseudorandomness of the
PRF. Then, by a simple Markov bound we get that, for each intermediate set of good
evaluations, Zi, for some given i:

Pr[|Zi| >
√
n log2(n)] <

1

log2 n
.

Then, by a simple union bound of log n/2 steps, we get that the probability that any of
these is larger that

√
n log2 n is less than 1

logn .

From this Lemma, we see that this restriction incurs an additional correctness failure
of 1/ log n compared to our normal scheme. This bound is not tight, but enough for our
purposes.

Below, we prove that our scheme satisfies Theorem 52:
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Run v = ω(log λ) instances of the following scheme. Let ℓ =
√
n(log n)3, s =

ℓ+
√
n.

Offline phase

– client generates s PRS keys (msk1, sk1), . . . , (msks, sks) each with
Gen(1λ, n) .

– client encrypts all the secret keys, FHE.Enc(sk1), . . . ,FHE.Enc(sks) →
(esk1, . . . , esks) and sends these to server1.

– server1 runs FHE.Eval(EnumSet(eski)) on each eski, i ∈ [1, s] and gets back
s sets S1, . . . , Ss, where it will be clear which Si =⊥ from the size.

– server1 evaluates the parity of each set under FHE using C, computes
ep1, . . . , eps, and sends these to client.

– client decrypts each epi using FHE.Dec into the parity pi and stores the first ℓ
hints in T = {Tj = ((mskj , skj), pj)}j∈[1,ℓ], and the next

√
n hints in B =

{Bk = ((mskk, skk), pk)}k∈[ℓ+1,ℓ+
√
n].

Online Phase: Invoked with some index x ∈ {0, .., n− 1}.
• Query

1. client finds smallest j s.t. Tj = ((mskj , skj), pj) ∈ T and InSet(skj , x). If no
such j is found, we let j = |T |+1, run Gen(1λ, n, x)→ (skj ,mskj), let pj be
a uniform random bit.

2. client sends sk′ = Resample(mskj , skj , x) to server1, that returns r =
⊕k∈EnumSet(sk’)DB[k].

3. client computes DB[x] = r ⊕ pj .
4. client computes DB[x]′ to be the majority vote of the computed DB[x] over the

v instances.

• Refresh (only run if j ≤ |T |)

1. client gets Bk = ((mskk, skk), pk) be the first item from set B.
2. client computes (mskxk , sk

x
k) = Add(mskk, skk, x).

3. client sets Tj = ((mskxk , sk
x
k), pk ⊕ (DB[x]′ ∧ InSet(skk, x))), where Tj was

the entry consumed by the query earlier, and also sets B = B \Bk.

Fig. 4. Our 1PIR protocol using an Adaptable PRSet (Gen,EnumSet, InSet,Resample,Add).
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Proof. The efficiencies follow from the efficiencies in the scheme in Figure 2, except
for extra polylogarithmic factors and λ factors incurred by using C and FHE in the
offline phase, along with the extra number of preprocessed sets. Neither of these affect
the complexity of our scheme when examined under Õ(·). Note that EnumSet under
FHE will still run in Õ(

√
n) time using the modified algorithm described previously.

Privacy for the scheme follows from the security of the FHE scheme and privacy of
the scheme in Figure 2 (Theorem 51).

Correctness follows from the correctness proof from Theorem 51 and Lemma D2,
along with correctness of C and the FHE scheme we use. Note that for each single copy
scheme, we incur exactly the same errors as in the 2PIR scheme, with the addition of
the of an extra small error probability (less than or equal to 1

logn at the query step). It is
clear to see that this extra factor does not take the correctness probability of the single
copy scheme to be greater than 1

2 and therefore the same arguments from Theorem 51
hold.

E Auxiliary Material

E.1 Previous Definitions for Privately-puncturable PRFs

We re-state here the definitions of security for privately-puncturable PRFs from previ-
ous works [7, 10, 36].

Definition E1 (Pseudorandomness for privately-puncturable PRFs). A privately-puncturable
PRF scheme (Gen, Eval, Puncture, PEval) satisfies pseudorandomness if no PPT ad-
missible adversaryA can distinguish between the following experiments (An adversary
is admissible if it never queries elements in P on the original sk, and always picks a
set P of size m.)

– Gen(λ, L,m)→ sk, A(λ)→ P , Puncture(sk, P )→ skP ;
AEval(sk,.) is given (skP , {Eval(sk, x)}x∈P ).

– Gen(λ, L,m)→ sk, A(λ)→ P , Puncture(sk, P )→ skP ;
AEval(sk,.) is given (skP , {Ri}i=0,...,m−1), where Ri are sampled uniformly at ran-
dom.

Definition E2 (Functionality preservation in puncturing for privately-puncturable PRFs).
A privately-puncturable PRF scheme (Gen, Eval, Puncture, PEval) satisfies function-
ality preservation if for any PPT adversary A that outputs set of m points P of length
≤ L each, there exists a negligible function negl(·) such that, for the following exper-
iment:

– P ← A(1λ), sk ← Gen(1λ, L,m), skP ← Puncture(sk, P ).
– x← AEval(sk,·)(skP ).

it holds that

Pr[(x /∈ P ) ∧ (Eval(sk, x) ̸= PEval(skP , x))] ≤ negl(λ) .
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Definition E3 (Privacy with respect to puncturing for privately-puncturable PRFs). A
privately-puncturable PRF scheme (Gen, Eval, Puncture, PEval) satisfies privacy
with respect to puncturing if for any PPT admissible adversaryA, experiments Expt0(λ, L,m)
and Expt1(λ, L,m) are computationally indistinguishable. (An adversary is admissible
if it never queries the oracle elements in P1 ∪ P2 on the original sk, and always picks
sets of size m.) Experiment Exptb(λ, L,m) is defined as follows.

– Gen(λ, L,m)→ sk, A(λ)→ (P0, P1), Puncture(sk, Pb)→ skPb
.

– b′ ← AEval(sk,·)(skPb
).

E.2 Deterministic Time Bounds

We discuss below how get deterministic time bounds for our randomized algorithms
used, EnumSet and Add.

EnumSet. To get deterministic run-time for EnumSet, we can cap the server enu-
meration time to be at most 6

√
n(log n)3 function calls, after which it can output a

random bit as the set parity. From a standard Markov argument, we see that this incurs
an additional 1

logn error per copy, which will be handled by the Chernoff bound. It is
clear to see that this does not affect privacy for the servers, and only slightly affects
correctness in a way that still leaves it overall greater than 1

2 for any relevant n.
Add. To get deterministic run-time for Add, we can cap the execution similarly as

above, with 2(log n)2 iterations. This paired with Corollary 1 implies a deterministic
time of Õ(1) for Add. We note that in order for this change not to affect privacy of
the scheme, we must take precautions to change the order of steps in our PIR scheme
to ensure privacy. To make this change, we must run step 1 and 2 of the Refresh phase
along with step 1 of the Query phase. If either of these fails to execute correctly, then we
send to the server (sk, _)← Gen(1λ, n) and client sets DB[x] to be a uniform random
bit. This introduces a small probability of correctness failure but does not affect privacy
since we send a random set to server2. If we do not take this precaution of running
the steps of the Refresh phase upfront, then our PIR scheme for concrete performance
bounds would potentially breach privacy in the case that Add fails.

In Corollary 1, we present a proof that we can run our Add function in expected
Õ(1) time, as alluded to in the above and in Appendix C. Although this is not nec-
essary for the efficiencies claimed in Theorem 41, it shows a significant improve-
ment to the Add function; we note, however, that this speed-up only applies to the
privately-puncturable PRF construction from Boneh et al. [7], where the m−privately-
puncturable PRF is contructed from m 1−privately-puncturable PRF keys. The final
evaluation is the evaluation of the xor of all m keys, but the puncture operation punc-
tures once at each key.

Corollary 1 (Efficient Add). Our construction can use the privately-puncturable PRF
primitive to run Add run in Õ(1) time.

Proof. We can make Add more efficient, from Õ(
√
n) time to Õ(1) by using the con-

struction above. For each point to be punctured, we puncture the corresponding key and
individually check if it is mapped to 1, rather than attempting to get all punctures right at
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once. Let us define PRF1 to be the interface with the single-point privately-puncturable
PRF (rather than the m-privately-puncturable PRF we used throughout the work). We
replace the step 2 in the protocol with the steps as follows:

1. Write msk[0] as {msk[0]p}p∈[1,m].
2. Write sk[0] as {sk[0]p}p∈[0,m].
3. For i in [0,m]:

(a) p = Eval(sk, z[i :]).
(b) pi,old = PRF1.PEval(sk[0]i, z[i :]) .
(c) sk′i = PRF1.Puncture(msk[0]i, z[i :]).
(d) pi,new = PRF1.PEval(sk′i, z[i :]).
(e) If p⊕ pi,old ⊕ pi,new ̸= 1 return to (c).

4. Let sk′ = {sk′i}i∈[0, 12 logn+B] .

It follows in a straightforward manner from construction of the PRF punctured at
multiple points that our algorithm for addition presented earlier and the one using this
technique output indistinguishable keys. This changes Add’s run-time from expected
Õ(
√
n) to expected run-time Õ(1).
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