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Abstract

We give a unified syntax, and a hierarchy of definitions of security of increasing strength,
for non-interactive threshold signature schemes. They cover both fully non-interactive schemes
(these are ones that have a single-round signing protocol, the canonical example being threshold-
BLS) and ones, like FROST, that have a prior round of message-independent pre-processing.
The definitions in the upper echelon of our hierarchy ask for security that is well beyond any
currently defined, let alone proven to be met by the just-mentioned schemes, yet natural, and
important for modern applications like securing digital wallets. We prove that BLS and FROST
are better than advertised, meeting some of these stronger definitions. Yet, they fall short of
meeting our strongest definition, a gap we fill for FROST via a simple enhancement to the
scheme. We also surface subtle differences in the security achieved by variants of FROST.
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1 Introduction

Threshold signatures, which originated in the late 1980s [18, 19], are seeing renewed attention,
driven in particular by an interest in using them to secure digital wallets in the cryptocurrencies
ecosystem [22]. Parallel IETF [31] and NIST [35] standardization efforts are evidence as to the
speed at which the area is moving into practice.

Whether securing a user’s digital wallet, or being used by a CA to create a certificate, forgery of
a digital signature is costly. The rising tide of system breaches and phishing attacks makes exposure
of a signing key too likely to ignore. The idea of a threshold signature scheme is to distribute the
secret signing key across multiple parties who then interact to produce a signature, the intent being
to retain security even in the face of compromise of up to a threshold number of these parties. Over
the years, threshold versions of many schemes have been presented, including RSA [17, 26, 38],
DSA/ECDSA [23, 25, 22, 10, 21, 33, 14], Schnorr signatures [39, 24, 30] and BLS signatures [9].

Today, we see interest converging on schemes that are non-interactive. The representative
examples are (threshold) BLS [13, 9] and FROST [30]. BLS is a pairing-based scheme that is fully
non-interactive scheme, meaning signing consists of a single round. FROST is non-pairing-based
scheme that is partially non-interactive scheme, meaning signing additionally involves a message-
independent pre-processing round.
Our path. Focusing on non-interactive threshold signatures, this paper has a simple and positive
message. We contend that schemes like BLS and FROST are better than advertised. We show that
they meet definitions of security that are stronger than ones that have been previously defined, or
that these schemes have been shown to meet in existing literature. Furthermore, these definitions
capture natural strengths of the schemes that may be valuable for applications. But also, our
new fine-grained viewpoint will surface differences between schemes. In particular, we show that a
recently proposed optimization of FROST [16] is less secure than the original proposal.

The classical development paradigm in theoretical cryptography is to ask what security we
would like, define it, and then seek schemes that meet it. Yet if we look back, there has been
another path alongside; canonical, reference schemes guided a choice of definitions that model
them, and, once made, these definitions went on to be influential targets for future schemes. (The
formal definition of trapdoor permutations [27], for example, was crafted to model RSA.) We are
inspired by the latter path. BLS [12] yields a threshold scheme [9] so natural and simple that it is
hard to not see it as canonical, and, within the space of Schnorr threshold schemes, FROST [30]
has a similarly appealing minimality. Examining them, we see strengths not captured by current
definitions or results. We step back to create corresponding abstractions, including a syntax and a
hierarchy of definitions of security for non-interactive threshold signature schemes. We then return
to ask where, in this hierarchy, we can fit the starting schemes, giving proofs that fit BLS and
FROST as high as possible. In terms of the proofs this needs, and that we give, this turns out to
be challenging, so that we offer also some content of technical interest.

Although inspired by specific schemes, our definitional development, once started, unfolds in a
logical way, and yields definitions that even go beyond what BLS and FROST achieve. These make
intriguing new targets. We show how to achieve them, with minimal modifications to the existing
schemes.
Non-interactive threshold schemes. We consider schemes where the signing operations in-
volve a leader and a set of ns nodes, which we refer to as servers, with server i holding a secret
share ski of the secret signing key sk. Signing is done via an interactive protocol that begins with
a leader request to some set of at least t number of servers and culminates with the leader holding
the signature, where t ≤ ns, the threshold, is a protocol parameter.
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In a fully non-interactive threshold signature scheme, this protocol is a simple, one-round one.
The leader sends a leader request lr , which specifies a message M and possibly other things, to any
server i, and obtains in response a partial signature, psig i, that i computes as a function of ski and
M . The leader can request partial signatures asynchronously, at any time, and independently for
each server, and there is no server-to-server communication. Once it has enough partial signatures,
the leader aggregates them into a signature sig of M under the verification key vk corresponding
to sk. The canonical example is the threshold BLS scheme [9, 13], where sk, sk1, . . . , skns ∈ Zp for
a public prime p, and psig i ← h(M)ski where h : {0, 1}∗ → G is a public hash function with range
a group G of order p. Aggregation produces sig as a weighted product of the partial signatures.

A partially non-interactive threshold signature scheme adds to the above a message-independent
pre-processing round in which, pinged by the leader at any point, a server i returns a pre-processing
token ppi. The leader’s request for a partial signatures will now depend on tokens it has received.
The canonical example is FROST [30].

This understanding of a non-interactive scheme encompasses what FROST calls flexibility;
obtaining psig i from any ≥ t servers will allow us to reconstruct a signature.
Which forgeries are non-trivial? For a regular (non-threshold) signature scheme, the first
and most basic notion of security is un-forgeability (UF) [27]. The adversary (given access to a
signing oracle) outputs a forgery consisting of a message M and a valid signature for it. To win,
the forgery must be non-trivial, meaning not legitimately obtained. This is naturally captured, in
this context, as meaning that M was not a signing query.

Turning to define un-forgeability for a non-interactive threshold signature scheme, we assume
the adversary has corrupted the leader, and up to t− 1 servers, where 1 ≤ t ≤ ns is the threshold.
Furthermore it has access to the honest servers. Again, it outputs a forgery consisting of a message
M and valid signature for it, and, to win, the forgery must be non-trivial, meaning not legitimately
obtained. Deciding what “non-trivial” means, however, is now a good deal more delicate, and
interesting, than it was for regular signatures.

In this regard, we suggest that many of the prior works have set a low bar, being more generous
than necessary in declaring a forgery trivial, leading to definitions that are weaker than one can
desire, and weaker even than what their own schemes seem to meet. The definitions we formulate
rectify this by giving a hierarchy of five non-triviality conditions of increasing stringency, yielding a
corresponding hierarchy TS-UF-0← TS-UF-1← TS-UF-2← TS-UF-3← TS-UF-4 of five notions
of un-forgeability of increasing strength. (Here an arrow B ← A means A implies B: any scheme
that is A-secure is also B-secure.) TS-UF-0, the lowest in the hierarchy, is the notion currently in
the literature.

Returning to regular (non-threshold) signature schemes, strong un-forgeability (SUF) has the
same template as UF, but makes the non-triviality condition more stringent, asking that there have
been no signing query M that returned sig . We ask if SUF has any analogue in the threshold setting.
For non-interactive schemes, we suggest it does and give a hierarchy of three definitions of strong
unforgeability TS-SUF-2 ← TS-SUF-3 ← TS-SUF-4. The numbering reflects that TS-UF-i ←
TS-SUF-i for i = 2, 3, 4.
The case of BLS. Returning to threshold BLS, Boldyreva’s analysis [9] adopts the formalism of
Gennaro, Jarecki, Krawczyk, and Rabin [26, 23, 25]. The non-triviality condition here is that no
server was asked to issue a partial signature on the forgery message M . This is TS-UF-0 in our
hierarchy. But allowing asynchronous requests is a feature of this scheme and model. A corrupted
leader could ask one honest server i for a partial signature. No other server would even be aware of
this request, but the adversary would now have psig i. Under TS-UF-0, the forgery is now trivial,
and the adversary does not win. Yet (assuming a threshold t ≥ 2), there is no reason possession
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of just psig i should allow creation of a signature, and indeed for threshold BLS there is no attack
that seems able to create such a signature, indicating the scheme is achieving more than TS-UF-0.
This leads to the next level of our hierarchy, TS-UF-1, where the non-triviality condition is that a
partial signature of M was requested from at most t− 1− c honest servers, where c is the number
of corrupted servers. Does threshold BLS achieve this TS-UF-1 definition? As we will see, proving
this presents challenges, but we will succeed in showing that the answer is yes, under a variant of
the CDH assumption which we introduce (and prove to be hard in the generic group model). Yet,
TS-UF-1 was not considered in the literature, and only TS-UF-0 is proved for many other non-
interactive schemes [38, 29, 40, 11]. The only exceptions are the work of Libert, Joye, and Yung [32]
and recent concurrent work by Groth [28], which comes to a similar conclusion/result on BLS. (We
discuss the relation below.) We note that Shoup [38] implicitly tackles a similar technical challenge
by dealing with differing corruption and reconstruction thresholds, but the resulting security notion
is not TS-UF-1.

The distinction between TS-UF-1 and TS-UF-0 is not just academic. Implicit in applications of
threshold signing in wallets is the fact that servers also perform well-formedness checks of what is
being signed (typically, as part of a transaction). TS-UF-1 guarantees that every issued signature
has been inspected by sufficiently many servers, but TS-UF-0 does not.
The case of FROST. Yet the hierarchy needs to go higher, and this becomes apparent when
looking at partially non-interactive schemes like FROST [30]. Here, the discussion becomes more
subtle, and interesting.

In more detail, a FROST pre-processing token takes the form of a pair ppi = (gri , gsi) of group
elements for one-time use. (A server will ensure that the pre-processing token in its name in the
leader request is one it has previously sent, and will never use it again.) An honest request lr
includes, along with the message M to be signed, a sufficiently large server set lr .SS ⊆ [1..ns], and,
for each i in this set, a pre-processing token ppi that i previously sent. Each server i ∈ lr .SS will
then generate a signature share psig i = (R, zi), where R is a value which can be computed (publicly)
from the tokens included in lr , whereas zi depends on the discrete logarithms of the server’s token
and its own key share ski. The zi’s can then be aggregated into a value z such that (R, z) is a
valid Schnorr signature for M . Two variants of FROST are known, and differ in the way in which
R is computed from lr . The original version, which we refer to as FROST1 [30], requires |lr .SS|
exponentiations, whereas a more recent optimization, which we call FROST2 [16], only requires
a single exponentiation. The current security analysis [16] group model [20] does not surface any
security difference between the two variants, but only because it considers a non-triviality notion
as in our TS-UF-0 notion.

In terms of our framework, we show that FROST1 achieves TS-SUF-3 security. The proof is
under the OMDL (One More Discrete Log) assumption of [5] in the RO (Random Oracle) model
of [7]. This considers a signature trivial even if some of the honest servers in lr .SS do not respond
to a (malicious) leader request, as long as the tokens associated with these servers are not honestly
generated. In particular, the honest servers may not respond because they recognize these tokens as
invalid, or because the malicious leader did not submit the request to them. We show that, while
FROST2 fails to achieve TS-SUF-3, it achieves the next step down in our hierarchy, TS-SUF-2.
(Again the proof is under OMDL in the ROM.) This is still stronger than the notions lower in the
hierarchy. Our proofs for FROST1 and FROST2 signing operations rely on the one-more discrete
logarithm (OMDL) assumption and the random oracle model.
Stronger goals. A stronger security goal (TS-UF-4 in our hierarchy) is to expect that the only
way to obtain a signature for a message M is to follow the above blueprint, i.e., to issue the same
honest leader request lr to all servers in lr .SS. In fact, we may even ask for more, in terms of strong
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unforgeability — the value R is uniquely defined by lr , and, along with the message M , it defines
a unique signature (although not efficiently computable given the verification key alone). An ideal
goal, which corresponds to our strongest security goal, is to ensure that the only way to generate
the signature associated with lr is to obtain a signature share for lr from every honest server whose
tokens are included in lr . This is a notion we refer to as TS-SUF-4.

We will however show that neither FROST1 nor FROST2 meet TS-SUF-4. To overcome this, we
will show a general transformation which can boost the security of a TS-SUF-3-secure scheme like
FROST1 to achieve TS-SUF-4. Our framework allows schemes more general than the FROST ones,
and also leaves the question open of better and more efficient designs achieving the stronger notions.
Moreover, we provide simple reference schemes for all of our notions, which, while inefficient, guide
us in understanding the subtle differences among notions and baseline requirements. In particular,
these schemes will enable us to separate the proposed notions.
A summary for our notions. In summary, our unforgeabilty notions declare a signature for a
message M trivial in the following cases:

• TS-UF-0: A partial signature for the message M was generated by at least one honest server.
• TS-UF-1: A partial signature for the message M was generated by at least t−c honest servers,

where c is the number of corrupted servers.
• TS-UF-2: There exists a leader request lr for the message M which was answered by at least
t− c honest servers.

• TS-UF-3: There exists a leader request lr for the message M such that every honest server
i ∈ lr .SS either answered lr or the token ppi associated with i in lr is maliciously generated.

• TS-UF-4: There exists a leader request lr for the message M such that every honest server
i ∈ lr .SS answered lr .

Analogous notions of strong unforgeability are obtained by further associating a request lr to a
(unique) signature, in addition to a message M .

We stress that it is not clear which scenarios demand which notions in our hierarchy. This is
especially true because we are still lacking formal analyses of full-fledged systems using threshold
signatures, but it is not hard to envision a potential mismatch between natural expectations from
such schemes and what they actually achieve. In both FROST variants, for example, it is natural
to expect that a signature can only be generated by a sufficient number of honest servers answering
the same request, a property which we show is actually achieved. Further, one may also expect
that all honest servers that generated these honest tokens need to be involved in the generation
of a valid signature, but this stronger property is actually not achieved by either of the FROST
variants.
What we do not do. Some schemes like FROST come with a concrete distributed key-generation
(DKG) protocol. Security proofs frequently (but not always) consider, monolithically, the composi-
tion of DKG and threshold signing. This lack of modular treatment is due to the fact that efficient
DKG protocols like Pedersen’s [36] are not secure [25] in the strongest possible sense in isolation,
but it may still be possible to show security when they are used with a particular threshold sig-
nature scheme. Here, instead, we idealize DKG protocols, as the points we are trying to express
are orthogonal to the concrete choice of a DKG. Our result would still guarantee security of the
schemes when used with truly secure DKGs (such as the DKG from [25]), but further investigation
is needed to extend our proofs to consider more efficient DKGs.

Our framework does not handle adaptive corruptions, i.e., we demand instead that the adver-
sary declares its corruption set initially. We could extend our definitions to adaptive corruptions
rather easily, but our concrete bounds would be impacted. In particular, we would resort to a
generic reduction guessing the corrupted set beforehand, with a multiplicative loss of 2ns, which is
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acceptable for the smaller values of the number ns of parties that we consider common in practice.
Our framework cannot cover recent protocols, like that of Canetti et al. [14], which combine

a multi-round message-independent pre-processing phase with a final, message-dependent, round.
(Conversely, their UC security analysis does not give definitions which help our fine-grained frame-
work.)

Finally, many prior works also consider robustness, i.e., the guarantee that a signature is always
produced. Here, we follow the same viewpoint as in FROST, and do not focus on robustness
explicitly. This allows us to prevent imposing a small t (relative to ns) just for the sake of ensuring
it. However, our schemes all implicitly give verification keys vki for each server, and it is not hard
to verify individual partial signatures psig i. Any t valid partial signatures will always aggregate
into a valid signature.
Related and concurrent work. A recent preprint by Groth [28] presents a general definition
for fully non-interactive schemes in a setting with a (non-interactive) DKG. His definition implies
TS-UF-1, and he also provides a proof sketch that BLS (with his newly proposed non-interactive
DKG) is secure under a variant of the OMCDH assumption, which is closely related to our VCDH
assumption which we also show to be hard in the GGM. Groth’s framework is not suitable for
partially non-interactive schemes like FROST, which are the main focus of our work.
History of this paper. This paper (BTZ) was submitted to Crypto 2022. The PC imposed a
(hard) merge with the also-submitted work of CKM [15], resulting in the joint Crypto 2022 paper
BCKMTZ [1]. The Crypto 2022 paper includes the materiel here, and, from CKM [15], the FROST2
scheme together with an analysis of its security when used with a DKG, the latter being a variant
of Pedersen’s DKG introduced in conjunction with FROST1 [30]. We thank Tibor Jager for his
generous shepherding of the merge. Full versions of the BTZ and CKM papers have been kept
separate, and we see each group as responsible for the proofs in their portion of the joint work.

2 Preliminaries

Notation. If b ≥ a ≥ 1 are positive integers, then Za denotes the set {0, . . . , a − 1} and [a..b]
denotes the set {a, . . . , b}. If x is a vector then |x| is its length (the number of its coordinates),
x[i] is its i-th coordinate and [x] = { x[i] : 1 ≤ i ≤ |x| } is the set of all its coordinates. A string
is identified with a vector over {0, 1}, so that if x is a string then x[i] is its i-th bit and |x| is its
length. By ε we denote the empty vector or string. The size of a set S is denoted |S|. For sets
D,R let FNS(D,R) denote the set of all functions f :D → R.

Let S be a finite set. We let x←$ S denote sampling an element uniformly at random from S
and assigning it to x. We let y ← AO1,...(x1, . . . ; r) denote executing algorithm A on inputs x1, . . .
and coins r with access to oracles O1, . . . and letting y be the result. We let y←$ AO1,...(x1, . . .)
be the result of picking r at random and letting y ← AO1,...(x1, . . . ; r). Algorithms are randomized
unless otherwise indicated. Running time is worst case.
Games. We use the code-based game playing framework of [8]. (See Fig. 2 for an example.) Games
have procedures, also called oracles. Among the oracles are Init (Initialize) and Fin (Finalize).
In executing an adversary A with a game Gm, the adversary may query the oracles at will, with
the restriction that its first query must be to Init (if present), its last to Fin, and it can query
these oracles at most once. The value returned by the Fin procedure is taken as the game output.
By Gm(A) ⇒ y we denote the event that the execution of game Gm with adversary A results in
output y. We write Pr[Gm(A)] as shorthand for Pr[Gm(A)⇒ true], the probability that the game
returns true.
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In writing game or adversary pseudocode, it is assumed that Boolean variables are initialized
to false, integer variables are initialized to 0 and set-valued variables are initialized to the empty
set ∅.
Groups. Let G be a group of order p. We will use multiplicative notation for the group operation,
and we let 1G denote the identity element of G. We let G∗ = G\{1G} denote the set of non-identity
elements, which is the set of generators of G if the latter has prime order. If g ∈ G∗ is a generator
and X ∈ G, the discrete logarithm base g of X is denoted DLG,g(X), and it is in the set Z|G|.

3 A Framework for Non-Interactive Threshold Signatures

We present our hierarchy of definitions of security for non-interactive threshold schemes, formalizing
both unforgeability (UF) and strong unforgeability (SUF) in several ways. We provide relations
between all notions considered.

3.1 Syntax and Correctness

Maintaining state. Parties as implemented in protocols would maintain state. When activated
with some inputs (which include messages from other parties), they would apply some algorithm
Alg to these and their current state to get outputs (including outgoing messages) and an updated
state. To model this, we do not change our definition of algorithms, but make the state an explicit
input and output that will, in definitions, be maintained by the overlying game. Thus, we would
write something like (· · · , st)←$ Alg(· · · , st).
Syntax. A non-interactive threshold signature scheme TS specifies a number ns ≥ 1 of servers,
a reconstruction threshold t, a set HF of functions from which the random oracle is drawn, a
key-generation algorithm Kg, a server pre-processing algorithm SPP, a leader pre-processing algo-
rithm LPP, a leader signing-request algorithm LR, a server partial-signature algorithm PS, a leader
partial-signature aggregation algorithm Agg and a verification algorithm Vf. If disambiguation is
needed, we write TS.ns,TS.t,TS.HF,TS.Kg,TS.SPP,TS.LPP,TS.LR,TS.PS,TS.Agg,TS.Vf, respec-
tively. We now explain the operation and use of these components, the understanding of which
may be aided by already looking at the correctness game Gts-cor

TS of Figure 1.
Parties involved are a leader (numbered 0, implicit in some prior works, but made explicit here)

and servers numbered 1, . . . , ns, for a total of ns + 1 parties. Algorithms have oracle access to a
function h that is drawn at random from HF in games (line 1 Figure 1) and plays the role of the
random oracle. Specifying HF as part of the scheme allows the domain and range of the random
oracle to be scheme dependent.

The key-generation algorithm Kg, run once at the beginning (line 1 of Figure 1), creates a
public signature-verification key vk, associated public auxiliary information aux and an individual
secret signing key ski for each server i ∈ [1..ns]. (Usually, sk1, . . . , skns will be shares of a global
secret key sk, but the definitions do not need to make sk explicit. The leader does not hold any
secrets associated to vk.) While key-generation may in practice be performed by a distributed
key-generation protocol, our syntax assumes it done by a trusted algorithm to allow a modular
treatment. Keys are held by parties in their state, encoded into dedicated fields of the latter as
shown at line 3 of Figure 1. For specific scheme, we will typically use aux to model additional
information that can be leaked by key generation step without violating security (e.g., the values
gski in most cases).

The signing protocol can be seen as having two rounds, which we think as a pre-processing
and online stage. In a pre-processing round, any server i can run (pp, sti)←$ SPP[h](sti) to get
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Game Gts-cor
TS

Init:
1 h←$ TS.HF ; sk0 ← ⊥ ; (vk, aux, sk1, . . . , skns)←$ Kg[h]
2 For i = 0, . . . , ns do // Initialize party states with keys
3 sti.sk← ski ; sti.vk← vk ; sti.aux ← aux

4 Return vk, aux, sk1, . . . , skns

PPO(i): // i ∈ [1..ns]
5 (pp, sti)←$ SPP[h](sti) ; st0 ← LPP[h](pp, st0)
6 Require: pp ̸= ⊥
7 Return pp

SignO(M,SS):
8 Require: SS ⊆ [1..ns] and |SS | ≥ t // Set of signers
9 (lr , st0)←$ LR[h](M,SS , st0)

10 Require: lr ̸= ⊥ // Leader accepts request
11 If (lr .msg ̸= M or lr .SS ̸= SS) then win← true
12 For i ∈ SS do
13 (psigi, sti)←$ PS[h](lr , i, sti) // Servlet partial signatures
14 (sig , st0)←$ Agg[h](lr , {psigi}i∈SS , st0)
15 If Vf[h](vk, M, sig) = false then win← true

RO(x): // Random oracle
16 Return h(x)

Fin:
17 Return win

Figure 1: Game used to define correctness of threshold signature scheme TS with threshold t.

a pre-processing token pp which it sends to the leader. (Here sti is the state of i.) Via st0 ←
LPP[h](pp, st0), the leader updates its state st0 to incorporate token pp. (In Figure 1, this is
reflected in lines 5–7.)

In a signing round the leader begins with a message and a choice of a signer set SS ⊆ [1..ns] of
size at least t. Via (lr , st0)←$ LR[h](M,SS , st0) it generates a leader request lr that, through st0,
implicitly depends on a choice of pre-processing tokens. (Lines 8,9 of Figure 1.) The leader request
is sent to each i ∈ SS , who, via (psig i, sti)←$ PS[h](lr , i, sti), computes a partial signature psig i

and returns it to the leader. Via (sig , st0)←$ Agg[h](lr , {psig i}i∈SS , st0), the leader aggregates the
partial signatures into a signature sig of M , the desired output of the protocol. (Lines 12–14 of
Figure 1.)

The verification algorithm, like in a standard signature scheme, takes vk, a message M and a
candidate signature, and returns a boolean validity decision.
Echo schemes. We define a sub-class of non-interactive threshold schemes that we call echo
schemes. Recall that a leader request lr is mandated to specify a message lr .msg and a set
lr .SS ⊆ [1..ns] of servers from whom partial signatures are being requested. In an echo scheme, lr
additionally specifies a function lr .PP : lr .SS→ {0, 1}∗. If the leader is honest, lr .PP(i) is a token
pp that i had previously sent to the leader. That is, the leader is echoing tokens back to the servers,
whence the name. In considering security, of course, lr .PP(i) is picked by the adversary and may
not be a prior token. As we will discuss in Section 5.1, FROST is a typical example of an echo
scheme.
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Correctness of a TS scheme. The game of Figure 1 defines correctness, and serves also to
detail the above. Recall that TS specifies a threshold t ∈ [1..ns]. The adversary will make the
leader’s pre-processing requests, via oracle PPO. It will likewise make signing requests via oracle
SignO. If any condition listed under Require: fails the adversary is understood as losing, the game
automatically returning false. We let Advts-corr

TS (A) = Pr[Gts-cor
TS ] be the advantage of an adversary

A. The default requirement is perfect correctness, which means that Advts-corr
TS (A) = 0 for all A,

regardless of computing time and number of oracle queries, but this can be relaxed, as may be
necessary for lattice-based protocols.

The way in which we are supposed to interpret the correctness definition is that a request
lr is associated with a set SS and a message M , and if such a request is issued successfully by
the leader (i.e., lr ̸= ⊥), then the servers in SS would all accept lr producing partial signatures
which aggregate into a valid signature for M . We note that this definition assumes that we submit
requests to all servers in the same order. One can give a stronger (but more complex) definition
which ensures correctness even when servers process requests in different orders, but note that for
all schemes we discuss below they will be equivalent, and we hence omit the more cumbersome
game to define it.

3.2 Unforgeability and Strong Unfogeability

Unforgeability. Unforgeability as usual asks that the adversary be unable to produce a valid
signature sig on some message M of its choice except in a trivial way. The question is what “trivial”
means. For regular signatures, it means that the adversary did not obtain a signature of M from
the signing oracle [27]. For threshold signatures, it is more subtle. We will give several definitions.

Fig. 2 simultaneously describes several games, Gts-uf-i
TS for i = 0, 1, 2, 3, 4, where Gts-uf-3

TS is
only defined if TS is an echo scheme. (We will get to the second set of games later.) They are
almost the same, differing only at line 20. The corresponding advantages of an adversary A are
Advts-uf-i

TS (A) = Pr[Gts-uf-i
TS (A)]. The adversary calls Init with a choice of a set of servers to

corrupt. It is also viewed as having corrupted the leader. Playing the leader role, it can request
pre-processing tokens via oracle PPO. It can provide a server with a leader-request lr of its choice
to obtain a partial signature psig . At the end, it outputs to Fin its forgery message M and signature
sig . If the signature is not valid, line 18 ensures that the adversary does not win. Now, to win, the
signature must be non-trivial. It is in how this is defined that the games differ. Associated to i is a
trivial forgery predicate tfi that is invoked at line 20. The choices for these predicates are shown
in the table in Figure 3, and the notion corresponding to game tfi is denoted TS-UF-i. When
i = 0 we have the usual notion from the literature, used in particular in [9, 23, 25]. As i increases,
we get more stringent (less generous) in declaring a forgery trivial, and the notion gets stronger.

Concretely, TS-UF-0 considers a signature for a message M trivial if a request lr with lr .msg
was answered by server with a partial signature. Moving on, TS-UF-1 strengthens this by declaring
a signature trivial only if at least t− |CS | servers have responded to some request for message M ,
where these requests could have been different. In turn, TS-UF-2 strengthens this even further by
requiring that there was a single prior request lr for M which was answered by t− |CS | servers.

The notions TS-UF-3 only deals with echo schemes. Recall that for these schemes, a request
lr contains a map lr .PP : lr .SS → {0, 1}∗, where lr .PP(i) is meant to be a token issued by server
i. Here, we consider a signature for message M trivial if there exists a request lr for M which is
answered by all honest servers i for which lr .PP(i) is a valid token previously output by i, and this
set consists of at least t − |CS | servers. Finally, our strongest notion, TS-UF-4 simply considers
a signature trivial if there exists a request lr for M which is answered by all honest servers in
i ∈ lr .SS.
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Games Gts-uf-i
TS (i = 0, 1, 2, 3, 4) and Gts-suf-i

TS (i = 2, 3, 4)

Init(CS):
1 Require: CS ⊆ [1..ns] and |CS | < t // Set of corrupted parties
2 h←$ TS.HF ; (vk, aux, sk1, . . . , skns)←$ Kg[h]
3 HS ← [1..ns] \ CS // Set of honest parties
4 For i ∈ HS do
5 sti.sk← ski ; sti.vk← vk ; sti.aux ← aux

6 Return vk, aux, {ski}i∈CS

PPO(i):
7 Require: i ∈ HS

8 (pp, sti)←$ SPP[h](sti) ; PPi ← PPi ∪ {pp} ; Return pp

PSignO(i, lr):
9 M ← lr .msg

10 Require: lr .SS ⊆ [1..ns] and M ∈ {0, 1}∗ and i ∈ HS

11 L← L ∪ {lr} ; (psig , sti)←$ PS[h](lr , i, sti)
12 If (psig ̸= ⊥) then
13 S1(M)← S1(M) ∪ {i} ; S2(lr)← S2(lr) ∪ {i}
14 Return psig

RO(x): // Random oracle
15 Return h(x)

Fin(M, sig):
16 For all lr ∈ L do
17 S3(lr)← { i ∈ HS ∩ lr .SS : lr .PP(i) ∈ PPi } ; S4(lr)← HS ∩ lr .SS
18 If (not Vf[h](vk, M, sig)) then return false
19 Return (not tfi(M)) // Game Gts-uf-i

TS for i = 0, 1
20 Return (not ∃ lr ( lr .msg = M and tfi(lr) )) // Game Gts-uf-i

TS for i = 2, 3, 4
21 Return (not ∃ lr ( lr .msg = M and tsfi(lr , vk, sig) )) // Game Gts-suf-i

TS

Figure 2: Games used to define TS-UF-i and TS-SUF-i unforgeability of threshold signature scheme
TS. Line 20 is included only in game Gts-uf-i

TS and line 21 only in game Gts-suf-i
TS . These lines refer

to the trivial-forgery predicates tfi(lr) and trivial strong-forgery predicates tsfi(lr , vk, sig) from
Figure 3. In particular, the set S3(lr) and, thus, TS-UF-3 and TS-SUF-3 unforgeability are defined
only if TS is an echo scheme.

It is natural to expect TS-UF-3 and TS-UF-4 to be similar, but as we will see below, they are
actually not equivalent. (Although we will give a transformation that boosts an TS-UF-3-secure
scheme into an TS-UF-4-secure one.)

Strong unforgeability. For standard signatures, strong unforgeability asks, in addition to un-
forgeability, that the adversary be unable to produce a new signature on any message, where new
means different from any obtained legitimately for that message. We ask, does this have any coun-
terpart in threshold signatures? In fact, FROST seems to have such a property. We now provide
formalisms to capture such properties.

It turns out that giving a general definition of strong unforgeability is rather complex, and we
will restrict ourselves to a natural subclass of schemes (which includes FROST). Concretely, we ask
that there is an algorithm SVf, called a strong verification algorithm, that takes a public key vk, a
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tf0(M) : S1(M) ̸= ∅
tf1(M) : |S1(M)| ≥ t− |CS |
tf2(lr) : |S2(lr)| ≥ t− |CS |
tf3(lr) : tf2(lr) and S2(lr) = S3(lr)
tf4(lr) : tf2(lr) and S2(lr) = S4(lr)

tsf2(lr , vk, sig) : tf2(lr) and SVf[h](vk, lr , sig)
tsf3(lr , vk, sig) : tf3(lr) and SVf[h](vk, lr , sig)
tsf4(lr , vk, sig) : tf4(lr) and SVf[h](vk, lr , sig)

TS-UF-0 TS-UF-1 TS-UF-2 TS-UF-3 TS-UF-4

TS-SUF-2 TS-SUF-3 TS-SUF-4

Figure 3: Top: Trivial-forgery conditions tfi(lr) (i = 0, 1, 2, 3, 4) and trivial-strong-forgery con-
ditions tsfi(lr , vk, sig) (i = 1, 2, 3, 4) used to define TS-SUF-i and TS-SUF-i security in games
Gts-uf-i

TS and Gts-suf-i
TS , respectively. Bottom: Relations between notions of security.

leader request lr , and a signature sig as inputs and outputs true or false. We require that for any
vk, lr there exists at most one signature sig such that SVf(vk, lr , sig) = true. Also, TS is asked to
satisfy a strong correctness property which is defined using the same game as Gts-cor

TS except the
condition Vf[h](vk,M, sig) = false in line 15 is replaced with SVf[h](vk, lr , sig) = false.

For a scheme TS with a strong verification algorithm, we consider the Gts-suf-i
TS (i = 2, 3, 4) games

in Figure 2, where Gts-suf-3
TS is only defined if TS additionaly is an echo scheme. The differences

(across the different values of i) are only in the trivial strong forgery predicates tsfi used at
line 21, and the choices are again shown in the table in Figure 3. The corresponding advantage of
an adversary A is Advts-suf-i

TS (A) = Pr[Gts-suf-i
TS (A)]. The ensuing notion is called TS-SUF-i.

3.3 Relations and Transformations

Relations between notions. Figure 3 shows relations between the notions of unforgeability and
strong unforgeabilty that we have defined. A (blue, non-dotted) arrow A → B is an implication,
saying that A implies B: any scheme that is A-secure is also B-secure. Now see the nodes as
forming a graph with edges the blue, non-dotted arrows. The thin arrow from TS-UF-0 to TS-UF-1
indicates us that the implication only holds under a quantatively loose reduction. (We prove this
in Theorem 3.1.) We claim that in this graph, if there is no path from a notion B to a notion A,
they are separate or distinct: there exists a scheme that is B-secure but not A-secure. The dotted
arrows are separations that we explicitly prove. These, together with the full arrows, prove the
claim just made. The thick dottet arrows indicate the existence of a generic transformation lifting
security of a scheme to achieve a stronger notion. (We establish this below as part of Theorem 3.2.)
Reference schemes and proofs of relations. In Appedndix A, we give a set of (fully) non-
interactive threshold schemes that we call reference schemes. They represent simple, canonical
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ways to achieve the different notions. They may not be of practical interest, because they have key
and signature sizes proportional to ns, but the point is to embody notions in a representative way.
A few things emanate from these schemes. One is that we use them, in the same Appendix, to
establish the separations given by the dotted lines in Figure 3, thereby showing that any notions
between which there is no path, in the graph given by the full arrows, are indeed separate. Second,
we get a scheme that achieves our strongest notion, TS-SUF-4, which neither FROST nor BLS
achieve. (Although we can get such a scheme by applying our transformation from Theorem 3.2 to
FROST1.) Finally, reference schemes, as canonical examples, are ways to understand the notions.
From TS-UF-0 to TS-UF-1, loosely The following theorem shows TS-UF-1 security is implied
by TS-UF-0 security, although with an exponential loss in t, which is acceptable in settings where
t is expected to be constant.

Theorem 3.1 Let TS be a threshold signature scheme. For any TS-UF-1 adverary A there exists
a TS-UF-0 adversary B such that Advts-uf-1

TS (A) ≤
( ns

t−1
)
·Advts-uf-0

TS (B) . Moreover, B runs in time
roughly equal that of A, and the number of B’s queries to each oracle is at most that of A.

If the adversary always corrupts t− 1 parties, it is clear that TS-UF-0 and TS-UF-1 are equiv-
alent. Otherwise, in general, for an adversary that breaks TS-UF-1 security and corrupts a subset
CS of servers with size less than t − 1, if the adversary wins the game Gts-uf-1

TS by outputting
(M∗, sig∗), we know |S1(M∗)| < t−|CS |. Therefore, we can modify the adversary to initially guess
a subset ECS ⊆ [1..ns] \CS with size t− |CS | − 1 and corrupt all parties in ECS . If ECS happens
to contain S1(M∗), the adversary actually wins. It is not hard to see that the probability that this
is true is 1/

( ns−|CS|
t−|CS|−1

)
≥ 1/

( ns
t−1
)
. We give a formal proof in Appedndix B.

From TS-(S)UF-3 to TS-(S)UF-4. Fig. 4 gives a general transformation from TS-(S)UF-3 se-
curity to TS-(S)UF-4 security. Concretely, we give a construction ATS from any TS-(S)UF-3-secure
echo scheme TS and a digital signature scheme DS. The size of signatures produced by ATS and
the verification algorithm Vf are exactly the same as TS. The main idea is to use signatures to
authenticate each token contained in a leader request lr from TS, so that an honest server only
answers the request if all the authentications are valid. The rest of the protocol remains the same.

In the game Gts-(s)uf-4
ATS , we can show that as long as the adversary does not break the strong

unforgeability of DS, for any leader request lr such that S2(lr) > 0, it holds that S3(lr) = S4(lr),
which implies the conditions tf3 and tf4 are equivalent. Therefore, we can reduce TS-(S)UF-4
security of ATS to TS-(S)UF-3 security of TS and SUF-CMA security of DS. (The latter notion
is formally defined via the game in Fig. 5.) This is captured by the the following theorem. (The
proof is in Appedndix C.)

Theorem 3.2 Let XX ∈ {SUF ,UF}. Let TS be an echo scheme and DS be a digital signature
scheme. For any TS-XX-4 adversary A there exists a TS-XX-3 adversary B and a SUF-CMA
adversary C such that

Advts-xx-4
ATS[TS,DS](A) ≤ Advts-xx-3

TS (B) + ns ·Advsuf-cma
DS (C) .

Moreover, B and C run in time roughly equal that of A. The number of B’s queries to each oracle
is at most that of A. The number of C’s SignO queries is at most the number of PPO queries
made by A.
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Protocol ATS[TS,DS]

Kg[h]:
1 vk, taux, {tski}i∈[1..ns] ← TS.Kg
2 For i ∈ [1..ns] do
3 (svki, sski)←$ DS.Kg
4 ski ← (tski, sski)
5 aux ← (taux, svk1, . . . , svkns)
6 Return vk, aux, {ski}i∈[1..ns]

SPP[h](sti):
7 (tpp, sti)←$ SPP[h](sti)
8 (tski, sski)← sti.sk
9 tsig ←$ DS.Sig(sski, tpp)

10 Return ((tpp, tsig), sti)

LPP[h](i, pp, st0):
11 (tpp, tsig)← pp

12 st0.SigMap(i, tpp)← tsig

13 Return TS.LPP[h](i, tpp, st0)

OriginLR(lr):
14 For i ∈ lr .SS do
15 (tpp, tsig)← lr .PP(i)
16 lr .PP(i)← tpp

17 Return lr

LR[h](M,SS , st0):
18 (lr , st0)← TS.LR[h](M,SS , st0)
19 For i ∈ SS do
20 tppi ← lr .PP(i)
21 lr .PP(i)← (tppi, st0.SigMap(i, tppi))
22 Return (lr , st0)

PS[h](lr , i, sti):
23 (taux, svk1, . . . , svkns)← sti.aux
24 For i ∈ lr .SS do
25 (tppi, tsigi)← lr .PP(i)
26 If DS.Vf(svki, tppi, tsigi) = false then
27 Return ⊥
28 Return TS.PS[h](OriginLR(lr), i, sti)

Agg[h](PS, st0):
29 Return TS.Agg[h](PS, st0)

Vf[h](vk, M, sig):
30 Return TS.Vf[h](vk, M, sig)

SVf[h](vk, lr , sig):
31 Return TS.SVf[h](vk, OriginLR(lr), sig)

Figure 4: The threshold signature ATS[TS,DS] constructed from an echo scheme TS and a digital
signature scheme DS such that ATS.ns = TS.ns and ATS.t = TS.t. The algorithm OriginLR trans-
forms a well-formed leader request lr for ATS to a well-formed leader request in TS. st0.SigMap is
a table that stores the signature corresponding to each token generated by honest servers, which is
initially set to empty. PS denotes a set of partial signatures.

Games Gsuf-cma
DS

Init:
1 (vk, sk)←$ DS.Kg
2 Return vk

SignO(M):
3 sig ←$ DS.Sig(sk, M)
4 Q← Q ∪ {(M, sig)}
5 Return sig

Fin(M, sig):
6 If DS.Vf(vk, M, sig) and (M, sig) ̸∈ Q then
7 Return true
8 Return false

Figure 5: The game Gsuf-cma
DS , where DS is a diginal signature scheme.

4 The Security of Threshold BLS Signatures

We revisit the BLS signature scheme [9, 13] within our definitional framework. While a proof of
TS-UF-0 security basically recasts similar guarantees to those proved by [9], the more interesting
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Protocol BLS[G,GT]

Kg[h]:
1 For i ∈ [0..t− 1] do
2 ai←$ Zp

3 For i ∈ [1..ns] do
4 ski←$

∑t−1
j=0 ij · aj ; vki ← gski

5 vk ← ga0

6 aux ← (vk1, . . . , vkns)
7 Return vk, aux, {ski}i∈[1..ns]

SPP[h](sti):
8 Return (⊥, sti)

LPP[h](i, pp, st0):
9 Return st0

PS[h](lr , i, sti):
10 If i ∈ lr .SS then
11 psig ← h(lr .msg)λlr.SS

i ·sti.sk

12 Else psig ← ⊥
13 Return (psig , sti)

Agg[h](PS, st0):
14 sig ← 1G

15 For psig ∈ PS do
16 sig ← sig · psig
17 Return (sig , st0)

LR[h](M,SS , st0):
18 lr .msg←M ; lr .SS← SS

19 Return (lr , st0)

Vf[h](vk, M, sig):
20 Return e(vk, h(M)) = e(g, sig)

Figure 6: The protocol BLS[G,GT], where G is and GT are cyclic groups with prime order p and
g is a generator of G. Further, e : G × G → GT is a bilinear map. Moreover, ns is the number of
parties, and t is the threshold parameter. The scheme is defined for any choice of t ≤ ns ≤ p − 1.
Further, h : {0, 1}∗ → G.

contribution is our proof of TS-UF-1 security. We note that TS-UF-1 security follows already from
TS-UF-0 security with a loss of nst−1 by Theorem 3.1. Here, however, we give a tighter reduction
to a stronger assumption, the Vector CDH assumption, which we prove to hold in the GGM, with
concrete hardness matching that of the original CDH assumption.

The scheme itself is described in Figure 6. As BLS is fully non-interactive, some of the algorithms
in the scheme description are trivial. We rely on an efficiently computable bilinear map e : G×G→
GT, where G,GT are both groups of order p, and, for a generator g ∈ G we have e(ga, gb) =
e(g, g)ab. (As in the original BLS proof [13], one can generalize these results to asymmetric case
e : G1×G2 → GT whenever an efficiently computable isomorphism ψ : G2 → G1 exists.) We remark
that the security of BLS with aggregation is enhanced when the message is pre-pended with the
public key prior to hashing [13, 4]. We accordingly recommend this for implementations but for
simplicity have omitted it here.
The Vector CDH Assumption. The t-Vector Computational Diffie-Hellman (t-VCDH) assump-
tion is parameterized by an integer t ≥ 1, and a group G of order p, with a generator g. It is described
by the game Gt-vcdh

G in Figure 7. It considers an adversary that is given multiple random group ele-
ments X[i] = gx[i] for i ∈ [1..t], as well as a group element Y . The adversary can then issue queries
Eval(α) for α ∈ Zt

p to obtain Y ⟨α,x⟩ for α ∈ Zt
p of its choice, where ⟨α,β⟩ = ∑t

i=1 α[i] ·β[i] for any
α,β ∈ Zt

p. (Here, all operations are mod p.) The adversary wins if it outputs α and Z = Y ⟨α,x⟩ for
some α which is not in the span of the prior queries. We denote by Advt-vcdh

G (A) the corresponding
advantage metric, which measures the probability of the game returning true. We also introduce
the (conventional) CDH assumption in Figure 7, with the associated Advcdh

G (A) advantage metric.
We study the t-VCDH assumption in the generic-group model (GGM) [37, 34], and show in

Appedndix D that it is as hard as the Discrete Logarithm and the CDH problems in a prime
order group, i.e., any attack succeeding with constant probability requires Ω(√p) operations. In
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Game Gt-vcdh
G

Init:
1 Y ←$ G; x←$ Zt

p

2 For i ∈ [1, t] do
3 X[i]← gx[i]

4 VecSet← ∅
5 Return (X, Y )

Eval(α): // α ∈ Zt
p

6 VecSet← VecSet ∪ {α}
7 Return Y ⟨α,x⟩

Fin(Z, α):
8 Return α /∈ span(VecSet)
9 ∧ Z = Y ⟨α,x⟩

Game Gcdh
G

Init:
1 x←$ Zp; X ← gx; Y ←$ G

2 Return (X, Y )

Fin(Z):
3 Return Z = Y x

Figure 7: Games used to define the t-VCDH assumption (left and center columns), and the standard
CDH assumption (right column). Here, G is a cyclic group of order p with generator g.

Appedndix F, we show that t-VCDH is also implied by CDH, in the standard model, for restricted
classes of adversaries. Our GGM analysis suggests that this loose reduction is pessimistic.
TS-UF-1 Security of BLS. We then show the following theorem, which we prove in Apped-
ndix E.

Theorem 4.1 (TS-UF-1 security of BLS) For any TS-UF-1 adversary A making at most qs

queries to PSignO and at most qh queries to RO, there exists a t-VCDH adversary B, making at
most t− 1 queries to Eval such that

Advts-uf-1
BLS[G,GT](A) ≤ (qh + qs) ·Advt-vcdh

G (B) .

Moreover, B runs in time roughly equal that of A, plus the time to perform at most ns2 + (3 + qs +
qh)ns exponentiations and group operations.

For completeness, in Appedndix G, we give a simpler proof of TS-UF-0 security (which mirrors
the analysis of [9]), which in turn gives us a looser version of the above theorem based on CDH
alone. Alternatively, one can use a Lemma in Appedndix F to obtain a similar result. We also note
that BLS does not achieve TS-UF-2 security (and, thus, any stronger notion), since the only part
of a partial signature depending on SS is the Lagrange coefficient in the exponent, which is easily
altered. This allows a malicious leader to combine partial signatures from distinct requests lr ̸= lr ′

with lr .SS ̸= lr ′.SS but lr .msg = lr ′.msg = M to give a signature for M .

5 The Security of FROST

5.1 The FROST1 and FROST2 Schemes

Scheme descriptions. This section revisits the security of FROST, first proposed in [30] by
Komlo and Goldberg, as a (partially) non-interactive threshold signature scheme. We consider
both the original scheme, which we refer to as FROST1, as well as an optimized version, FROST2,
from a recent follow-up work [16]. We give a detailed description of both schemes in Figure 8. The
leader state st0 contains a set curPPi for each server i representing the set of tokens generated
by server i that has not yet been used in a signing request. The state sti for server i contains
a function mapPP that maps each token pp to the randomness that is used to generate pp and
sti.mapPP(pp) = ⊥ if pp is not generated by server i yet or has already been used in a signing
request. The coefficient λlr .SS

i in line 39 is the Lagrange coefficient for the set lr .SS, which is defined
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Protocol FROST1 , FROST2 [G]

Kg[h]:
1 For i ∈ [0..t− 1] do
2 ai←$ Zp

3 For i ∈ [1..ns] do
4 ski←$

∑t−1
j=0 ij · aj ; vki ← gski

5 vk ← ga0

6 aux ← (vk1, . . . , vkns)
7 Return vk, aux, {ski}i∈[1..ns]

SPP[h](sti):
8 r ← Zp ; s← Zp

9 pp ← (gr, gs)
10 sti.mapPP(pp)← (r, s)
11 Return (pp, sti)

LPP[h](i, pp, st0):
12 st0.curPPi ← st0.curPPi ∪ {pp}
13 Return st0

LR[h](M,SS , st0):
14 If ∃ i ∈ SS : st0.curPPi = ∅ then
15 Return ⊥
16 lr .msg←M ; lr .SS← SS

17 For i ∈ SS do
18 Pick ppi from st0.curPPi

19 lr .PP(i)← ppi

20 st0.curPPi ← st0.curPPi \ {ppi}
21 Return (lr , st0)

Vf[h](vk, M, sig):
22 (R, z)← sig

23 c← h2(vk, M, R)
24 Return (gz = R · vkc)

CompPar[h](vk, lr):
25 M ← lr .msg
26 For i ∈ lr .SS do
27 di ← h1(vk, lr , i)
28 di ← h1(vk, lr)
29 (Ri, Si)← lr .PP(i)
30 R←

∏
i∈lr.SS RiS

di
i

31 c← h2(vk, M, R)
32 Return (R, c, {di}i∈lr.SS)

PS[h](lr , i, sti):
33 ppi ← lr .PP(i)
34 If sti.mapPP(ppi) = ⊥ then
35 Return (⊥, sti)
36 (ri, si)← sti.mapPP(ppi)
37 sti.mapPP(ppi)← ⊥
38 (R, c, {dj}j∈lr.SS)

← CompPar[h](sti.vk, lr)
39 zi ← ri + di · si + c · λlr.SS

i · sti.sk
40 Return ((R, zi), sti)

Agg[h](PS, st0):
41 R← ⊥ ; z ← 0
42 For (R′, z′) ∈ PS do
43 If R = ⊥ then R← R′

44 If R ̸= R′ then return (⊥, st0)
45 z ← z + z′

46 Return ((R, z), st0)

SVf[h](vk, lr , sig):
47 (R∗, z∗)← sig

48 (R, c, {dj}j∈lr.SS)
← CompPar[h](vk, lr)

49 Return (R = R∗) ∧ (gz∗
= R · vkc)

Figure 8: The protocol FROST1[G] and FROST2[G], where G is a cyclic group with prime order p
and generator g. Further, ns is the number of parties, and t is the threshold of the schemes. We
require t ≤ ns ≤ p − 1. The protocol FROST1 contains all but the dashed box, and the protocol
FROST2 contains all but the solid box. The function hi(·) is computed as h(i, ·) for i = 1, 2. PS
denotes a set of partial signatures.

(for any set S ⊆ [1..ns]) as

λS
i :=

∏
j∈S,i̸=j

j

j − i
.

The algorithm CompPar is a helper algorithm that computes the parameters R, c, {di}i∈lr .SS used
during signing. We stress that the only difference between FROST1 and FROST2 is the way di

is computed in CompPar. In FROST1, each di is a different hash value for each server i, while in
FROST2, di’s are the same hash value for all servers.
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Games Gomdl
G

Init:
1 cid← 0; ℓ← 0; T ← ()

Chal():
2 cid← cid + 1; xcid←$ Zp

3 Return gxcid

Dlog(X):
4 If T (X) ̸= ⊥ then return T (X)
5 ℓ← ℓ + 1; T (X)← DLG,g(X)
6 Return T (X)

Fin({yi}i∈[cid]):
7 If ℓ ≥ cid then return false
8 If ∀ i ∈ [cid] : yi = xi then
9 Return true

10 Return false

Figure 9: The OMDL game, where G is a cyclic group with prime order p and generator g.

It is not hard to verify that both schemes satisfy perfect correctness.
Overview of our results. Crites, Komlo, and Maller [16] argue that FROST2 improves the
signing efficiency of FROST1 as the number of exponentiations for computing the nonce R is
reduced from at least t to one, but they only consider TS-UF-0 security of FROST2. In this section,
we strengthen their results (however, in a setting without distributed key generation) by showing
FROST2 is actually TS-SUF-2-secure (under OMDL), but we also show it is not TS-UF-3 secure. In
contrast, we show FROST1 is TS-SUF-3-secure but not TS-UF-4-secure. Theoretically, our results
imply the separations between TS-(S)UF-2 and TS-(S)UF-3 and between TS-(S)UF-3 and TS-
(S)UF-4. Practically speaking, our results indicate a separation between the security of FROST1
and FROST2. To complete the picture, a TS-SUF-4 secure variant of FROST1 can be obtained via
the general transformation from Theorem 3.2, although it is an interesting open question whether
a more efficient variant exists.

5.2 TS-SUF-2 Security of FROST2
We first show that FROST2 is TS-SUF-2-secure in the ROM under the OMDL assumption. The
OMDL assumption, introduced in [5], is formally defined in Figure 9. Formally, we show the
following theorem.

Theorem 5.1 For any TS-SUF-2 adversary A making at most qs queries to PPO and at most qh

queries to RO, there exists an OMDL adversary B making at most 2qs + ns queries to Chal such
that

Advts-suf-2
FROST2[G](A) ≤

√
q · (Advomdl

G (B) + 3q2/p) ,
where q = qs + qh + 1. Moreover, B runs in time roughly equal two times that of A, plus the time

to perform at most (4ns + 2) · q + 2qs + 2ns2 exponentiations and group operations.

The previous analysis of FROST2 [16] can be seen as implying TS-SUF-0 security, either in
the AGM or under non-standard assumptions (which are, in turn, validated in the AGM). Our
result here proves stronger security, without relying on the AGM, but also without considering
FROST’s DKG. (We believe our analysis should extend, at least in the AGM, but we omit the
added complexity of the DKG in this paper.) The core of the proof is a reduction from OMDL,
which will need to use rewinding (via a variant of the Forking Lemma). The main challenge is
to ensure that the reduction can simulate properly with a number of queries to Dlog which is
smaller than the number of DL challenges. Further below, we are going to show that FROST2 is
not TS-UF-3 secure, thus showing the above result is optimal with respect to our hierarchy.
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ForkA(x):
1 Pick the random coin ρ of A at random
2 h1, h′

1, . . . , hq, h′
q ← H

3 (I, Out)← A(x, h1, . . . , hq; ρ)
4 If I = ⊥ then return ⊥
5 (I ′, Out′)← A(x, h1, . . . , hI−1, h′

I , . . . , h′
q; ρ)

6 If I ̸= I ′ then return ⊥
7 Return (I, Out, Out′)

Figure 10: The forking algorithm build from A.

Proof of of Theorem 5.1: Let A be an adversary as described in the theorem. Denote the
output message-signature pair of A as (M∗, sig∗ = (R∗, z∗)). Without loss of generality, we assume
A always queries RO on h2(vk,M∗, R∗) before A returns and always queries RO on h1(vk, lr) prior
to the query PSignO(i, lr) for some i and lr . (This adds up to qs additional RO queries, and we
let q = qh + qs + 1.) Denote lr∗ as the leader query such that h1(vk, lr∗) is the first query prior to
the query h2(vk,M∗, R∗) satisfying SVf[h](vk, lr∗, sig∗) = true. If such lr∗ does not exists, lr∗ is
set to ⊥. Denote the event E1 as

Vf[h](vk,M∗, sig∗) ∧ (lr∗ = ⊥ ∨ S2(lr∗) < t− |CS|) .
It is clear that if A wins the game Gts-suf-2

FROST2, then E1 must occur, which implies Pr[E1] ≥
Advts-suf-2

FROST2[G](A). Therefore, the theorem will follow from the following lemma. (We isolate this
statement as its own lemma also because it will be helpful in the proof of Theorem 5.4 below.)

Lemma 5.2 There exists an OMDL adversary B making at most 2qs + t queries to Chal such
that

Pr[E1] ≤
√
q · (Advomdl

G (B) + 3q2/p) .
Moreover, B runs in time roughly twice that of A, plus the time to perform at most (4ns + 2) · q+

2qs + 2ns2 exponentiations and group operations.

Before turning to the proof of Lemma 5.2, we first introduce the following variant of the forking
lemma that will be used within its proof.

Lemma 5.3 Let q ≥ 1 be an integer, S ⊆ [1..q] be a set, and H be a set. Let A be a randomized
algorithm that on input x, h1, . . . , hq outputs a pair (I,Out), where I ∈ {⊥} ∪ S and Out is a side
output. Let IG be a randomized algorithm that generates x. The accepting probability of A is defined
as

acc(A) = Pr
x←$ IG,h1,...,hq ←$ H

[(I,Out)←$A(x, h1, . . . , hq) : I ̸= ⊥] .

Consider algorithm ForkA described in Figure 10. The accepting probability of ForkA is defined as
acc(ForkA) = Pr

x←$ IG
[α←$ ForkA(x) : α ̸= ⊥] .

Then, acc(ForkA) ≥ acc(A)2/|S|.

The above lemma slightly extends the generalized Forking Lemma of Bellare and Neven [6] in the
sense that if A can only output index I within a given set S ⊆ [1..q], then the final bound on
acc(ForkA) depends only on |S| instead of q. The property allows us to get better bounds in our

19



analysis. The proof (which is very similar to that of the Forking Lemma of [6]) is deferred to
Appedndix H.1.

Proof of of Lemma 5.2: We first construct an algorithm C compatible with the syntax in
Lemma 5.3. The input of C consists of (2qs + t) uniformly random group elements A0,. . . ,At−1, U1,
V1, . . . ,Uqs ,Vqs ∈ G and uniformly random integers h1, . . . , h2q ∈ Zp. Also, C can access an oracle
Dlog, which on input X ∈ G outputs DLG,g(X). (We can think of this oracle as part of C in the
context of the Forking Lemma, as C does not need to be efficient.) To start with, C initializes all
the states st0, . . . , stns. In addition, it initializes counters ctrs,ctrh to 0 and a function dt to an
empty table, which are used to record the Dlog query related to each (Uj , Vj). C also initializes
curLR ← ∅ to record all leader requests that appears during the game and initializes ctrPP to an
empty table, which are used to record the counter corresponding to each token generated by honest
parties. We also use a flag BadPPO to denote whether a bad event occurs, which are initially set
to false. Then, C runs A with access to the oracles Ĩnit, P̃PO, ˜PSignO, R̃O, which are simulated
as follows.

Ĩnit(CS ): C initializes h to an empty table and sets vk ← A0, vki = ∏t−1
j=0A

ij

j for i ∈ [1..ns], and
ski = Dlog(vki) for i ∈ CS . Finally, C returns vk,aux = (vk1, . . . , vkns), {ski}i∈CS .

R̃O query h1(x): If h1(x) ̸= ⊥, C returns h1(x). Otherwise, parse x as (ṽk, lr). If the parsing
fails or ṽk ̸= vk, C sets h1(x)←$ Zp and returns h1(x). Otherwise, C increases ctrh by 1, sets
h1(x) ← h2ctrh−1, and adds lr to curLR. Also, C computes R ← ∏

i∈lr .SSRiS
h2ctrh−1
i , where

(Ri, Si) ← lr .PP(i). If h2(vk, lr .msg, R) = ⊥, C sets h2(vk, lr .msg, R) = h2ctrh
. In addition,

define mapLR(ctrh) := lr and set curLR ← curLR ∪ {lr}. Finally, C returns h1(x).

R̃O query h2(x): If h2(x) ̸= ⊥, C returns h2(x). Otherwise, parse x as (ṽk,M,R). If the parsing
fails or ṽk ̸= vk, C sets h2(x)←$ Zp and returns h2(x). Otherwise, C increases ctrh by 1 and
sets h2(x)← h2ctrh

. Finally, C returns h2(x).

P̃PO(i) query: Same as in the game Gts-suf-2
FROST2, except in the simulation of algorithm SPP, C first

increases ctrs by 1 and sets pp ← (Uctrs , Vctrs), sti.mapPP(pp) ← (0, 0), and ctrPP(i, pp) ←
ctrs. In addition, BadPPO is set to true if there exists lr ∈ curLR such that lr .PP(i) =
(Uctrs , Vctrs).

˜PSignO(i, lr) query: Same as in the game Gts-suf-2
FROST2, except in the simulation of algorithm PS, if

sti.mapPP(pp) ̸= ⊥, C sets zi ← Dlog

(
UjV

di
j vk

cλlr.SS
i

i

)
, where j ← ctrPP(i, lr .PP(i)). In

addition, C sets dt(j)← (i, k, di, cλ
lr .SS
i , zi), where k denotes the index such that h1(vk, lr) is

set to h2k−1 during the simulation.

After receiving the output (M∗, sig∗ = (R∗, z∗)) from A, C returns ⊥ if BadPPO = true or E1
does not occur. Otherwise, C finds the index I such that h2(vk,M∗, R∗) is set to hI during the
simulation. By our assumption of A, we know such I must exist. Then, C returns (I,Out), where
Out consists of all variables received or generated by C.

Analysis of C To use Lemma 5.3, we define S := {2k}k∈[1..q] and IG as the algorithm that samples
2qs + t group elements uniformly from G and outputs them. From the simulation, we know the
output index I of C is always in S. Also, it is clear that C simulates the game Gts-suf-2

FROST2 perfectly
when all the inputs of C are uniformly sampled from their domain, which implies acc(C) ≥ Pr[E1]−
Pr[BadPPO], where Pr[E1] refers to the probability in the original Gts-suf-2

FROST2 game with A (as in
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the lemma statement), whereas Pr[BadPPO] is the probability that BadPPO = true at the end of
C’s execution. Since every pair Uj , Vj is sampled uniformly from G, for each PPO(i) query, the
probability BadPPO is set to true is less than |curLR|/|G| ≤ qh/p. Therefore, we have Pr[BadPPO] ≤
qsqh/p. By Lemma 5.3,

acc(ForkC) ≥ (Pr[E1]− qsqh/p)2/q ≥ Pr[E1]2/q − 2 Pr[E1]qsqh/(p · q)

≥ Pr[E1]2/q − 2qs/p .

Construct B from ForkC We now give a construct of the OMDL adversary B using ForkC , and
the available Dlog oracle. To start with, B queries Init and queries Chal oracle 2qs + t times
to generate A0, . . . , At−1, U1, V1, . . . , Uqs , Vqs as the input of ForkC and runs ForkC . Without loss of
generality, we can assume all the OMDL challenges are different, since otherwise, B can solve them
trivially. All Dlog queries from ForkC are relayed by B to Dlog oracle of the game Gomdl

G . Denote
the event BadHash as any two of the scalars h1, h

′
1, . . . , hq, h

′
q generated in the execution of ForkC

are same. Since h1, h
′
1, . . . , hq, h

′
q are sampled uniformly from Zp, we know Pr[BadHash] ≤ 2q2/p.

It is left to show that if ForkC returns (I,Out,Out′) and BadHash does not occur, B can win the
game Gomdl

G , which implies
Advomdl

G (B) ≥ acc(ForkC)− Pr[BadHash] ≥ Pr[E1]2/q − 3q2/p .

We directly use the notations in the description of C to denote the variables in Out and use (·)′
to denote the variables in Out′. By the execution of ForkC , we know (vk,M∗, R∗) = (vk′,M∗′, R∗′)
and vk = A0. Since I ∈ S, let k∗ = I/2. It is not hard to see that mapLR(k∗) = lr∗. (If
mapLR(k∗) = ⊥, lr∗ is also ⊥.)
We first show how to compute the discrete log ofA0, . . . , At−1. Denote the discrete log ofA0, . . . , At−1
as a0, . . . , at−1 and define a polynomial f(x) := ∑t−1

i=0 aix
i. Since BadHash does not occur, we

have h2(vk,M∗, R∗) = hI ̸= h′I = h′2(vk,M∗, R∗). Since gz∗ = RxAhI
0 , gz∗′ = RxA

h′
I

0 , B com-
putes f(0) = a0 = z∗−z∗′

hI−h′
I

. Define Tdt := { j : (i, k, d, c, z) ← dt(j), k = k∗ }. For each
j ∈ Tdt ∩ Tdt′ , let (i, k, d, c, z) ← dt(j) and (i′, k′, d′, c′, z′) ← dt′(j), and we have gz = UjV

d
j vk

c
i ,

gz′ = UjV
d′

j vkc′
i′ . Since BadPPO = false during both execution of C, we know (Uj , Vj) is returned

by a query PPO(i) prior to the query h2(vk,M∗, R∗) during the first execution of C. Since the
two executions of C are exactly the same prior to the query h2(vk,M∗, R∗), we know i′ = i.
Also, we know d = hk = hk∗ = hk′ = d′. Therefore, B can compute f(i) = DLG,g(vki) = z−z′

c−c′ .
Denote D := {i}j∈Tdt∩Tdt′ ,(i,k,d,c,z)←dt(j). Since E1 occurs in the first execution of C, we know
|Tdt| = |S2(lr∗)| < t − |CS|. Therefore, we know |D| = |Tdt ∩ Tdt′ | < t − |CS|. Therefore, B can
pick an arbitrary set D′ ∈ HS \ D with size (t − |CS| − |Tdt ∩ Tdt′ | − 1) and for each i ∈ D′, B
queries Dlog oracle on vki. Therefore, B knows the value of f(i) for i ∈ CS ∪D ∪D′ ∪ {0}. Since
|CS ∪D ∪D′ ∪ {0}| = t, B can compute the value of a0, . . . , at−1 using Lagrange interpolation.
We now show how to compute the discrete log of U1, V1, . . . , Uqs , Vqs . Denote their discrete log as
u1, v1, . . . , uqs , vqs . From the execution of C, we know dt(j) = (i, k, d, c, z) ̸= ⊥ if and only if C
queries Dlog on UjV

d
j vk

c
i . Therefore, denote Dlog(UjV

d
j vk

c
i ) as the Dlog query associated with

dt(j). For each j ∈ qs, there are the following cases.

Case 0: Both dt(j) and dt′(j) are ⊥. In this case, B computes uj , vj by directly querying oracle
Dlog(Uj) and Dlog(Vj).

Case 1: Exactly one of dt(j) and dt′(j) is not ⊥. Without loss of generality, assume dt(j) =
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(i, k, d, c, z), which implies gz = UjV
d

j vk
c
i . B computes vj by directly querying oracle Dlog(Vj)

and computes uj = z − d · vj − c · f(i).

For all the following cases, both dt(j) and dt′(j) are not ⊥ and we denote (i, k, d, c, z)← dt(j) and
(i′, k′, d′, c′, z′)← dt′(j).

Case 2: k ̸= k′ or k = k′ > k∗. In this case, we know d = hk ̸= h′k′ = d′ and gz = UjV
d

j vk
c
i ,

gz′ = UjV
d′

j vkc′
i′ . Therefore, B computes vj = z−c·f(i)−z′+c′·f(i′)

d−d′ , uj = z − d · vj − c · f(i).

Case 3: k = k′ = k∗. In this case, B computes vj , uj the same as Case 1.

Case 4: k = k′ < k∗. B computes vj , uj the same as Case 1. Also, in this case, we have d = d′

and c = c′. Therefore, B queries Dlog oracle once in order to simulate the Dlog queries
associated with dt(j) and dt′(j).

We now count the number of Dlog queries made by B.
• B queries Dlog oracle |CS| times queries for simulating query Dlog(vki) made by C for

each i ∈ CS .
• B queries Dlog oracle |D′| times queries for computing a0, . . . , at−1.
• For each j ∈ qs, B queries Dlog twice for simulating query associated with dt(j) and dt′(j)

and computing uj , vj in case 0, 1, 2, 4 and queries 3 times in case 3.
Since the condition of case 3 is equivalent to j ∈ Tdt∩Tdt′ , the total number of Dlog queries made
by B is equal to 2qs + |Tdt∩Tdt′ |+ |CS |+ |D′| = 2qs + t−1. Therefore, B wins the game Gomdl

G .

5.3 Security of FROST1
In this section, we show that FROST1 is TS-SUF-3-secure in the ROM under the OMDL assumption.
Formally, we show the following theorem.

Theorem 5.4 For any TS-SUF-3 adversary A making at most qs queries to PPO and at most qh

queries to RO, there exists an OMDL adversary B making at most 2qs + t queries to Chal such
that

Advts-suf-3
FROST1[G](A) ≤ 4ns · q ·

√
Advomdl

G (B) + 6q/p ,
where q = qs + qh + 1. Moreover, B runs in time roughly equal two times that of A, plus the time

to perform at most 6ns · q + 4qs + 2ns2 exponentiations and group operations.

The proof here follows a similar pattern than that of Theorem 5.1, but will be more complex.
In particular, the lesser tight bound is due to the fact that we need to consider an additional
bad event, which we upper bound via a different reduction from OMDL. As we explain in detail
below, this reduction will make use of a looser Forking Lemma, which is a variant of the “Local
Forking Lemma” [3], which only resamples a single random oracle output when rewinding. The
extra looseness is due to needing to ensure an extra condition when rewinding.

Proof of Theorem 5.4: Let A be the adversary described in the theorem. Denote the output
message-signature pair of A as (M∗, sig∗ = (R∗, z∗)). Without loss of generality, we assume A
always queries RO on h2(vk,M∗, R∗) before A returns and always queries RO on h1(vk, lr , i) prior
to the query PSignO(i, lr) for some i and lr . (This adds up to qs additional RO queries, and we
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let q = qh + qs + 1.) Denote lr∗ as the leader query such that h1(vk, lr∗, i) is the first RO query
prior to the h2(vk,M∗, R∗) query for some i satisfying SVf[h](vk, lr∗, sig∗) = true. If such lr∗ does
not exist, lr∗ is set to ⊥. Denote the event E1 as

Vf[h](vk,M∗, sig∗) ∧ (lr∗ = ⊥ ∨ S2(lr∗) < t− |CS|) .
Denote the event E2 as

Vf[h](vk,M∗, sig∗) ∧ lr∗ ̸= ⊥ ∧ S2(lr∗) ̸= S3(lr∗) .
If A wins the game Gts-suf-3

FROST2 and lr∗ ̸= ⊥, we know either S2(lr∗) < t− |CS| or S2(lr∗) ̸= S3(lr∗).
Therefore, if A wins the game Gts-suf-3

FROST2, then either E1 or E2 occurs, which implies
Advts-suf-3

FROST1[G](A) ≤ Pr[E1] + Pr[E2] ≤ 2 max{Pr[E1],Pr[E2]} .
Thus, we conclude the theorem with the following two lemmas.

Lemma 5.5 There exists an OMDL adversary B making at most 2qs + t queries to Chal such
that

Pr[E1] ≤
√
q · (Advomdl

G (B) + 3q2(ns + 1)2/p) ,
Moreover, B runs in time roughly equal two times that of A, plus the time to perform at most

6ns · q + 4qs + 2ns2 exponentiations and group operations.

Lemma 5.6 There exists an OMDL adversary B making at most 2qs queries to Chal such that

Pr[E2] ≤ ns · q
√

2(Advomdl
G (B) + 1/p) .

Moreover, B runs in time roughly equal two times that of A, plus the time to perform at most
6ns · q + 4qs + 2ns2 exponentiations and group operations.

This completes the proof of the theorem, subject to proofs of the lemmas that we discuss next.

The proof of Lemma 5.5 is almost the same as Lemma 5.2, so we omit the full proof. The
only difference is that C takes as input h1, . . . , h(ns+1)q in order to simulate all RO queries. For a
RO query h1(vk, lr , i), C first enumerates all i′ ∈ [ns] and assigns h(ctrh−1)(ns+1)+i′ to h1(vk, lr , i′).
Then, C computes the nonce R for lr and assigns hctrh(ns+1) to h2(vk, lr .msg, R) if it is not assigned
any value yet. Similarly, for a new RO query h1(vk,M,R), its value is set to hctrh(ns+1). The rest
follows by similar analysis.

To prove Lemma 5.6, we need the following variant of the forking lemma, which extends the
local forking lemma of [3]. The difference is that forking is happening on two indices I, J (leading
to I ′, J ′ in the forking) while in [3] there is a single I (and corresponding I ′ in the forking). The
difference between a local forking ([3] and Lemma 9) versus classical ([6] and Lemma 5) is that in
the former only one point is resampled in forking while in the latter it is all points following the
fork. The proof is in Appedndix H.2.

Lemma 5.7 Let q ≥ 1 be an integer and H and Q be two sets. Let A be a randomized algorithm
that on input x, h1, . . . , hq outputs a tuple (I, J,Out), where I ∈ {⊥} ∪ [1..q], J ∈ Q, and Out is a
side output. Let IG be a randomized algorithm that generates x. The accepting probability of A is
defined as

acc(A) := Pr
x←$ IG,h1,...,hq ←$ H

[(I,Out)←$A(x, h1, . . . , hq) : I ̸= ⊥] .
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ForkA
2 (x):

1 Pick the random coin ρ of A at random
2 h1, . . . , hq ← H

3 (I, J, Out)← A(x, h1, . . . , hq; ρ)
4 If I = ⊥ then return ⊥
5 h′

I ← H

6 (I ′, J ′, Out′)← A(x, h1, . . . , hI−1, h′
I , hI+1, . . . , hq; ρ)

7 If I ̸= I ′ or J ̸= J ′ then return ⊥
8 Return (I, J, Out, Out′)

Figure 11: The forking algorithm build from A.

Consider algorithm ForkA2 described in Figure 11. The accepting probability of ForkA2 is defined as
acc(ForkA2 ) := Pr

x←$ IG
[α←$ ForkA(x) : α ̸= ⊥] .

Then, acc(ForkA2 ) ≥ acc(A)2/(q · |Q|).

Proof of of Lemma 5.6: We first construct an algorithm C following the syntax of the algo-
rithm described in Lemma 5.7. The input of C consists of 2qs uniformly random group elements
U1, V1, . . . , Uqs , Vqs ∈ G and uniformly random vectors h1, . . . , hns·q ∈ (Zp). Similarly to the proof
of Lemma 5.2, C can access Dlog oracle and at the beginning, initializes all the states st0, . . . , stns
as in the game Gts-suf-3

FROST1, and initializes the counters ctrs,ctrh to 0 and the function dt to an empty
table. C also initializes ctrPP to an empty table, which are used to record the counter corre-
sponding to each token generated by honest parties. Then, C runs A with access to the oracles
Ĩnit, P̃PO, ˜PSignO, R̃O, which are simulated as follows. In the following description, we use i to
denote the index of parties, j to denote the index of U1, V1, . . . , Uqs , Vqs , and k to denote the index
of h1, . . . , hns·q.

Ĩnit(CS ): C initializes h to an empty table and samples a0, . . . , at−1 uniformly from Zp. Define
f(x) := ∑t−1

i=0 aix
i. Then, C sets vk ← gf(0), vki = gf(i) for i ∈ [1..ns], and ski ← f(i) for

i ∈ CS . Finally, C returns vk,aux = (vk1, . . . , vkns), {ski}i∈CS .

R̃O query h1(x): If h1(x) ̸= ⊥, C returns h1(x). Otherwise, C parses x as (ṽk, lr , ĩ) for some
ĩ ∈ [1..ns]. If the parsing fails or ṽk ̸= vk, C sets h1(x)←$ Zp and returns h1(x). Otherwise, C
increases ctrh by 1 and sets h1(vk, lr , i)← hns(ctrh−1)+i for each i ∈ [1..ns]. In addition, define
mapLR(ctrh) := lr . Then, C computes R ← ∏

i∈lr .SSRiS
di
i , where (Ri, Si) ← lr .PP(i) and

di = h1(vk, lr , i). If h2(vk, lr .msg, R) = ⊥, C sets h2(vk, lr .msg, R)←$ Zp. Finally, C returns
h1(x).

R̃O query h2(x): If h2(x) ̸= ⊥, C returns h2(x). Otherwise, C sets h2(x)←$ Zp and returns h2(x).

P̃PO(i) query: Same as in the game Gts-suf-3
FROST1, except in the simulation of algorithm SPP, C first

increases ctrs by 1 and sets pp ← (Uctrs , Vctrs), sti.mapPP(pp) ← (0, 0), and ctrPP(i, pp) ←
ctrs.

˜PSignO(i, lr) query: Same as in the game Gts-suf-3
FROST1, except in the simulation of algorithm PS, if

sti.mapPP(pp) ̸= ⊥, C computes zi ← Dlog
(
UjV

di
j

)
+cλlr .SS

i ·f(i), where j ← ctrPP(i, pp).

24



In addition, C sets dt(j) ← (k, di, zi − cλlr .SS
i · f(i)), where k denotes the index such that

h1(vk, lr , i) is set to hk during the simulation.

After receiving the output (M∗, sig∗ = (R∗, z∗)) from A, C returns (⊥,⊥,⊥) if E2 does not occur.
Otherwise, we know S2(lr∗) > 0 and S2(lr∗) ̸= S3(lr∗). Therefore, there exists k∗ and i∗ such
that mapLR(k∗) = lr∗ and i∗ ∈ S3(lr∗) \ S2(lr∗). (Since S2(lr∗) ⊆ S3(lr∗), we must have S3(lr∗) \
S2(lr∗) ̸= ∅.) Since i∗ ∈ S3(lr∗), there exists j∗ ∈ [1..qs] such that lr∗.PP(i∗) = (Uj∗ , Vj∗). If
dt(j∗) = ⊥, C sets J ← ⊥. Otherwise, let (k, d, z) ← dt(j∗) and C sets J = k. Then, C returns
(ns(k∗ − 1) + i∗, J,Out), where Out consists of all variables received or generated by C, including
i∗, j∗, k∗, lr∗.

Analysis of C To use Lemma 5.7, we define IG as the algorithm that samples 2qs group elements
uniformly from G and outputs them. The output J is either ⊥ or in [1..(ns · q)]. It is not hard to
see that C simulates the game Gts-suf-3

FROST1 perfectly when all the inputs of C are uniformly sampled
from their domain, which implies acc(C) ≥ Pr[E2], where Pr[E2] refers to the probability in the
original Gts-suf-3

FROST1 game with A (as in the lemma statement). By Lemma 5.7,

acc(ForkC2) ≥ Pr[E2]2
ns · q(ns · q + 1) ≤

Pr[E2]2
2ns2q2 .

Construct B from ForkC We now give a construct of the OMDL adversary B using ForkC . To
start with, B queries Init and queries Chal oracle 2qs times to generate U1,V1,. . . ,Uqs ,Vqs as the
input of ForkC and runs ForkC . Without loss of generality, we can assume all the OMDL challenges
are different, since otherwise, B can solve them trivially. All Dlog queries from ForkC are relayed by
B to Dlog oracle of the game Gomdl

G . Denote the event BadHash as hI ̸= h′I , where I are outputted
by the first execution of C. Since hI , I are independent of h′I , we know Pr[BadHash] ≤ 1/p.
It is left to show that if ForkC returns (I, J,Out,Out′) and BadHash does not occur, B can win the
game Gomdl

G , which implies

Advomdl
G (B) ≥ acc(ForkC)− Pr[BadHash] ≥ Pr[E2]2

2ns2q2 − 1/p .

We directly use the notations in the description of C to denote the variables in Out and use (·)′ to
denote the variables in Out′. We first show how to compute the discrete log of Uj , Vj for j ̸= j∗.
Denote uj , vj as the discrete log of Uj , Vj . There are the following cases.

Case 0: Both dt(j) and dt′(j) are ⊥. In this case, B computes uj , vj by directly querying oracle
Dlog(Uj) and Dlog(Vj).

Case 1: Exactly one of dt(j) and dt′(j) is not ⊥. Without loss of generality, assume dt(j) =
(k, d, z), which implies gz = UjV

d
j . B computes vj by directly querying oracle Dlog(Vj) and

computes uj = z − d · vj .

For all the following cases, both dt(j) and dt′(j) are not ⊥ and we denote (k, d, z) ← dt(j) and
(k′, d′, z′)← dt′(j).

Case 2: d ̸= d′. In this case, B computes vj = z−z′

d−d′ , uj = z − d · vj .

Case 3: d = d′. In this case, B computes vj , uj the same as Case 1. Also, since d = d′, B queries
Dlog oracle only once in order to answer queries Dlog(UjV

d
j ) and Dlog(UjV

d′
j ) from ForkC .
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Adversary AInit,PPO,PSignO,RO:
1 CS ← {3, 4} ; (vk, aux, {sk3, sk4})←$ Init(CS)
2 (R1, S1)←$ PPO(1) ; (R2, S2)←$ PPO(2) ; γ ← λ

{1,3,4}
1 /λ

{1,2,3}
1

3 lr .msg←M ; lr .SS← {1, 2, 3}
4 lr .PP(1)← (R1, S1) ; lr .PP(2)← (R2, S2)
5 lr .PP(3)← (Rγ−1

1 R−1
2 , Sγ−1

1 S−1
2 )

6 z1 ← PSignO(1, lr)
7 d← RO(1, vk, lr) ; R← Rγ

1 Sγ·d
1 ; c← RO(2, vk, R, M)

8 z ← γ · z1 + c(λ{1,3,4}
3 · sk3 + λ

{1,3,4}
4 · sk4)

9 Return (M, (R, z))

Figure 12: Adversary A that wins the game Gts-uf-3
FROST2, where M is a fixed message.

From the execution of C, we know dt(j) = (k, d, z) ̸= ⊥ if and only if C queries Dlog on (UjV
d

j ).
Therefore, denote Dlog(UjV

d
j ) as the Dlog query associated with dt(j). For all the above cases,

B queries Dlog oracle twice for simulating Dlog queries associated with dt(j) and dt′(j) and
computing uj , vj .
We now show how to compute uj∗ and vj∗ . From the execution of ForkC2 , we know vk = vk′ and
mapLR(k) = mapLR′(k) for all k ≤ I, which implies lr∗ = mapLR(I) = mapLR′(I) = lr∗′. Since
E2 occurs in both executions of C, we know SVf(vk, lr∗, (R∗, z∗)) = true and SVf(vk, lr∗, (R∗′, z∗′)) =
true are valid. Therefore, gz∗ = R∗ga0c, R∗ = ∑

i∈lr∗.SSRiS
di
i , gz∗′ = R∗′ga0c′ , R∗′ = ∑

i∈lr∗.SSRiS
d′

i
i ,

where (Ri, Si) = lr .PP(i), c = h2(vk,M∗, R∗), c′ = h′2(vk,M∗, R∗′), and di = h1(vk, lr∗, i),
d′i = h′1(vk, lr∗, i). Since for each i ̸= i∗ we have di = hns(k∗−1)+i = d′i, we have gz∗−z∗′ =
R∗

R∗′ ga0(c−c′) = S
di∗−d′

i∗
i∗ ga0(c−c′). Therefore, C can compute vj∗ = z∗−z∗′−a0(c−c′)

di∗−d′
i∗

. If J = ⊥, B
computes uj∗ by querying Dlog(Uj∗) directly. In this case, B queries Dlog only once to com-
pute uj∗ and vj∗ . If J ̸= ⊥, let (k, d, z) ← dt(j∗) = and (k′, d′, z′) ← dt(j∗). Then, B com-
putes uj∗ = z − d · vj∗ . Since i∗ ̸∈ S2(lr∗), we know k ̸= I.(Otherwise, suppose k = I. Since
I = ns(k∗ − 1) + i∗ and mapLR(k∗) = lr∗, we know a PSignO(i∗, lr∗) is made and does not
return ⊥ during the simulation, which implies i∗ ∈ S2(lr∗).) Thus, we have k′ = J = k ̸= I
and d = hJ = d′, which means B only needs to query Dlog once to simulate the Dlog queries
associated with dt(j) and dt′(j). Therefore, the total number of Dlog queries made by B is equal
to 2qs − 1, which implies B wins the game Gomdl

G .

5.4 Attacks for FROST1 and FROST2

FROST2 is not TS-UF-3 secure Consider the setting where ns = 4 and t = 3 and the adversary
A for the game Gts-uf-3

FROST2 described in Figure 12. We now show that Advts-uf-3
FROST2(A) = 1. From the

execution of PSignO, we know gz1 = R1S
d
1vk

λ
{1,2,3}
1 ·c

1 . Therefore,

gz = Rγ
1S

d·γ
1 vk

γ·λ{1,2,3}
1 ·c

1 vk
λ

{1,3,4}
3 ·c

3 vk
λ

{1,3,4}
4 ·c

4

= Rg
c·
∑

i∈{1,3,4} λ
{1,3,4}
i ·ski = R · vkc ,

which implies (M, (R, z)) is valid for vk. Also, it is clear that S2(lr) = {1} and S3(lr) = {1, 2},
which implies the condition tf3(lr) does not hold. Therefore, A wins the game Gts-uf-3

FROST2 with
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Adversary AInit,PPO,PSignO,RO:
1 CS ← {5, 10} ; (vk, aux, {sk5, sk10})←$ Init(CS)
2 (R1, S1)←$ PPO(11) ; s2, r2, s3, r3←$ Zp

3 lr .msg←M ; lr .SS← {11, 15, 20}
4 lr .PP(11)← (R1, S1) ; lr .PP(15)← (gr2 , gs2 ) ; lr .PP(20)← (gr3 , gs3 )
5 z1 ← PSignO(11, lr)
6 For i ∈ {11, 15, 20} do di ← RO(1, vk, lr , i)
7 R← R1Sd11

1 gr2+r3+s2·d15+s3·d20 ; c← RO(2, vk, R, M)
8 z ← z1 + r2 + r3 + s2 · d15 + s3 · d20 + c(λ{5,10,11}

5 · sk5 + λ
{5,10,11}
10 · sk10)

9 Return (M, (R, z))

Figure 13: Adversary A that wins the game Gts-uf-4
FROST1, where M is a fixed message.

probability 1.
FROST1 is not TS-UF-4 secure Consider the setting where ns = 20 and t = 3 and the adversary
A for the game Gts-uf-4

FROST1 described in Figure 13. We now show that Advts-uf-4
FROST1(A) = 1. From

the execution of PSignO, we know gz1 = R1S
d11
1 vk

λ
{11,15,20}
11 ·c

11 . The key observation here is that
λ
{11,15,20}
11 = 15·20

(15−11)(20−11) = 25
3 = 5·10

(5−11)(10−11) = λ
{5,10,11}
11 . Therefore,

gz = R1S
d11
1 gr2+r3+s2·d15+s3·d20vk

λ
{11,15,20}
11 ·c

11 vk
λ

{5,10,11}
5 ·c

5 vk
λ

{5,10,11}
10 ·c

10

= Rg
c·
∑

i∈{5,10,11} λ
{5,10,11}
i ·ski = R · vkc ,

which implies (M, (R, z)) is valid for vk. Also, it is clear that S2(lr) = {11} and S4(lr) =
{11, 15, 20}, which implies the condition tf4(lr) does not hold. Therefore, A wins the game Gts-uf-4

FROST1
with probability 1.

The reason why the attack is possible for FROST1 is because the honest server 11 replies to the
leader request lr with tokens lr .PP(15) and lr .PP(20) not generated by the honest servers 15 and 20
but by the adversary instead. Therefore, the attack is prevented by the general transformation from
TS-SUF-3 security to TS-SUF-4 security described in Fig. 4 since after the transformation an honest
server replies to a leader request only when all the tokens within the request are authenticated by
the corresponding servers, and it is not possible for the adversary to generate authenticated tokens
on behalf of honest servers.
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A Reference schemes and proofs of relations between notions

Fix t, ns such that 2 ≤ t < ns. The reference schemes are shown in Figure 14.

Proposition A.1 Suppose DS is a signature scheme and 2 ≤ t < ns. Let RTSℓ[DS] (ℓ = 1, 2, 3, 4)
be the reference threshold schemes defined in Figure 14. Then: (1) For all ℓ ∈ {1, 2, 3, 4}, if DS
is UF-CMA-secure then RTSℓ[DS] is TS-UF-ℓ-secure, and (2) For all ℓ ∈ {2, 3, 4}, if DS is unique
and SUF-CMA-secure then RTSℓ[DS] is TS-SUF-ℓ-secure.

The proof of the above proposition is rather straightforward. We now use these schemes to prove
the separations claimed by the dotted arrows in Figure 3.
TS-UF-1 ̸⇒ TS-UF-2. We need to exhibit a scheme TS that is TS-UF-1-secure but not TS-UF-2-
secure. Let TS = RTS1[DS] (Figure 14) where DS is a UF-CMA-secure standard signature scheme.
Proposition A.1 says this achieves TS-UF-1. We now give an attack showing it fails TS-UF-2. The
idea is that the adversary can make partial-signing requests to t servers, all with the same message
but with lr .SS, and thus lr itself, varying across the requests, so that S2(lr) stays small for any
particular lr , and non-triviality under tf2 is maintained. Proceeding to the details of the attack,
fix a message M , and consider the following adversary A for game Gts-uf-2

TS,t :

Adversary A
1. CS ← ∅ ; (vk, aux, ∅)←$ Init(CS )
2. lr1.msg←M ; lr1.SS← [1..t] ; lr2.msg←M ; lr2.SS← [2..t+ 1]
3. For i ∈ [1..t− 1] do psig i←$ PSignO(i, lr1)
4. psig t←$ PSignO(t, lr2)
5. sig ← (lr1, [1..t], {psig i}i∈[1..t] ; Fin(M, sig)

We claim that Advts-uf-2
TS,t (A) = 1. The adversary has gathered t valid signatures, so the condition

at line 18 of Figure 14 is met, and TS.Vf(vk,M, sig) = true. Now we need to show that the forgery
is non-trivial, meaning tf2(lr1) = tf2(lr2) = false. Indeed, we have |S2(lr1)| = t− 1 < t− |CS | = t
and |S2(lr1)| = 1 < t− |CS | = t.
TS-SUF-2 ̸⇒ TS-UF-3. We need to exhibit a scheme TS that is TS-SUF-2-secure but not TS-UF-3-
secure. Let TS = RTS2[DS] where DS is a unique SUF-CMA-secure standard signature scheme.
Proposition A.1 says this achieves TS-SUF-2. We now give an attack showing it fails TS-UF-3.
The idea is that the adversary can set lr .PP values as it wishes, and in particular different from
the honest ones, so that S3(lr) is empty. Proceeding to the details of the attack, fix a message M ,
and consider the following adversary A for game Gts-uf-3

TS,t :
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RTSℓ[DS].Kg:
1 For i = 1, . . . , ns do (vki, ski)←$ DS.Kg
2 vk ← (vk1, . . . , vkns) ; Return (vk, ε, sk1, . . . , skns)

RTSℓ[DS].SPP(st):
3 Return (ε, st)

RTSℓ[DS].LPP(pp, st0):
4 Return st0

RTSℓ[DS].LR(M,SS , st0):
5 lr .msg←M ; lr .SS← SS

6 For i ∈ lr .SS do lr .PP(i)← ε // ℓ = 2, 3, 4
7 Return (lr , st0)

RTSℓ[DS].PS(lr , st):
8 If (st.me ̸∈ lr .SS or |lr .SS| < t) then return (⊥, st)
9 If (lr .PP(st.me) ̸= ε) then return (⊥, st) // ℓ = 3, 4

10 psig ←$ DS.Sig(st.sk, lr .msg) // ℓ = 1
11 psig ←$ DS.Sig(st.sk, lr) // ℓ = 2, 3, 4
12 Return (psig , st)
RTSℓ[DS].Agg(lr , {psig i}i∈lr.SS, st0):
13 sig ← (lr , lr .SS, {psigi}i∈lr.SS) ; Return (sig , st0)
RTSℓ[DS].Vf(vk, M, sig):
14 (vk1, . . . , vkns)← vk ; (lr , F, {psigi}i∈F )← sig

15 If (lr .msg ̸= M or F ̸⊆ lr .SS) then return false
16 T ← { i ∈ F : DS.Vf(vki, M, psigi) } // ℓ = 1
17 T ← { i ∈ F : DS.Vf(vki, lr , psigi) } // ℓ = 2, 3, 4
18 Return (T = F and |T | ≥ t) // ℓ = 1, 2
19 E ← { i ∈ lr .SS : lr .PP(i) = ε } ; Return (T = E = F and |T | ≥ t) // ℓ = 3
20 Return (T = lr .SS = F and |T | ≥ t) // ℓ = 4
RTSℓ[DS].SVf(vk, lr , sig): // ℓ = 2, 3, 4
21 (lr ′, F, {psigi}i∈F )← sig

22 Return (RTSℓ[DS].Vf(vk, lr .msg, sig) and lr = lr ′)

Figure 14: Reference threshold signature schemes RTSℓ[DS] associated to signature scheme DS for
ℓ = 1, 2, 3, 4.

Adversary A
1. CS ← ∅ ; (vk, aux, ∅)←$ Init(CS )
2. lr .msg←M ; lr .SS← [1..t] ; For i ∈ [1..t] do lr .PP(i)← 0
3. For i ∈ [1..t] do psig i←$ PSignO(i, lr)
4. sig ← (lr , [1..t], {psig i}i∈[1..t] ; Fin(M, sig)

We claim that Advts-uf-3
TS,t (A) = 1. The adversary has gathered t valid signatures, so the condition

at line 18 of Figure 14 is met, and TS.Vf(vk,M, sig) = true. Now we need to show that the forgery
is non-trivial, meaning tf3(lr) = false. Indeed, we have S2(lr) = [1..t] but S3(lr) = ∅.
TS-SUF-3 ̸⇒ TS-UF-4. We need to exhibit a scheme TS that is TS-SUF-3-secure but not TS-UF-4-
secure. Let TS = RTS3[DS] where DS is a unique SUF-CMA-secure standard signature scheme.
Proposition A.1 says this achieves TS-SUF-3. We now give an attack showing it fails TS-UF-4.
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Letting E be the set of all i ∈ lr .SS such that lr .PP(i) is correct, meaning equals ε, the idea is that
the adversary can let E be a strict subset of lr .SS and then pass verification using only signatures
from E. Proceeding to the details of the attack, fix a message M , and consider the following
adversary A for game Gts-uf-4

TS,t :

Adversary A
1. CS ← ∅ ; (vk, aux, ∅)←$ Init(CS )
2. lr .msg←M ; lr .SS← [1..t+ 1]
3. lr .PP(t+ 1)← 0 ; For i ∈ [1..t] do lr .PP(i)← ε
4. For i ∈ [1..t] do psig i←$ PSignO(i, lr)
5. sig ← (lr , [1..t], {psig i}i∈[1..t] ; Fin(M, sig)

We claim that Advts-uf-4
TS,t (A) = 1. At line 19 of Figure 14 we have E = [1..t] and thus line 19

returns true, so TS.Vf(vk,M, sig) = true. Now we need to show that the forgery is non-trivial,
meaning tf4(lr) = false. Indeed, we have S2(lr) = [1..t] but S4(lr) = [1..t+ 1].
TS-UF-4 ̸⇒ TS-SUF-2. We need to exhibit a scheme TS that is TS-UF-4-secure but not TS-SUF-2-
secure. First, if x ∈ {0, 1}∗, it is convenient to let pre(x) be the first bit of x and suff(x) the rest.
Now, let DS∗ be a unique SUF-CMA-secure standard signature scheme, and modify it to a scheme
DS as follows: Let DS.Sign(·, ·)← 0∥DS∗.Sign(·, ·) and let DS.Vf(·, ·, psig)← DS∗.Vf(·, ·, suff(psig)).
Then DS is UF-CMA-secure, but, since flipping the first bit of psig does not affect its valid-
ity, not SUF-CMA-secure. Now, consider RTS4[DS], and, for it, an alternative verification algo-
rithm RTS4[DS].Vf ′ that is as in Figure 14 except that line 17 is changed to T ← { i ∈ F :
DS.Vf(vki, lr , psig i) and pre(psig i) = 0 }. Let TS be the same as RTS4[DS] except that we change
SVf as follows: at line 22 of Figure 14, invoke RTS4[DS].Vf ′ rather than RTS4[DS].Vf. (Note that
TS.Vf stays as in RTS4[DS] as shown in Figure 14. The modified verification algorithm is only used
by TS.SVf. Also note the latter meets the required condition of accepting at most one signature per
key and message, due to the uniqueness of DS∗.) Proposition A.1 says RTS4[DS] is TS-UF-4-secure,
and hence so is TS, because the only difference between these two is in SVf and TS-UF-4 does not
depend on this. We now give an attack showing TS fails TS-SUF-2. The idea is to exploit lack of
SUF-CMA-security of the base scheme DS. Proceeding to the details of the attack, fix a message
M , and consider the following adversary A for game Gts-suf-2

TS,t , where flip1(x) returns string x with
its first bit flipped:

Adversary A
1. CS ← ∅ ; (vk, aux, ∅)←$ Init(CS )
2. lr .msg←M ; lr .SS← [1..t] ; For i ∈ [1..t] do lr .PP(i)← ε
3. For i ∈ [1..t] do psig∗i ←$ PSignO(i, lr) ; psig i ← flip1(psig∗i )
4. sig ← (lr , [1..t], {psig i}i∈[1..t] ; Fin(M, sig)

We claim that Advts-suf-2
TS,t (A) = 1. Line 18 of Figure 14 returns true, so TS.Vf(vk,M, sig) = true.

Now we need to show that the forgery is non-trivial, meaning tsf2(lr , vk, sig) = false. Indeed,
TS.SVf(vk, lr , sig) = false because the first bit of psig i is 1 for all i ∈ [1..t].

B Proof of Theorem 3.1

Proof of of Theorem 3.1: We describe a construction of the adversary B as follows. B runs A
with access to the oracles Ĩnit, P̃PO, ˜PSignO, R̃O, which are simulated as follows.
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Ĩnit(CS ): B randomly samples a set ECS ∈ [1..ns]\CS of size t−|CS |−1 and makes an oracle query
Init(CS ∪ECS ) in the game Gts-uf-0

TS . After receiving vk, aux, {ski}i∈CS∪ECS , B sets sti.sk←
ski, sti.vk← vk, and sti.aux ← aux for all i ∈ ECS . Finally, B returns vk, aux, {ski}i∈CS .

P̃PO(i) query: Same as in the game Gts-uf-1
TS , except when i ∈ [1..ns] \ (CS ∪ ECS ), B directly

relays the query to oracle PPO in the game Gts-uf-0
TS .

˜PSignO(i, lr) query: Same as in the game Gts-uf-1
TS , except when i ∈ [1..ns] \ (CS ∪ECS ) directly

relays the query to oracle PSignO in the game Gts-uf-0
TS . In addition, denote L̃ and S̃1 as L

and S1 defined in the game Gts-uf-1
TS . B also updates the set L̃ and S̃1(lr .msg) the same as in

the game Gts-uf-1
TS .

R̃O(x) query: B directly relays the query to oracle RO in the game Gts-uf-0
TS .

After receiving the output (M∗, sig∗) from A, denote the event GoodECS as S̃1(M∗) ⊆ ECS . If A
wins the game Gts-uf-1

TS and GoodECS occurs, B returns (M∗, sig∗). Otherwise, B aborts.
Denote the event WIN as A wins the game Gts-uf-1

TS simulated by B. We first show B wins the game
Gts-uf-0

TS if WIN ∧ GoodECS occurs. From the simulation, we know S1(M∗) = S̃1(M∗)\ECS , where
S1(M∗) is defined in the game Gts-uf-0

TS . Since WIN ∧ GoodECS occurs, we know (M∗, sig∗) is valid
for the public key vk and S̃1(M∗) = ∅, which implies B wins the game Gts-uf-0

TS .
Therefore, it is left to show that Pr[WIN ∧ GoodECS] ≥ 1

( ns
t−1)

Advts-uf-1
TS (A). We first fix a set

S ∈ [1..ns] with size less than t and consider the case when CS = S. If WIN occurs, we know
|S̃1(M∗)| < t − |CS |. Since B perfectly simulates the game Gts-suf-0

TS no matter which ECS is
picked, we know the set S̃1(M∗) is independent of the choice of ECS , which implies

Pr [ GoodECS |WIN ∧ CS = S ] = Pr
[
ECS ∈ S̃1(M∗) |WIN ∧ CS = S

]
≥ 1( ns−|S|

t−1−|S|
) ≥ 1( ns

t−1
) .

Therefore,
Pr[GoodECS] =

∑
S⊆[1..ns],
|S|<t

Pr [ GoodECS |WIN ∧ CS = S ] · Pr [ WIN |CS = S ]

≥
∑

S⊆[1..ns],
|S|<t

1( ns
t−1
)Pr [ WIN |CS = S ]

= 1( ns
t−1
) Pr[WIN] = 1( ns

t−1
)Advts-uf-1

TS (A) .

C Proof of Theorem 3.2

Proof: This proof only deals with TS-SUF-4 security, but a similar proof also works for TS-UF-4
security.
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BInit,PPO,PSignO,RO():
1 For i ∈ [1..ns] do
2 (svki, sski)← DS.Kg

3 (M, sig)← AĨnit,P̃PO,P̃SignO,R̃O()
4 If WIN ∧ (¬BadLR) occurs then
5 Return (M, sig)
6 Else abort

Ĩnit(CS):
7 vk, taux, {tski}i∈CS ←$ Init(CS)
8 For i ∈ CS do
9 ski ← (tski, sski)

10 aux ← (taux, svk1, . . . , svkns)
11 Return vk, aux, {ski}i∈CS

P̃PO(i):
12 tpp ← PPO(i)
13 tsig ←$ DS.Sig(sski, pp)
14 Return (tpp, tsig)

˜PSignO(i, lr):
15 For i ∈ lr .SS do
16 (ppi, tsigi)← lr .PP(i)
17 If DS.Vf(svki, ppi, tsigi) = false then
18 Return ⊥
19 Return PSignO(i, OriginLR(lr))

R̃O(x):
20 Return RO(x)

Figure 15: Adversary B for the proof of Lemma C.1. B also compute the sets L, PP, and S2(lr),
S3(lr), S4(lr) for each lr ∈ L following the same logic as in the game Gts-suf-4

ATS and thus can check
whether the event WIN ∧ (¬BadLR) occurs.

Let A be the adversary described in the theorem. After A returns, denote the event BadLR as
there exists lr such that S2(lr) > 0 and S3(lr) ̸= S4(lr). Denote the event WIN as A wins the game
Gts-suf-4

ATS . Then, we have
Advts-suf-4

ATS (A) ≤ Pr[WIN ∧ (¬BadLR)] + Pr[BadLR] .
Thus, we can conclude the theorem with the following two lemmas.

Lemma C.1 There exists a TS-XX-3 adversary B making at most qs1 queries to PPO, at most
qs2 queries to PSignO, and at most qh queries to RO such that

Pr[WIN ∧ (¬BadLR)] ≤ Advts-suf-3
TS (B) .

Moreover, B runs in time roughly equal that of A

Lemma C.2 There exists a SUF-CMA adversary C making at most qs1 queries to SignO such
that

Pr[BadLR] ≤ ns ·Advsuf-cma
DS (C) ,

Moreover, C runs in time roughly equal that of A

Proof of of Lemma C.1: We give a construction of the adversary B in Fig. 15, where B runs
A by simulating the game Gts-suf-4

ATS . The simulation is done simply by relaying all queries from A
to the oracles in the game Gts-suf-3

TS and doing the extra authentication parts by B itself. It is clear
that B simulates the game Gts-suf-4

ATS perfectly, which implies the probability that B does not abort
is equal to Pr[WIN ∧ (¬BadLR)].
Therefore, it is left to show that if B does not abort, then B wins the game Gts-suf-3

TS . Suppose
WIN ∧ (¬BadLR) occurs in the game Gts-suf-4

ATS simulated by B. We use L̃, P̃P, S̃2, S̃3, and S̃4 to
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denote the variables L, PP, S2, S3, and S4 in the game Gts-suf-3
TS . From the simulation, we know

L̃ = {OriginLR(lr)}lr∈L. For any lr ∈ L, denote l̃r = OriginLR(lr), and we have lr .msg = l̃r .msg and
TS.SVf[h](vk, l̃r , sig) = true if and only if ATS.SVf[h](vk, lr , sig) = true. Since the output (M, sig)
must be valid for the public key vk due to WIN occurs, to show B wins the game Gts-suf-3

TS , we just
need to show for any lr ∈ L such that lr .msg = M and ATS.SVf[h](vk, lr , sig) = true, it holds that

(|S̃2(l̃r)| < t− |CS|) ∨ (S̃2(l̃r) ̸= S̃3(l̃r)) . (1)
Since WIN occurs, we know either |S2(lr)| < t − |CS| or S2(lr) ̸= S4(lr). If |S2(lr)| < t − |CS|,
from the simulation, we know |S̃2(l̃r)| = |S2(lr)| < t − |CS|, which implies (1) holds. Otherwise,
we have |S2(lr)| ≥ t − |CS| > 0 and S2(lr) ̸= S4(lr). Since BadLR does not occur, we have
S3(lr) = S4(lr) = HS ∩ lr .SS. Therefore, for any i ∈ HS ∩ lr .SS, it holds that lr .PP(i) ∈ PPi,
which implies l̃r .PP(i) ∈ P̃Pi. Since l̃r .SS = lr .SS, we have S̃3(l̃r) = HS ∩ lr .SS. Therefore, we
have S̃2(l̃r) = S2(lr) ̸= S4(lr) = HS ∩ lr .SS = S̃3(l̃r), which implies (1) holds.

Proof of of Lemma C.2: We describe a construction of the adversary C as follows. To start
with, C queries Init() oracle and receives svk∗. Also, C initializes all the states st0, . . . , stns. Then,
C runs A with access to the oracles Ĩnit, P̃PO, ˜PSignO, R̃O, which are simulated as follows.

Ĩnit(CS ): Same as in the game Gts-suf-4
ATS , except C additionally randomly picks an index i∗ ∈ HS

and sets (svki∗ , sski∗)←$ (svk∗,⊥) instead of generating them by DS.Kg. Also, C initializes
h to an empty table.

P̃PO(i) query: Same as in the game Gts-suf-4
ATS , except when i = i∗, in the execution of SPP[h](sti∗),

C computes tsig ←$ SignO(tpp) instead of generating it by DS.Sig.

˜PSignO(i, lr) query: Same as in the game Gts-suf-4
ATS .

R̃O(x) query: If h(x) ̸= ⊥, C returns h(x). Otherwise, C sets h(x)←$ Zp and returns h(x).

After receiving the output from A, denote the event GoodInd as there exists lr∗ ∈ L such that
S2(lr∗) > 0 and i∗ ∈ S4(lr∗) \ S3(lr∗). If GoodInd does not occur, B aborts. Otherwise, B returns
(tppi∗ , tsig i∗), where (tppi∗ , tsig i∗)← lr∗.PP(i∗).
We first show that B wins the game Gsuf-cma

DS if GoodInd occurs. Since S2(lr∗) > 0, we know for all
i ∈ lr∗.SS, DS.Vf(svki, tppi, tsig i) = true where (tppi, tsig i)← lr∗.PP(i). Since i∗ ∈ S4(lr∗)\S3(lr∗),
we have (tppi∗ , tsig i∗) ̸∈ PPi∗ . From the simulation, we know PPi∗ = Q, where Q is defined in the
game Gsuf-cma

DS . Therefore, we know (tppi∗ , tsig i∗) is valid for svk∗ = svki∗ and (tppi∗ , tsig i∗) ̸∈ Q,
which implies B wins the game Gsuf-cma

DS .
It is left show that Pr[GoodInd] ≥ 1

ns Pr[BadLR]. We first fix a set S ∈ [1..ns] with size less than t

and consider the case when CS = S. If BadLR occurs, then there exists l̃r ∈ L such that S2(l̃r) > 0
and S4(l̃r) ̸= S3(l̃r), which implies S4(l̃r) \ S3(l̃r) ̸= ∅. 1 Since C perfectly simulates the game
Gts-suf-4

ATS no matter which i∗ is picked, we know the set S3(l̃r) \ S2(l̃r) is independent of the choice
of i∗, which implies

Pr [ GoodInd |BadLR ∧ CS = S ] = Pr
[
i∗ ∈ S3(l̃r) \ S2(l̃r) |BadLR ∧ CS = S

]
≥ 1

ns− |S| ≥
1
ns .

1Since S3(l̃r) ⊆ S4(l̃r), we must have S3(l̃r) \ S2(l̃r) ̸= ∅ if S4(l̃r) ̸= S3(l̃r).
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Game Ggg-t-vcdh
G // Set G is the range of the encoding, |G| is prime.

Init():
1 p← |G| ; E←$ Bijections(Zp, G) // Think “ E(x) = gx ”
2 1← E(0) ; g ← E(1) // Think 1 the identity and g generator
3 y←$ Zp ; Y ← E(y)
4 For i = 1, . . . , t do x[i]←$ Zp ; X[i]← E(x[i])
5 GL← {1, g, Y, X[1], . . . , X[t]}
6 Return 1, g, Y, X[1], . . . , X[t]

Op(A, B, sgn): // A,B ∈ G and sgn ∈ {+,−}
7 If (A ̸∈ GL or B ̸∈ GL) then return ⊥
8 c← (E−1(A) sgn E−1(B)) mod p ; C ← E(c) ; GL← GL ∪ {C}
9 Return C

Eval(α): // α ∈ Zt
p

10 VecSet← VecSet ∪ {α}
11 Z ← E(y · ⟨α, x⟩) ; GL← GL ∪ {Z}
12 Return Z

Fin(Z, α):
13 If (α ∈ span(VecSet)) then return false
14 If (Z ̸∈ GL) then return false
15 Return (Z = E(y · ⟨α, x⟩))

Figure 16: Game defining t-VCDH problem in the generic group model.

Therefore, we have
Pr[GoodInd] =

∑
S⊆[1..ns],
|S|<t

Pr [ GoodInd |BadLR ∧ CS = S ] · Pr [ BadLR |CS = S ]

≥
∑

S⊆[1..ns],
|S|<t

1
nsPr [ BadLR |CS = S ] = 1

ns Pr[BadLR] .

D Security proof for VCDH in the GGM

In this section, we prove that the t-VCDH assumption holds in the generic group model (GGM) [37,
34]. Our GGM framework and proof follow [2].
GGM definitions. Suppose G is a set whose size p = |G| is a prime, and E : Zp → G is a bijection,
called the encoding function. For A,B ∈ G, define A opE B = E(E−1(A) + E−1(B)). Then G is a
group under the operation opE [41], with identity element E(0), and the encoding function becomes
a group homomorphism: E(a+ b) = E(a) opE E(b) for all a, b ∈ Zp. The element g = E(1) ∈ G is a
generator of this group, and E−1(A) is then the discrete logarithm of A ∈ G relative to g. We call
opE the group operation on G induced by E.

In the GGM, the encoding function E is picked at random and the adversary is given an oracle
for the group operation opE induced on G by E. Game Ggg-t-vcdh

G in Fig. 16 defines, in this way, the

36



Games Gm0 , Gm1

Init():
1 V ← ∅; p← |G| ; y←$ Zp

2 For i = 1, . . . , t do x[i]←$ Zp

3 1← VE(0); g ← VE(1); Y ← VE(Y)
4 For i = 1, . . . , t do X[i]← VE(Xi)
5 Return 1, g, Y, X[1], . . . , X[t]

VE(p): // Here p ∈ Zp[X1, . . . ,Xt,Y].
6 If ( TV[p] ̸= ⊥ ) then return TV[p]
7 v ← p(x, y); C←$ G \ V

8 If TE[v] ̸= ⊥ then bad← true; C ← TE[v]
9 V ← V ∪ {C}; TE[v]← C

10 TV[p]← C; TI[C]← p ; Return TV[p]

VE−1(C): // Here TI[C] ̸= ⊥.
11 Return TI[C]

Op(A, B, sgn): // Here TI[A],TI[B] ̸= ⊥ and sgn ∈ {+,−}
12 p← VE−1(A) sgn VE−1(B) ; C ← VE(p) ; Return C

Eval(α): // Here α ∈ Zt
p

13 VecSet← VecSet ∪ {α}
14 p←

∑t

i=1 α[i] · XiY ; Z ← VE(p)
15 Return Z

Fin(Z, α): // Here TI[Z] ̸= ⊥.
16 If (α ∈ span(VecSet)) then return false
17 p←

∑t

i=1 α[i] · XiY
18 Return (Z = VE(p))

Figure 17: Games Gm0 and Gm1 for the proof of Theorem D.1.

t-VCDH problem. The set G parameterizes the game, and the random choice of encoding function
E : Zp → G is shown at line 1. Procedure Op then implements either the group operation opE on
G induced by E (when sgn is +) or its inverse (when sgn is −). Set GL holds all group elements
generated so far. Oracle Eval takes α ∈ Zt

p to return what in the generic group corresponds to Y
raised to the power ⟨α,x⟩. We let Advgg-t-vcdh

G (A) = Pr[Ggg-t-vcdh
G (A)] be its ggm-vcdh-advantage.

Security of t-VCDH in the GGM. The following upper bounds the ggm-vcdh-advantage of an
adversary A as a function of t and the number of its Op and Eval queries.

Theorem D.1 Let G be a set whose size p = |G| is a prime. Let t ≥ 1 be an integer. Let A
be an adversary making QOp

A queries to its Op oracle and QEval
A queries to its Eval oracle. Let

q = QOp
A + QEval

A + t+ 4. Then

Advgg-t-vcdh
G (A) ≤ q(q − 1)

p
. (2)

We note that the bound tells us that the hardness of the t-VCDH problem in the GGM is comparable
to that of the discrete logarithm and the CDH problems.
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Proof of Theorem D.1: The proof will consider two games Gm0 and Gm1. Beyond the proce-
dures of game Ggg-t-vcdh

G , the games also define procedures VE and VE−1, the polynomial encoding
and its inverse. These procedures are not exported, meaning can be called only by other game
procedures, not by the adversary.
Throughout, we assume the adversary A makes no trivial queries. By this we mean that the checks
at lines 7 and 14 of game Ggg-t-vcdh

G are not triggered. In our games the consequence is that we
assume TI[A],TI[B] ̸= ⊥ in any Op(A,B, sgn) query and TI[Z] ̸= ⊥ in the Fin(Z,α) query.
We start with game Gm0 of Figure 17, claiming that

Advgg-t-vcdh
G (A) = Pr[Gm0(A)] . (3)

The game picks y,x[1], . . . ,x[t] in the same way as game Ggg-t-vcdh
G . However, the encoding function

E is generated implicitly and lazily, via the table TE. Moreover, this table is set indirectly by calling
the procedure VE, which we call the polynomial-encoding function, on the indicated polynomial
arguments. In particular, VE takes as input a (t + 1)-variate polynomial2 p ∈ Zp[X1, . . . ,Xt,Y]
and returns E(p(x, y)). By induction, one can easily see that we always query VE with the correct
polynomials, so that running either of Ggg-t-vcdh

G and Gm0q with the same E, the same adversary’s
randomness, and the same x, y, would generate the same values to the adversary. Therefore,
Ggg-t-vcdh

G and Gm0 behave identically and, Equation (3) holds.
A bit more precisely, to implement VE, the game maintains two tables TV : Zp[X1, . . . ,Xt,Y] →
G∪{⊥} and TI :G→ Zp[X1, . . . ,Xt,Y]∪{⊥} (the “I” stands for “inverse”). The only subtle point
is that it is possible that TV[p] = TV[p′] = C for two distinct polynomials p ̸= p′, and TI[C] = p,
i.e., only one inverse is defined. However, when this is the case, v = p(x, y) = p′(x, y) must hold,
and thus either polynomial can be used later when TI[C] = p, as only the evaluation on x, y matter
here.
Moving on, the second game Gm1 is also depicted in Figure 17, and is identical to Gm0, except for
the minor difference that the encodings are no longer a function of the evaluation of the polynomial,
but of the polynomial itself. Therefore, now, even when p(x, y) = p′(x, y), the outputs of VE(p) and
VE(p′) are distinct (and uniform). As bad is set exactly the frist time that we encounter two such
polynomials„ Gm0 and Gm1 are equivalent-until-bad, and thus, by the Fundamental Lemma [8],

Pr[Gm0(A)] ≤ Pr[Gm1(A)] + Pr[Gm1(A) sets bad] . (4)
In Gm1, the outputs of all VE calls are independent of x and y, and the latter are only used to set
bad, which also does not affect the behavior. Therefore, we can equivalently sample x and y at the
end of the execution, and check whether any of the VE queries would have provoked bad ← true.
For this to happen, there must exist two queries VE(pi) and VE(pj) such that pi ̸= pj , and

pi(x, y)− pj(x, y) = 0 . (5)
Because every polynomial p that is queried to VE has degree at most 2, the same is true for
pi(X1, . . . ,Xt,Y)− pj(X1, . . . ,Xt,Y). Hence, the probability that Equation (5) holds is at most 2/p
by the Schwartz-Zippel lemma. Further, as VE is invoked at most q times, there are most

(q
2
)

such
pairs pi, pj , and thus, by the union bound,

Pr[Gm1(A) sets bad] ≤
(
q

2

)
· 2
p

= q(q − 1)
p

. (6)

Finally, to conclude the proof, we argue that Pr[Gm1(A)] = 0. This is because by our assumption
2Here Zp[X1, . . . , Xt, Y] is the set of (t + 1)-variate polynomials with coefficients in Zp and (formal) variables

X1, . . . , Xt, Y.
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BInit,Eval():
1 (X, Y )←$ Init()
2 i∗←$ [1..q]; M∗ ← ⊥

3 (M, sig)←$AĨnit,P̃PO,P̃SignO,R̃O()
4 If M = M∗ then
5 Z = sig/

∏k

j=1 Y λj (0)·skj

6 Return (α(0), Z)
7 Else abort

Ĩnit(CS):
8 Require: CS = [1..k], k < t

9 HS ← [1..ns] \ CS
10 For i ∈ [1..k] do
11 ski←$ Zp; vki ← gvki

12 For i ∈ [k + 1..t] do vki ← X[i]
13 For i ∈ [t + 1..ns] do
14 vki ←

∏t

j=1 vk
λj (i)
j

15 vk ←
∏t

j=1 vk
λj (0)
j

16 aux = (vk1, . . . , vkns)
17 Return vk, aux, {ski}i∈CS

P̃PO(i):
18 Return ⊥

˜PSignO(i, lr):
19 M ← lr .msg
20 S1(M)← S1(M) ∪ {i}
21 If M ̸= M∗ then
22 psig ← vk

λlr
i .SS·D[M ]

i

23 Else
24 A← Eval(α(i))

25 psig ←
(∏k

j=1 Y λj (i)·skj ·A
)λlr

i .SS

26 If |S1(M∗)| ≥ t− k then abort
27 Return psig

R̃O(M): // Random oracle
28 cnt← cnt + 1
29 If cnt = i∗ then
30 M∗ ←M

31 T [M ]← Y ; D[M ]← ⊥
32 Else
33 y←$ Zp; T [M ]← gy; D[M ]← y

34 Return T [M ]

Figure 18: Adversary B for the proof of Theorem 4.1.

that A makes no trivial queries, upon invoking Fin(α∗, Z∗), there must exist a polynomial p such
that TV[p] = Z∗. Further, by construction, this polynomial can only be in the linear span L of
the polynomials 1,X1, . . . ,Xt and the polynomials ∑t

i=1 α[i] ·XiY for each α ∈ VecSet. If A indeed
wins, because α∗ /∈ span(VecSet), we necessarily have that p = ∑t

i=1 α∗[i] · XiY /∈ L. Therefore,
VE(p) is a fresh query to VE, which returns a value different from Z∗, and thus Gm1(A) returns
false.

E Proof of Theorem 4.1

Proof: We give a construction of the adversary B in Figure 18. Whenever we say that B aborts,
we mean that B stops returning a default output. For notational convenience, we do not make calls
to Fin explicit, rather we let A and B produce an output, which is (implicitly) processed by Fin.
Morover, to reduce notational overhead, we assume without loss of generality that A asks for CS =
[1..k], where k < t. (This can always be achieved by permuting the servers indices accordingly.)
Furthermore, we also assume that A queries RO on M prior to any query PSignO(i, lr) such that
lr .msg = M . (This adds up to qs additional RO queries, and we let q = qh +qs be the total number
of RO queries of the resulting adversary.) In the description of B, for any j ∈ [1..k], we also define
the j-th Lagrange polynomials as

λj(X) =
∏

j′∈[1..t]\{j}

X − j′
j − j′

.
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Recall in particular that p(X) = ∑t
i=1 λi(X) · yi is the unique degree t − 1 polynomial such that

p(i) = yi for all i ∈ [1..t]. We also use α(x) ∈ Zt
p for x ∈ Zp to denote the vector such that

α(x)[j] =
{

0 if j ∈ [1..k],
λj(x) if j ∈ [k + 1..t] .

Let us define V = {α(x) : x ∈ [0..ns] \ [1..k]}, and we note that any t − k vectors in V are
linearly independent. To see this, consider the ((t − k) × (t − k))-dimensional matrix whose t − k
rows consist of the vectors α(xi)[k + 1..t], i.e., the last t− k components of α(xi), for some distinct
x1, . . . , xt−k /∈ [1..k]. Then, this matrix has full rank t − k, as the columns are the evaluations
of the Lagrange polynomials λk+1, . . . , λt at x1, . . . , xt−k, and as we argue next, they are linearly
independent. (Which in turn implies that the rows of the matrix are linearly independent.) Indeed,
if they were not independent, we would have ηk+1, . . . , ηt ∈ Zp, not all of them equal zero, such
that

t∑
j=k+1

ηj · λj(xi) =
t∑

j=1
ηj · λj(xi) = 0

for all i ∈ [1..t− k], where we have set η1 = · · · = ηk = 0. This would mean in turn that there exist
a non-zero degree t − 1 polynomial which is zero at all t points [1..k] ∪ {x1, . . . , xt−k}, which is a
contradiction with the fact that such a polynomial can have at most t− 1 zeros.

For now, let us ignore the abort condition within ˜PSignO(i, lr). Then, we claim that the simulation
of A’s execution within B is perfect when X, Y are a proper t-VCDH instance, i.e., when X and
Y are both uniform. In particular, all generated keys have the right distribution, i.e., vki = gski ,
where ski = p(i) for a random polynomial p of degree t−1. Further, the output of every R̃O query
is uniform and independent.

Most importantly, a call to ˜PSignO(i, lr) always returns psig = Hλlr
i .SS·ski , where H is the response

for a R̃O query on input M = lr .msg. This is easy to see when M ̸= M∗, in which case we do know
the discrete logarithm D[M ] of H, and thus Hski = gD[M ]·ski = vk

D[M ]
i . Instead, if M = M∗, then

we have H = Y , and

Y ski = Y
∑t

j=1 skj ·λj(i) = Y
∑k

j=1 skj ·λj(i) · Y ⟨α(i),x⟩ =
k∏

j=1
Y skj ·λj(i) ·A ,

where A← Eval(α(i)).

Finally, assume that A indeed breaks TS-UF-1 security, i.e., it outputs M, sig such that sig = Hsk ,
where sk = DLG,g(vk) = ∑t

j=1 λj(0) · ski. Moreover, |S1(M∗)| < t− k. Then, if M = M∗, we also
have H = Y , and therefore Z = Y ⟨α

(0),x⟩. Moreover, at most t− k − 1 queries have been made to
˜PSignO for M∗, which in turn means that at most t− k − 1 Eval queries have been made by B.

By the linear independence properties we established above, we have α(0) is not in the span of the
prior Eval queries, and thus B breaks t-VCDH. Therefore, for B to succeed, we need that (1) A’s
succeeds and (2) M = M∗ for the final forgery output by A. The probability that both happen is
exactly

·Advt-vcdh
G (B) ≥ 1/q ·Advts-uf-1

BLS[G,GT,ns,t],t(A) .
The additional abort condition ensures that B always makes at most t − k − 1 ≤ t − 1 queries to
Eval, and does not affect its success probability.
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F CDH (loosely) implies t-VCDH

The following lemma suffices in some applications to reduce the hardness of t-VCDH to that of CDH.
Its use is not really necessary in our results (although it can, with some care, give an alternative
flow to obtain a loose reduction to CDH for TS-UF-1 security of BLS).

Lemma F.1 Let G be a cyclic group with generator g and prime order p. Let 1 ≤ q ≤ t − 1.
Further, let V ⊆ Zt

p be such that every q + 1 vectors in V are linearly independent. Let A be a
t-VCDH adversary which makes q ≤ t − 1 Eval queries such that all α ∈ Zt

p input to Eval and
Fin are in V . Then, there exists a CDH adversary B such that

Advt-vcdh
G (A) ≤ |V | ·

(
|V | − 1
q

)
·Advcdh

G (B) .

Moreover, B runs in time equals that of running A, plus, roughly, the time to compute a matrix
inverse in Zt×t

p , and the time to compute 3t exponentiations in G.

For example, if V consists of all t unit vectors in Zt
p, and q = t− 1, the loss in the above bound is

exactly t—this corresponds to the näıve reduction guessing the coordinate i for which the adversary
computes Y xi . Proof: The CDH adversary B is given X = gx, Y ∈ G, and needs to compute

Z = Y x. We give the adversary in Figure 19. In the description, we use a function Extend which,
on input a sequence of linearly independent vectors (α1, . . . ,αq+1) from Zt

p (where q ≤ t − 1), it
returns (αq+2, . . . ,αt) ← Extend(α1, . . . ,αq+1) such that {α1, . . . ,αt} is a basis of Zt

p. Here, we
think of the vector α as a column vector, with αT being its transpose. In B’s description,

(S
r

)
denotes all size-r subsets of a finite set S. We allow the adversary B to abort, with an implicit
understanding that it terminates by outputting a fixed group element in this case. (The specific
choice is irrelevant.)
To analyze how well B succeeds, define first x ∈ Zt

p such that x[i] = DLG,g(X[i]). Also, let us
extend x̃ with x̃[q + 1] = DLG,g(X). It is easy to see that x is uniform over Zt

p, because M is full
rank, and thus the simulated X has the correct distribution. Furthermore, as long as no abort
occurs, the answers to Eval queries are correct. This is because

⟨αi,x⟩ = αT
i x = αT

i Mx̃ = eT
i x̃ = x̃[i] .

For a similar reason, if A indeed outputs Z = Y ⟨αq+1,x⟩, i.e., both Z = Y ⟨α
∗,x⟩ and α∗ = αq+1

hold, then Z = Y x̃[q+1] = Y DLG,g(X).
Therefore, with E being the event that B does not abort,

Advcdh
G (B) ≥ Pr

[
E ∧ Z = Y ⟨α

∗,x⟩
]
,

where the greater-equal takes into account the fact that when aborting, the default output may
also be, occasionally, correct. To compute the probability on the RHS, we can consider a different
experiment where Eval responds correctly with Y ⟨α,x⟩ even if α /∈ {α1, . . . ,αq}. (Clearly, this
cannot be done efficiently, as in general this will require knowledge of DLG,g(X).) Moreover, the
event E is only defined at the end of the experiment, when A outputs (α∗, Z), and occurs if
α∗ ̸= αq+1 or one the Eval queries is not in {α1, . . . ,αq}.

The probability Pr
[
E ∧ Z = Y ⟨α

∗,x⟩
]

has not changed in this experiment, yet the view of A is
now independent of the choice of α1, . . . ,αq+1 and thus of the event E. Therefore,

Pr
[
E ∧ Z = Y ⟨α

∗,x⟩
]

= Pr[E] ·Advt-vcdh
G (A)
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B():
1 (X, Y )←$ Init()
2 αq+1←$ V ; {α1, . . . , αq}←$

(
V \{αq+1}

q

)
3 (αq+2, . . . , αt)← Extend(α1, . . . , αq+1)

4 A←

 αT
1
...

αT
t

; M ← A−1 // A,M ∈ Zt×t
p

5 For i ∈ [1..t] \ {q + 1} do x̃[i]←$ Zp; X̃[i]← gx̃[i]

6 X̃[q + 1]← X

7 For i ∈ [1..t] do
8 X[i]←

∏t

j=1 X̃[j]M [i,j]

9 (α∗, Z)←$AĨnit,Ẽval()
10 If α∗ ̸= αq+1 then abort
11 Else return Z

Ĩnit():
12 Return (X, Y )

Ẽval(α):
13 If ∃i ∈ [1..q] : α = αi then
14 Return Y x̃[i]

15 Else abort

Figure 19: Adversary B for the proof of Lemma F.1.

whereas
Pr[E] = 1

|V |
· 1(|V |−1

q

) .
This concludes the proof.

G TS-UF-0 Security of BLS

For completeness, the following theorem establishes the TS-UF-0 security of BLS based on the
CDH assumption. The proof is simpler to the one given for Theorem 4.1, but very similar in spirit,
and for this reason, we only give a proof sketch.

Theorem G.1 (TS-UF-0 security of BLS) For any TS-UF-0 adversary A making at most qs

queries to PSignO and at most qh queries to RO, there exists a CDH adversary B such that
Advts-uf-0

BLS[G,GT](A) ≤ (qh + qs) ·Advcdh
G (B) . (7)

Moreover, B runs in time roughly equal that of A, plus the time to perform at most 2ns + qs + qh

exponentiations and group operations.

We can then use Theorem 3.1 to obtain a bound for TS-UF-1 based on CDH alone, but this
will incur a multiplicative loss of nst−1. This may be acceptable in scenarios with few servers (e.g.,
ns = 10, t = 3.)

Proof of Sketch: Let A be the given TS-UF-0 adversary. We observe without loss of generality
that we can assume A corrupts t − 1 parties. (This is unlike TS-UF-1.) Furthermore, we assume
that CS = [1..t−1]. Then, the construction of B is given in Figure 20, using some of the notational
machinery from the proof of Theorem 4.1. As we did there, we also assume that A queries RO on
M prior to any query PSignO(i, lr) such that lr .msg = M . (This adds up to qs additional RO
queries, and we let q = qh + qs.) Then, it is not hard to argue that B satisfies Equation (7).

42



BInit,Eval():
1 i∗←$ [1..q]; M∗ ← ⊥

2 (M, sig)←$AĨnit,P̃PO,P̃SignO,R̃O()
3 If M = M∗ then
4 Return Z

5 Else abort

Ĩnit(CS):
6 Require: CS = [1..t− 1]
7 HS ← [1..ns] \ CS
8 vk ← X

9 For i ∈ [1..t− 1] do
10 ski←$ Zp; vki ← gvki

11 For i ∈ [t..ns] do
12 vki ← vkλ0(i)∏t−1

j=1 vk
λj (i)
j

13 aux = (vk1, . . . , vkns)
14 Return vk, aux, {ski}i∈CS

P̃PO(i, ctx ):
15 Return ⊥

˜PSignO(i, lr):
16 M ← lr .msg
17 If M ̸= M∗ then
18 psig ← vk

λlr
i .SS·D[M ]

i

19 Else abort
20 Return psig

R̃O(M): // Random oracle
21 cnt← cnt + 1
22 If cnt = i∗ then
23 M∗ ←M

24 T [M ]← Y ; D[M ]← ⊥
25 Else
26 y←$ Zp; T [M ]← gy; D[M ]← y

27 Return T [M ]

Figure 20: Adversary B for the proof of Theorem G.1.

H Proofs of forking lemmas

H.1 Proof of Lemma 5.3

Proof: For any i ∈ S, h1, . . . , hi−1 ∈ H, and input x, define
Yi(x, h1, . . . , hi−1) := Pr

hi,...,hq ←$ H
[I = i : (I,Out)← A(x, h1, . . . , hq)] .

Then, we have
acc(A) =

∑
i∈S

Pr
x←IG,h1,...,hq ←$ H

[I = i : (I,Out)← A(x, h1, . . . , hq)]

=
∑
i∈S

Ex←IG,h1,...,hi−1←$ H [Yi(x, h1, . . . , hi−1)] .

Thus, we have
acc(ForkA) =

∑
i∈S

Pr
x←IG,h1,...,hn,h′

i,...,h
′
n←$ H

[I = I ′ = i : (8)

(I,Out)← A(x, h1, . . . , hq),

(I ′,Out′)← A(x, h1, . . . , hi−1, h
′
i, . . . , h

′
n)]

=
∑
i∈S

Ex←IG,h1,...,hi−1←$ H [Yi(x, h1, . . . , hi−1)2] (9)

≥
∑
i∈S

(
Ex←IG,h1,...,hi−1←$ H [Yi,j(x, h1, . . . , hi−1)]

)2 (10)

≥ 1
|S|
·
(∑

i∈S

Ex←IG,h1,...,hi−1←$ H [Yi(x, h1, . . . , hi−1)]
)2

(11)
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= acc(A)2

|S|
, (12)

where (10) is due to the fact that E[X2] ≥ (E[X])2 and (11) is due to the fact that ∑n
i=1 a

2
i ≥

1
n (∑n

i=1 ai)2.

H.2 Proof of Lemma 5.7

Proof: Denote ĥi = (h1, . . . , hi−1, hi+1, . . . , hq) ∈ Hq−1. For any i ∈ [1..q], j ∈ Q, ĥi ∈ Hq−1, and
input x, define

Yi,j(x, ĥi) := Pr
hi←$ H

[I = i, J = j : (I, J,Out)← A(x, h1, . . . , hq)] .

Then, we have

acc(A) =
q∑

i=1

∑
j∈Q

Pr
x←IG,h1,...,hq ←$ H

[I = i, J = j : (I, J,Out)← A(x, h1, . . . , hq)]

=
q∑

i=1

∑
j∈Q

Ex←IG,ĥi←$ Hq−1 [Yi,j(x, ĥi)] .

Thus, we have

acc(ForkA) =
q∑

i=1

∑
j∈Q

Pr
x←IG,h1,...,hn,h′

i←$ H
[I = I ′ = i, J = J ′ = j : (13)

(I, J,Out)← A(x, h1, . . . , hq),

(I ′, J ′,Out′)← A(x, h1, . . . , hi−1, h
′
i, hi+1, hq)]

=
q∑

i=1

∑
j∈Q

Ex←IG,ĥi←$ Hq−1 [Yi,j(x, ĥi)2] (14)

≥
q∑

i=1

∑
j∈Q

(
Ex←IG,ĥi←$ Hq−1 [Yi,j(x, ĥi)]

)2
(15)

≥ 1
q · |Q|

·

 q∑
i=1

∑
j∈Q

Ex←IG,ĥi←$ Hq−1 [Yi,j(x, ĥi)]

2

(16)

= acc(A)2

q · |Q|
, (17)

where (15) is due to the fact that E[X2] ≥ (E[X])2 and (16) is due to the fact that ∑n
i=1 a

2
i ≥

1
n (∑n

i=1 ai)2.
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